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Abstract

A new multimedia disk scheduling algorithm, termed
Cascaded-SFC, is presented. The Cascaded-SFC multime-
dia disk scheduler is applicable in environments where mul-
timedia data requests arrive with different quality of service
(QoS) requirements such as real-time deadline and user pri-
ority. Previous work on disk scheduling has focused on op-
timizing the seek times and/or meeting the real-time dead-
lines. The Cascaded-SFC disk scheduler provides a uni-
fied framework for multimedia disk scheduling that scales
with the number of scheduling parameters. The general
idea is based on modeling the multimedia disk requests
as points in multiple multi-dimensional sub-spaces, where
each of the dimensions represents one of the parameters
(e.g., one dimension represents the request deadline, an-
other represents the disk cylinder number, and a third di-
mension represents the priority of the request, etc.). Each
multi-dimensional sub-space represents a subset of the QoS
parameters that share some common scheduling character-
istics. Then the multimedia disk scheduling problem re-
duces to the problem of finding a linear order to traverse
the multi-dimensional points in each sub-space. Multiple
space-filling curves are selected to fit the scheduling needs
of the QoS parameters in each sub-space. The orders in
each sub-space are integrated in a cascaded way to pro-
vide a total order for the whole space. Comprehensive ex-
periments demonstrate the efficiency and scalability of the
Cascaded-SFC disk scheduling algorithm over other disk
schedulers.

1. Introduction

Multimedia applications are growing rapidly due to the
advances in computer hardware and software technologies.

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116, EIA-9972883, IIS-9974255, IIS-0209120, and
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In particular, the advancement in mass storage, video com-
pression, and high-speed networks have made it feasible to
provide multimedia servers (e.g., news broadcasting, digital
libraries, and Video on Demand). With these applications,
disk bandwidth is a scarce resource that needs to be man-
aged intelligently through the underlying disk scheduling
algorithm. In addition to maximizing the disk bandwidth,
the disk scheduler must take into consideration the real-time
deadline constraints of each disk request. If the multimedia
servers’ clients are prioritized based on certain quality of
service (QoS) guarantees, then the multimedia disk sched-
uler should consider the priority of disk requests in its disk
queue. Designing a multimedia disk scheduler that handles
real-time and QoS constraints in addition to maximizing the
disk bandwidth is a difficult task [3].

In attempting to satisfy multiple concurrent and conflict-
ing requirements (e.g., disk bandwidth, deadline, and pri-
ority), scheduler designers and algorithm developers de-
pend mainly on heuristics to code the schedulers (e.g.,
see [1, 2, 3, 5, 6, 9, 12, 14, 17, 20, 21]). It is not always
clear that these schedulers are equitable to all aspects of the
system, or are controllable in a measurable way to favor one
aspect of the system over the other. For example, a sched-
uler that minimizes the overhead of seek time may violate
deadlines of some high priority requests. Another scheduler
that deals with requests based on their priorities may incur
excessive seek time overhead, which leads to deadline vio-
lations. In the case of disk requests with multiple priorities
(i.e., QoS requirements), a disk scheduler that handles re-
quests based on one type of priority will fail to adequately
handle other types of priorities.

In this paper, we introduce a scalable and generic mul-
timedia disk scheduler, termed the Cascaded-SFC disk
scheduler, that takes all the requirements of a multimedia
server into consideration. The Cascaded-SFC disk sched-
uler can be tuned by simple parameters to emulate the op-
eration of other disk schedulers, e.g., FCFS, EDF, SSTF
and SCAN-EDF. In addition to disk scheduling, Cascaded-
SFC can be used in other applications that have multi-



ple concurrent and conflicting requirement, e.g., schedulers
for multi-threaded CPUs [23], network-attached storage de-
vices (NASDs) [8, 13], operating systems schedulers [15].

The main idea of the Cascaded-SFC disk scheduler is
to model the multimedia disk requests as points in multi-
ple multi-dimensional sub-spaces. Each sub-space encom-
passes a group of QoS parameters. Each dimension in a sub-
space represents one of the parameters (e.g., one dimension
represents the request deadline, another dimension repre-
sents the disk cylinder number, a third dimension represents
the priority of the request, etc.). Each multi-dimensional
sub-space represents a subset of the QoS parameters that
share some common scheduling characteristics. The sched-
uler problem is thus reduced to finding a linear-order to tra-
verse the multi-dimensional points in each sub-space. We
distinguish among three categories of QoS requirements for
disk requests: (1) Priority-like requirements (e.g., user pri-
ority, request value, request size, arrival time). The objec-
tive of this category is to respect the order of each priority
type. Serving two disk requests in reverse order with re-
spect to any of these priorities is considered a priority in-
version. (2) Deadline-like requirements. Unlike the first
category, there is no penalty when serving disk requests in
reverse order as long as the disk requests are served before
their deadlines. (3) Disk utilization requirements (e.g., the
seek and latency time). Unlike the first two categories, the
value of the third category is continuously changing with
each scheduling instance. Based on these categories, a scal-
able multimedia disk scheduler should achieve the follow-
ing goals:

1. Minimizing Priority Inversion. For each priority-like
parameter, a multimedia disk scheduler should mini-
mize the number of priority inversions.

2. Scalability. The efficiency of a multimedia disk sched-
uler should not affected by the number of QoS require-
ments (i.e., the dimensionality of the scheduling prob-
lem).

3. Fairness. A multimedia disk scheduler should be fair
to all QoS requirements i.e., it should demonstrate sim-
ilar behavior with respect to all dimensions (QoS re-
quirements).

