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Abstract—Commercial maps often offer traffic awareness
which is critical for many location based services. On the other
hand free and open map services (such as government maps or
OSM) are traffic oblivious and hence are of limited value for
such services. In this paper we show that coarse information
available from a commercial map routing API, can be dissected
into fine-grained per-road-segment traffic information which can
be reused in any application requiring traffic-awareness. Our
system MapReuse queries a commercial map for a (relatively
small) number of routes, and uses the returned routes and
expected travel times, to infer travel time on each individual edge
of the road network. Such fine-grained travel time information
can be used not only to infer travel time on any given route but
also to compute complex spatial queries (such as traffic-aware
isochrone map) for free. We test our system on four representative
metropolitan areas: Bogota, Doha, NYC and Rome, and report
very encouraging results. Namely, we observe the median and
mean percentage errors of MapReuse, measured against the
travel times reported by the commercial map, to be in the range
of 4% to 8%, implying that MapReuse is capable to accurately
reconstruct the traffic conditions in all four studied cities.

I. INTRODUCTION

Traffic information is critical in many location based ser-
vices, and plays an important part in the success of many
commercial map engines such as Google maps, Apple maps,
Mapbox, HERE maps, Bing maps. Collecting traffic data is
highly challenging and commercial map services consider such
information as an important confidential asset. While fine-
grain traffic information is not shared with public, commercial
maps often allow to be queried for routing information, in
which case a coarse information in the form of total travel
time (or total average speed) is reported for a given path.

On the other hand, free and open map services such as OSM
[11] or TIGER [4], while having a highly accurate geometric
representation of the road network, are traffic-oblivious and
have limited value for services which require traffic-awareness;
see Section IV where we examine the errors in estimating
travel time using open maps with no traffic awareness.

In this work our aim is to exploit the results of a limited
number of queries to commercial map routing API (in the form
of coarse path-level information about the traffic), to construct
per-road-segment traffic image of the city which in turn can be
incorporated into any open map and used for arbitrary spatial
queries requiring traffic awareness.

Our system is built to assist researchers and practitioners
who need fine-grained traffic information which is often not
available for public use.

A. Motivation

Our work is motivated by a countless array of location-
based services which require traffic information. These include

optimized route scheduling and route planning, location-aware
recommendations, transportation modeling and planning.

An ecosystem of commercial maps has emerged to assist
these services in optimizing their performance with traffic-
awareness. For example a fleet of courier vans may want
to schedule its routes to deliver a given set of parcels to
simultaneously minimize fuel consumption and travel time.
With dynamic traffic conditions, which vary throughout the
day, solving such multi-dimensional optimization problem
heavily relies on the actual traffic conditions.

Acquiring such traffic information is highly challenging.
While some cities (mostly in the tech-hubs) collect and
publicly share traffic information on most prominent road
segments (e.g. motorways/freeways), it is the case that in a
large majority of cities no such information is publicly avail-
able. Hence, organizations and services which require traffic
information mostly, if not exclusively, rely on commercial
map services which acquire traffic information primarily using
millions of connected devices such as smartphones or personal
navigation devices.

The target user of our system, coined MapReuse, falls
into one of the following two categories: (1) High-volume
routing API applications. For any application which consis-
tently requests routes/travel times, in the order of magnitude
of thousands to millions of calls per day, commercial map
services will incur a substantial bill. We see MapReuse as
a cost-efficient alternative which can allow such applications
to reuse the relevant information in a flexible and accurate
manner. (2) Non-standard spatial queries. Commercial maps
normally have a short list of standard queries which are well
documented and supported. More complex spatial queries are
often unavailable, and would require substantial engineering
effort and/or nontrivial cost to derive the results composing
an array of standard queries available in the traffic aware map
engine. One example of such complex spatial queries is traffic-
aware Isochrone computation1 [25]. Another example is com-
putation of many-to-many (say more than 100 or even more
than a 1000 sources and destinations) distance matrix critical
for many contemporary traffic modeling applications [20]
which could be obtained either by querying the commercial
map engine for a nontrivial cost2 or alternatively through low-
accuracy traffic-oblivious heuristics such as OSRM [15]. Using
MapReuse can gracefully introduce traffic awareness (and

1For a given point, and given travel time δ, isochrone line is defined as a
set of points at distance δ from the point.

