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Abstract—In this paper, we present a novel decaying operator
for Telco Big Data (TBD), coined TBD-DP (Data Postdiction).
Unlike data prediction, which aims to make a statement about
the future value of some tuple, our formulated data postdiction
term, aims to make a statement about the past value of some
tuple, which does not exist anymore as it had to be deleted to
free up disk space. TBD-DP relies on existing Machine Learning
(ML) algorithms to abstract TBD into compact models that can
be stored and queried when necessary. Our proposed TBD-DP
operator has the following two conceptual phases: (i) in an offline
phase, it utilizes a LSTM-based hierarchical ML algorithm to
learn a tree of models (coined TBD-DP tree) over time and
space; (ii) in an online phase, it uses the TBD-DP tree to recover
data within a certain accuracy. In our experimental setup, we
measure the efficiency of the proposed operator using a ∼10GB
anonymized real telco network trace and our experimental results
in Tensorflow over HDFS are extremely encouraging as they show
that TBD-DP saves an order of magnitude storage space while
maintaining a high accuracy on the recovered data.

Index Terms—telco, big data, spatio-temporal analytics, data
decaying, data reduction, machine learning.

I. INTRODUCTION

In recent years there has been considerable interest from

telecommunication companies (telcos) to extract concealed

value from their network data. Consider for example a telco

in the city of Shenzhen, China, which serves 10 million users.

Such a telco is shown to produce 5TB per day [1] (i.e.,

thousands to millions of records every second). Huang et al. [2]

break their 2.26TB per day Telco Big Data (TBD) down as

follows: (i) Business Supporting Systems (BSS) data, which is

generated by the internal work-flows of a telco (e.g., billing,

support), accounting to a moderate of 24GB per day and; (ii)

Operation Supporting Systems (OSS) data, which is generated

by the Radio and Core equipment of a telco, accounting to

2.2TB per day and occupying over 97% of the total volume.

Effectively storing and processing TBD workflows can

unlock a wide spectrum of challenges, ranging from churn

prediction of subscribers [2], city localization [3], 5G network

optimization / user-experience assessment [4]–[6] and road

traffic mapping [7]. Even though the acquisition of TBD is

instrumental in the success of the above scenarios, Telcos

are reaching a point where they are collecting more data

than they could possibly exploit. This has the following two

implications: (i) it introduces a significant financial burden on

the operator to store the collected data locally. Notice that the
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Fig. 1. Data Prediction (top): aims to find the future value of some tuple.
Data Postdiction (bottom): aims to recover the past value of some tuple,
which has been deleted to reduce the storage requirements, using a ML model.

deep storage of data in public clouds, where economies-of-

scale are available (e.g., AWS Glacier), is not an option due to

privacy reasons; and (ii) it imposes a high computational cost

for accessing and processing the collected data. For example,

a petabyte Hadoop cluster, using between 125 and 250 nodes,

costs ∼1M USD [8] and a linear scan of 1PB would require

almost 15 hours. Additionally, in [9] it is shown that the

amount of storage doubles every year and storage media costs

decline only at a rate of less than 1/5 per year. Finally, high-

availability storage mandates low-level data replication (e.g.,

in HDFS the default data replication is 3).

Consequently, we claim that the vision of infinitely storing

all IoT-generated velocity data on fast high-availability or

even deep storage will gradually become too costly and

impractical for many analytic-oriented processing scenarios.

To this end, data decaying [10], [11] (or data rotting) has

recently been suggested as a powerful concept to complement

traditional data reduction techniques [12], [13], e.g., sampling,

aggregation (OLAP), dimensionality reduction (SVD, DFT),

synopsis (sketches) and compression. Data decaying refers to

“the progressive loss of detail in information as data ages

with time”. In data decaying recent data retains complete

resolution, which is practical for operational scenarios that can

continue to operate at full data resolution, while older data is

either compacted or discarded [5], [10], [11]. Additionally, the

decaying cost can be amortized over time, matching current

trends in micro-batching (e.g., Apache Spark). Unfortuna-

tely, data decaying currently relies on rather straightforward

methodologies, such as rotational decaying (i.e., FIFO) [10],

or decaying based on specific queries [5] rather than the

complete dataset itself. Our aim in this work is to expand upon

these developments to provide more intelligent and generalized

decaying operators.
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Fig. 2. System Model: The TBD-DP operator works on the storage layer of
a typical TBD stack and abstracts the incoming data signals (D) into abstract
models (md) that are organized in a tree data structure (B).

