
STAD: Spatio-Temporal Adjustment of
Traffic-Oblivious Travel-Time Estimation

Sofiane Abbar
Qatar Computation Research Institute

HBKU
Doha, Qatar

sabbar@hbku.edu.qa

Rade Stanojevic
Qatar Computation Research Institute

HBKU
Doha, Qatar

rstanojevic@hbku.edu.qa

Mohamed Mokbel
Qatar Computing Research Institute

HBKU
Doha, Qatar

mmokbel@hbku.edu.qa

Abstract—Travel time estimation is an important component
in modern transportation applications. The state of the art
techniques for travel time estimation use GPS traces to learn
the weights of a road network, often modeled as a directed
graph, then apply Dijkstra-like algorithms to find shortest paths.
Travel time is then computed as the sum of edge weights on
the returned path. In order to enable time-dependency, existing
systems compute multiple weighted graphs corresponding to
different time windows. These graphs are often optimized offline
before they are deployed into production routing engines, causing
a serious engineering overhead. In this paper, we present STAD,
a system that adjusts – on the fly – travel time estimates for
any trip request expressed in the form of origin, destination, and
departure time. STAD uses machine learning and sparse trips
data to learn the imperfections of any basic routing engine, before
it turns it into a full-fledged time-dependent system capable of
adjusting travel times to real traffic conditions in a city. STAD
leverages the spatio-temporal properties of traffic by combining
spatial features such as departing and destination geographic
zones with temporal features such as departing time and day
to significantly improve the travel time estimates of the basic
routing engine. Experiments on real trip datasets from Doha,
New York City, and Porto show a reduction in median absolute
errors of 14% in the first two cities and 29% in the latter. We
also show that STAD performs better than different commercial
and research baselines in all three cities.

Keywords-Travel time estimation, traffic analysis, routing en-
gines, transportation planning, trip duration.

I. INTRODUCTION

Real-time estimation of travel time is in the heart of modern
transportation systems, spanning applications such as ride-
sharing [1], driver dispatching [2], [3], and fleet management
[4]. For example, taxi and ride-sharing businesses heavily rely
on travel time estimates for several core functionalities in-
cluding route optimization, fare estimation, surge calculation,
and taxi dispatching. With the abundance of floating vehicle
data in the form of trips and GPS trajectories, it became
possible to accurately estimate the travel time of trips. Three
main schemes have been devised: segment-based, path-based,
and origin-destination based. In segment-based approaches,
GPS data is used to compute travel times for individual road
segments. The travel time of a path is nothing but the sum of
weights of its constituent edges [5]. Path-based approaches aim
at estimating travel times for sub-paths instead of individual

segments, which allows them to capture some important inter-
link transitions such as delays at junctions [6]. Finally, origin-
destination (OD) based approaches aim at estimating travel
times without computing paths at all [7]. Despite this variety,
traditional segment-based techniques are still preferred in large
production and commercial systems, including Google Maps,
HERE Maps, Apple Maps, TomTom, and MapBox [8]. The
reason is that most shortest-paths (routing) algorithms are
optimized to work on directed graphs with static edge weights
(travel times).

(a) OSRM (b) Google Maps

Fig. 1. Scatter plots of actual trip travel time (x-axis) and estimated travel
time (y-axis) by OSRM and Google Maps on the same set of 7750 taxi trips
in Doha.

All routing engines that implement these techniques are
imperfect to different degrees. Figure 1 illustrates these im-
perfections by plotting travel time estimates produced by two
routing engines, namely OSRM [9] (Fig 1(a)) and Google
Maps (Fig 1(a)), compared to the actual trip duration reported
for 7,750 taxi trips in Doha. Estimates where requested just
before the trips started. Understandably, OSRM tends to un-
derestimate travel times because it lacks traffic data. One way
to fix this issue is to integrate time-dependency into OSRM,
which requires the availability of large traffic data as well as
a good knowledge on how to learn edge weights for different
time windows, before one could deploy several instances of the
routing engine that correspond to different time windows of
interest (e.g., 24 hours of the day) [5]. However, even the most
sophisticated time-dependent routing engine can engender non
negligible errors as shown in Figure 1(b), in which we clearly

ar
X

iv
:2

00
6.

09
89

2v
1

 [
ph

ys
ic

s.
so

c-
ph

]
 8

 J
un

 2
02

0

see that even the premium Google Maps service that accounts
for both historical and live traffic yields significant errors when
it comes to estimating travel times.

In this paper we describe a system, named STAD, that
combines the best of segment-based and OD-based techniques
to produce more accurate travel time estimates. STAD aims
to quantify the spatio-temporal imperfections of any routing
engine before it adjusts them to produce substantially more
accurate travel time estimates. Besides, STAD can turn any
static routing engine not designed for time-dependency into a
full-fledged time-dependent engine with minimal sparse trips
data and engineering overhead. Finally, STAD makes it easy
for software developers, transport engineers, and researchers
to develop in-house routing engines that can respond to live
traffic data, whenever it is available to them.

The main idea of STAD is to leverages well-known spatial
and temporal characteristics of road traffic modeled as fea-
tures in the machine learning module to learn personalized
adjustments of travel times for any trip request qi in the
format < oi, di, ti > where oi and di are respectively the
origin and destination locations, and ti is the desired departure
time. STAD consists of two components. The first one, is a
routing engine, possibly traffic oblivious, which is optimized
to generate free-flow travel time estimates (e.g., OSRM). The
second component is a machine learning (ML) based module
that mines sparse trip data to find out how to effectively adjust
the travel time estimates of the base routing engine in a way
that realistically reflects traffic dynamics related to the time of
departure ti as well as oi and di locations. Intuitively, what
STAD aims to do is the following:
Example: Assume that a user – Leila – wants to go from home
to work, the basic, free-flow, routing engine would return a
decent path (route) with a travel time τFF = 16mins and a
total driving distance l = 12km. However, looking the trip
query, STAD would infer that Leila is departing at 07:15am,
that she lives in West Bay which is in the city center, and works
at Education City which is outside of city center. Historical
trips data, would allow STAD to infer that West Bay is fairly
congested during morning rush hours on weekdays, which
allows it to adjust τFF with a 6mins offset, setting the travel
time estimate of Leila’s trip request to 22mins instead. This
is made possible by designing a set of features modeling the
spatial and temporal traffic dependencies.