2The cost of obtaining such distance matrix grows quadratically with the
size of the matrix. With current Google Maps pricing, obtaining a 1000×1000
distance matrix for one single timeslot would cost 10 thousand US dollars.
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Fig. 1. Graph representation of a neighborhood in Doha. Black edges: one
way streets; red edges: two-way streets

keep the cost low) to such complex and non-standard spatial
queries which are currently not supported by the commercial
map engines.

B. Our contributions

The main contributions of this paper are the following:
• We build the system, MapReuse, which consumes

coarse total travel time information returned by
querying a commercial map directions API and re-
turns travel time of each individual edge of the graph
representing the road network of the given city.

• We empirically evaluate the ability of MapReuse,
to infer travel times on arbitrary routes, in four
representative cities, and demonstrate that the mean
and median percentage error between reported travel
time and the MapReuse predictions is between
4% and 8% in all four studied cities: an order of
magnitude reduction compared to the errors observed
in OSRM, a prominent OSM-based routing engine.

By reconstructing traffic-aware per-road-segment travel
time, MapReuse can substantially reduce the cost to the
users which requires high-volume direction API queries (by
reusing a fraction of the API queries), and at the same time
enable a range of spatial queries currently not offered by the
commercial map engines.

II. PROBLEM FORMULATION

As we explain in Section I, our focus is on inferring link
travel times by querying commercial map directions API.
Various commercial maps provide directions APIs which could
be called by passing several parameters and return results
in the form of a route. While the actual details vary, in
the most generic form, user can call the directions API by
providing origin and destination location (in the form of
latitude/longitude pairs) along with departure time. The API
returns one or more ‘optimal’ paths, together with their travel
times, from the origin to the destination departing at the
provided time.

The road network is represented as a graph, where each
node is a unique (latitude, longitude) pair and an edge
between two nodes exists if and only if there is a road directly
connecting them. Nodes lying in the middle of two-way streets
often have in-degree and out-degree equal to 2; nodes lying
on the highways have in-degree and out-degree 1; nodes at the
intersection of two roads would have either in-degree or out-
degree greater than 1. See Figure 1 for an illustration of the
graph in a neighborhood of Doha. While we work with OSM
graph in this paper, inferring link travel time in any other road
network base map using MapReuse would be straightforward.

A journey τ is represented by the available information:
Iτ = [pathτ , δτ ]. Here pathτ is represented as a list of
(lat, lon) pairs returned by the API, and can be either dense
(representing accurate geometry of the route) or sparse (with
only important descriptors, such as turns at the intersections).
Variable δτ represents the travel time over the pathτ , estimated
by the commercial map engine, for the journeys starting at the
provided departure time.

We use OSRM [15] to map match the path of the journey τ
to the road network, and denote by Pτ = [e0, . . . , el] the list
of edges of the road network matched to the pathτ .

We denote by Γ the set of training journeys represented by
(Iτ , Pτ ), for τ ∈ Γ. We aim to find weights of the edges in
the underlying road graph that minimize∑

τ∈Γ

( ∑
e∈Pτ

Wele − δτ
)2
, (1)

where le is the length, in meters, of the edge e. For a given
journey τ ,

∑
e∈Pτ Wele represents an estimate of travel time

(in seconds), while δτ represents the observed travel time. Note
also that variables We approximate the inverse of the average
speed on the road segment e. The above sum effectively
measures the sum of squares of the differences between the
estimated and actual travel times for the set of journeys Γ.
In other words, we look for weighing the edges of the road
network such that for every journey which follows a path Pτ its
duration is accurately approximated by the sum of the weights
of the edges on the path Pτ .