In this paper, we present a novel decaying operator for Telco

Big Data, coined TBD-DP (Data Postdiction) (see Figure 1).

Unlike data prediction, which aims to make a statement about

the future value of some tuple in a TBD store, data postdiction

aims to make a statement about the past value of some tuple

that does not exist anymore, as it had to be deleted to free

up space. TBD-DP relies on existing Machine Learning (ML)

algorithms to abstract TBD into compact models that can

be stored and queried when necessary. Our proposed TBD-

DP operator has the following two conceptual phases: (i) in

an offline phase, it utilizes a LSTM-based hierarchical ML

algorithm to learn a tree of models (coined TBD-DP tree) over

time and space; (ii) in an online phase, it uses the TBD-DP

tree to recover data with a certain accuracy.

We claim that the LSTM model is capturing the essence

of the past through its short and long-term dependencies,

similarly to how the brain retains both recent information and

important old information at a high resolution.

To understand the operational aspects of our proposed TBD-

DP operator, consider Figure 2, where we show how incoming

telco data signals are absorbed by the TBD architecture and

stored on high-availability and fast storage (i.e., D). This

helps to carry out operational tasks (e.g., alerting services and

visual analytics) with full data resolution. Subsequently, in

the first phase of TBD-DP, we utilize a specialized Recurrent

Neural Network (RNN) composed of Long Short Term Memory

(LSTM) units, which has the ability to detect long-term corre-

lations in activity data and the trained model has a small disk

space footprint [14]. This enables TBD-DP to utilize minimum

storage capacity of the decayed data by representing them

with LSTM models on the disk media (D’) and provide real-

time postdictions with high accuracy in a subsequent recovery

phase, which will be initiated on-demand (i.e., whenever some

high-level operator requests the given data blocks).

The contributions of this work are summarized as follows:

• We propose a TBD decay operator that deploys the

notion of data postdiction using off-the-shelf LSTM-

based prediction models.

• We propose the DP-tree, which is a hierarchical index

to organize the generated models in a data structure to

enable the efficient recovery of data when necessary.

TABLE I
SUMMARY OF NOTATION

Notation Description

p, dp, D Ingestion period, data snapshot of one p, set of all dps

t, rt Timestamp within an ingestion cycle, record at t

C, cr, cli Set of all cell towers, Cell of record r, cluster of records
i = 1, . . . , k

mdi,MD LSTM model of cluster cli, set of all models

f Decaying factor: percentage of data to be removed

• We measure the efficiency of the proposed operator using

a ∼10GB anonymized telco network trace, showing that

TBD-DP can be a premise for efficient TBD analytics in

the future. We also summarize a prototype architecture

and user interface we have developed for the management

of TBD.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section formalizes our system model, assumptions and

problem. The main symbols and their respective definitions

are summarized in Table I.

A typical Telco system, illustrated in Figure 2, is composed

of the Telco network, which is responsible for providing

telecommunication services, and a Telco data management

system, such as SPATE [5], which is responsible for the

efficient analytical exploration of Telco datasets. The data

arrives at the data center in batches, called henceforth data

snapshots noted by dp, in the form of horizontally segmented

files within an ingestion period p. A snapshot dp contains

multiple records rt created at a certain timestamp t. Each

record rt consists of a predefined set of attributes including the

cell id cr that represents the spatial information inherent within

the Telco network. Particularly, each cell id cr corresponds to a

cell that covers a geographical cellular area that usually spans

hundreds of meters or even kilometers. Finally, the cells are

spatially grouped into clusters cli, i = i . . . k for facilitating

the postdiction process by creating a model mdi, i = i . . . k

for each cli as this will be explained in the next section.

A. Problem Formulation

Research Goal. Given a Telco setting, this work aims at

achieving a pre-specified decaying of TBD with minimum

additional storage space capacity and being able to recover

the decayed data accurately and efficiently.

The efficiency of the proposed techniques to achieve the above

goal is measured by the following objectives:

Definition 2.1: Storage Capacity (S) is the total storage

space required for achieving decaying of data based on a pre-

specified decaying factor f .