4. Minimizing Deadline Loss. A multimedia disk sched-
uler should minimize the number of deadline losses.

5. Selectivity. If a deadline miss is a must, a multimedia
disk scheduler should be able to select the disk requests
with lowest priority to miss.

6. Maximizing Disk Utilization. A multimedia disk
scheduler should minimize the seek and latency times,
thus maximizing the disk utilization.

The Cascaded-SFC multimedia disk scheduler presented
in this paper achieves these goals. The underlying theory of
Cascaded-SFC is based on space-filling curves (SFCs). A
space-filling curve maps the multi-dimensional space into
the one-dimensional space. An SFC acts like a thread that
passes through every cell element (or pixel) in the multi-
dimensional space so that every cell is visited exactly once.
Thus, space-filling curves are adopted to define a linear or-
der for sorting and scheduling objects that lie in the multi-
dimensional space. Figure 1 gives examples of seven two-
dimensional space-filling curves. Using space-filling curves
as the basis for multimedia disk scheduling has numerous
advantages, including (1) Scalability in terms of the num-
ber of scheduling parameters, (2) Ease of code development
and maintenance, (3) The ability to analyze the quality of
the schedules generated, and (4) The ability to automate the
scheduler development process in a fashion similar to auto-
matic generation of programming language compilers.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work. The Cascaded-SFC disk
scheduler is presented in Section 3. Section 4 presents in-
terested features of the Cascaded-SFC disk scheduler. Sec-
tion 5 conducts a comprehensive study of the Cascaded-
SFC disk scheduler. Practical applications of the Cascaded-
SFC disk scheduler are addressed in Section 6. Finally, Sec-
tion 7 concludes with a summary.

2. Related Work

Scheduler designers and algorithm developers continu-
ously develop new disk scheduling algorithms to cope with
the growing complexity of applications. Traditional disk
scheduling algorithms (e.g., FCFS and SSTF) focus on only
one aspect of the system. For example, FCFS (First-Come
First-Service) aims to achieve fairness among user requests
while ignoring disk utilization. On the other hand, SSTF
(Shortest Seek Time First) aims to maximize disk utiliza-
tion.

Real-time applications pose new challenges for sched-
uler designers. A real-time disk scheduler should take the
deadline of each request into account. A straightforward al-
gorithm to handle real-time disk requests is EDF (Earliest
Deadline First) [16]. In EDF, disk requests are served based
on their deadlines. Although EDF achieves good results in
terms of minimizing the deadline losses, it degrades the disk
utilization, where it does not take into account the cylinder
position of disk requests. Many variants of the traditional
SCAN algorithm [7] are proposed (e.g., see [1, 11, 20]) to
handle real-time disk requests. The FD-SCAN (Feasible
Deadline SCAN) algorithm [1] differs from SCAN in the
way that it dynamically adapts the scan direction towards
the request with the earliest feasible deadline. A deadline
is said to be feasible if FD-SCAN estimates that the dead-
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Figure 1. Two-dimensional Space-Filling Curves.

line can be met. SCAN-EDF [20] achieves a trade-off be-
tween the SCAN and EDF algorithms. where requests are
served according to their deadlines. Requests with the same
deadline are served in SCAN order. In the SCAN-RT al-
gorithm [11], when a request arrives, it is inserted in the
disk queue in the SCAN order, only if the insertion does
not potentially violate the deadlines of other pending re-
quests. Otherwise, the request is appended to the end of
the queue. Other heuristic disk scheduling algorithms that
are not based on SCAN include SSEDO [5] and SSEDV [5]
(Shortest Seek and Earliest Deadline by Ordering/Value).
These algorithms give the disk request with the earliest
deadline/value a high priority. However, if a request with
a larger deadline is very close to the current arm position,
then it may be assigned the highest priority.

Scheduling prioritized user requests calls for another set
of complicated algorithms. In the multi-queue disk schedul-
ing algorithm [4], each queue represents a priority level.
Disk requests in higher priority queues are served first. In-
side each queue, requests are served in the SCAN order.
Haritsa et. al. [9] add a new dimension for the scheduling
problem, where they assume that each user request has a
value in addition to its deadline. So, the objective of the
scheduler is to maximize the sum of the satisfied user re-
quests while minimizing the number of missed deadlines.
They introduce the BUCKET algorithm that computes the
priority of a user request using a mapping function that
takes the value and deadline as input, and outputs one value
indicating the priority of the user request. User requests
are served based on their computed priority value. Since
the BUCKET algorithm is designed for scheduling transac-
tions, it does not take disk utilization into account. Multiple
priorities disk scheduling is presented in [2]. The main idea
is similar to the BUCKET where all the priorities are con-
verted to only one value representing the absolute priority
of the request. However, this algorithm does not take in
consideration the real-time and disk utilization issues.

Combining disk utilization with deadline and priority in
one disk scheduling algorithm is addressed in [12]. The ob-
jective is to propose a disk scheduling algorithm that serves
disk requests based on their priority and minimizes the num-

ber of deadline misses while maximizing the disk utiliza-
tion. The idea of the algorithm is to insert the new disk
request in the SCAN order, only if the insertion does not
potentially violate the deadline of other pending requests.
Otherwise, the scheduler chooses the lowest priority disk
request in the queue and moves it to the tail of the queue.
Other heuristic algorithms in disk scheduling that depend
on the nature of disk requests are proposed in [3, 14, 22].

