SHAREK: A Scalable Dynamic Ride Sharing System
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Abstract—Due to its significant economic and environmental
impact, sharing the ride among a number of drivers (i.e., car
pooling) has recently gained significant interest from industry
and academia. Hence, a number of ride sharing services have
appeared along with various algorithms on how to match a rider
request to a driver who can provide the ride sharing service.
However, existing techniques have several limitations that affect
the quality of the ride sharing service, and hence hinder its
wide applicability. This paper proposes SHAREK; a scalable and
efficient ride sharing service that overcomes the limitations of
existing approaches. SHAREK allows riders requesting the ride
sharing service to indicate the maximum price they are willing to
pay for the service and the maximum waiting time before being
picked up. In the mean time, SHAREK computes the price of
the service based on the distance of the rider trip and the detour
that the driver will make to offer the service. Then, SHAREK
returns a set of drivers that can make it to the rider within its
price and temporal constraints. Since there could be many of
such drivers, SHAREK internally prunes those drivers that are
dominated by others, i.e., they provide higher price and higher
waiting time than other drivers. To realize its efficiency and
scalability, SHAREK employs a set of early pruning techniques
that minimize the need for any actual shortest path computations.

I. INTRODUCTION

Dynamic ride sharing can be viewed as a form of car pool-
ing system that arranges ad-hoc shared rides with sufficient
convenience and flexibility [1]. Since dynamic ride sharing
can be enabled by smart phones, GPS and wireless networks,
it is viewed as an environmentally and socially sustainable
way to solve the world-widely major transportation problems,
such as finite oil supplies, high gas prices, and jam-packed
traffic. With the increasing number of the vehicles, it is widely
believed that dynamic ride sharing will gain more popularity
in the coming years.

The significance of the dynamic ride sharing attracts the
interests from both industry and academia [2], [3]. As a
result, a number of dynamic ride sharing systems are available
nowadays, e.g., Flinc [4], Lyft [5], Noah [6]. However, the way
that current ride sharing systems match drivers to requesting
riders suffer from one or more of the following drawbacks:
(1) The matching models are quite simple and limited. For
example, some systems just select the nearest k drivers to the
rider for picking up. In these systems, close by drivers may
have way far destinations than the rider, and hence they are

not suitable for ride sharing. Meanwhile, there exists systems
that require the rider route is part of the driver route, where
some important drivers that may have only a small detour to
suit the rider request will not be reported. (2) The cost of
the ride sharing service is not considered during the matching
and it is left to be negotiated between the riders and drivers
in a personal way. This is very problematic as it may be the
case that the most convenient drivers to pick up the rider have
higher costs that is beyond what the rider would like to pay.
(3) The speedup technique mainly depends on precomputing
the driver routes based on their historical trajectories. This
indeed works to some extent, however, it would fail when
the drivers’ trajectories are missing. Besides, storing those
trajectories needs massive storage which adds new cost to the
operators of the ride sharing systems.

In this paper, we present SHAREK, a new scalable ride
sharing system that avoids the drawbacks of all previous ap-
proaches. SHAREK matches a rider, requesting a ride sharing
service, to a set of drivers who can provide the requested ride
sharing service, while taking into account: (a) the cost of the
ride sharing service, and (b) the convenience of the service for
both the driver and the rider. SHAREK allows drivers willing
to offer a ride sharing service to register themselves indicating
their current source and destination locations, e.g., a driver
is going back from work to home. Meanwhile, SHAREK
allows riders requesting the ride sharing service to indicate
their destinations as well as to express two main constraints:
(1) Cost constraint. The maximum price the rider is willing to
pay for the ride sharing service, and (2) Temporal constraint.
The maximum waiting time that the rider can wait before
being picked up by the driver. Then, SHAREK employs a
cost model that estimates the cost of the ride sharing service
for each driver. The cost model is basically computed based
on the distance of the rider route in addition to the additional
distance overhead that the driver will encounter to detour from
his original route to accommodate the rider request. Based on
the cost model, SHAREK can pinpoint those drivers that can
make it to the rider within its cost and temporal constraints.
Since there could be many of such drivers, SHAREK inter-
nally prunes those drivers that are dominated by others. For
example, if two drivers d; and d; satisfy both the cost and
temporal constraints of the rider, yet d; would result in less



cost and less waiting time than d;, we say that d; dominates
d;, i.e., d; is not on the skyline set of drivers who satisfy the
rider constraints. Hence, we prune d; and do not report it as
a candidate driver. SHAREK only reports those drivers that
are not dominated by others, i.e., the list of skyline drivers
according to cost and temporal constraints.

One trivial way to realize SHAREK vision is to calculate
the actual cost and waiting time that each possible driver d
would offer to the rider r. Then, run a skyline algorithm over
all of the drivers. Such trivial way is prohibitively expensive
as it encounters a large number of road network shortest
path computations. SHAREK achieves its scalability through
minimizing the need to rely on the expensive shortest path
operation. In fact, SHAREK can efficiently and accurately
satisfy the ride sharing request with only few shortest path
computations. To do so, SHAREK employs three consecutive
phases. In the first phase (Euclidian Temporal Pruning), we
take advantage of the rider temporal constraint to prune a
set of drivers without computing any road network shortest
path operation. In the second phase (Euclidean Cost Punning),
we employ a conservative Euclidean computations to prune
a set of drivers based on the rider cost constraint, without
computing any road network shortest path. In the third phase
(Semi-Euclidean Skyline-aware pruning), we start to compute
actual road network shortest paths in a very conservative
way. Meanwhile, we inject the skyline computations inside
the pruning techniques, which helps in pruning even more
drivers without any shortest path computations. So, instead
of considering the skyline computation as an overhead, we
actually consider it as a blessing, where we take advantage of
it to even prune more drivers without further computations.