Definition 2.2: Accuracy (NRMSE) is the percentage of

the correctly recovered decayed data. It is measured by the

normalized root-mean-square error, which is the normalized

difference between the actual data (x1,t) and the predicted
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Fig. 3. TBD-DP Operator Overview.

data (x2,t), where t is a discrete time point and ymax, ymin

the maximum and minimum observed differences, formally:

NRMSE =

√
1

n

∑n

t=1
(x1,t − x2,t)2

(ymax − ymin)

III. THE TBD-DP OPERATOR

In this section, we introduce the proposed TBD-DP ope-

rator and discuss its two internal algorithms, namely, the

Construction (data model creation) and the Recovery (data

recreation), which capture its core functionality as illustrated

in Figure 3.

The Construction algorithm can be triggered either by the

user, or automatically when the total storage capacity reaches

a certain level. In both cases, the data are initially clustered

based on spatial characteristics and then ordered based on

temporal information. Finally, postdiction models based on

the LSTM machine learning approach are generated for each

cluster and the real data is decayed by f%. The Recovery

algorithm utilizes the postdiction models for retrieving the

decayed data by adopting a proposed DP-tree based algorithm.

A. Construction Algorithm

Algorithm 1 outlines the major steps of the construction

algorithm. Initially, the decaying factor f specifies the per-

centage of the whole dataset D that will be decayed, and

consequently the decayed subset D′ ⊆ D that will be utilized

for generating the postdiction models. In the spatial partitio-

ning step (Step 1 - lines 2-5), k ≤ |C| clusters are created

by using the cell tower locations. Particularly, each cluster

cli, i = 1, . . . , k is represented by a cell tower (in cases where

k < |C| then the closest cell towers are merged using a kNN

approach until we finally generate k clusters). This allows us to

construct less models based on the network topology resulting

to less computations. Then the MAP function associates

all records rt ∈ D′ with the previously created clusters by

taking into consideration their cell id cr attribute. By the

end of this function execution, k clusters of cell towers with

their associate records will be created. Then all records of

each cluster are ordered based on their timestamp (i.e., time

originally generated) by using the ORDER function of the

temporal ordering step (Step 2 - lines 6-8). This allows the

neural network to be created correctly based on a continuous

time series. Finally, the learning step (Step 3 - lines 9-12)

generates k postdiction models mdi for each cluster cli by

Algorithm 1 - TBD-DP Construction Algorithm

Input: Dataset D, C set of cell towers, Number of clusters k
Output: B: Set of models MD (DP-tree structure)

⊲ Step 0: Decaying Pre-processing
1: D′ ← f of D ⊲ Select f% of D to be decayed

⊲ Step 1: Spatial Partitioning

2: Create k ≤ |C| clusters cli ⊲ Use cell towers locations
3: for all rt ∈ D′ do
4: cli ←MAP (rt, cli)|i = 1, . . . k ⊲ Associate records to clusters
5: end for

⊲ Step 2: Temporal Ordering
6: for i = 1 to k do

7: cli ← ORDER(cli) ⊲ Sort records in clusters based on timestamp
8: end for

⊲ Step 3: Hierarchical Model
9: for i = 1 to k do

10: mdi ← LEARNING(cli) ⊲ Create an LSTM model for each cli
11: Insert mdi in B
12: end for

using a specialized Recurrent Neural Network (RNN) known

as the Long Short Term Memory (LSTM) model [15].

Specifically, the LEARNING function generates, for each

cluster at each iteration, an LSTM model that relies on a

structure called a memory cell, which is composed of four

main elements: an input gate, a neuron with a self-recurrent

connection (a connection to itself), a forget gate and an output

gate. A memory cell is updated at every time-step by using

the following parameters and equations:

• xt is the input to the memory cell layer at time-step t

• Wi,Wf ,WC and Wo are weight matrices

• bi, bf , bC and bo are bias vectors

The forget gate layer:

ft = σ(Wf × [ht−1, xt] + bf ),

decides what information are going to be thrown away from

the memory cells. The input gate layer:

it = s(Wi[ht−1, xt] + bi),

decides which values to be updated. The tanh layer decides

what new information we are going to store in the memory

cells using:

C̃t = tanh(WC [ht−1, xt] + bC).

Moreover, the update memory cells function:

Ct = ft × Ct−1 + it × C̃t,

used to forget the things decided to be forgotten earlier and

scale the new candidate values by a pre-specified state value.

Finally, the update hidden cells function:

ot = σ(Wo[ht−1, xt] + bo)

and a sigmoid layer that decide what parts of the cell state to

output,

ht = ot ∗ tanh(Ct).
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Fig. 4. The conceptual steps of the proposed TBD-DP construction and recovery algorithm.