We also present STAD∗, a variant of STAD that is capable of
integrating (near) live traffic data into the process of adjusting
travel time estimates. Live traffic allows STAD∗ to pick up
unexpected traffic events as accidents, road works, or any
unusual congestion not seen in the historic trip data used to
train the ML module. This is made possible by tracking a
global and per zone congestion indices (CI) computed as the
ratio between the speeds achieved by recent trips (e.g., last 10
minutes) versus expected speeds learnt from historic trips data
for the same time window.
Example (Cont’d): Going back to Leila’s example, assuming
that historic trip data reveals an expected (mean) speed of
45km/h for the time window 07:00-08:00am. However, the

recently completed trips – in the previous 10mins prior to
Leila’s query (i.e., 07:05am - 07:15am) – reported an average
speed of 60km/h due school vacation. Then, STAD∗ can take
this information into account and produce a lower estimated
travel time of 19mins instead of 22mins.

The experimental evaluations we conducted using real taxi
trip datasets from Doha (Qatar), NYC (US), and Porto (Portu-
gal) demonstrate the effectiveness of STAD when compared to
different baselines from industry (Google Maps) and research
(KNN [10], [11]). Indeed, our system achieves a median
relative percentage error of 16.5% compared to 18.55% for
KNN and 18.40% for Google Maps in Doha. In terms of
median absolute errors, STAD’s travel time estimation are
±126 seconds of ground truth travel times in Doha, which
is 13% more accurate than KNN (±144 seconds) and 14%
better than Google Maps(±146 seconds). Similarly in other
cities, STAD’s travel time estimates are 15% more accurate
than KNN in NYC and 29% in Porto. Experiments also show
that live traffic data can improve the accuracy of travel times
as the median absolute error of STAD∗ is 5 seconds lower than
that of STAD. For transparency and reproduciblily of results,
we voluntarily share on Github1 the source code of different
algorithms and baselines developed along with datasets used.

Roadmap. The remainder of the paper is organized as
follows. Section II depicts the general architecture of STAD.
Section III defines our general concepts and provides a formal
definition of the travel time estimate adjustment problem.
Section IV introduces – STAD – a system capable of adjust-
ing free-flow travel-time estimates. In Section V we present
STAD∗, a variant of our system capable of integrating (near)
live traffic data. Section VI presents the results of our exper-
imental evaluation on three real traffic datasets. Section VII
described the related work. Section VIII concludes the paper
with some remarks and future directions.

II. ARCHITECTURE

The general architecture of STAD is depicted in Figure 2
which shows the two main components of the system: A base
routing engine and a machine learning module for spatio-
temporal adjustment of travel time estimates.

Fig. 2. High-level overview of STAD architecture.

The workflow of STAD is as follows. Upon the reception
of a trip request q = (o, d, t) where o is the origin location,
d is the destination, and t is the departure time, STAD API
forwards the request to both components. At this stage, the

1https://github.com/vipyoung/stad

machine learning module will simply extract some spatial and
temporal features from the request itself. This includes for
instance the geographic zones to which o and d belong, as well
as the hour of the day and day of the week by decoding t. At
the same time, the routing engine generates a triplet (p, τFF , l)
where p is a path between o and d, τFF is the estimated travel
time (free-flow), and l is the path length (driving distance).
The triplet is pushed to the machine learning module, which
combines τFF and l with the previously extracted spatial and
temporal features to compute an accurate travel time τ , which
is an adjustment of τFF , that is returned to the client along
with other route related information.

This architecture enables STAD to simply yet compre-
hensively support time-dependent travel time estimation and
routing queries. It also makes it easy to digest live traffic data
into these processes by compounding all these aspects into the
machine learning module.

III. BACKGROUND AND PROBLEM FORMULATION

We define here after some basic concepts related to our
proposal before we formalize our problem.

Definition 1. Road Network. A road network is represented as
a directed weighted graph G = (V,E). V is a set of nodes and
E is the set of directed weighted edges (road segments). Each
edge ei comes with a length and possibly a set of intermediary
points representing its geometry, a max speed value, and a type
of road category. In this work, only length is considered. Each
node vi ∈ V is associated with a pair of (latitude,longitude)
coordinates to accurately position it on the map.

Definition 2. Path. A path is a sequence of connected consec-
utive edges p = {e1, e2, . . . ek}|ei ∈ E. The length of a path
pi is the sum of lengths of its edges, and is denoted li.

Definition 3. Trajectory. A trajectory tri = {si1, si2, . . . sin}
is a sequence of timestamped positional sample points (sij)
generated by GPS enabled devices of floating vehicles. Each
point sj comes with spatial coordinates (lonj , latj) and a
timestamp tj . Trajectories can be map-matched to G to find
their corresponding paths.

Definition 4. Trip. A trip (Γ) is a tuple of the following
attributes: Γi = (oi, di, ti, τi, tr

i, pi). oi and di denote the
origin and destination locations respectively; ti and τi denote
the departure time and the travel time respectively; tir and pi
denote the trajectory and its corresponding path respectively
if available. T = {Γ1, . . .Γm} is the set of trips available to
us.

Definition 5. Routing Engine A routing engine is an opti-
mized system built on top of the road graph G, capable of
executing basic routing operations such as: navigation (for
shortest paths), map-matching (for most likely path covering
a trajectory), distance matrix (for tables of travel times and/or
distances between sets of departures and destinations). We use
hereafter OSRM [9], a highly regarded open source project
that many commercial companies use for routing operations.