Extensive experimental evaluation show the scalability and
efficiency of SHAREK. It only takes few milliseconds to
satisfy the rider request, even if there are 10,000 drivers
around. Experimental analysis also shows the pruning power
of each phase in SHAREK, and show that we can get the set
of candidate drivers satisfying all rider constraints with very
few shortest path computations. In general, the contributions
in this paper can be summarized as follows:

1) We define the ride sharing problem in a way that accom-
modates the rider convenience by expressing temporal
and cost constraints along with defining a price cost
model for each ride sharing service.

2) We introduce an efficient and scalable algorithm for the
ride sharing service that: (a) takes into account the rider
temporal and cost constraints and (b) avoids reporting
unnecessary large number of candidate drivers that may
satisfy the rider constraints by reporting only the skyline
set of those drivers in terms of price and waiting time.

3) We provide experimental evidence of the scalability and
efficiency of our proposed algorithm.

The rest of this paper is organized as follows. Section II sets
the stage for various concepts used in SHAREK. Section III
discusses SHAREK query processing. Experimental evaluation
is presented in Section IV. Section V highlights related work.

Finally, Section VI concludes the paper.

II. PRELIMINARIES

This section presents a set of preliminaries that are impor-
tant to set the stage for understanding SHAREK and its vision.
In particular, we discuss what we mean in SHAREK by drivers
and riders, the concept of skyline drivers, the price cost model,
the problem definition, and the underlying data structure.

A. Drivers and Riders

Users of SHAREK are either drivers or riders, as below:

Drivers. The set of driver D represents the ride sharing service
providers. Drivers are ordinary people who are just commuting
in their daily life. At one point, they may indicate their
willingness to offer a ride sharing service within their route.
To do so, they call SHAREK service to register themselves
indicating their origin orig and destination points dest. With
such registration, SHAREK is allowed to track their locations
to asses their suitability for any ride sharing service. Once the
driver reaches to his destination, the driver is unregistered from
SHAREK. Drivers are to be paid for their ride sharing service
based on the distance of the ride service they will provide
and the detour that they will need to make from their original
route.
Riders. The set of riders R represents people requesting a
ride sharing service. To request such service, a rider r would
call SHAREK service, through the dedicated mobile app, and
provide four pieces of information: (1) current location orig,
which can be obtained directly from the cell phone, (2) the
requested destination dest, (3) the maximum waiting time
(max_T1ime) that r can afford before being picked up, and
(4) the maximum price (max_Price) that r is willing to pay
for ride sharing service. Within few milliseconds, the rider
receives a set of drivers from SHAREK that can offer the
requested ride sharing service within the waiting time and
price constraints.

B. Skyline Drivers

For a certain ride sharing request from a rider r, there could
be more than one driver capable of satisfying r requested
within its waiting time and price constraints. It is challenging
then which of these capable drivers to return to the rider.
Should we decide to return only the driver with least waiting
time, we may end up in returning an expensive driver, though
it is still within the rider cost constraints. Similarly, the driver
with cheapest price may end up on the highest waiting time.
In the mean time, returning all possible candidate drivers
satisfying the rider constraints may not be practical and result
in redundant information.

Hence, SHAREK opts to use the logic of the maximal vector
set problem [7] (also known as the skyline query in database
context [8]) to return only the set of the two dimensioanl
skyline drivers in terms of waiting time and price. A driver
d; belongs to the set of skyline drivers if there is no other
driver d; that has less waiting time and less price than that
of d;. Meanwhile, if d; has less waiting time and less price
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than d;, we say that d; dominates d;, and hence d; should be
pruned as it will never make it to the set of skyline drivers.

C. Price Cost Model

Figure 1 gives an illustration example for the price cost
model of SHAREK. In this figure, the origin and destinations
of driver d and rider r are plotted by black and white circles,
respectively. The dotted line represents the original driver d
trip from her origin to his destination. The solid line represents
the detour that the driver d will encounter to provide a ride
sharing service to the rider r. Basically, d has to travel from
his origin location orig(d) to the rider origin location orig(r).
Then, d has to go through the rider trip till dest(r) to drop
off r. Finally, d will need to go to his destination dest(d).

Given the example in Figure 1, the price for the ride sharing
service offered from driver d to rider r, Price(d, ), has two
components: (1) The cost of the rider trip from its origin to
destination, RiderTrip(r). This is intuitive as at least the rider
needs to pay the cost of its own route. Notice that this part
is independent from the driver d, i.e., any driver d will be
offering ride sharing service to r will include this cost in its
price. (2) The cost of the detour that the driver d will encounter
to pickup and drop off r, then to return to his own destination.
This part of the price cost will play a major role in matching
drivers to riders, as drivers with less detour will be favored
over drivers with longer detours. Formally, the price can be
represented by the following equation:

Price(d,r) = RiderTrip(r) + Detour(d,r)

Detour(d,r) can be calculated as the difference between
the new route of the driver d (the solid line in Figure 1) and
its original route (the dotted line in Figure 1). This can be
formally stated as:

Detour(d,r) = Pickup(d,r) + RiderTrip(r)
+Return(d, r) — DriverTrip(d)

From the above two equations, we get the equation used
in SHAREK to calculate the cost of any ride sharing service
from driver d to rider r, as

Price(d,r) = Pickup(d,r) + 2 * RiderTrip(r)
+Return(d,r) — DriverTrip(d) (1)

It is important to note here that the price cost of any
trip between two end points is proportional to the shortest
path road network distance between the two end points. For
example Pickup(d,r) is proportional to the shortest path
network distance between orig(d) and orig(r).