The Construction algorithm outputs a set of postdiction mo-

dels B in a DP-tree for facilitating the recovery algorithm that

follows. At the end of the Construction algorithm execution,

the D′ set of data is removed for saving storage space and

it is conceptually replaced by the final B set of postdiction

models, where |B| << |D′|.

Example: Consider the scenario in Figure 4 where there are

10 cell towers {A, ..., J}. First, the Construction algorithm

creates k = 5 clusters {cl1,...,cl5} denoted with the solid line

that surrounds the cell towers in Step 1 of Figure 4 (left). The

MAP function associates the records to a cluster based on the

cell id cr (e.g., all records related to A and B are grouped

into cl1). Then, the ORDER function sorts the records of each

cluster based on their timestamp t as shown in Step 2 of

Figure 4 (center). Finally, for each cluster cli a model mdi
is trained and inserted into a DP-tree index using the cell ids

as keys, as shown in Figure 4 (right).

Decay Principle of TBD-DP: Decaying refers to the pro-

gressive loss of detail in information as data ages with time

until it has completely disappeared. Kersten refers to the

existence of data fungus in [11] with a decaying operator

coined “Evict Grouped Individuals (EGI)”. The given EGI

operator performs biased random decaying, resembling the

rotting process in nature (e.g., in fruits with fungus). In our

previous work [5], we used the First-In-First-Out (FIFO) data

fungus, i.e., “Evict Oldest Individuals”, which retains full

resolution for recent data but abstracts older data into compact

aggregation models. Both EGI and FIFO do not retain full

resolution for important instances that occurred in the past.

Consequently, data would have been rotted and purged either

randomly or based on its timestamp. We call this the long-term

dependency problem. In this work, we chose a radically new

decaying technique that could be termed as LSTM data fungus,

which is explicitly designed to avoid the long-term dependency

problem. Particularly, the TBD-DP operator replaces the data

with abstract LSTM models, which capture the essence of the

past, i.e., both recent data and important old data is retained

at the highest possible resolution.

B. Recovery Algorithm

Algorithm 2 outlines the Recovery algorithm that utilizes the

DP-tree structure (B) of postdiction models of Algorithm 1

Algorithm 2 - TBD-DP Recovery Algorithm

Input: L: spatial input; R: temporal input; B: set of postdiction models in a
DP-tree structure
Output: Partial decayed dataset pD′

1: procedure LOOKUP(k,node) ⊲ The number of children is b.
2: if node is a leaf then

3: return node
4: end if
5: switch k do
6: case k < k0
7: return LOOKUP(k, p0)

8: case ki ≤ k < ki+1

9: return LOOKUP(k, pi+1)

10: case kd ≤ k ⊲ Each node has at most d ≤ b
11: return LOOKUP(k, pd+1)

12: end procedure

⊲ Step 1: Index Lookup
13: B′ ← LOOKUP (L,B) ⊲ Select a subset of postdiction models

⊲ Step 2: Recreate part of the Decayed Dataset using LSTM model

14: for all t ∈ R do
15: pD′ = RECREATE(B′, t) ⊲ Retrieve decayed data of specific

time periods.
16: end for

for retrieving a selected subset from the decayed data, i.e.,

pD′ ⊆ D′. For doing this, the Recovery algorithm inputs the

set of models B as well as some spatiotemporal information

L and R that will specify the amount of the decayed data to

be retrieved. For example, L can be a cellular tower’s location

or a user’s location associated to a cellular tower and R can

be a range of timestamps, within which a number of records

were generated and stored in D′. In any case, L and R will

be utilized by the DP-tree LOOKUP function for deciding a

subset of models B′ ⊆ B in line 13 that will be used for

creating the pD′ dataset in line 15.

Example: Consider the scenario of Figure 4 (Recovery Algo-

rithm) where the data of cell tower A (part of cl1) needs to

be recovered for timestamps t1,...,t4. LOOKUP retrieves the

LSTM model md1 for cluster cl1 created from all records

related to cell towers A and B as shown in Step 1 of the given

figure. In Step 2, the Recovery algorithm recreates the values

of cell tower A for each timestamp t recovering in this way a

part of the decayed data pD′ using the selected LSTM model.



C. Performance Analysis

The secondary focus of TBD-DP is the efficient decaying of

data and consequently the minimization of TBD storage space

while maintaining a high accuracy during data recovery.