3. The Cascaded-SFC Disk-Scheduling Algo-
rithm

It is obvious from the discussion in Section 2 that adding
more dimensions (e.g., user priority, request value, request
size, arrival time) to the disk scheduling problem results
in more complicated disk scheduler algorithms. This pa-
per proposes the Cascaded-SFC algorithm as a scalable
multimedia disk scheduler that can scale with any number
of dimensions. The basic idea of the Cascaded-SFC disk
scheduler is to use space-filling curves to convert a multi-
dimensional disk request into a one-dimensional value.
Disk requests are modeled by multiple parameters (the disk
cylinder, the real-time deadline, and the multiple priori-
ties) and are represented as points in the multi-dimensional
space, where each parameter corresponds to one dimension.
Using space-filling curves, the multi-dimensional disk re-
quest is converted to a one-dimensional value. Then, disk
requests are inserted into a priority queue according to their
one-dimensional values, with a lower value indicating a
higher priority. Because of the different natures of the mul-
timedia scheduling parameters and the different characteris-
tics of these parameters, Cascaded-SFC groups the schedul-
ing parameters into stages and schedules the disk requests
in a cascaded fashion. Figure 2 illustrates the Cascaded-
SFC disk scheduler with three cascaded stages (sub-spaces).
Multiple space-filling curves (SFC1, SFC2, and SFC3)
are selected to fit the scheduling needs of the QoS param-
eters in each sub-space. A real-time disk request T with
D different types of priorities (user priority, value, arrival
time, etc.) is modeled as a point in the (D+2)-dimensional
space. D dimensions represent the different types of priori-
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ties, one dimension represents deadline, another dimension
represents cylinder position. The mapping from the (D+2)-
dimensional space into the one dimensional space is per-
formed with three stages of space-filling curves. The first
stage takes the D types of priorities as input and outputs a
one-dimensional value, using a D-dimensional space-filling
curve (SFC1) that aims to minimize priority inversion. The
second stage takes the output of the first stage and the disk
request deadline as input, and applies a two-dimensional
space-filling curve (SFC2) that aims to minimize dead-
line violations. In addition, if a deadline has to be missed,
SFC2 chooses a low priority request as a victim. Simi-
larly, the third stage takes the output of the second stage
and the cylinder position of the disk request, and applies
a two-dimensional space-filling curve (SFC3) that opti-
mizes the seek time. The output from the third stage is a
one-dimensional value, the characterization value vc, that
encapsulates all the properties of the disk request. A disk
request T is inserted in a priority queue q based on its char-
acterization value vc. The lower the value of vc the higher
the priority of the disk request. In the remainder of this pa-
per, we use the terms Ti and the characterization value vc of
request number i as synonymous.

The Cascaded-SFC disk scheduling algorithm is divided
into two parts. The first part, the encapsulator, takes the
multi-dimensional disk requests as input, and outputs a one-
dimension value vc. The second part, the dispatcher, takes
vc as input, and outputs the scheduling order of disk re-
quests. The appropriate choice of the cascaded space-filling
curves SFC1, SFC2, and SFC3 in the encapsulator is in-
vestigated in Section 5, along with tunable parameters that
reflect the relative importance of deadline and seek time op-
timizations. The remainder of this section focuses on the
dispatcher, that is, the order by which the disk requests
are dispatched from the priority queue q. We start by de-
scribing two straightforward approaches for managing the
Cascaded-SFC priority queue, namely, the Non-Preemptive

Disk Scheduler and the Fully-Preemptive Disk Scheduler.
The Non-Preemptive Disk Scheduler: Using this ap-
proach, once the disk server starts to serve the disk requests
from the priority queue q, no more requests are inserted in
q. Arriving requests are grouped together in another prior-
ity queue q‘. Once q is empty, q and q‘ are swapped, and the
disk server starts serving disk requests from q again. This
scheduler is non-preemptive in the sense that the process of
serving disk requests from q is not preempted by the arrival
of new requests.
The Fully-Preemptive Disk Scheduler: This is a trivial
approach. All requests are inserted in the same priority
queue q regardless of their arrival times. This scheduler
is fully-preemptive in the sense that the process of serving
disk requests from q is preempted by the arrival of any new
request.

The fully-preemptive disk scheduler serves all disk re-
quests according to their priority. Low priority requests may
starve due to the continuous arrival of high priority requests.
On the other hand, the non-preemptive disk scheduler does
not lead to starvation since it groups requests according to
their arrival times. However, priority inversion is obvious
since higher priority requests inserted in q‘ must wait for all
lower priority requests in q to be served. The drawbacks
of the two approaches motivate the concept of a combined
disk scheduler that has the merits of both schedulers. In
the following section, we present a new multimedia disk
scheduling algorithm that avoids the drawbacks of these al-
gorithms, that is, it respects the disk request priority and
avoids starvation.

3.1. The Conditionally-Preemptive Disk Scheduler

As a trade-off between the fully-preemptive and the non-
preemptive disk schedulers, the conditionally-preemptive
disk scheduler allows a newly arrived disk request Tnew to
preempt the process of serving disk requests in q if and only
if Tnew has significantly higher priority than the currently
served disk request Tcur. To quantify “significantly higher”,
we define a blocking window with size w (the rounded box
with thick border in Figure 3) that slides with Tcur in q.
Tnew is considered to have significantly higher priority than
Tcur if and only if Tnew < Tcur − w. The window size w

is a compromise between the fully-preemptive and the non-
preemptive disk schedulers. Setting w=0 corresponds to the
fully-preemptive disk scheduler, while setting w to a very
large value corresponds to the non-preemptive disk sched-
uler. If Tnew arrives while the scheduler is ready to serve
Tcur, then one of the following takes place:

1. Tcur < Tnew (Figure 3a). Tnew has lower priority than
Tcur. Hence, Tnew is inserted into q‘, as it is not more
important than Tcur.