D. Problem Definition

Based on the understanding of the roles of Drivers and
Riders, along with the price cost model, SHAREK defines
its ride sharing service as follows:

Definition 1: Given a a set of drivers D, where each driver
d € D has a current origin location orig(d) and a destination
dest(d), and a ride sharing request from a rider r, located
at orig(r) to go to dest(r), within a maximum waiting time
Tmax_Time aNd a maximum price 7yqz_pPrice, SHAREK finds
a set of drivers D’ C D, where Vd € D', the following hold:
(1) PZCkUp(d, 'I") < Tmax_Times (2) P’I’Z'CG(d, 71) < Tmax_Prices
and (3) d is in the set of skyline drivers based on Pickup(d, r)
and Price(d,r).

It is important to note here that in the first condition we
compare Pickup(d,r), which is a a shortest path distance
with 7z Time, Which is a time unit. However, this is still
accurate as we consider that the shortest path distance between
point A and point B is proportional to the time taken to travel
from A to B and also to the price to be paid for the trip from
A to B. Conversions between distance, time, and price can be
done by just multiplying in a factor. Hence, in this paper, we
compare distance, time, and price units to each other.

E. Data Structure

Driver Table. SHAREK maintains one big table, Driver Table,
that includes an entry for each currently registered driver with
SHAREK. Once a driver d indicates his willingness to provide
aride sharing service, d is registered with SHAREK and a new
entry for d is added to the Driver Table with the following
information: A driver entry d has four attribute: (1) ID: A
unique driver identifier set by SHAREK, (2) CurrentLoca-
tion: The current location of d, either set explicitly by d
or extracted from her mobile device. With the registration,
d allows SHAREK to track his location, and hence this
attribute is continuously changing with the movement of d,
(3) Destination: The destination location for the driver. Once
d reaches to its destination, it is automatically unregistered
from SHAREK and its entry is deleted from the Driver
Table, and (4) DriverTrip: The shortest path cost between
CurrentLocation and Destination. As the CurrentLocation is
continually changing, the value of the DriverTrip changes
accordingly. We use an efficient incremental shortest path
algorithm for updating the value of DriverTrip.

Grid Index. The Driver Table is indexed by a simple gird
index [9] on the CurrentLocation field. We opt for using the
grid index due to its simplicity and low update overhead.
As CurrentLocation is a continuously changing fields, it is
important to ensure that it does not cause much overhead to
the index structure, and hence the grid index is a suitable one.

III. SHAREK QUERY PROCESSING

A naive way to support the ride sharing query as defined
in SHAREK is to first compute the shortest path between the
rider and every single registered driver as well as the shortest
path for the driver to return to his original destination after
giving the requested ride to the rider. For those drivers that can



satisfy both the pickup time and cost constraints, run a two-
dimensional skyline algorithm over pickup time and cost to
get those drivers that are not dominated by any other drivers.
Though the solution looks simple, it has a prohibitive cost
of computing large numbers of shortest paths, which is not
suitable, given the online environment of ride sharing requests.
SHAREK avoids such prohibitive cost by deploying a set
of early pruning techniques with the goal of minimizing
the need for shortest path computations. In fact, we will
see that we can efficiently and accurately satisfy the ride
sharing request with only few shortest path computations.
SHAREK is composed of three consecutive phases, namely,
Euclidian Temporal Pruning, Euclidean Cost Punning, and
Semi-Euclidean Skyline-aware Pruning. The three phases are
described in details in the rest of this section. For illustration,
we use the example shown in Figure 2(a) throughout the
whole section. Black points represent the drivers and white
points represent the rider. A dotted vertical line separates
these points into two parts. The points in the left part are
origins of the drivers and the rider while the right part contains
their destinations. We assume that maximum waiting time and
maximum price rider constrains are 15 and 30, respectively.

A. Phase I: Euclidean Temporal Pruning

The input of this phase is the set of all registered drivers
in the system, stored in the Driver Table and the grid index
of them. The output is a set of candidate drivers that can
pick up the rider r within its maximum waiting time, based
on Euclidean distance computations. The Euclidean distance
between any two points is equal or less than the actual
shortest path road network distance between the same two
points. Meanwhile, computing the Euclidean distance has a
trivial cost compared to the actual shortest path computations.
Hence, Euclidean distance can act as a cheap conservative
proxy for the actual road network distance. For this phase,
this means two important issues: (1) There is no shortest path
computations in this phase at all, hence, we can early prune
a set of drivers without expensive computations, and (2) Not
all the output candidate drivers can make it to the rider within
the requested time, as the actual road network distance from
the driver to the rider is more than the computed Euclidean
distance. Hence, a driver d that satisfies the temporal constraint
based on the Euclidean distance may not actually satisfy the
temporal constraint based on the road network distance.

The main idea of this step is to exploit the grid index data
structure by a circular range query Qi centered at the rider
location with a radius equivalent to the Euclidean distance
corresponding to the maximum waiting time constraint of the
rider 7. Any driver d that does not satisfy the query Qg is
immediately pruned from our consideration, with no further
computations, as d will never be able to pick up r within
its time constraint. The main reason behind this is that the
Euclidean distance between d and r does not allow d to be at r
location in time. Since the road network distance is guaranteed
to be more than the Euclidian distance, then driver d cannot
make it to the rider r using a road network distance. The set
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Fig. 2. Temporal pruning with 7,00 Time

of drivers that satisfy the range query (Jr may still include a
set of false positives, i.e., a driver d in Qg may still not be
able to get to rider r, using the road network distance.
Example. Figure 2(a) gives the temporal pruning result for
our running example. A range query is submitted for retrieving
drivers that are within Euclidean distance of the rider’s max-
imum waiting time 7,05 Time = 15. As a result, six drivers
(i.e., d1,ds,...,dg) are selected.