According to Definition 2.1 the total storage space S is

equal to the actual data minus the decayed data based on f ,

plus any additional storage required by the decaying approach

to achieve an optimal recreation of the decayed data. When

there is no decaying f = 0% then S = |D|+|B| (B could have

been used for predicting future D values), which is the size

of the actual (raw) data D and the size of the set of prediction

models B. In the case of TBD-DP, S = |D| − |D′| + |B|,
which is the actual data size minus the size of the decayed

dataset |D′| = |D| × f% plus the size of a set of models

B, where |D| >> |D′| + |B|. When f = 100% then all

data are decayed and the required storage space of TBD-DP

is S = |B|. In the case of sampling, the storage space is

equal to S = |D| − |V |, which is the actual data size minus

a sample set V = sampling(D′, s) generated by sampling

the decayed dataset D′ with a pre-specified rate s. Note that

|D|−|D′|+ |B| << |D|−|V | for a reasonable s that provides

an NRMSE similar to TBD-DP.

According to Definition 2.2 the NRMSE measures the si-

milarity of the decayed dataset D′ and the recovered dataset

pD′. Therefore, in cases where the decaying factor is f = 0%,

which corresponds to a low |D′| = 0 and no decaying is

applied then NRMSE = 0 and when f = 100%, which

corresponds to a high |D′| = |D| and all data are discarded

then NRMSE >> 0. Moreover, it is reasonable to assume that

in sampling, where a sample set V of the decayed data D′ is

permanently discarded with a sampling rate s then, its NRMSE

(V,D′) will be equal to the normalized difference between

the sampled and the actual data. Finally, the NRMSE of the

proposed TBD-DP will be equal to the normalized difference

between the predicted data of the LSTM model and the actual

data, i.e., NRMSE (pD′, D′).

IV. PROTOTYPE DESCRIPTION

We have developed a complete prototype architecture that

integrates TBD-DP as part of the TBD Awareness project 1.

Our proposed architecture comprises of three layers (see

Figure 2), namely Storage Layer, Indexing Layer and Appli-

cation Layer.

The Storage layer passes newly arrived network snapshots

through a lossless compression process storing the results on a

replicated big data file system for availability and performance.

This component is responsible for minimizing the required

storage space with minimal overhead on the query response

time. The intuition is to use compression techniques that yield

high compression ratios but at the same time guarantee small

decompression times. We particularly use GZIP compression

that offers high compression/decompression speeds, with a

high compression ratio and maximum compatibility with I/O

stream libraries in a typical big data ecosystem we use.

1TBD Awareness, https://tbd.cs.ucy.ac.cy/

Fig. 5. The TBD-DP operator implemented inside the spatio-temporal SPATE
architecture. The interface enables users to carry out high resolution visual
analytics, without consuming enormous amounts of storage. The savings are
quantified numerically with bar charts and visually with heatmaps.

Additionally, this layer uses the TBD-DP operator in order

to provide the decay methods for the next layer. The storage

layer is basically only responsible for the leaf pages of the

SPATE index described in the next layer.

The Indexing Layer uses a multi-resolution spatio-temporal

index, which is incremented on the rightmost path with every

new data snapshot that arrives (i.e., every 30 minutes). In ad-

dition, the component computes interesting event summaries,

called “highlights”, from data stored in children nodes and

stores them at the parent node. For each data exploration query,

the internal node that covers the temporal window of the query

is accessed, and its highlights are used to answer the query.

The Application Layer implements the querying module

and the data exploration interfaces, which receive the data

exploration queries in visual or declarative mode and use

the index to combine the needed highlights and snapshots to

answer the query. SPATE is equipped with an easy-to-use map-

based web interface layer that hides the complexity of the

system through a simple and elegant web interface.

V. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section presents an experimental evaluation of our

proposed TBD-DP operator. We start-out with the experi-

mental methodology and setup, followed by two experiments.

Particularly, in the first experiment, the performance of TBD-

DP is compared against two baseline approaches and two

decaying-based approaches with respect to various metrics on

a set of anonymized datasets. The second experiment examines

the influence of several control parameters on the performance

of TBD-DP.

A. Methodology

This section provides details regarding the algorithms, me-

trics and datasets used for evaluating the performance of the

proposed approach.