− w − w

cur

T
cur

T
new

q T
cur

T
new

w

T

T
cur

T
new

> T
new

T
cur

new

T
cur

T T
new

cur
T

T
cur

T
cur

T
new

T
new

T
cur

T

T
new

q‘T
new

q‘

T
new

T
new

q
new

T
new

< <

has higher priority than

(a) (b) (c)

q

ww

<

has lower priority than , but has significantly high priority

q‘So,           is inserted into    .

So,           is inserted into q‘ not high enough to do preemption

place and            is served immediately.

w.r.t.         . So, a preemption takes

Figure 3. The Conditionally-Preemptive Disk
Scheduler.

2. Tcur − w < Tnew < Tcur (Figure 3b). Tnew lies
inside the blocking window w. Although Tnew has a
priority higher than that of Tcur, it is not high enough
to preempt the process of serving disk requests in q.
So, Tnew is inserted in the waiting queue q‘.

3. Tnew < Tcur − w (Figure 3c). Tnew has a priority
that is significantly higher than that of Tcur. So, it is
worth preempting the process of serving requests in q

by inserting Tnew in q.

There are two issues that need to be addressed: (1) Pri-
ority inversion results from disk requests that lie inside the
blocking window w (stored in q‘) and have higher prior-
ity than some requests in q, and (2) With any value of
w < MAX(vc), there is still a chance of starvation when
a continuous stream of very high priority requests arrive.
The next two sections propose two approaches for tuning
priority inversion and starvation.

3.2. Tuning Priority Inversion

Storing disk requests that lie within window w in q‘
results in priority inversion, as the blocked requests have
higher priorities than that of the disk request that is cur-
rently being served. Thus, we propose the SP (Serve and
Promote) policy. In the SP policy, before the disk starts to
serve a request from q, it checks q‘ for any disk requests
that eventually attain significantly higher priority. If such a
request is found, SP promotes this request and insert it in q.
Thus, serving disk requests in q can be preempted either by
a newly arrived request or by an old request that eventually
attains significantly higher priority.

Figure 4 gives an example of applying the condition-
ally preemptive Cascaded-SFC disk scheduling with the SP
policy. Disk requests T1, T2, · · · , T7 are numbered accord-
ing to their arrival times and are drawn into a priority line,
where T5 has the highest priority while T4 has the lowest
priority (Figure 4(a)). When T1 arrives, the disk is idle, so
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T1 is served immediately. While T1 is served, T2, T3, and
T4 arrive and are inserted in q‘, since none of them have sig-
nificantly higher priorities than T1 (Figure 4(b)) (note that
T2 and T3 have higher priorities than T1, but they are still
within the blocking window w). When T1 is served, q is
empty, so q and q‘ are swapped and T2 is served, since it
has the highest priority among requests in q (Figure 4(c)).
While T2 is served, T5, T6, and T7 arrive. Only T5 has
significant importance, and it is inserted in q (Figure 4(d)).
After serving T5 and before serving T3, the scheduler takes
into consideration that T6 has significantly higher priority
than T3 (T6 lies outside the window w w.r.t. T3). So the
scheduler serves T6 before T3. The same applies to T4 and
T7, before serving T4, the scheduler recognizes that T7 has
significantly higher priority than T4. So, the final order of
serving disk requests is T1, T2, T5, T6, T3, T7, T4.

3.3. Tuning Starvation Avoidance

If the window size w remains fixed, an adversary would
still select disk requests in a manner that results in the star-
vation of other disk requests. To completely avoid starva-
tion, we propose the ER (Expand and Reset) policy. ER
expands the window size w by a constant factor, termed the
expansion factor e, with any preemption of the process of
serving disk requests from q. However, when a disk request
is served and another disk request from q is dispatched, ER
resets w to its original value. ER avoids starvation, where
after a finite number of high priority requests, W will be
eventually very large, and hence the scheduler will work
in the non-preemptive mode, which is free of starvation.
The scheduler moves back and forth between being non-
preemptive or conditionally-preemptive as the window w

expands or shrinks.



4. Features of the Cascaded-SFC Disk Sched-
uler Algorithm

The idea of using three cascaded space-filling curves
instead of only one space-filling curve in the Cascaded-
SFC scheduler results in many good features. In this sec-
tion, we focus on three main features: (1) Flexibility: The
Cascaded-SFC can work in several environments. (2) Gen-
eralization: The Cascaded-SFC can be considered as a gen-
eralization of many other disk schedulers. (3) Extensibility:
The Cascaded-SFC can be used to extend other disk sched-
ulers to deal with different environments. Other features
that include scalability, modularity of the design, and fair-
ness are investigated through comprehensive experiments in
Section 5.

4.1. Flexibility

The Cascaded-SFC multimedia disk scheduler is flex-
ible as it can fit in environments that have different re-
quirements with very slight modifications. For example, in
environments where deadlines are relaxed, SFC2 can be
skipped and the output of SFC1 is entered directly as in-
put to SFC3. If the scheduling problem does not need to
optimize for disk utilization (e.g., CPU scheduling, thread
scheduling), then SFC3 can be skipped, and the output
from SFC2 is entered directly to the priority queue. In the
case of applications with only one priority type, SFC1 is
ignored and the priority is entered directly to SFC2.