B. Phase II: Euclidean Cost Pruning

The input to this phase is the set of candidate drivers

produced from Phase I, while the output is a subset of the
input drivers that are still candidate to be reported in the final
answer.
Main idea. The main idea of this phase is to adopt a conser-
vative estimation of the total ride sharing cost (Equation 1),
by substituting the road network cost with its corresponding
Euclidean cost. Hence, we get the following equation:

EuclideanPrice(d,r) =
EuclideanPickup(d,r) + 2 x RiderTrip(r)+
EuclideanReturn(d,r) — DriverTrip(d) (2)

Comparing Equations 1 and 2, as FuclideanPickup(d,r)
< Pickup(d,r) and  EuclideanReturn(d,r) <
Return(d,r), then FEuclideanPrice(d,r) must be less
than Price(d,r). Hence, if a certain driver cannot satisfy
the price constraints, using FuclideanPrice(d,r), then there
is no need to calculate any shortest path cost for d, as it
will never be able to make it using its road network cost
Price(d,r), which is higher than its Euclidean cost.
Algorithm. Algorithm 1 gives the pseudo code for the first
two phases. First, we obtain the rider r information, i.e., its
location and temporal constraint. Then, we issue a range query
Qg that exploits the grid index g_index over the Driver Table
to return the set of drivers that can reach to the rider within the
temporal constraint using Euclidean distance. The output of the
range query is used to populate a newly created table, termed
Matching Table (Figure 2(b)), that includes one entry for each
driver returned from Phase 1. Each driver entry includes the
driver id, road network and Euclidean cost for both the pickup
and return trip for that driver, and the road network distance
of the driver trip. Since the driver trip cost is already known
from the driver entry in the Driver Table, it is just copied
here upon the table initialization. Then, we compute the actual
road network cost of the rider trip, which is the shortest path



Algorithm 1: Phases I & II: Euclidean Temporal & Cost
Pruning

Input : Driver Table with its grid index g_index; a rider r
Output: A set of candidate drivers stored in Matching Table

-

origin(r) < get the origin of 7;

Tmaz_Time < get the maximum waiting time of r;

Matching Table <— Qr (origin(r), rmaz_Time, §_index)
RiderTrip < compute the shortest path cost between orig(r) and
dest(r);

for d € Matching Table do

5 EuclideanPickup(d, r) + compute the Euclidean distance
between orig(d) and orig(r) ;

6 FEuclideanReturn(d,r) < compute the Euclidean distance
between dest(r) and dest(d) ;

7 if EuclideanPickup(d,r) + 2 * RiderTrip(r) +
EuclideanReturn(d, r) — DriverTrip(d) > rmaz_Price then
// Equation 2

8 L remove d from Matching Table;

[ISY

S

9 return A set of candidate drivers stored in Matching Table

ax Time= 152 Pnax_price= 30, RiderTrip= 12; ID | Pickup | Euclidean | Return | Euclidean | Driver
Pickup +2*12+Return - DriverTrip<30 | Pickup Return | Trip
d, 7.3 9.1 8
d, 6.5 5 9.2
[EuclideanPickup 42*12 + = a4 45 75 10
EuclideanReturn —| DriverTrip > 30 4
d, 538 7.7 9.6
ds 6 42 10
dg 6.1 6 134

Fig. 3. Cost pruning with 7,02 Price

between its origin and destination. Since we only have one
rider, this is a one time cost of shortest path query. Then,
we scan over all the drivers in the Matching Table. For each
driver d, we calculate the Euclidean distance for picking up the
rider (EucledianPickup(d,r)) and returning from the rider
destination (EucledianReturn(d,r)), and store them in the
Matching Table. Then, we check if the total cost of driver d
(Equation 2) is still within the rider cost constraint 7,42 Price-
If not, we exclude d, and remove it from the Matching Table,
without doing any shortest path computations for d.
Example. Figure 3 gives the Matching Table after we compute
the Euclidean Pickup and Euclidean Return costs for each
of the six drivers d; to dg that are produced from Phase I,
assuming that the temporal constraint 7,4z Time = 19.
Assume that the shortest path cost for RiderTrip(r) = 12,
then we calculate Equation 2 for each of the six drivers. We
find that the total cost for driver d; is actually more than 30,
which is the maximum price set by the rider r. Hence, we
decide to remove driver d; from the matching table without
any shortest path computation, as we are sure that d; will never
make it to the final result as its road network distance will
exceed its Euclidean distance. The rest of drivers do and dg
are still candidates as their total cost (using Euclidean distance)
is less than 30, hence they still have a chance to make it.

C. Phase IlI: Semi-Euclidean Skyline-aware Pruning

The input to this phase is the set of candidate drivers,
produced from Phase II, and stored in the Matching Table. The

output is the final answer returned to the rider r that includes
a set of drivers who not only satisfy the temporal and cost
constraints of 7, but also represent a set of the skyline result,
in terms of time and price, of those drivers that satisfy the
temporal and cost constraints. One direct approach to realize
this phase is to just calculate all the shortest path (i.e, road
network distance) for Pickup and Return for each driver in
the Matching Table. Then, calculate the actual total cost for
each driver in the Matching Table. Finally, run a traditional
skyline algorithm over total cost and pickup time to get the
final answer. Unfortunately, such approach is prohibitively
expensive, as it needs to calculate two road network distances
(Pickup and Return) for each driver in the Matching Table,
followed by an expensive skyline operation.