Testbed: Our evaluation is carried out on the DMSL VCenter

IaaS datacenter, a private cloud, which encompasses 5 IBM

System x3550 M3 and HP Proliant DL 360 G7 rackables

featuring single socket (8 cores) or dual socket (16 cores)



Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, respectively. These

hosts have collectively 300GB of main memory, 16TB of

RAID-5 storage on an IBM 3512 and are interconnected

through a Gigabit network. The datacenter is managed through

a VMWare vCenter Server 5.1 that connects to the respective

VMWare ESXi 5.0.0 hosts. Computing Nodes: The computing

cluster, deployed over our VCenter IaaS, comprises of 4

Ubuntu 16.04 server images, each featuring 8GB of RAM

with 2 virtual CPUs (@ 2.40GHz). The images utilize fast

local 10K RPM RAID-5 LSILogic SCSI disks, formatted with

VMFS 5.54 (1MB block size). Each node uses Hadoop v2.5.2.

We utilize anonymized measurements from a real Telco

operator that comprises of 1192 real cell towers (i.e., 3660

cells of 2G, 3G and LTE networks) distributed in an area of

5,896 km2. The cells are connected through a Gigabit network

to a datacenter. Each cell tower keeps several UMTS/GSM

network logs for the performance of the tower and forwards

the information through the base station controller (BSC) or

the radio network controller (RNC) to be stored. There is

a CDR server that generates call detail records (CDRs) for

incoming and outgoing calls in the enterprise. When a CDR is

generated in the CDR server, the management server and third-

party application can use SFTP to obtain the CDR from the

CDR server. Then the Telco can query the CDRs for call/data

information and check outgoing call/data fees with the carrier.

Algorithms: The proposed TBD-DP operator is compared with

the following approaches:

• RAW: does not apply any decaying on the whole dataset.

• COMPRESSION: the decayed dataset is compressed

with the GZIP library, which has been shown in [5] to of-

fer the best balance between compression/decompression

speeds, compression ratios and compatibility with I/O

stream libraries.

• SAMPLING: a sampling method that picks every second

item in the input stream, yielding a 50% sample size.

• RANDOM: uniformly randomly select one record from

the decayed dataset.

Note that RAW and RANDOM are the baseline approaches

used to demonstrate the trade-off between the storage capacity

and the NRMSE objectives.

Datasets: We utilize an anonymized dataset of telco traces

comprising of ∼ 100M network measurements records (NMS)

and 3660 cells (CELL) coming from 2G, 3G and LTE anten-

nas. The data traffic is created from about 300K objects and

has a total size of ∼10GB. We constructed 6 realistic datasets

from real TBD obtained through SPATE described in Section

V-A based on the Key Performance Indicators (KPIs) [16].

• Calls (CS): the number of calls ended normally during

snapshot dt.

• Call Drops (CSD): the number of calls dropped during

snapshot dt.

• Handover Attempts (HA): the amount of handovers into

or from the cells attempted during a snapshot dt.

• Handovers (HS): the number of successful handovers

into or from the cells during a snapshot dt.

• Call Setup Attempts (CSA): the amount of call setup

processes attempted during snapshot dt.

• Call Setups (CE): the amount of successful call setup

processes during snapshot dt.

Metrics: We evaluate the performance of TBD-DP using the

metrics defined in Section II-A in all experiments:

• Storage Capacity (S): measures the total space that data

and the DP-tree index occupy together, as a percentage

of storage required by the RAW method (no decaying,

no compression).

• Normalized Root Mean Square Error (NRMSE): me-

asures the error of the recovered data D′ using the

NRMSE formula provided at the end of Section II. A

lower NRMSE value indicates a higher accuracy in the

recovered data.

Parameters: In all experiments the simulation parameters were

configured as follows: (i) decay factor f = 50% (indicating

the percentage on which we execute the LSTM); (ii) the

ML model is LSTM and the number of neurons 16 x 16.

The influence of each of those parameters on the proposed

approach is investigated individually in Experiment 2 by fixing

the rest of the parameters accordingly.

B. Experiment 1: Performance Evaluation

In the first experiment, we evaluate the performance of the

proposed TBD-DP operator against all four algorithms and

over all datasets introduced in Section V-A, with respect to

space capacity (as a percentage to the RAW data) and accuracy

(in terms of NRMSE on the decayed set of data).

Figure 6 clearly demonstrates the trade-off between the

space capacity S and the NRMSE objectives on the results of

the baseline approaches, since RAW (no decaying) approach

obtained the worst possible S = 100% of the whole dataset,

and the lowest error NRMSE = 0. In contrast, the RANDOM

(almost all data are decayed) approach obtained the best

possible S = 50% of the whole dataset and the worst NRMSE

≈ 100 on the decayed dataset, for a decaying factor f = 50%.