Problem Definition. At a high level, our problem can be
announced as follows: Given a road network graph G, a set
of trips data T , and a trip request q =< o, d, td > where o =
(lono, lato) and d = (lond, latd) are origin and destination
locations, and td is the departure time, find the most likely
travel time τ̂ for q. However, given the two stages nature of
our system, we can reformulate the problem as follows: Given
a basic routing engine, a set of trips T , and a trip query q, first
compute the free-flow travel time τFF and path length l for
q using the basic routing engine; Next, learn to adjust τFF to
reflect actual traffic patterns covered by T and produce more
accurate travel time estimate τ̂ .

IV. STAD: SPATIO-TEMPORAL ADJUSTMENT OF TRAVEL
TIME ESTIMATES

In this section, we describe our system, STAD, for Spatio-
Temporal ADjustment of traffic oblivious travel times. We
first give a brief overview of the system. Then, we explain
how space and time are partitioned to capture varying spatio-
temporal impact of traffic on travel time estimation. Next, we
discus the features we used and the choice of the machine
learning algorithm. Finally, we describe the online adjustment
process of travel times.

A. General overview

STAD consists of two main components: (i.) A base rout-
ing engine used to produce free-flow paths and travel time
estimates between pairs of locations. One can think of this
as simply running Dijkstra algorithm for shortest path on a
directed weighted graph representing the road network, where
weights are traversal times of edges derived from length and
default speeds. (ii.) A machine learning module that uses
spatial and temporal features to adjust free-flow travel time
estimates to traffic patterns captured in the trips data. These
components are first used offline to learn the best parameters
possible for the adjustment of travel times in a given city, then
online to adjust the travel time of any trip request.

B. Spatial and temporal partitioning

Intuitively, in the free-flow scenario where there is no
traffic at all, the travel time of a trip is governed by two
parameters: the length of the trip and the maximum speed
allowed on different road segments. With traffic, there are
two more parameters that impact the travel time: origin and
destination locations, and departure time. In other words, the
overhead caused by traffic on the free flow travel time varies
significantly from an area to another, from an hour to another,
from a day to another. Thus, the need to split space and time
into smaller units that allow capturing the varying impact of
traffic (overhead) in time and space. There are different way
the space, i.e., a city in our case, can be partitioned. One
common practice consists in dividing the space into a grid
of equal-sized squares, e.g., 100m × 100m. This technique
has two major drawbacks: First, it destruct the existing road
network boundaries by crossing roads and junctions at random
locations. Second, it does not account for spatial population

(a) Administrative zones (b) Transportation zones

Fig. 3. Example of administrative vs. transportation zones in Doha

and road distributions, yielding zones with no roads or no
trips. Hence, we opt for the use of administrative boundaries
to split the space into zones. This practice is very common
in transportation research, and such data is abundantly avail-
able online2. Administrative zones are usually generated in a
way that preserves the natural road network boundaries and
population distribution. It is worth mentioning that there are
more specialized partitioning schemes such as transportation
area zones (TAZ), which are more adequate for transportation
related studies. However, given that TAZ are not always
publicly available, we use administrative boundaries in this
paper and evaluate the impact of different partitioning schemes
in Section VI-G. Figure 3 shows samples of zones in Doha
with different granularities. Once the space is partitioned, it is
easy to assign trip’s origin and destination locations to specific
zones.

Similarly to space, time is also often partitioned into small
intervals, called time windows. The size of the intervals
is typically between 15 mins to 1 hour, depending on the
amount and coverage of the trip data available. The finer the
granularity, the higher the sparsity. In hour case, we assign
each trip Γi to the time window corresponding to its starting
time. We also derive a set of temporal features as shown in
the next section.

C. Feature engineering

Now, we enumerate the different features that STAD uses to
learn good spatio-temporal adjustments of travel times. Some
of these features are spatial, others are temporal, and some
of them are related to historical traffic conditions that capture
recurrent dynamics such as morning and evening commutes
in different zones.
• zo – origin zone : this is a unique ”alphanumeric”

identifier of the zone into which falls the origin location
of the trip. Inferred from o = (lono, lato).

• zd – destination zone : identifier of the destination zone.
Inferred from d = (lond, latd).

• hd – hour of the day: this is an integer in {0, 2, . . . 23}
representing the hour of the day in local time; 00 is for
midnight.

• dw – day of the week: an integer in {1, 2, . . . 7}; 1 is for
Monday and 7 is for Sunday.

• hw – hour of the week: an integer in {0, 2, . . . 167} that
captures the hours of the week (24x7).

2https://www.geofabrik.de/data/

• τff – free-flow travel time: the travel time returned by
RE for a given pair o, d. Expressed in seconds.

• ld – driving distance: the length of the path returned by
RE for the pair o, d. Expressed in meters.

• lh – Haversine distance: this is the straight line distance
between (o, d). Expressed in meters.

• pc – path complexity: this is the ratio between the ld and
lh; pc = lh/ld. The closest the value to one, the simplest
is the driving route between o and d.

• tr∗zo – trips departing from zo: ratio of trips departing
from zo to all trips. This captures how busy are the
outgoing roads from the orign zone, zo.

• trzd∗ – trips arriving at zd: ratio of trips arriving to zd to
all trips. Captures the business of incoming roads to the
destination zone, zd.