In SHAREK, we avoid such expensive computations by em-

ploying two techniques: (1) We avoid the computations of all
pickup and return shortest paths for each driver through early
pruning techniques where some drivers can be completely
pruned without calculating their shortest paths, and (2) We
inject the skyline computations inside the pruning techniques,
which helps in pruning even more drivers without any shortest
path computations. This achieves a significant improvement as
instead of considering the skyline computation as an overhead
to be added to our two main constraints (time and cost), we
actually consider the skyline operation as a blessing, where
we take advantage of it to even prune more drivers without
further computations.
Main idea. There are actually four main ideas in this phase.
First, we use a less conservative Semi-Euclidean equation for
computing the total cost than Equation 2. In particular, we use
the following equation:

SemiEuclideanCost(d,r) =
Pickup(d,r) 4+ 2 x RiderTrip(r)+
EuclideanReturn(d, r) — DriverTrip(d) (3)

Comparing Equations 3 and 2, here we use the actual road
network for the pickup cost, while we are still conservative
as we still use the Euclidean distance for the return trip.
The second idea of this phase is that we retrieve drivers one
by one based on their road network pickup distance. This
means that if the road network distance of some driver d;
is not satisfying the temporal constraints, then there is no
need to continue getting more drivers. The third idea is that
we inject the skyline computations in this phase by always
setting a maximum cost M AX as the maximum acceptable
cost for any driver to be included in the skyline result.
MAX is initialized by 7paz_price, and is then tightened
with every added driver to the final result. The fourth idea
is that we sort the Matching Table based on the value of
(EuclideanReturn(d,r) — DriverTrip(d)), which will sig-
nificantly help in early pruning a set of drivers as will be seen
below.

Based on these ideas, we employ an incremental road
network nearest-neighbor (INN) algorithm [10] that retrieves
the drivers one by one based on their actual road network



distance Pickup(d,r) from the rider r. For each driver d,
retrieved from the INN query, with an exact road network
distance Pickup(d,r) (computed as part of the INN), we will
have one of the following four cases:

Case 1. Driver d cannot make it on time to pick up the rider,
and hence does not satisfy the temporal constraint of rider r,
i.e., Pickup(d,r) > Twmaz_Time. In this case, we terminate
our algorithm and report the current answer, if any, as the final
answer. We do so without the need to calculate the actual road
network distance of the return trip nor to calculate any road
network distance for the set of drivers that we did not visit yet.
The idea is that since driver d cannot make it on time, and as
we are visiting drivers through an INN algorithm, intuitively
all other drivers are further than driver d, and hence none of
them will make it on time . Hence there is no need to check
any of them.

Case 2. Driver d can satisfy the rider’s temporal constraint,
i.e., Pickup(d,r) < rmaz_Time. Yet, its semi-Euclidean con-
servative cost (Equation 3) is more than the M AX value.
This means that we have visited some driver d; before with
an actual total cost (computed per Equation 1) that is less than
the total cost of d. Since d; is visited before d, then d; is closer
to r than d. Hence, d; dominates d as its closer to r than d
and also it will provide less cost than d. In this case, we take
the following two actions: (1) We consider driver d as not
qualified to be in the query answer, even though we did not
calculate its actual road network return trip. It is important to
note that driver d may still satisfy the cost constraint of the
rider, yet, it does not belong to the set of skyline drivers as it
is dominated by a prior driver d;. This is the case where we
take advantage of the skyline constraint to early prune drivers
without further computation. (2) We prune out all the drivers in
the sorted Matching Table that are below driver d, i.e., have
larger value for (EuclideanReturn(d,r) - DriverTrip(d)) than
that of driver d, without the need to calculate any road network
cost for them. The rational here is that these drivers will have
larger values than driver d in Pickup as they are not reported
yet using the INN algorithm. Since they will have larger
Pickup cost and also larger value of (EuclideanReturn(d,r)
- DriverTrip(d)). Thus, we can safely prune these drivers as
they will never make it to the final skyline answer.

Case 3. Driver d can satisfy the rider’s temporal constraint,
i.e., Pickup(d,r) < Twag_Time, and its semi-Euclidean con-
servative cost (Equation 3) is less than the M AX value. Yet,
its actual total cost (Equation 1) is more than M AX. Notice
that in this case, we had to, for the first time, calculate the
actual road network distance of Return(d,r). In this case, we
just conclude that driver d cannot make it to the final answer,
either because driver d does not satisfy the rider cost constraint
or because it will never make it to the skyline answer because
of the tightened M AX value. It is important to note here that
we cannot prune more drivers from the Matching Table as we
are using the actual road network distance while the Matching
Table is sorted based on an Euclidean distance computations.

Case 4. None of the above, which means that d can satisfy
the rider’s temporal maximum waiting time constraint, its

Algorithm 2: Semi-Euclidean Skyline-aware Pruning

Input : A set of drivers generated from Euclidean distance pruning
and a rider r
Output: skyline drivers R

—_

calculate (EuclideanReturn(d,r) — DriverTrip(d)) for each
driver d in Matching Table;
2 sort Matching Table by values of

(BuclideanReturn(d,r) — DriverTrip(d)) in an ascending order;
3 MAX + Tmaxz_Prices
4 while Matching Table # 0 do
5 Pickup(d,r) < retrieve the nearest driver d in Matching Table
from orig(r) ; // INN query
6 if Pickup(d,r) > rmaz_Time then
7 L break ; // terminate the program
8 if Pickup(d,r) + 2 * RiderTrip(r) +
EuclideanReturn(d, r) — DriverTrip(d) > M AX then
// Equation 3