An important remark here is that weights which minimize
(1) do not necessarily correspond to effective configuration
for computing the shortest paths. Namely, allowing negative
edge weights, as in [32], can disturb shortest path computation
by not allowing convergence. This issue has been recognized
in [16] which constrains the weights to be non-negative.
However, even with this constraint, the non-negative least
square solver LSEC [16] may (and it does) converge to a
solution which associates zero weight to a large fraction of
edges which allows shortcuts in the shortest-path computation
and create sub-optimal routes and inaccurate ETA estimates;
see our technical report [22] for more details. Hence, we
propose an alternative way for computing edge weights which
relies on Ridge regression.

Before we proceed we would like to mention that our poster
paper [23] reports many of the ideas behind MapReuse,
although [23] focuses in annotating weights of the road



TABLE I
SYMBOL MAP.

Symbol meaning
τ journey
e edge in road network
Pτ path of journey τ - list of edges
ε mileage matching threshold
Γ set of training journeys
We weight of edge e (in sec/m)
le length of edge e (in m)
δτ duration of journey (in sec)
H set of heavy edges
hl parameter: number of heavy edges
W0 weight of all light edges
r number of heavy roads
Hg heavy roads, g ∈ {1, . . . , r}
Wg weight of heavy road g

maxspeedg speed limit on road g (in km/h)
σ inverse of average speed (in sec/m)
α Ridge regularization strength

network using only origin-destination location/timestamp pairs
sometimes publicly available from the taxi traces. In contrast
MapReuse strives to infer the weights using the commercial
map engine routing API calls which can be queried in virtually
every city on earth for a fee.

III. MAPREUSE : WEIGHING THE EDGES OF ROAD
NETWORK

In this section we describe MapReuse system which takes
as input a graph representation of the road network and a
cohort of basic journey information and outputs for each edge
of the graph the expected time, in seconds, a vehicle needs to
traverse that edge. We refer to that time as weight or link travel
time. Computing the edge weight can be oblivious to time of
the travel in which it would capture the ’average’ travel time,
but edge weight can also depend on the time of the day and/or
day of the week in which case we would have weight which
is not a scalar but rather a function of time.

As we discuss above, minimizing (1) blindly, without taking
into account the physical constraints which limit the actual
travel time over any given edge, may lead to weights which
are ineffective for the most critical routing primitive: shortest
path computation. Additionally, the underlying road network
can be very large (e.g. graphs which represent the road network
of the four metropolitan areas we study in this paper - Bogota,
Doha, NYC and Rome - have hundreds of thousands of edges)
grouping the edges in a structured way can significantly reduce
the dimensionality of the problem and allow scaling the solver
to a large number of trajectories. Finally, to avoid over-fitting
the model we focus only on edges which contain a non-trivial
fraction of trajectories.

At this point we assume that every journey is map matched
onto the OSM using the route returned by the API, as
described in Section II.

We split MapReuse into three sequential phases: (1) heavy
edge detection (to avoid over-fitting when low-frequency edges
are used in the model), (2) heavy road detection (for dimen-
sionality reduction) and (3) constraint-aware linear regression

(for ensuring that edge weights correspond to physical con-
straints).

A. Heavy edges inference

Many journeys share large fraction of their trajectory with
other journeys, yet they may have some edges (typically near
the origin or destination) which may be shared with few or
none other trajectories. Regression problems of type (1) which
allow each edge in the graph, independently of its ‘popularity’
to act as a regression feature can easily lead to over-fitting. For
that reason we focus on edges that support a large number of
trajectories, which we call heavy edges. For a training set of
trajectories, the set of heavy edges H is derived by sorting
the edges according to the number of trajectories passing
them and taking the top hl of them. Here, hl (the number of
heavy edges), is a configurable parameter which controls the
complexity of the model on one hand, and the execution time
as well as the accuracy on the other. Throughout the paper we
fix hl = 10000, which captures most major roads in the four
cities we study, yet resulting models are not computationally
excessive.

Now instead of minimizing the sum (1) we focus on∑
τ∈Γ

( ∑
e∈Pτ∩H

Wele +W0

∑
e∈Pτ\H

le − δτ
)2
. (2)

where W0 is a unique weight of the light edges which
we assign to all non-heavy edges. Above process reduces the
complexity of the model (number of regression features) for 1-
2 orders of magnitude in the four cities we study by effectively
assigning the same weight to all light edges. The key insight
here is that majority of shortest paths lie mostly on heavy
edges, and therefore the weight of light edges has marginal
effect on shortest paths or their length(duration).