D. Model Selection

For each trip Γi = (oi, di, ti, τi, tr
i, pi) ∈ T , we build

a vector feature xi =< zo, zd, hd, dw, hw, τ
ff , l . . . , tr

zi
d
∗ >

using all features defined in the previous section. Next, we
create for each Γi a pair (xi, τi) where xi is the feature vector
and τi is the actual travel time reported for Γi. The objective
now is to find a function F that maps xi to τi, such that the
following quantity is minimised:

1

|T |
×

∑
tri∈T

L(τi, F (xi)),

where L is a loss function that captures the errors between
exact travel times and adjusted ones. This is a classical
supervised machine learning framework, regression to be more
specific, where one can try different algorithms and pick the
best achieving one. However, given that our features are a
mix of numerical and categorical, we opted for the tree-
based ensemble method called Gradient Boosting [12]. We
know that categorical features can be converted into binary
numerical features that work with more algorithms such as
SVM and linear regression, however, when the number of
categories is high (which is the case of number of zones for
instance), this process results in very sparse feature vectors
with high dimensionality which requires non trivial treatment
via regularizers. We set the loss function L to be least squares
and fine-tune the Gradient Boosting Regressor to find the best
combination of hyper parameters, i.e., number of trees and
max depth of each tree. At the end of this step, we obtain a
model M that is capable of predicting accurate traffic-aware
travel time estimates τ̂ for any feature vector xi.

E. Online querying

The online step of STAD is quite simple and efficient (See
algorithm 1). This is important not to cause any overhead to
the already optimized routing engine which can be deployed
in production, i.e., serves thousands of routing requests per
second. Given a trip request q =< o, d, td > with origin,
destination, and departure time, and a prediction modelM, we
first create the feature vector by mapping locations to zones
(lines 2–3), extracting temporal features from departure time

(line 4), and querying the basic routing engine for free-flow
travel-time estimates and driving distance. Next, we compound
all these features into one vector and run the model method
(line 6.) Other features defined in the previous sections can
easily be added here.

Algorithm 1 Online phase of STAD
1: Input: M - ML predictive model trained offline. q =<
o, d, td > - a trip request

2: zo = locate(o); {find area zone of origin}
3: sd = locate(d); {find area zone of destination}
4: hd, hw, dw = extract temporal features(td)
5: τFF , l = RE(o, d); {generate basic free-flow information for
q}

6: τ̂ = M.predict(zo, zd, hd, hw, dw, τ
FF , l)

7: return τ̂

V. STAD∗: LIVE TRAFFIC INTEGRATION

While STAD is good at capturing recurrent traffic patterns
such as morning and evening commutes, and weekends vs.
weekdays, it is not well suited to deal with unexpected events
such as sudden congestion, accidents, processions, or severe
weather conditions such as heavy rain. Thus, in the case live
traffic is available us, we devise STAD∗, a variant of STAD
capable of integrating (near) live traffic conditions into the
adjustment process of travel time estimations.

One simple way to take into account live traffic information
is to compare the current traffic status to the expected one
from historical data. This can be achieved, by monitoring
the average speed of vehicles. We propose to monitor the
traffic level via a congestion index CI. Assuming that time
is partitioned into windows, i.e., T W = {tw0 . . . tw24} to
capture hourly traffic patterns for a typical day, we could
easily compute offline the average speed observed at each
time window. At query time, assuming that we would like our
system to update to live traffic every 10mins, we compute the
average speed of all trips (Tc) completed in the last 10mins
and compare it to the expected speed from the time window
that corresponds to the last 10 minutes. Equation (1) gives
the formula used to compute CI. A value greater than 1.0
indicates a traffic that is less congested than expected whereas
a value lower than 1.0 indicates a traffic level that is more
congested than expected.

CItw =

1
|Tc|

∑
Γi∈Tc li/τi

1
|Ttw|

∑
Γj∈Ttw lj/τj

(1)

CI makes it easy for instance to distinguish an 8am of a
busy Monday from the fluid 8am of a quite Sunday. Even
in cases where time is partitioned into finer windows (e.g.,
24 × 7 = 168) to capture weekly patterns, CI allows to
distinguish a 10am of a busy Tuesday from a 10am of calm
Tuesday that coincides with a school break for instance.
Depending on the values of CI, STAD∗ will learn to increase
or decrease the adjusted travel time τ̂ to reflect the current
traffic condition. The following additional features can be
derived from Equation (1):

• CIhd
– global congestion index - day: Congestion index

by comparing current speeds to average speeds of the
hour of the day (hd) to which the departure time of the
request falls into.

• CIhw
– global congestion index - week: Congestion index

by comparing current speeds to average speeds of the
hour of the week (hw) to which the departure time of the
request falls into.

These two features are added to the ones defined in the
previous section in order to train a new predictive model M∗
for STAD∗.

VI. EXPERIMENTS

In this section, we describe our evaluation setup, algorithms
and baselines, metrics, data we used for different experimental
evaluations.

A. Algorithms and Baselines

In order to assess the importance of different features on the
accuracy achieved by our system, STAD, we evaluated four
different variants: STADt which only uses temporal features
(i.e.,τff , ld, hd, dw, and hw), STADst which uses spatio-
temporal features (i.e., τff , ld, hd, dw, hw, zo, and zd),
STADall which uses all features described in Section IV, and
finally STAD∗ that integrates live traffic data. Without loss of
generality, STAD and STADst are used interchangeably in the
remaining of this section. We compare our systems to three
different baselines:

1) RE: We use OSRM [9] as our default traffic oblivious
routing engine (RE). OSRM uses the road network extracted
from OpenStreetMaps3 to build its internal graph. The system
relies on some prior knowledge of traffic in order to compute
free-flow weights to each road segment. These weights are
generated based o metadata associated with road segments,
including type of road (e.g., highway), posted speed (e.g.,
50kmph), and penalty scores for different types of turns (e.g.,
left-turn, U-turn).