4.2. Generalization

The Cascaded-SFC disk scheduler is a generalization of
many disk schedulers. Ignoring the three stages of space-
filling curves and setting w = 0 in the priority queue
makes the Cascaded-SFC work as any one-dimensional
disk scheduler (e.g., FIFO, SSTF, EDF, SCAN). Notice that
the criteria of inserting disk requests in the queue depends
on the algorithm. Two-dimensional disk schedulers are spe-
cial cases from the Cascaded-SFC disk scheduler by ignor-
ing two of the three stages. For example, FD-SCAN [1],
SCAN-EDF [20], multi-queue disk scheduler [4] can be
realized by the Cascaded-SFC disk scheduler when using
only SFC3. The Sweep SFC is used as SFC3 where
the y dimension represents the deadline (for FD-SCAN
and SCAN-EDF) or the request priority (for multi-priority
scheduling) while the x dimension represents the differ-
ence in cylinders between the current cylinder position and
the disk request in any direction (for FD-SCAN) or in the
current direction (for SCAN-EDF and multi-priority sched-
uler). Multiple priorities disk scheduler [2] is realized by
the Cascaded-SFC disk scheduler when using only SFC1

and ignoring SFC2 and SFC3. In this case, the multiple

Disk Parameter Value
No. of Cylinders 3832

Type Quantum XP32150
Tracks/Cylinder 10

No. of Zones 16
Sector Size 512

Rotation Speed 7200 RPM
Average Seek 8.5 mSec.

Max. Seek 18 mSec.
Seek cost function 0.8 + 0.002372(d) + 0.12581(

√
d)

Disk Size 2.1 GBytes
File Block Size 64 KBytes
Transfer Speed 4.9 - 8.2 MBytes/sec
Disks / RAID 5 (4 data 1 Parity)

Table 1. Disk Model

priorities will be entered to SFC1 and the output is a one-
dimensional value that entered to the priority queue.

4.3. Extensibility

The idea of the Cascaded-SFC disk scheduler can be
used to extend current disk schedulers to deal with multiple
priorities and/or real-time systems. For example, the disk
scheduler in [12] deals with real-time disk requests where
each request has only one type of priority. To extend the
functionality of this algorithm to deal with multiple types
of priorities, we use the SFC1 from the Cascaded-SFC disk
scheduler. The multiple priorities is entered to SFC1 and
the output is considered the absolute priority of the disk re-
quest that is entered into the algorithm in [12]. Similarly to
extend the BUCKET algorithm [9] to deal with disk utiliza-
tion, we take the output of the BUCKET algorithm and enter
it into SFC3 of the Cascaded-SFC disk scheduler with the
cylinder position of the disk request. Similar ideas may be
used to extend the FD-SCAN, SCAN-EDF to deal with pri-
oritized requests and for multiple queue disk scheduler to
deal with real-time disk requests.

5. Performance Analysis

To evaluate the performance of the Cascaded-SFC multi-
media disk scheduler, we perform several simulation exper-
iments using a simulator that models the PanaViss server.
PanaViss is a video server research prototype [10] for video
broadcasting applications. For architecture details of the
PanaViss video server, the reader is referred to [12]. The
parameters of the disks in PanaViss server are given in Ta-
ble 1.

A milestone in the Cascaded-SFC multimedia disk
scheduler is the choice of three space-filling curves for the
three stages of Figure 2. If we limit ourselves to the seven
space-filling curves given in Figure 1, we will have 73 dif-
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Figure 5. Minimizing Priority Inversion.

ferent versions of the Cascaded-SFC disk scheduler. In this
section, we will not show an exhaustive comparison for all
different versions. Instead, we will give the comparison
between different space-filling curves for SFC1 only. For
SFC2 and SFC3, we give the space-filling curve that gives
best performance and compare to other conventional disk
schedulers.

5.1. Priority Inversion

The number of priority inversions for dimension k that
results from serving a disk request Ti is the number of disk
requests |Tw| in the waiting queue that have higher priority
in dimension k than Ti. The total number of priority inver-
sions is the sum of all priority inversions over all dimen-
sions. The number of priority inversions is continuously
increasing with the time of the simulation run. Thus, for
comparison purposes, we represent the number of priority
inversions as a percentage of the number of priority inver-
sions that occurs in the FIFO policy. To be able to evaluate
SFC1 independently of the rest of the scheduler, we as-
sume that disk requests have relaxed deadlines (So, SFC2

can be eliminated) and the disk block size is large enough
to make the transfer time of disk requests dominate the seek
time (So, SFC3 can be eliminated). Thus, the output of
SFC1 is entered directly to the priority queue.
Minimizing Priority Inversion. Figure 5 gives the prior-
ity inversion that results from the seven space-filling curves
given in Figure 1 for normal and high system load. The win-
dow size w is varied from 0% of the size of the scheduling
space (the fully-preemptive scheduler) to 100% of the size
of the scheduling space (the non-preemptive scheduler).
In Figure 5, disk requests arrive exponentially with mean
interarrival time 25 msec. The Diagonal SFC gives the
best performance (lowest priority inversion) at w < 60%,
with around 10% lower than the Peano SFC. The Gray and
Hilbert SFCs have very high priority inversion. For large
window sizes, the Sweep and C-Scan SFCs are the best
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Figure 6. Scalability of the Cascaded-SFC disk
scheduler.