B. Heavy road detection

Many edges appear in the trajectories simultaneously. By
ensuring that they have the same weight we can substantially
reduce the dimensionality of the problem. To that end we
will group heavy edges together if they belong to the same
trajectories. More formally, we split the set H of heavy edges
into subsets H1, . . . ,Hr such that:

(∀i)(∀τ ∈ Γ)(∀e1, e2 ∈ Hi)e1 ∈ τ ⇐⇒ e2 ∈ τ.

In simple words if an edge lies on a trajectory, than all the
other edges from its group must lie on that trajectory.

We refer to the (disjoint) sets H1, . . . ,Hr as heavy roads,
as they typically group neighboring edges which form a road
or part of a road.

Using the heavy road nomenclature we will rewrite the (2)
as: ∑

τ∈Γ

( ∑
g:Pτ∩Hg 6=∅

WgLg +W0

∑
e∈Pτ\H

le − δτ
)2
. (3)

where Lg is the length of the heavy road Hg:

Lg =
∑
e∈Hg

le



Thus the number of unknowns in (3) is r + 1, where r is
the number of heavy roads: one weight for each of r heavy
roads and one weight for all other ‘light’ edges. In the data
from four cities we study, the number of heavy roads r is 3-4
times smaller than the number of heavy edges.

C. Enforcing physical constraints via Ridge regression

Authors of [16], [32] solve (1) allowing negative or zero
weights which can fundamentally harm the shortest path
computation. Here we strive to not only solve the appropriate
numerical regression problem but also keep weights physically
realistic. To that end, note that weight Wg is inverse of the
speed on the relevant road segment and is measured in sec/m.
However, on each road segment the speed is limited and that
information is often captured by the map itself; e.g. in OSM
using a tag maxspeed (in km/h). Denoting maxspeedg the
speed limit (also known as posted speed) at road segment g,
the physical constraint (accounting for appropriate unit change
from km/h to sec/m) for weights becomes:

Wg ≥ 3.6/maxspeedg (4)

Note that we do not enforce upper limit on weights, as
certain roads may become extremely congested (in particular
periods of the day/week) and we would like to capture and
preserve that information via high edge weight. To ensure
that constraint (4) holds for all g we propose to use Ridge
regression regularization. Namely we add regularization term
to (3) that penalizes weights which largely deviate from the
average speed:

∑
τ∈Γ

( ∑
g:Pτ∩Hg 6=∅

WgLg+W0

∑
e∈Pτ\H

le−δτ
)2

+α
∑
g

(Wg−σ)2.

(5)
Here σ is the inverse of the average speed observed by all

the journeys in our data. Parameter α, represent the regular-
ization strength. A small α allows large variability between
Wg’s, a lot of violations of physical constraint (4) and can
potentially lead to over-fitting. A very large α may put too
much emphasis on the regularization term neglecting errors we
strive to minimize. We choose the hyper-parameter α using a
grid search over a small validation set we withdraw from the
training cohort; see below.

We use Scikit-learn Python library [19] to find W ’s which
minimize (5) and can scale to a large number of trajectories,
thanks to dimensionality reduction described above and sparse
matrix representation of the feature matrix.

With an appropriate regularization strength α (see below for
details on how we choose α), Ridge regression regularization
indeed forces most of Wg’s to be close to σ and we empirically
observe that a large majority of segment weights satisfy the
constraint (4), see Section IV-E for more details. For a small
minority of edges which violate the speed limit constraint we
hard code the weights to be exactly equal to 3.6/maxspeedg .
Thus weight W̄g at road segment g is

W̄g = max(3.6/maxspeedg,Wg),

TABLE II
BASIC INFO ABOUT THE DATA

City # Paths avg duration # nodes # edges
Bogota 9674 18.2 min 228K 363K
Doha 5601 13.5 min 175K 321K
NYC 10649 18.1 min 299K 596K
Rome 8760 15.2 min 269K 310K

where Wg are obtained by minimizing (5). This last step, has
a minor effect on the overall travel time estimation, measured
through cost (3) since it applies to a minor fraction of the road
network, but it eliminates artificial shortcuts which may arise
by allowing edges with very high speeds, say over 120kmph.