9 L remove d and drivers that below d from Matching Table;

10 else

11 Return < compute the shortest path cost between dest(r)
and dest(d);

12 if Pickup(d,r) + 2 * RiderTrip(r) + Return(d,r) —
DriverTrip(d) > MAX then // Equation 1

13 | remove d from Matching Table;

14 else

15 MAX <« Pickup(d,r) + 2 x RiderTrip(r) +

Return(d, r) — DriverTrip(d);
16 R + move d from Matching Table to the result set;

17 return skyline driver set R

ax o price= 30, RiderTrip=12%| ID | Pickup | Euclidean | Return | Euclidean | Driver
Pickup +2*12+Return — DriverTrip<30 Pickup Return Trip
dg 6.1 6 13.4
[EuclideanPickup 42*12 + ds 6 42 10
\EuclideanReturn — ﬁnverTnp > 30 d, 6.5 5 92
EuclideanPickup +2*12 + 45 45 75 10
lEuclideanRetum — DriverTrip ] = d, 5.8 7.7 9.6

Fig. 4. Matching Table sorting

semi-Euclidean conservative cost (Equation 3) is less than the
M AX value, and its computed actual total cost (Equation 1)
is less than M AX. In this case, we: (a) add driver d to the
final query answer as we conclude that d is a qualified driver
who belong to the set of skyline drivers that can pick rider r
within its time and cost constraints, and (b) tighten the value
of M AX to be the total cost of d. Such tightening is important
as it indicates that for any other driver d; to be reported in
the final answer, d; has to have less cost than that of d to be
a skyline. Notice that d; will definitely have higher Pickup
cost than that of d as we are retrieving drivers using an INN
algorithm. So, to be in a skyline, driver d’ must have a ride
sharing cost that is less than that current driver d being iterated.
Algorithm. Algorithm 2 gives the pseudo code for Phase III.
We first sort the Matching Table based on the value
of (EuclideanReturn — DriverTrip), computed for each
driver. Then, we initialize a M A X value to the maximum price
of the rider, i.e., "mae_Price- Next, we iterate over the sorted
Matching Table. For each iteration, we execute the nearest-
neighbor query to retrieve the driver d with the lowest road
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Fig. 5. Filtering based on Equation 3 also it has a possible ride sharing cost less than 7,4z Price =
30. So, we calculate the shortest path cost of Return for ds.
P Time= 15 Poas. price= 30, RiderTrip=12}| ID | Pickup | Euclidean | Return | Euclidean | Driver As shown in Figure 6’ we use the ride sharing cost constraint
. 7 . PR Pickup Return Trip . .
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Fig. 6. Filtering based on Cost Constraint

network cost of Pickup. If d cannot satisfy the rider temporal
constraint, we conclude by reporting the current set of skyline
drivers. Otherwise, we calculate the semi-Euclidean cost of d
(Equation 3). If it is more than the current value of M AX, we
shrink the Matching Table by removing d along with all drivers
below d. On the other side, if the semi-Euclidean cost of d is
less than M AX, we have to calculate the actual road network
cost for the return trip of d (line 11). Then, we calculate
the actual total cost of d (line 12). If such cost is still more
than M AX, we just remove d only from the Matching Table,
otherwise, we add d to the final result, and update the value
of M AX accordingly.

Example. We continue our running example, where rider r,
with road network distance trip 12, needs to be picked up
within the constrains rpmee Time = 15 and 7Tmaz Price
30. Figure 4 gives the Matching Table sorted based on
(EuclideanReturn — DriverTrip) in an ascending order.
Then, Semi-Euclidean Distance Pruning will iterate over
drivers by querying incremental nearest neighbor. Figure 5
gives the procedure for filtering based on the estimation
described in Equation 3. First, INN query retrieves the nearest
driver ds. We find that the cost of d3 is more than the rider
constraint (8.7 + 2 % 12 4+ 7.5 — 10 > 30), hence driver dj
is removed from Matching Table. In addition, based on the
conclusion of Matching Table sorting, driver d is also filtered
out without any shortest path computation.

Figure 5 also gives the next iteration, where we can see that
after filtering out d3 and d4 (shown in grey area of the lower
table), the Matching Table is shrunk to be the table in the top
right corner. Then, we continue to search the nearest driver in
this shrunk table, ds is chosen, where its Pickup cost is not

satisfy all the relations listed in the left part of the figure. Since
dg passes the last evaluation of cost constraint (Equation 1),
driver dg becomes a qualified one.

Figure 7 describes the skyline processing case. The driver
dg is the first found qualified driver with ride sharing cost 27.2,
which is less than current M AX (30), and the time for picking
up is 9.3 which must be the least waiting time among all the
drivers according to the INN algorithm we are using. Since the
next found skyline driver must cause more waiting time for the
rider, then the ride sharing cost of this prospective driver must
be less than 27.2. Thus, to find this driver in the next iteration,
we update the maximum price/ride sharing cost 7,5 _price t0
27.2 as shown in the top left part of the figure. Based on this
new value, we filter out driver d, when evaluating Equation 3
(944+2%12+5—9.2 > 27.2). Eventually, only one driver
dg out of 10 is returned to the rider r.

IV. EXPERIMENTAL EVALUATION

This section provides experimental evaluation of SHAREK
based on an actual system implementation. We first compare
the overall performance of SHAREK (Section IV-A), then
we investigate the performance of each phase in SHAREK
(Section IV-B). All Experiments in this section are based on
a mixture of real and synthetic data sets. The real part comes
from the road network of San Francisco, CA, USA, containing
223,606 edges and 175,343 nodes. The synthetic data set are
the drivers and riders on the road network, which are generated
according to Brinkhoff road network generator [11].In our
experiment, we consider 1,000 rider requests, where we report
the average performance for all these requests. We assume the
average speed for each driver is 40 km per hour, the ride
sharing cost is one dollar per KM. Drivers are indexed by a
32 x 32 grid index. We implement a relatively efficient shortest
path search algorithm, namely, Bidirectional Dijkstra [12],
which searches the shortest path from two sides simultane-
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ously and achieves better performance than classical Dijkstra
algorithm in practice [13]. All experiments are evaluated on a
server machine with Intel(R) Xeon(R) CPU E5-2637 3.50 GHz
processor and 8 GB RAM with Ubuntu Linux 14.04.