The results of the three other approaches appear in between

the results of the two baseline approaches. The proposed

TBD-DP operator, however, provides around 25% and 50%
better space capacity S compared to COMPRESSION and

SAMPLING approaches, respectively. This is due to the fact

that the additional space required by the set of LSTM models

is much less than the sample set of SAMPLING and the

compressed decayed dataset of COMPRESSION.

In terms of NRMSE, the TBD-DP outperforms the SAM-

PLING approach by 50%, on average, in all datasets. The

COMPRESSION approach provides an optimal NRMSE = 0,

since it does not apply any prediction on the decayed data,

but recovers them via decompression, when requested. The

COMPRESSION approach however, can not be customized to

achieve an even lower disk space occupancy. On the other

hand, the TBD-DP can be configured, through its f parameter,

to achieve a space occupancy that will fit the space budget of
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the application. This particular parameter will be investigated

in the next experiment.

C. Experiment 2: Control Experiments

In Experiment 2, we examine the influence of several

control parameters on the performance of the proposed TBD-

DP in terms of S and NRMSE. Specifically, we vary the decay

factor (f ), the ML models and the number of neurons on

LSTM.

Figure 7 shows how the decaying factor f , and consequently

the amount of data that will be decayed and represented by

LSTM models, affect the S and NRMSE of the proposed

TBD-DP operator. The results show that the storage capacity

required by the TBD-DP decreases as the decaying factor

increases, which is reasonable due to the fact that the highest

f is, the more data need to be decayed and therefore more disk

space will be released. The accuracy of the proposed TBD-DP

however, is not influenced, since NRMSE remains almost the

same for all decaying factors, in most datasets. This shows

the scalability and generalizability of the proposed approach,

which is not influenced from the increase on the decaying

dataset size. It is also important to note that the variations

on the NRMSE obtained by TBD-DP between the datasets is

mainly due to the different characteristics of each dataset.

Figure 8 examines the performance of the TBD-DP operator

in terms of S and NRMSE when combined with three different

ML models, namely, the traditional Recurrent Neural Network

(RNN), the Gated Recurrent Unit (GRU) [17] and the Long

Short Term Memory (LSTM) that is finally adopted by the

proposed approach. The results show that TBD-DP maintains

a similar storage capacity for different learning models, with a

slight increase (about 1%) when the LSTM model is used. In

terms of NRMSE, however, the TBD-DP+LSTM combination

clearly outperforms the other two combinations providing

around 75% less error, on average.

Finally, Figure 9 examines how the number of neurons of

the LSTM model influences the TBD-DP’s performance. The
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results support our previous observations on the scalability

and generalizability of the proposed TBD-DP approach. The

increase on the number of neurons slightly influences the TBD-

DP in terms of storage capacity, since the required space

slightly increases. This is reasonable since the increase on

the number of neurons results in “bigger” models that require

more disk space to be stored. The additional required space,

however, is almost negligible compared to the disk space

needed to store the actual data before decaying. In terms of

NRMSE, the increase on the number of neurons does not

influence the performance of the TBD-DP operator, since

NRMSE remains almost the same while varying this control

parameter in almost all datasets.

VI. RELATED WORK

In this section, we present related research work for com-

pleteness.

A. Telco Big Data (TBD) Research

Telco research can be roughly classified into the following

three categories: (i) real-time analytics and detection; (ii)

predicting user behavior; and (iii) privacy. There is also Telco

research that focus on applications that Telcos can use to

improve their services and revenue. Such kind of literature,

however, is orthogonal to the topic of this article.

Real-time Analytics and Detection: Zhang et al. [1] have

developed OceanRT for managing large spatiotemporal data,

such as Telco OSS data, running on top of cloud infrastructure.

It contains a novel storage scheme that optimizes queries with

joins and multi-dimensional selections. Yuan et al. [18] present

OceanST that features: (i) an efficient loading mechanism of

ever-growing Telco MBB data; and (ii) new spatiotemporal

index structures to process exact and approximate spatiotem-

poral aggregate queries in order to cope with the huge volume

of MBB data. Iyer et al. [4] present CellIQ to optimize queries



such as “spatiotemporal traffic hotspots” and “handoff sequen-

ces with performance problems”. It represents the snapshots

of cellular network data as graphs and leverages on the spatial

and temporal locality of cellular network data.