curves. This is due to the nature of these curves that is suit-
able to the non-preemptive scheduler.
Scalability. Figure 6 gives the number of priority inversion
when running the Cascaded-SFC disk scheduler for up to
12 QoS parameters (i.e., 12 dimensions). Each QoS param-
eter (dimension) has 16 priority levels. The experiment is
performed with mean interarrival time 25 msec. The Diag-
onal SFC gives the best performance especially with higher
dimensions. The Sweep, Peano, and Spiral SFCs have al-
most the same performance.
Fairness. A very critical point for SFC1 in the Cascaded-
SFC disk scheduler is how to assign the disk request param-
eters (i.e., value, user priority, etc.) to the dimensions of the
space-filling curve. Depending on the nature of the applica-
tion, we may require that SFC1 should be either fair to all
dimensions or biased to some of the dimensions. In this ex-
periment, we use the standard deviation of priority inversion
over all dimensions as a measure of the fairness of space-
filling curves. The lower the standard deviation the more
fair the space-filling curve. The experiment is performed
in the four-dimensional space. The interarrival time of disk
requests is 25 msec. In Figure 7a, the Diagonal SFC is the
most fair space-filling curve among the space-filling curves
we consider in this study (the standard deviation is less than
10%). For a medium window size, the Spiral SFC has a
very low standard deviation. The C-Scan and Sweep SFCs
give the worst performance because they have no priority
inversion in the last dimension while having high priority
inversion in all the other dimensions. Figure 7b plots only
the most favored dimension (the one with lowest priority in-
version) from the same experiment. The C-Scan and Sweep
SFCs are always the best where they have no priority inver-
sion in small window sizes, which interprets why they have
very high standard deviation (Figure 7a). This result is very
beneficial in applications that have only one important di-
mension, while the other dimensions are not with the same



0 20 40 60 80 100
0

20

40

60

80

100

120

140

Window Size (Percent)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 P

rio
rit

y 
In

ve
rs

io
n

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(a) Standard Deviation

0 20 40 60 80 100
0

20

40

60

80

100

120

Window Size (Percent)

P
rio

rit
y 

In
ve

rs
io

n 
P

er
ce

nt

Sweep
CScan
Peano
Gray
Hilbert
Spiral
Diagonal

(b) Favored Dimension

Figure 7. Fairness of the Cascaded-SFC disk scheduler.

significant importance. For example, some applications that
schedule over user priority, value, and request size may de-
cide to maximize the profit. So, the value dimension would
be the most important dimension while other dimensions
may not have the same importance. Other applications may
decide to strictly enforce the user priority. In this case, a
space-filling curve that favors one of the dimensions over
the others will be chosen.

5.2. Missing Deadlines

In the following experiments, we consider real-time
multi-priority disk requests. Each disk request has three
types of priorities and a deadline selected randomly in the
range 500-700 msec. In a typical application, such as non-
linear editing, low priority requests can be represented by
ftp transfers of large files while higher priority requests can
be represented by the playing of Audio and Video files,
which are usually retrieved in chunks of small size blocks.
Thus it is reasonable to assume that the service time for
high priority requests is smaller than that of lower priority
requests. Also, we assume that the disk block size is large
enough to make the transfer time of disk requests dominate
the seek time. So, SFC3 in Figure 2 is ignored and the
output from SFC2 is entered directly to the priority queue.

SFC2 is a two-dimensional space-filling curve that has
the deadline as one dimension and priority (the output
from SFC1) as the second dimension. We propose a vari-
able f that balances between the two dimensions. In this
case, the characterization value vc is computed from vc =
Priority + f ∗ deadline. Setting f = 0 and solving the tie
by serving the earliest deadline corresponds to the Sweep
SFC where the X dimension represents the deadline while
the Y dimension represents the priority. Setting f = 1

while solving the tie randomly corresponds to the Diagonal
SFC. Also, setting f to a very large value while solving the
tie by serving the higher priority request corresponds to the
Sweep SFC where the X dimension represents the priority
and the Y dimension represents the deadline. In general, if
f < 1, then the scheduler pays more attention to minimiz-
ing priority inversion than satisfying the deadline. If f > 1,
then serving disk requests according to deadline is more im-
portant than minimizing priority inversion. For comparison
purposes, we normalize all the results in this section to the
EDF disk scheduler. In the following experiments, we show
the effect of changing f on the Cascaded-SFC disk sched-
uler.

Minimizing Deadline Misses. Figures 8a and 8b give the
effect of changing f on priority inversion and the number of
deadline misses (normalized to EDF), respectively. When
f = 0, the scheduler ignores the deadline in order to mini-
mize the priority inversion. This results in a very high ratio
(from six to seven times the EDF) of deadline misses and
low priority inversion. As f increases, the Cascaded-SFC
disk scheduler gives more attention to deadline. Thus, the
ratio of deadline misses decreases while the priority inver-
sion increases. The Diagonal SFC gives better results in
both deadline misses and priority inversion. Setting f = 1
results in a reasonable trade-off between priority inversion
and deadline misses, where the Diagonal SFC achieves the
same number of deadline misses as the EDF while minimiz-
ing the priority inversion to 90%.