A. Overall Performance

This section studies the average response time of SHAREK.
In Figure 8, we compare SHAREK with the following three
alternatives: (1) Pure-SP, where we do an exhaustive search
by computing the shortest path cost for all drivers (using
bidirectional Dijkstra algorithm), (2) ETP+SP, i.e., Euclidean
Temporal Pruning plus shortest path, where only the first
phase of SHAREK is utilized, followed by computing the
shortest path for the rest of drivers to get the final result,
(3) ETP+ECP+SP, i.e., SHAREK with Euclidean Temporal
and Cost Pruning, which is basically the first two phases
of SHAREK, followed by shortest path computations of all
candidate drivers out of Phase II. In order to avoid skewness
towards large values of long matching time, all experiments
in Figure 8 are plotted with a logarithmic scale of base 10.

In Figure 8(a), we vary the number of drivers from 2,000
to 10,000, while fixing the rider waiting time constraints
to 5 minutes and the maximum price to 5 dollars. The
Pure-SP method is clearly the most inefficient method (four
orders of magnitude slower than SHAREK). Due to its in-
efficiency, we could only plot its values for up to 4,000
drivers. Such inefficiency is basically due to the many time-
consuming shortest path search operations. In the mean time,
since the ETP+ECP+SP method can prune more drivers with
the help of Euclidean cost pruning technique, it can get
final result faster than ETP+SP. However, both ETP+SP and
ETP+ECP+SP methods have unacceptable performance as
two orders of magnitude slower than SHAREK. This is also
due to the need of computing large number of shortest path
operations, as the Euclidean-based pruning phases are not
enough to ensure an acceptable performance.

In Figure 8(b), we vary the maximum waiting time from
5 to 25 minutes, while fixing the number of drivers to 4000
and the maximum price to 5 dollars. Performance comparison
among the four techniques follow the same trends as that
of Figure 8(a). The Pure-SP method is not practical, where
we cannot run it for more than 10 minutes waiting time.
The ETP+SP and ETP+ECP+SP methods both show a stable
performance that is not affected by the increase in the waiting
time. This is because the maximum price here results in more
pruning than the waiting time. Hence, no mater how much we
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increase the waiting time, we will still end up with the same
number of drivers pruned by the maximum cost, and hence
the performance is stable. SHAREK has performance that is
up to two orders of magnitudes better than that of ETP+SP
and ETP+ECP+SP. This shows the pruning capability of
SHAREK. Unlike the cases for ETP+SP and ETP+ECP+SP,
the performance for SHAREK goes worse with the increase
of the waiting time constraint. This is because the larger the
maximum waiting time, the less drivers can be pruned. Hence,
more overhead is imposed on the third phase of SHAREK.

In Figure 8(c), we vary the maximum price from 5 to 25
dollars, while fixing the number of drivers to 4,000 and the
waiting time to 5 minutes. The difference in performance
among various algorithms remains the same as in Figures 8(a)
and 8(b). However, all methods here show a stable perfor-
mance with the increase in the maximum price constraints.
This shows that the temporal pruning with a small cost pruning
in this set of drivers is enough to prune the most of the drivers
we want. Hence, the performance becomes stable here, which
is in favor to SHAREK and its variants.

Figure 8(d) compares SHAREK against another alternative
SHAREK-No Skyline, where we use all the pruning techniques
we have, except skyline pruning. The driver number is fixed
to 10,000. It is interesting to see that SHAREK-No Skyline
and SHAREK almost share the same performance when
maximum waiting time is within 10 minutes. The performance
of SHAREK is getting better and better as the maximum
waiting time increases. This shows that adding the skyline
functionality to the user constraints does not result in any extra
overhead. Instead, SHAREK takes advantage of the skyline
functionality to increase the performance as well as reporting
more meaningful answer, i.e., less number of drivers.

B. Inside SHAREK

This section studies the internals of SHAREK in terms of
the performance and pruning power of each phase separately.

1) Response Time for Each Phase: Figure 9 gives the
breakout of response time for the three phases of SHAREK,
when increasing number of drivers, maximum waiting time,
and maximum price. The maximum waiting time, maximum
price, and number of drivers is set to 25 minutes, 25 dollars
and 10,000 drivers. It is clear that the time consumed for
Euclidean pruning is quite small and we can hardly distinguish
between the time consumed in Phases I and II compared to
Phase III. This is expected as the first two phases do not
encounter any shortest path computations. Meanwhile, the
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third phase is the only one that needs to make actual shortest
path computations in addition to the skyline pruning.

In Figure 9(a), the fluctuation of average response time
when increasing the number of drivers could be explained by
the reason that the distribution of different sets of drivers in
the road network is different. Hence, the number of qualified
drivers that satisfy the rider’s constraints does not necessarily
increase, which can cause the decrease trend when the driver
number increases after 4,000 as shown in Figure 9(a). Similar
case also occurred in Figure 8(a), where a slight decrease is
after 2,000 driver number.

Figure 9(b) shows a similar trend as that of Figure 8(b), the
increase of maximum waiting time can finally cause significant
influences on the response time of SHAREK. On the contrary,
combining Figures 9(c) and 8(c) shows that the average
response time is less sensitive to the increase of the maximum
price. The main reason behind this is that maximum price can
use embedded skyline operation to offset the overhead from
the increase of its value.