1) Choosing regularization strength α: We do not require
α to be manually set, but rather automatically tune it. Our
search space is α ∈ {2k; k = 0, 1, . . . }. We start by choosing
α = 1, obtain the weights W̄g(α) and measure the cost
on the validation dataset (a small set withdrawn from the
training cohort) by substituting those weights in (3) which we
denote by C(α). We keep doubling α until C(α) > C(2α),
and choose α to be that terminal value, which effectively
minimizes the cost C(α) in the above search space.

2) Number of weights per segment: If our goal is to capture
traffic conditions averaged across long time periods, having
a single weight per segment would provide reasonably good
estimate of the time spent on any given road segment. How-
ever it is well known that traffic conditions exhibit periodic
behavior on various time-scales: daily, weekly, yearly. For the
applications which would require more accurate estimates of
the traffic conditions at any given time one may want to train
multiple models for capturing the traffic variability in time.
For example we can derive one weight per edge for every
hour of the day; or one weight per edge for every hour of
the week (168 weights) to differentiate between weekdays
and weekends. The key point here is to train on a subset of
trajectories that fall into the appropriate time-slots, and as we
shall see in the following section, having time-varying weights
can substantially reduce the errors in estimating the travel time.

IV. EVALUATION

A. Data

As explained earlier, our system consumes data which are
returned by querying commercial maps. In the present paper
we utilize Google Maps directions API, but note that any other
commercial map engine, which has directions API such as
Bing, HERE, MapBox, could be dissected in virtually identical
manner.

We study four prominent cities, from four different conti-
nents: Bogota, Doha, New York and Rome. For each city, we
randomly select 5000 origin-destination pairs and for each pair
we query Google Maps directions API four times, requesting
the routes which connect the origin to the destination at four
different times midnight, 6am, noon and 6pm on 16th of
January 2019. We choose 16th of January as a workday in



the middle of the week (Wednesday) which is far enough in
the future not to be affected by transient effects such as short-
term congestion or road-closures.

For each triplet (orig, dest, timestamp) the actual API call
we submit is the following:
https://maps.googleapis.com/maps/api/directions/json?origin=
orig\&destination=dest\&departure time=timestamp\&key=
our key\&traffic model=best guess\&alternatives=true

Parameter alternatives set to true indicates that more
than one (but up to three) routes are returned for each
query. Traffic model parameter is set to the default
best−guess. To quote Google Maps Direction API guideline:
“traffic−model = best−guess (default) indicates that the
returned duration−in−traffic should be the best estimate
of travel time given what is known about both historical traffic
conditions and live traffic. Live traffic becomes more important
the closer the departure−time is to now”. Given that we
query for traffic conditions several weeks into the future, the
results are virtually independent of the live traffic.

Remark: OD pairs selection. As we mention above the OD
location pairs are drawn randomly from the set of OSM nodes.
We iterate through a list of randomly selected pairs (O,D) of
OSM 2-way road nodes and accept them with a probability
min(1, (5km/d(O,D))2. By selecting nodes which lie on 2-
way roads we eliminate the effects of inappropriate geocoding
which matches a location to a road on the opposite side of
the street (and may require a large detour for routing). The
choice to prefer closer pairs to those far apart, is motivated by
the observation that routes which connect far-apart locations
almost exclusively utilize motorways and primary roads and
hence carry little information about the traffic conditions on
the secondary and tertiary roads. It would be interesting to
understand the optimality of OD pair selection for capturing
most traffic information with as little as possible API calls,
though such analysis is out of scope of the present paper.