2) KNN: In addition to RE, we implemented KNN, a nearest
neighbors based algorithm developed by Wang et al. [10],
[11]. Similar to STAD, KNN combines spatio-temporal aspects
of trips to predict travel time of any trip query q = (oq, dq, tq).
The algorithm assumes a collection of historical trips T each
of which is defined as 5-tuple Γi =< oi, di, ti, li, τi > where
oi, di are origin and destination locations, τi, li are respectively
the travel time and the distance of the trip, and ti is the
departure time. Given a query q, KNN computes the expected
travel time of q as follows:

q̂ =
1

|N (q)|
∑

Γi∈N (q)

τi ×
V (ti)

V (tq)
,

where N (q) is the set of nearest neighbor trips to q. A trip
Γi is considered as a nearest neighbor to q if their origins and
destinations are close enough. In our adaptation, we assume
two trips as nearest neighbors if their origins and destinations

3https://www.openstreetmap.org

fall into the same spatial zones respectively. KNN splits time
into 168 windows corresponding to the hours of a typical
week, then V (ti) (resp. V (tq) is the average speed observed
for all trips that started at the hour corresponding to the
departure time ti (resp. tq departure time of q.) Speeds can
easily be inferred from the distance li and travel time τi of
any trip Γi

3) Google Maps: We also compare our findings against
one of the leading commercial map engines in the market,
Google Maps. Using their Direction API 4, Google Maps
allows developers to query for best routes for any request
q = (oq, dq, tq) such that tq is sometimes in the future. Google
Maps uses then historical traffic data to compute the travel
times of these requests. We sampled uniformly at random
2K different trip requests that we submitted to Google Maps.
Since the timestamp need to be in the future we submitted
our queries in the last week of January with the timestamps
falling in the second week of February. For a fair comparison,
timestamps used in Google maps queries correspond to the
same hour/weekday/month of each trip in our dataset. An
important remark here is that even though our Doha dataset
is about 2 years old, the road network as well as the traffic
pattern have experienced a nontrivial change between 2018
and 2020, albeit quantifying that change is difficult and out
of scope of the present paper. The data in NYC and Porto are
from 2013 and we believe that traffic patterns over 6-7 years
change substantially, and do not compare these 2 cities with
Google Maps API in this paper.

B. Evaluation metrics

In order to assess the accuracy and quality of travel time
estimates produced by different algorithms, we use mean
absolute error (MAE) and median absolute error (MedAE),
which have both seconds as units. However, because the
values of these metrics depend on the travel time distribu-
tion in our datasets, it important to report relative errors as
well. Thus, we compute the mean absolute percentage error
(MAPE) also knows as mean relative error as well as the
median absolute percentage error (MedAPE.) Formulas for
the different metrics are defined as follows: MAE(Y, Ŷ) =
1/n

∑
i=1,n |yi − ŷi|, MedAE(Y, Ŷ) = median({|yi −

ŷi|}i=1,n), MAPE(Y, Ŷ) = 100 × 1/n
∑

i=1,n |yi − ŷi|/yi,
and finally MedAPE(Y, Ŷ) = 100 × median({|yi −
ŷi|/yi}i=1,n)

C. Dataset description

We use trips data generated by Taxi companies operating
in three different cities: Doha (Qatar), NYC (US), and Porto
(Portugal). Table I presents some statistics about the datasets.
The time span covered by trips varies from 1 week in 2013 for
NYC, to 5 weeks in 2018 for Doha, to 1 year 2013/2014 for
Porto. We also found a significant discrepancy in the distribu-
tion of travel times among the three cities. Doha for instance
has a median trip duration of 13.26 minutes compared to

4https://developers.google.com/maps/documentation/directions/start

10.55 minutes in NYC and 7 minutes in Porto. Complementary
cumulative distribution functions of travel times are illustrated
in Figure 4 which shows that around 90% of trips last less than
12 minutes in Porto (rapid decay) versus 30 mins for Doha
and NYC.

TABLE I
CHARACTERISTICS OF DIFFERENT DATASETS USED IN THE

EXPERIMENTAL EVALUATION.

city dates #trips med. TTE trips/day
Doha 2018/01/01-2018/02/08 748,096 13.26 19.2K
NYC 2013/11/01-2013/11/07 2,078,503 10.55 297K
Porto 2013/07/01-2014/07/01 662,614 7.0 2.5K

Fig. 4. Complementary cumulative distribution function of travel times
estimates for Doha, NYC, and Porto (y-axis is in log scale.)

D. Main results

We train different STAD models on 70% of the trips and
test on the remaining 30%. Reported results are averages over
multiple runs.

Figure 5 illustrates the main results for travel time estima-
tion using the three cities. In the first row, we report the mean
and median absolute errors achieved by different algorithms in
predicting travel times. The second row reports global relative
errors whereas the third one reports hourly relative errors.
The foremost observation to be made here is that STADst

outperforms by far all other algorithms in all three cities and in
all considered metrics. Second, we clearly see that accounting
for spatial features (STADst) yields significant improvement
compared to STADt which uses temporal features only. This is
shown in Figures 5(a),5(b), and 5(c) which report respectively
a reduction in median absolute errors induced by the spatial
features of 16 seconds in Doha, 6 seconds in NYC, and 7.1
seconds in Porto. The gain in relative errors (second row of
Figure 5) is of two points in Doha (18.31% to 16.5%), 1.5%
in Porto and 1% in NYC.

To our surprise, the simple STADt did better than KNN in
all experimental configurations, let alone STADst. In Doha
for instance, KNN achieves a median average error of 144
seconds vs. 142 seconds for STADt and a low 126 seconds
for STADst. The absolute errors of KNN are also 15% higher
than STADst in NYC and 29% higher in Porto. In terms

(a) Doha (b) NYC (c) Porto

(d) Doha (e) NYC (f) Porto

(g) Doha (h) NYC (i) Porto

Fig. 5. Main results for travel time predictions. The first row reports mean and median absolute errors of travel time estimations for unseen trips in three
different cities. The second row reports mean and median relative errors in percentages for the same trips. The third row reports hourly median relative errors.

of relative errors, STADst is 2 points lower than KNN in
Doha (16.5% vs. 18.5%), 4 points lower in NYC (19.42%
vs. 23.7%), and 5 points lower in Porto (15.11% vs. 20.39%).
These big improvements of STADst over KNN are intriguing
when we know that the latter is designed to embed the spatio-
temporal aspects. Our interpretation is that relying on origin
and destination to declare two trips similar is not a good idea.
One could at least account for trips distance to remove outliers.
Also, simply averaging travel times of similar trips is not
good enough, especially when all nearest neighbor trips are
considered regardless of the time at which they were made.