Selectivity. One may ask why bother with a complicated
space-filling curve to achieve only 90% of priority inver-
sion, while the deadline misses is the same as EDF. How-
ever, this is not everything that space-filling curves can
achieve. The Cascaded-SFC disk scheduler does not only
minimize the deadline misses, it also sacrifices the low pri-



0 0.5 1 1.5 2 2.5 3
65

70

75

80

85

90

95

100

f

Pr
io

ri
ty

 I
nv

er
si

on
 P

er
ce

nt
 to

 E
D

F
   

   
   

   
   

   
   

   
  

Diagonal
Sweep
Peano
Hilbert

(a) Priority Inversion

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

f

Pe
rc

en
t o

f 
D

ea
dl

in
e 

L
os

s 
to

 E
D

F
   

   
   

   
   

   
   

   
   

   
 

Diagonal
Sweep
Peano
Hilbert

(b) Deadline Misses

Figure 8. The effect of f in SFC2.

ority disk requests when missing a deadline is a must. Fig-
ure 9 gives the number of deadline misses in each prior-
ity level in three-dimensional disk requests. We compare
the EDF scheduler with the Cascaded-SFC disk schedulers
based on the Diagonal, Sweep, and Peano SFCs. Each
dimension of the three-dimensional space is plotted sep-
arately. Each column represents the number of deadline
misses of a certain priority level, where we have eight pri-
ority levels for each dimension. The objective from this
experiment is to see how the deadline misses are scattered
over the different dimensions and different priority levels.
The ideal scheduler would have all its deadline misses in
the lowest priority level (level 8) for all dimensions. EDF
does not take into consideration the priority level of the disk
request. Thus, EDF misses disk requests randomly from
each priority level and it may happen that higher priority
requests are lost in favor of serving lower priority requests.
Each space-filling curve uses its own properties [18, 19] to
select the disk request to sacrifice. For example, the Diago-
nal SFC minimizes the deadline misses of high priority disk
requests over all dimensions. Also, the Diagonal SFC treats
all dimensions fairly where it has approximately the same
pattern of deadline misses over the three space dimensions.
The Sweep SFC favors the third dimension in the sense that
it does not miss any requests with high priority in this di-
mension. However, for the other two dimensions, Sweep
SFC treats disk requests as the EDF scheduler does. In ap-
plications that have priorities with very high importance, it
is better to use the Sweep SFC and assign this type of pri-
ority to the last dimension. The Peano SFC favors the first
and the last dimensions since it misses only low priority
disk requests in these dimensions. Due to the significance
of these results, we perform these experiments in a practical
environment, and describe our results in Section 6.

5.3. Maximizing Disk Utilization

In the following experiments, we use the same parame-
ters and assumptions as in the previous section, except that
we consider disk blocks with small size to analyze the effect
of seek time optimization. Experimental results show that
using the two-dimensional Sweep SFC as SFC3 gives the
best results that combine the cylinder dimension with the
priority-deadline dimension that comes form SFC2. The
X dimension in the Sweep SFC is assigned to the priority-
deadline dimension, while the Y dimension is assigned to
the nearest disk request. In this case, the characterization
value vc would be: vc = Yv × Maxx + Xv , where Yv

is the value of the Y dimension which is the difference in
cylinders between the current position of disk head and the
disk request. Maxx corresponds to the maximum possible
value in the X dimension. Xv is the value of X dimen-
sion which is the difference between the priority-deadline
value of the disk request and the minimum possible priority-
deadline value of any disk request. With such value of vc,
disk requests are inserted in the disk queue q in the order
of their Yv value, and in case of a tie (two disk requests
lie in the same cylinder), the disk request with lower Xv

(priority-deadline value) would be served first. Then, all
disk requests in q can be served in only one disk scan.

To tune the effect of seek time optimization, we use
a factor R that takes an integer value. R represents the
number of disk scans that a disk head is allowed to take
to serve all disk requests in q. The idea of R is to par-
tition the two-dimensional space vertically into R parti-
tions numbered from 0 to R − 1 where partition size is
Ps = Maxx

R
. In the above discussion we set R = 1

which allows only one partition (hence, one single scan)
that is visited by the Sweep SFC. For any R > 1, we serve
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Figure 9. Number of deadline misses in all priority levels.

all disk requests that lie in partition R before starting to
serve disk requests from partition R + 1. Each partition
is served separately using the Sweep SFC. A disk request
with (Xv , Yv) lies in the partition number Pn = b XvR

Maxx

c.
Then, vc = Maxy × Ps × Pn + Yv × Ps + Xv + Ps × Pn

where Maxy is the number of disk cylinders. Note that set-
ting R = 1 would result in Ps = Maxx and Pn = 0. This
makes vcR=1 = Yv × Maxx + Xv which is the same as
using the Sweep SFC in one partition. In general, R = i

corresponds to passing through i two-dimensional Sweep
space-filling curves glued together horizontally.

The effect of R on the number of priority inversions,
deadline misses, and seek time, is given in Figures 10
(a),(b), and (c), respectively. In all experiments we com-
pare the CSCAN, EDF schedulers with the Cascaded-SFC
disk scheduler where SFC1 and SFC2 are represented by
the Diagonal SFC while SFC3 is represented by the Sweep
SFC tuned by R. In Figure 10(b), the number of dead-
line misses is normalized to the CSCAN disk scheduler.
The Cascaded-SFC scheduler algorithm always gives lower
deadline misses than EDF and CSCAN. At R = 1, the dead-
line loss is still large; this is because R = 1 ignores the
priority and hence ignores the deadline and sorts on seek
time only. However, it still gives lower misses than EDF be-
cause sorting on seek time increases disk utilization, allow-
ing the disk to serve more disk requests before their dead-
lines. When R reaches 4, the number of deadline misses
decreases; this is because we take the deadline and priority
into consideration. However, increasing R again results in
more deadline losses. In this case, we give more attention
to priority and ignore the seek time, which results in poor
disk utilization and hence loss of requests.