For each (orig, dest, timestamp) triplet, the API call re-
turns a list of up to three routes together with the estimated
travel time over that route at the given departure time. We use
OSRM map matching service to match each route to the OSM.
In Table II we report the total number of map-matched routes
in the 4 cities using 5000 API calls, at midnight timeslot (for
other three timeslots the numbers are similar). For Bogota,
NYC and Rome we get around 2 routes per OD pair, in
average, while in Doha we get only around 1 map-matched
route per OD pair in average. We believe that poor map-
matching success in Doha is due to a very large number of road
closures and upgrades which results in many inconsistencies
between Google Maps and OSM.

For each city and each of the four time slots, we use the
routes obtained from 80% of the API calls for training the
model, and the remaining 20% of the routes for testing.

B. MapReuse vs. traffic-oblivious routing engines

Our first question is: How does MapReuse compare with
traffic oblivious OSM-based routing engine in terms of
ETA errors? To that end, we choose the default engine that

OSM landing page3 offers: Open Source Routing Machine
(OSRM) [15]. OSRM utilizes the underlying OSM data to
build the road network graph equipped with weights which
are used for computing the optimal routes. The weights OSRM
uses are derived from the OSM metadata in a way to prioritize
routing over motorways and other primary roads. For each
(origin,destination) pair OSRM returns a route together with
ETA (estimated time of arrival, or route duration) which is
derived by solving an appropriate quickest-path query. While
OSRM has a web-based API, it also offers code to set-up
a local-server on own premises, which we do, in order to be
able to maintain high-throughput. Namely web OSRM servers
allows throughput of around 1 query per second while the local
instance of OSRM gets us 100 queries per second.

In the training phase we use the training data (minus
validation set) to infer the weights of individual edges as
detailed in Section III.

We look at how closely OSRM and MapReuse approx-
imate the total travel time reported by the commercial map
for the trajectories in the test cohort. For each route τ from
the test cohort we consider the travel time reported by the
commercial map, δτ as ground truth and compare it with
two values: δτ (OSRM): travel time reported by OSRM and
δτ (MapReuse): travel time derived by MapReuse, defined
as the sum of MapReuse-inferred travel times across all the
edges traversed by τ , Pτ .

To compare how well OSRM and MapReuse approximate
the travel time, we evaluate four different metrics: median
and mean absolute error (in seconds), and median and mean
percentage error (in %) and report the results in Figure 2.

From the figure we can learn several lessons. First, while
querying traffic-oblivious routing engines may offer reasonable
routes the actual ETA is highly inaccurate. With OSRM, in the
cities of New York and Bogota the mean absolute error at 6pm
(afternoon peak) is 15 and 11.7 minutes, which translates to
over 40% of mean percentage error. Second, MapReuse offers
an order of magnitude reduction in errors compared to bare-
bones OSRM: the mean and median absolute errors are close
to 1 minute, while the mean and median percentage errors
are in the range of 4% to 8% in all four studied cities. This
demonstrates the ability of MapReuse to capture the relevant
traffic information on a per-road-segment level and use it to
accurately capture the travel time on arbitrary path.

C. How many API calls?

A critical parameter which influences the quality of the
inferred traffic information is the number of API calls we
use to train the model of individual edge weights. On one
hand, more API calls result in more accurate representation of
the travel times throughout the city. On the other hand, more
API calls result in a higher cost for data acquisition. In this
paragraph we examine the trade-off between the number of
API calls used in the training phase of MapReuse and the
actual errors in travel times.

3https://www.openstreetmap.org/directions
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Fig. 2. Mean/median absolute error and mean/median average precision error in predicting the travel time reported by the commercial map (used as ground
truth). OSRM has substantial errors. Using MapReuse reduces errors across all four metrics. E.g. Median absolute error in Bogota, during the 6pm time-slot,
using OSRM is 810 seconds. Using MapReuse median absolute goes down to 61 seconds, a reduction of 92%, to OSRM. In Doha, NYC and Rome, the
corresponding reduction in median absolute error is 84%, 88% and 89%, respectively.

To do that we limit the number of API calls used in the
training phase of MapReuse to n−samples and evaluate the
ETA errors on a set of 1000 paths not used in the training
phase.