As expected, the experiments show that even for a state-of-
the-art routing engine which incorporates a significant prior
knowledge about traffic such as delays at junctions, traffic
lights, turn penalties, it is very difficult to get travel time esti-
mates right without traffic information. This is reflected in the

high median absolute percentage (relative) errors achieved by
RE in Doha (42.54%), NYC (47.05%), and Porto (36.63%) as
shown in Figures 5(d),5(e), and 5(f). However, it is interesting
to note that free-flow travel time estimates produced by RE are
quite comparable to other methods for specific time windows
(00:00 -04:00am in Doha, with a MedAPE=20%.) In the case
of NYC, RE outperforms KNN between 03:00-05:00am. This
is worth exploring for companies who want to cut some of the
cost that goes to commercial maps.

As planed, we also tried Google maps services for Doha
and reported results in Figures 5(a) (absolute errors) and 5(d)
(relative errors.) In terms of relative errors, Google is slightly
better than KNN with a median percentage error of 18.4%
compared to 18.55%. However, both version of STAD are
better than Google with a clear win of STADst which achieves
a median percentage error of 16.5%. Similarly, the median

TABLE II
RESULTS OF DIFFERENT STAD VARIANTS ON DOHA DATA.

Variant MAE(sec) MedAE(sec) MAPE(%) MedAPE(%)
STADtt 196.78 141.43 24.35 18.4
STADst 174.49 126.76 21.40 16.50
STADall 172.14 125.42 21.01 16.33

absolute error achieved by Google is 146 seconds which is
quite similar to KNN with 144 seconds and STADt with 142
seconds. But once again, STADst shows a clear superiority
with 126 seconds of median percentage error. We deliberately
decided not to compare with NYC and Port trips because they
are more than 7 years old which makes it unfair comparison.

We report in the third row of Figure 5 the hourly median
percentage errors of different algorithms in different cities.
Each curve has 24 points corresponding to the 24 hours of
the day. In the case of Doha for instance, we clearly distin-
guish two error spikes corresponding to morning (06:00am-
07:00am) and evening (05:00pm-06:pm) commutes in which
the percentage error is above 20% whereas the errors are below
the bar of 20% for all other hours of the day. This behavior is
partly due to the fact that traffic is more unpredictable during
rush hours, when incidents tend to happen more often. In the
remaining hours of a typical day, where traffic shows more
stability and seasonality, all algorithms seem to do well, with
a net superiority for STADst though. The same kind of pattern
is observable in NYC (Figure 5(h)) and Porto (Figure 5(i)),
thought for the particular case of NYC the error pattern looks
two-phased: day (07:00am to 07:00pm) where errors are above
20% and night (07:00pm to 07:00am) where errors go below
20%. This might be explained by the constant business of the
city throughout the day.

Finally, we report in Table II results achieved by different
version of STAD. We clearly see that accounting for spatial
features yields significant improvements, i.e median absolute
error of STADst(126 secs) is 10% better compared to STADt

(141 secs). However, adding more features STADall (125 secs)
yields only 1% improvements over STADst.

E. Impact of number of trips

We investigate the impact of the number of trips available
for training STAD on the accuracy of the predicted travel times
in all cities. Figures 6(a) and 6(b) report respectively median
absolute and relative errors in the three cities, function of
the number of trips used in the training. The elbow shaped
curves we see indicate a diminishing return property according
to which the impact of adding more data reduces as the
size of data increases. For instance, we observe that absolute
errors drastically improve with more trips until we reach the
breaking point of 10K trips. Adding more trips beyond 10K
does not seem to yield any significant reduction in terms of
absolute error for all three cities. However, if the objective is to
optimize for median percentage errors, then it seems that 100K
is the magic number of trips needed. In the case of NYC, we
even see an inverse phenomenon where the percentage error

(a) Median Absolute Errors (sec.) (b) Median Relative Errors (%)

Fig. 6. The effect of number of trips available for training on the accuracy
of travel time predictions of STAD st in the three cities.

increases when more trips are used, which can be due to over-
fitting.

F. Impact of real-time traffic data

When live traffic is available i.e., the possibility to access
trips as soon as they are completed, it becomes possible
to deploy STAD∗ which incorporates congestion indices into
the adjustment model. Table III shows comparative results
between STAD (historical traffic model) and STAD∗. As ex-
pected, live traffic information yields significant improvements
in the accuracy of travel time of about 5 seconds in median
absolute error (≈ 4% reduction). Mean absolute percentage
error gains almost 1 point lowering from 21.27% for STAD to
20.38% for STAD∗.

TABLE III
THE IMPACT OF REAL-TIME TRAFFIC DATA ON TRAVEL TIME ESTIMATION

ACCURACY IN DOHA DATASET.

Variant MAE(sec) MedAE(sec) MAPE(%) MedAPE(%)
STAD 161.11 122.30 21.27 16.20
STAD∗ 158.31 117.37 20.38 15.75

As mentioned earlier, the real advantage of STAD∗ over
STAD is its ability to correct for specific events and for days
that are substantially different from those seen in training
on historical data. For instance, we found that STAD∗ yields
to significant reduction in median absolute error for trips
happening on Fridays, especially for those taking place during
time intervals considered as rush hours in other days (Note
that Friday is a weekend in Doha and its traffic patterns
are quite similar to those observed on Sunday in the west.)
That is, STAD∗ saves 21 seconds for trips starting at 5pm,
11 seconds for those starting at 6 pm (evening commute
window). Likewise, we observe a reduction of 13 seconds for
7am and 12 seconds for 6am (morning commute.) It is worth
mentioning that the evaluation setup for this comparison is
different from the one we used to produce results of Table II,
which explains the differences in scores obtained by STAD_st
in the two tables. Indeed, to account for live traffic, we needed
to sort trips by departure time. We removed then the first 200K
trips, used to learn historical average speeds for different time
windows, which represents around 26% of all trips in Doha
dataset.