Braun et al. [19] developed a scalable distributed system

that efficiently processes mixed workloads to answer event

stream and analytic queries over Telco data. Bouillet et al. [20]

proposed a system on top of IBM’s InfoSphere Streams

middleware that analyzes 6 billion CDRs per day in real-

time. Abbasoğlu et al. [21] present a system for maintaining

call profiles of customers in a streaming setting by applying

distributed stream processing.

Experience, Behavior and Retention Analytics: Huang et

al. [2] empirically demonstrate that customer churn prediction

performance can be significantly improved with telco big data.

Although BSS data have been utilized in churn prediction very

well in the past decade, the authors show how with a primitive

Random Forest classifier telco big data can improve churn

prediction accuracy from 68% to 95%. Luo et al. [6] propose

a framework to predict user behavior involving more than

one million telco users. They represent users as documents

containing a collection of changing spatiotemporal “words”

that express user behavior. By extracting the users’ space-

time access records from MBB data, they learn user-specific

compact topic features that they use for user activity level

prediction.

Privacy: Hu et al. [22] study Differential Privacy for data

mining applications over telco big data and show that for

real-word industrial data mining systems the strong privacy

guarantees given by differential privacy are traded with a

15% to 30% loss of accuracy. Privacy and confidentiality

are critical for telcos’ reliability due to the highly sensitive

attributes of user data located in CDR, such as billing records,

calling numbers, call duration, data sessions, and trajectory

information.

B. Compressing Incremental Archives

Domain-specific compression techniques are often adopted

for compressing spatiotemporal climate data [23], text do-

cument collections [24], scientific simulation floating point

data [25]–[28], and floating point data streams [29]. Moreover,

several research studies [30]–[32] have utilized differential

compression techniques for studying the trade-off between

compression ratio and decompression times for incremental

archival data. None of these prior research works, however,

has been proposed for dealing with data decaying in Telco-

specific distributed systems.

C. Data Synopsis

Sampling refers to the process of randomly selecting a

subset of data elements from a relatively large dataset. So-

phisticated techniques, such as Bernoulli and Poisson sam-

pling, choose data elements using probabilities and statistics.

Chaudhuri et al. [33] proposed stratified sampling where the

probability of the selection is biased. In order to encounter the

big data sampling issue, Zeng et al. [34] implemented G-OLA,

which is a model that generalizes online aggregation in order

to support general OLAP queries utilizing delta maintenance

algorithms. Particularly, BlinkDB [35] allows users to choose

the error bounds and the response time of query using dynamic

sampling algorithms. SciBORQ [36] is a framework that

allows the user to choose the quality of the query result based

on multiple interesting data samples called impressions.

Several works have adapted the sampling processes to

create synopsis of data in order to achieve low response

time for ad-hoc queries [36]. Data sketches [12] are compact

data structures that enable to efficiently estimate the count

of occurences in massive data (contrary to Bloom filters, it

encodes a potentially massive number of item types in a small

array). Additionally, Wei et al. proposed persistent sketches

that can answer queries at any prior time [37] and have the

ability to merge in order to answer a generalization query [38].

VII. CONCLUSIONS

In this paper, we present a novel decaying operator for Telco

Big Data (TBD), coined TBD-DP (Data Postdiction). TBD-DP

relies on existing ML algorithms to abstract TBD into compact

models that can be stored and queried when necessary. Our

proposed TBD-DP operator has the following two conceptual

phases: (i) in an offline phase, it utilizes a LSTM-based

hierarchical ML algorithm to learn a tree of models (coined

TBD-DP tree) over time and space; (ii) in an online phase, it

uses the TBD-DP tree to recover data within a certain accuracy.

In our experimental setup, we measure the efficiency of the

proposed operator using a ∼10GB anonymized real telco

network trace and our experimental results in Tensorflow over

HDFS are extremely encouraging as they show that TBD-DP

saves an order of magnitude storage space while maintaining

a high accuracy on the recovered data.

In the future we aim to generalize data decaying operators

beyond TBD into new domains (e.g., signals from other type of

IoT). This task might give space to new ML algorithms. Addi-

tionally, we aim to theoretically derive the accuracy/efficiency

bounds of our data postdiction framework. Finally, we plan

to carry out an extensive experimental study that will focus

solely on decaying of big data.
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