In Figure 3 we report mean and median absolute percentage
errors (PE) using MapReuse at 6pm time slot for the four
cities of interest and varying number of training journeys
n−samples between 100 and 4000. Results in other 3 time-
slots (midnight,6am and noon) are both quantitatively and
qualitatively similar, and are omitted here. Intuitively, the
larger the training data the smaller the errors. However we
observe a law of diminishing returns here, with minor im-
provements with larger data. Namely, after 1000 API calls, the
accuracy of the MapReuse model improves only marginally
with more data. Note that training the MapReuse model even
on a small dataset with several hundred of journeys would
outperform traffic oblivious OSRM. However to get most of
our model one needs several thousands of API calls per city
per time-slot.

Remark. We would like to emphasize here that we strongly
believe that the number of necessary API calls could be further

reduced with a smarter selection of origin-destination pairs.
With a better coordination on how we choose O-D pairs, we
could avoid substantial redundancy which is a result of random
O-D pair selection. However, such analysis is left for future
work.

D. Heavy roads

A very important step in MapReuse is identification of
heavy edges and heavy roads (which are groups of heavy
edges). MapReuse effectively infers speed on each heavy
road individually and simultaneously assigns a single weight
(speed) to all the light roads. In Figure 4 we depict the road
network of Bogota downtown emphasizing the heavy roads.
We can observe that by focusing on heavy roads, we effectively
capture most of the major road arteries, and eliminate low-
volume roads which may create overfitting issues in the model
training phase of MapReuse. However, not focusing on light
roads means that certain traffic events (such as congestion
or extraordinary fast light road) may not be captured by
MapReuse. This is one of the factors which limits the
accuracy of MapReuse weights, and can, to some extent,
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Fig. 3. MapReuse accuracy gracefully improves with more training journeys up to a point. From 1000 API calls, adding more data results in marginal
improvements in accuracy.

explain the plateauing effect observed in errors (see Figure
3) where additional training data does not lead to noticeable
improvements in the accuracy of MapReuse.
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Fig. 4. Visual representation of Bogota downtown road network. Grey edges
represent light roads, while black ones correspond to heavy roads.

E. MapReuse Relative speeds

In this paragraph we look into the question of how speeds
inferred by MapReuse relate to the actual speed limits
declared by Open Street Map4. In Figure 5 we depict the
empiric CDF of the ratio between the inferred speed 3.6/Wg ,
and the maxspeed tag (both measured in km/h) for all road
segments in the four cities we study here. As we can see from
the figure, the weights derived by minimizing (5) satisfy the

4For those edges where no speed limit information is available in OSM we
use the default speed limit in the corresponding country.
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Fig. 5. Empiric CDF of the ratio (Wg/3.6)/maxspeedg for four cities we
study, where Wg is obtained by minimizing (5). Ratio larger than 1 means
that Wg allows travel over segment g faster than allowed maxspeedg . In the
four cities we study the fraction of such segments is < 4%. Note also, that
majority of the mass of the CDF is concentrated around 0.5, which indicates
that for most segments average speed is around half of the maximum speed,
which was also previously observed by others [24], [28].

speed limits in a large majority of cases. While for the others,
the weights are hard-coded to be exactly determined by the
speed limit. The fraction of edges for which Wg violates the
OSM-reported speed limit is less than 4% in all four cities.

V. RELATED WORK

A substantial effort in our community has been devoted to
optimize shortest path computation [5], [7], [10]. We argue
that the competition among various shortest path algorithms
is no longer how computationally efficient they are. Instead,
it is more about how accurate edge weights they have. A
shortest path algorithm with an acceptable processing time
and accurate edge weights would be favored over another
algorithm that has faster processing time but uses inaccurate
edge weights.

Indeed, the wide spread of GPS-enabled devices and sub-
sequently the availability of trajectory data they generate has
made it possible for the community to approach the problem of
edge weight estimation, also known as link travel time (LTT)
problem.