(a) Absolute Errors (sec.) (b) Relative Errors (%)

Fig. 7. Comparative results for different spatial partitioning schemes on
accuracy of travel times in Doha.

G. Impact of spatial partitioning choice

We investigate now the impact of way the space is par-
titioned on the accuracy of travel time estimation. We have
deliberately decided to use administrative zoning as a default
choice for partitioning, which can be easily obtained for almost
all cities around the world. However, it is well known that
transportation departments around the world have their own
way of partitioning a city into geography units knows as
traffic/transportation analysis zones (TAZ), which takes into
account population densities as well as the geometry of the
road network. Thanks to our collaboration with Ministry of
Transport and Communication in Qatar, we could obtain their
TAZ shapefile which contains 1,839 zones. We re-assigned
origin and destination locations of every trip into one of these
zones, and re-run both STAD∗ and STAD on the new data.
We show in Figure 7 comparative results achieved using two
different spatial partitioning schemes. Overall, we notice that
TAZ yields better accuracy compared to regular administrative
zones. The gain in median (resp. mean) absolute error is of 3
secs (resp. 5 secs) for STAD and 2 seconds (resp. 4 secs) for
STAD∗. The gain in relative errors is less significant though.

VII. RELATED WORK

The abundance of transportation data in the form of GPS
trajectories and trips has opened new horizons for capturing
traffic dynamics in road networks. We can distinguish three
main categories of work aiming at estimating trips travel time:
segment-based, path-based, and origin-destination based.

Segment-based. Also known as link travel time, is the most
common approach in which GPS data (trips or trajectories) are
used to learn the weights of individual edges of the road graph.
Travel time of a path is then calculated as the sum of weights
on its constituent edges [5], [13]–[18]. Several techniques
have been explored to efficiently and accurately learn these
weights. For instance, [5], [13], [15], [16], [19] use different
types of regression (e.g., linear, ridge, Gaussian), some times
with regularizers, to effectively learn the weights. Similarly,
[20] uses Markov chains to infer future travel times, whereas
[21] proposes to use a spatio-temporal extension of Hidden
Markov models. In order to deal with the inherent data sparsity
problem in which not all segments can be covered with data,
several authors have adopted matrix decomposition techniques
for missing values completion and travel time prediction [22]–

[24]. In most of the cases, the decomposition is done with the
introduction of either some latent features for the road network
(e.g., [22]) or some particular temporal regularizers (e.g., [23].)

Path-based. One of the main shortcomings of segment-
based techniques is their failure to capture inter-link transitions
such as turns at intersections or waiting at traffic lights. Some
approaches tackled this problem by explicitly estimating the
time spent at junctions [25], [26]. Another line of work aims at
concatenating segments into (sub-)paths and estimating travel
time directly for paths instead of individual segments [6],
[17], [18], [27]. In [17], authors propose to use a three
dimensional tensor (users, segments, time) combined with
frequent trajectory patterns to find the best combination of sub-
paths to use in online travel time estimation. The solution is
shown to find a good trade-off between the length of sub-paths
and number of trajectories traversing them. Dai et al. [27]
take a different approach to the same problem and introduce
the concept of hybrid graphs to accurately capture the cost
distribution of paths. The idea is to learn a weighting function
for paths instead of edges, then find a good approach to
combine distributions of multiple sub-paths to estimate the
travel time of a query path. A follow-up to this work is
PACE [6] in which authors solve the problem in a more
principled way by tackling two problems: first, estimation of
path cost distributions using an optimal set of trajectories;
second, finding the rights paths for a source-destination pair.

OD-based. While path-based techniques overcome the inter-
link transition problem, they do introduce some difficult chal-
lenges such as finding the right sub-paths for a query trip,
which is often solved in an ad-hoc mode or using heuristics.
More recently, some authors looked at inferring travel time
estimates for pairs of origin-destination without computing
paths [7], [10], [11], [28], [29]. This is particularly relevant in
online configurations where path information is not available
or costly to obtain. Examples of applications where this is
needed include taxi dispatching where there is a huge need
to compute travel time estimates between locations of a set
of vehicles and that of a customer. One of the earliest works
in this space is done by Wang et al. [10], [11]. Here, authors
propose to compute the travel time of a given trip defined
with an origin, destination, and departure time, by looking at
the travel time of historic nearest neighbor trips. Two trips
are assumed to be neighbors if their origins and destinations
fall respectively within a predefined radius distance. A scaling
factor that captures traffic variations is then computed to allow
for a weighted averaging of travel times reported by nearest
neighbor trips. A more recent work by Li et al. [7] uses
multi-task representation learning for arrival time estimation.
The idea is to learn link representations that optimize not
only for travel times but also for other related targets such as
travel distance and number segments on the path. The authors
propose to embed the spatio-temporal aspects of traffic via
Laplacian regularization. other ”unpublished” yet interesting
attempts explored the use of deep neural networks such as
GNNs [29] and ST-NNs [28] to travel time estimation tasks.

VIII. CONCLUSION

We presented in this paper, STAD, a novel system capable
of adjusting free-flow travel time estimates produced by any
traffic oblivious routing engine to match actual traffic patterns
of a city. STAD partitions the space into areas or zones, and
time into windows to capture the spatio-temporal patterns of
traffic. We also presented STAD∗, a version of our system that
adapts the adjustment of travel time to live traffic conditions.
Our experiments on real traffic datasets from three cities
show that STAD yields significant improvement in terms of
travel time accuracy compared to existing methods, or even to
premium commercial routing engines such as Google Maps.
Indeed, in the case of Doha for instance, our system achieves
a median relative percentage error of 16.5%, whereas KNN
based methods achieve 18.55% and Google Maps 18.40%.
Also, STAD’s median absolute error is 126 seconds compared
to 144 second and 146 seconds for KNN and Google Maps
respectively. In the future, we would like to explore the use of
spatially and temporally weighted regression methods to better
account the spatio-temporal non stationarity of road traffic.
We are also working on releasing an end-to-end open-source
system built on top of OSRM to make it easy for people
and companies to get started with time-dependent routing and
travel time estimation.