2) Pruning Ratio for Each Phase: Figure 10 gives the
pruning capability of each phase separately. The settings of the
experiments are the same as of Figure 9. Phase I clearly has
the most pruning capability with more than 97.5%, followed
by Phase II with around 2%, then Phase III with around 0.5%.
The final answer is usually less than 5 drivers at the end. The
pruning capability goes in reverse with the time consumed for
each phase. For example, although Phase III is the most time
consuming one, it has, by far, the least pruning ratio.

The question that may arise here is: Does it worth to run
this phase, even though it does not have high pruning ratio.
The answer is definitely yes, it still worth running this phase.
For example, consider the case of Figures 9 and 10, where
we have 10,000 drivers, and the final skyline set of drivers
returned to the rider is around 5. If we were to apply only the

first two phases of SHAREK, we would prune 99.5% of the
drivers in two milliseconds. This means that we will end up
returning 45 unnecessary drivers to the riders in addition to the
five that should form the final answer. Instead, should we go
ahead with the relatively expensive Phase III, we would return
to the rider only the five drivers that form the final answer in
25 milliseconds. With respect to the rider, having five drivers
in 25 millisecond is way much better than having 50 drivers
in 2 milliseconds for three reasons: (1) The rider is likely to
be using his cell phone when requesting SHAREK service.
Hence, it is of essence to limit the size of the answer to only
the right short answer to fit the device small screen. (2) With
50 drivers in hand, it is easy for the rider to make a wrong
decision selecting drivers that are more expensive with more
waiting time than others. (3) When making the request over
a web service, either through a cell phone, tablet or even a
desktop, the networking cost of downloading the information
of 50 more drivers may exceed the time we spent in pruning
them in Phase III. In fact, the networking cost may dominate
the computation cost here.

Overall, Figures 9 and 10 shows the need and value for
having the three phases working together in achieving the
scalability, efficiency, and accuracy of SHAREK.

V. RELATED WORK

Current dynamic ride sharing matching can be classified into
four categories. The first category is to group multiple ride
sharing requests together to achieve the saving goal. Gyozo et
al. proposed a trip grouping algorithm [14] to find the close
by” rider requests based on some heuristics, for example,
grouping requests upon expiration time that the trip request
must be accommodated. To group the trips where the origin
and destination locations of the drivers and riders are close to
each other, a fast detour computation method for the driver



was proposed [15]. Both methods do not provide waiting time
and cost constraints as SHAREK does, and limited themselves
to the similar trips or other heuristics.

The second category of methods perform matching based
on historical data, e.g., T-Share [3] and Noah [6]. To find
the candidate taxis, T-Share leverages enormous historical taxi
trajectories to predict the future locations of the driver and
the query processing is conducted based on this prediction.
Noah uses a caching scheme to avoid repeated calculation of
the same pairs of shortest path and implements a kinetic tree
structure that can schedule dynamic requests and adjust routes
on-the-fly [16]. Both T-Share and Noah depend on the pre-
known of the trips. However, SHAREK only uses real time
location information and has less limitation, and it can be
viewed as an addition to them to enhance their efficiency when
the historical data is not available.

The third category of ride sharing matching is called slug-
ging [17], in which the pick-up and drop-off points are pre-
assigned by the driver while the rider is required to walk
to the meeting point for being picked up and go back to
the destination from the drop-off point. It is proved that the
computational time complexity of the slugging problem is NP-
complete [18]. The matching model of SHAREK does not
belong to this category since no pre-assigned points for pick-
up or drop-off are needed.

The last category is called dial-a-ride problem which refers
to the matching between one driver and multiple riders who
specify their ride requests. The main objective of the dial-a-
ride problem is to plan a set of m minimum cost driver routes
capable of accommodating as many riders as possible, under
a set of constraints [19], i.e., travel sales man problem [20],
or planing schedules for vehicles with time constraint on each
pickup and delivery [21]. There are two aspects that can dis-
tinguish our problem from dial-a-ride problem. (1) Contradict
to dial-a-ride, each query processing in our problem aims to
match multiple drivers against one rider, and (2) The objectives
are different as our problem is to find a set of skyline drivers
that satisfy the rider time and cost constraints, whereas the
dial-a-problem is to plan a set of driver routes.

Last but not least, none of the above algorithms in different
categories provide the skyline results and take skyline com-
putation as a blessing for efficiency issue, which is also an
important character that distinguishes SHAREK from them.

VI. CONCLUSION

This paper proposes SHAREK, a scalable and efficient ride
sharing system. Drivers who are willing to provide a ride
sharing service register themselves with SHAREK indicating
their current locations and destinations. Meanwhile, a rider
requesting a ride sharing service would call SHAREK indicat-
ing the rider current location, destination, a maximum price
the rider is willing to pay for the service, and a maximum
waiting time the rider is willing to wait before being picked
up. Then, SHAREK employs a carefully designed price cost
model to find those drivers that can provide the requested
ride within the time and price constraints. Among the set of

drivers that can provide such service, SHAREK reports only
the skyline set, i.e., maximal vector, of these drivers according
to price and waiting time. SHAREK employs three consecutive
phases, namely, Euclidian Temporal Pruning, Euclidean Cost
Punning, and Semi-Euclidean Skyline-aware pruning, with
the explicit goal to prune as much as drivers as possible
without the need to calculate actual road network shortest
path operations. Extensive experimental evaluation shows that
it only takes an average of few milliseconds from SHAREK to
respond to a ride sharing request with 10,000 drivers around.
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