Figure 10(c) shows that when R < 3, the seek time of the
Cascaded-SFC disk scheduler is less than the CSCAN. Fig-
ure 10(a) shows that the Cascaded-SFC disk scheduler has
better priority inversion than CSCAN when R < 7. From
these figures, we can conclude that R = 3 is the best value

for R, where it beats CSCAN in terms of number of dead-
line losses, disk utilization and priority inversion.

6. Practical Considerations and Applications

We apply the Cascaded-SFC disk scheduler to the de-
sign of a scheduler for a real-time file system that will be
used in the NewsByte50. NewsByte50 is a non-linear edit-
ing server that can use both MPEG2 and high quality DVD
formats. Non-linear editing servers are multimedia servers
that are commonly used by the broadcast industry. These
systems can edit raw films before broadcasting them. One
or more audio-video clips are retrieved and then are edited.
Several editing operations can be done to the clips, such
as remove/add shots, remove/add audio channels, cut/paste,
reorder, etc. The editor can process the clips in real-time
by using patches via an Edit Decision List (EDL). EDL
is a program that describes a list of operations to be ex-
ecuted in a predefined order. A non-linear video editing
server is similar to a video on demand (VoD) system in that
both playback multiple streams with soft or hard real-time
guarantees. However, a non-linear editing system supports
a real-time disk write operation. Reading from an archive
and non real-time FTP are also supported by a non-linear
editing system.

In the experiments, we assume that 68 to 91 users are si-
multaneously accessing each disk in the server. Each user
requests either to retrieve or download an MPEG-1 stream
at 1.5 Mbps. Users send read or write requests periodically,
and we assume that these requests arrive in bursts. This
means that the disk scheduler serves the incoming requests
in batches. The experiments are conducted using eight pri-
ority levels, with a normal distribution of requests across the
different levels. We assume that each request must be ser-
viced by the disk server before a certain deadline, selected
randomly in the range (750-1500) milliseconds. A request
not serviced prior to this deadline is considered lost.
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Figure 10. Effect of R on SFC3.

The main performance metric that we measure is the
fraction of read/write requests that are lost by the disk
server. Since a scheduling algorithm may reduce the num-
ber of losses in one priority level at the expense of increas-
ing this number in other levels, we use a cost function that
combines the losses in all priority levels to compare the per-
formance of the different algorithms. Our cost function is
the weighted sum of the miss ratios (that is, the ratio of the
number of misses to the total number of requests) in the dif-
ferent priority levels. The weights are selected to reflect the
relative cost of missing deadlines across the different lev-
els: f =

∑P

i=1
wi

mi

ri

where p is the number priorities, mi

is the number of misses at level i, ri is the total number of
requests at level i, and wi is the weight of level i. In our ex-
periment, we have selected the weights to decrease linearly
with priority, such that data lost in the highest level has a
cost 11 times that of the lowest level.

Figure 11 summarizes our results for measuring the re-
quest losses in the system. In the figure, we show the ag-
gregate losses as the number of users increases, for five dif-
ferent scheduling algorithms: (1) FCFS, (2) Sweep-X; the
space-filling curve scheduling algorithm where the Sweep
curve is used with the priority assigned to the X-axis and
the deadline assigned to the Y-axis, (3) Sweep-Y; the space-
filling curve scheduling algorithm where Sweep is used
with the deadline assigned to the X-axis and the priority as-
signed the Y-axis, (4) the space filling algorithm where the
Peano curve is used with the priority assigned to the X-axis
and the deadline assigned to the Y-axis, and (5) the space
filling algorithm where the Diagonal curve is used with the
priority assigned to the X-axis and the deadline assigned to
the Y-axis. Note that Sweep-X is essentially the traditional
Earliest Deadline First algorithm, which serves requests in
increasing order of their deadlines regardless of the prior-
ity, whereas Sweep-Y corresponds to the multi-queue al-
gorithm, which serves the requests in the highest-priority
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Figure 11. The aggregate losses.

level according to their deadlines, followed by requests in
the next lower level, and so on.

From the plot, we see that Diagonal and Peano SFCs
behave the same. The Sweep-Y algorithm behaves better
than all the other techniques, including Peano and Diag-
onal, when the load on the system is light. However, as
the load on the system increases, meeting the deadline of
all requests might not be possible, and the scheduler must
make wise decisions on which requests to lose. When this
is the case, Peano starts to outperform Sweep-X, and the
gap between the two techniques increases with increasing
the numbers of users. The Peano and the Diagonal SFCs
can be thought of as a trade-off between the Sweep-X and
Sweep-Y algorithms, as they try to balance the number of
misses across the different levels, at the same time tending
to favor the higher priority requests.



7. Conclusion

A new scalable multimedia disk scheduler, termed the
Cascaded-SFC, is presented. The Cascaded-SFC multime-
dia disk scheduler is applicable in environments where disk
requests have multiple QoS requirements. The main goal of
Cascaded-SFC is to respect the priorities of different disk
requests. In addition, Cascaded-SFC tries to minimize the
number of deadline losses while maximizing the disk uti-
lization. If a deadline loss should occur, Cascaded-SFC
chooses a lower priority request as a victim. Cascaded-
SFC is scalable in terms of the number of QoS parameters.
Unlike previous disk scheduling algorithms, Cascaded-SFC
is generic in the sense that it can be applied regardless
of the number of parameters in the system. Furthermore,
Cascaded-SFC can be tuned by simple parameters to emu-
late many other scheduling algorithms. Comprehensive ex-
periments are presented to show the applicability and scal-
ability of the Cascaded-SFC over other disk schedulers.
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