ACKNOWLEDGMENT

We would like to thank the Land Transport Planning Depart-
ment at the Ministry of Transport and Communication in Qatar
for their meaningful engagement with our research. We would
like also to thank Karwa Technologies at Taxi Mowasalat for
their continuous support and fruitful collaboration.

REFERENCES

[1] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in 2013 IEEE 29th International Conference on
Data Engineering (ICDE). IEEE, 2013, pp. 410–421.

[2] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Transactions on
knowledge and data engineering, vol. 25, no. 10, pp. 2390–2403, 2012.

[3] Z. Liao, “Real-time taxi dispatching using global positioning systems,”
Communications of the ACM, vol. 46, no. 5, pp. 81–83, 2003.

[4] A. Cristian, L. Marshall, M. Negrea, F. Stoichescu, P. Cao, and I. Men-
ache, “Multi-itinerary optimization as cloud service (industrial paper),”
in Proceedings of the 27th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, 2019, pp. 279–288.

[5] R. Stanojevic, S. Abbar, and M. Mokbel, “W-edge: Weighing the edges
of the road network,” in Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems, 2018, p. 424427.

[6] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu, “Pace: a path-centric
paradigm for stochastic path finding,” The VLDB Journal, vol. 27, no. 2,
pp. 153–178, 2018.

[7] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 1695–1704.

[8] D. Delling, “Route planning in transportation networks: From
research to practice,” in Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, ser. SIGSPATIAL 18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 2. [Online]. Available: https:
//doi.org/10.1145/3274895.3282802

[9] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,”
in Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser. GIS ’11. New
York, NY, USA: ACM, 2011, pp. 513–516. [Online]. Available:
http://doi.acm.org/10.1145/2093973.2094062

[10] H. Wang, Y.-H. Kuo, D. Kifer, and Z. Li, “A simple baseline for travel
time estimation using large-scale trip data,” in Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2016, p. 61.

[11] H. Wang, X. Tang, Y.-H. Kuo, D. Kifer, and Z. Li, “A simple baseline
for travel time estimation using large-scale trip data,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–22,
2019.

[12] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[13] T. Idé and S. Kato, “Travel-time prediction using gaussian process
regression: A trajectory-based approach,” in Proceedings of the 2009
SIAM International Conference on Data Mining. SIAM, 2009, pp.
1185–1196.

[14] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ intelligence,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 25, no. 1, pp. 220–232, 2011.

[15] T. Idé and M. Sugiyama, “Trajectory regression on road networks,” in
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[16] J. Zheng and L. M. Ni, “Time-dependent trajectory regression on road
networks via multi-task learning,” in Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[17] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 25–34.

[18] S. Aljubayrin, B. Yang, C. S. Jensen, and R. Zhang, “Finding non-
dominated paths in uncertain road networks,” in Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2016, pp. 1–10.

[19] R. Stanojevic, S. Abbar, and M. Mokbel, “Mapreuse: Recycling routing
api queries,” in 2019 20th IEEE International Conference on Mobile
Data Management (MDM). IEEE, 2019, pp. 279–287.

[20] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2011, pp. 316–324.

[21] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from
sparse, spatio temporally correlated time series using markov models,”
Proceedings of the VLDB Endowment, vol. 6, no. 9, pp. 769–780, 2013.

[22] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu,
“Latent space model for road networks to predict time-varying traffic,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1525–1534.

[23] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix
factorization for high-dimensional time series prediction,” in Advances
in neural information processing systems, 2016, pp. 847–855.

[24] A. Baggag, S. Abbar, A. Sharma, T. Zanouda, A. Al-Homaid, A. Mohan,
and J. Srivasatava, “Learning spatiotemporal latent factors of traffic via
regularized tensor factorization: Imputing missing values and forecast-
ing,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[25] R. Herring, A. Hofleitner, S. Amin, T. Nasr, A. Khalek, P. Abbeel, and
A. Bayen, “Using mobile phones to forecast arterial traffic through
statistical learning,” in 89th Transportation Research Board Annual
Meeting, 2010, pp. 10–14.

[26] M. Li, A. Ahmed, and A. J. Smola, “Inferring movement trajectories
from gps snippets,” in Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, 2015, pp. 325–334.

[27] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu, “Path cost distribution
estimation using trajectory data,” Proceedings of the VLDB Endowment,
vol. 10, no. 3, pp. 85–96, 2016.

[28] I. Jindal, X. Chen, M. Nokleby, J. Ye et al., “A unified neural network
approach for estimating travel time and distance for a taxi trip,” arXiv
preprint arXiv:1710.04350, 2017.

[29] J. Hu, C. Guo, B. Yang, C. S. Jensen, and L. Chen, “Recurrent
multi-graph neural networks for travel cost prediction,” arXiv preprint
arXiv:1811.05157, 2018.

https://doi.org/10.1145/3274895.3282802
https://doi.org/10.1145/3274895.3282802
http://doi.acm.org/10.1145/2093973.2094062

	I Introduction
	II Architecture
	III Background and Problem Formulation
	IV STAD: Spatio-Temporal Adjustment of Travel Time Estimates
	IV-A General overview
	IV-B Spatial and temporal partitioning
	IV-C Feature engineering
	IV-D Model Selection
	IV-E Online querying

	V STAD*: Live Traffic Integration
	VI Experiments
	VI-A Algorithms and Baselines
	VI-A1 RE
	VI-A2 KNN
	VI-A3 Google Maps

	VI-B Evaluation metrics
	VI-C Dataset description
	VI-D Main results
	VI-E Impact of number of trips
	VI-F Impact of real-time traffic data
	VI-G Impact of spatial partitioning choice

	VII Related Work
	VIII Conclusion
	References