An influential work in this space is the one by Idé and
Kato [12] in which they aimed at predicting travel time
for any pair of origin destination on a map. However, they
focus on inferring overall travel time of a route, as opposed
to accurately inferring individual edge weights. Two pieces
of work close to MapReuse are [24], [31]. Both of those
works, rely under the assumption that weights (speeds) of
spatially close road segments are similar, and hence add to the
regression cost a regularizer which enforces similar weights to
spatially close edges. While such approach delivers reasonably
accurate results in simulated networks, it is unclear how it
would perform in real life settings where spatially close roads
do not necessarily have similar speeds.

The problem of static weights has led to a series of
papers that allow the expression of time-dependent attributes
in transportation systems in general [3], and road networks in
particular [17], [28] For instance, Zheng and Ni proposed a
time-dependent trajectory regression on road networks [31].

Several papers use trajectory data to find fastest routes in
a road network which often requires the computation of edge
travel times as an intermediate step [1], [6], [13], [27], [30].
Yuan et al. tackle the problem of finding the fastest route in
a city for any triplet of source, destination, and departure
time [30]. Authors use dense trajectory data generated by
over 33K taxis to create a dynamic road network in which
the time needed to traverse each edge is time-dependent and
location-variant, i.e., the temporal dynamics of edges depend
on their location. Unlike [21], [31] where edge travel times
are considered as constants function of time of the day, the
approach in [30] deceives different time intervals for different
edges, and within each interval, the travel time is modeled as
a distribution rather than a single value. Inference of future
travel times on similar dynamic networks is enabled using
Markov chains in [29].

Yang et al. propose to use the “incomplete” trip information
for complete weight annotation of road networks [28]. The
objective here is not to accurately capture trip travel times, but
to infer travel costs of all edges of the road network when only
few edges are covered by the trajectory data. This is a serious
problem that many approaches tackle by simply focusing on
“hot” (a.k.a landmarks) segments where substantial data is
available [16], [30], and setting the weights of the remaining
edges to zero, which is incoherent from a transportation point
of view. The solution proposed in [28] consist in modeling the
problem as a regression problem with an objection function
that incorporates PageRank based spatial regularizers, which
is quite in line with earlier works developed in [12], [31]

Many other papers tackled related problems. For instance,
[2], [6], [18] are representative of probabilistic (uncertain)
edge weights inference. Works in [9], [14], [26] aim at
estimating travel time and/or speeds from sparse trajectory
data. Instead of inferring edge weights, authors of [8], [27]
propose new frameworks to deal directly with paths, avoiding
splitting trajectories into small fragments.

VI. CONCLUSION

In this paper we showed that coarse path-level information
available in most commercial maps engines can be dissected
into fine-grained information which captures traffic-aware
travel times on every road segment of the city. We built
the system MapReuse which can infer travel times on each
road segment in a large city using several thousand calls
to commercial maps directions API. Our empiric analysis in
four large metropolitan areas shows that reusing travel time
info derived by MapReuse has very high accuracy and that
MapReuse is able to reproduce path-travel times reported
by the commercial map within a very small margin of error.
We believe that the traffic layer derived by MapReuse can
be reused by a countless array of applications which require
traffic awareness.

We would like to conclude by noting that there are several
questions which remain open.

Open question 1: Country-level MapReuse. Current ver-
sion of MapReuse does traffic inference on the city-sized
road networks. Extending it to larger regions, say country or
a continent, is left for future work.

Open question 2: OD-pair selection. In the current version
of MapReuse the selection of origin-destination pairs is fairly
random, which results in many redundant paths being queried
unnecessarily. We strongly believe that a more focused OD-
pair selection could substantially reduce the number of API
calls while maintaining the high accuracy. Minimizing the
number of API calls is crucial from the end-user point of
view, as it is the single parameter which controls the cost of
data acquisition.

Open question 3: knowledge transfer over consecutive time-
slots. Currently MapReuse trains the model using the API
calls which coincide with a given timestamp. We believe that
using information from the API calls in a consecutive times-
slots may substantially reduce number of API calls needed to
capture traffic information dynamics both in spatial and tempo-
ral domains. For example, over night traffic conditions rarely
change, and it may not be necessary to probe independently
every hour between 10pm and 6am. Understanding how to
transfer knowledge over time could substantially reduce the
number of API calls and remains an open question.
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