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ABSTRACT
Predictive queries over spatio-temporal data proved to be vital in
many location-based services including traffic management, ride
sharing, and advertising. In the last few years, one of the most ex-
citing work on spatio-temporal data management is about predic-
tive queries. In this paper, we review the current research trends and
present their related applications in the field of predictive spatio-
temporal queries processing. Then, we discuss some basic chal-
lenges arising from new opportunities and open problems. The goal
of this paper is to catch the interesting areas and future work under
the umbrella of predictive queries over spatio-temporal data.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms, Performance

Keywords
Predictive Spatio-temporal Queries, Location-Based Services, Lo-
cation Prediction, Trajectories, Moving Objects, Authentication,
Privacy, Monitoring and Tracking, Query Optimization

1. INTRODUCTION
With the emerging and popularity of GPS enabled mobile de-

vices and wireless communications, processing and managing spatio-
temporal data becomes vital for many location based services and
applications [21, 41, 42]. A typical aim of these applications is
to answer users’ queries such as range queries [12, 18, 63], e.g.,
"find all restaurants within two miles of my current location", K-
nearest-neighbor (KNN) queries, e.g., "find the nearest pharmacy
within two miles of my current location", and aggregate queries,
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e.g., "count the number of cars within one mile of a university cam-
pus". As a consequence of the wide spread of these location-aware
devices and the importance of location-based applications, a con-
siderable number of research was introduced to handle different
problems of spatio-temporal data management, such as querypro-
cessing and optimization [12, 18, 53, 63], indexing and accessing
techniques [2, 4, 31, 52], and privacy preserving for users’exact
locations [1, 25, 28].

However, the previous examples give more attention to queries
related to thecurrent locations of moving objects. Another im-
portant set of location-based services focuses onpredictivespatio-
temporal queries [19, 23, 24, 27, 36] in which a user can ask the
same previous queries but forfuture time instance rather thancur-
rent time instance. Suchpredictivequeries are too substantial in
many different applications that include location-based advertising,
e.g., "find customers who are predicted to be within five milesof
my store in the next 30 minutes", traffic management, e.g., "find
areas with predicted traffic jam before it takes place", and car pool-
ing and taxi services, e.g., "find drivers who are mostly expected to
pass by my location after 10 minutes".

In this paper, triggered by its importance, we study the chal-
lenges and the opportunities in different research areas ofthe field
of predictive spatio-temporal query processing and management.
Basically, the meaning of predictive spatio-temporal query is ex-
plained in Figure 1. Without loosing the generality, this figure pro-
vides an example forpredictive rangequery which is a main query
type in predictive spatio-temporal queries.O1, to O4 are the objects
in the Euclidean space at the current timet1. The objects move and
change their locations over time in their trips starting from their
sources at timet1 until reaching their destinations at timet5. A
user issues query at current timet1 asking about the objects pre-
dicted to be inside a query rectangular regionR1 after four time
units in the future, att5. As a query result, bothO2 and O4 are
predicted not to show up in the query region, whileO1 and O3 are
the objects that probably be inside the query region att5. The final
answer returned to the user would indicate thatO1 and O3 are the
two objects expected to be inR1 at t5.

Our contribution in this paper is as follows. First, we survey
the current research trends and present their related applications in
the field of predictive spatio-temporal queries processing. This in-
cludes, (1) query evaluation and optimization, in which themain
concern is to find the optimum or at least a good enough strategy
for executing the received queries, (2) prediction functions, which
refer to the underlying prediction model employed to anticipate
the next/final destination or the complete forthcoming trajectory
of a given moving object, (3) spatio-temporal indexing techniques,
which attempt to find an efficient way to store and retrieve moving
objects data, and (4) uncertainty, which deals with imprecise data



Figure 1: Example of Predictive Range Query Example

about objects locations, velocities, and directions whileevaluating
the prediction. Second, we highlight the fundamental challenges
arising from the new opportunities and the open problems. We
illustrate which areas have been well investigated and which still
need more digging.

The remainder of the paper is organized as follows. We sur-
vey existing work in different areas related to predictive spatio-
temporal queries in Section 2. Then, we discuss the challenges
in six key topics, namelyquery processingin Section 3,prediction
functionsin Section 4,uncertaintyin Section 5,monitoring and
tracking in Section 6,privacy in Section 7, andauthenticationin
Section 8. Finally, we conclude in Section 9

2. SURVEY OF EXISTING WORK
In this section, we give a survey for the existing work related to

different branches of predictive spatio-temporal queries. We start
by reviewing the existing work about query processing and opti-
mization, then summarizing the commonly used prediction func-
tions, indexing data structures, and finally discussing theused tech-
niques to handle uncertainty while evaluating predictive queries.

2.1 Query Processing and Optimization
Existing algorithms for predictive query processing and opti-

mization can be classified according to the supported query type
into the following categories:

(1) range queries, e.g., [24, 56, 70]. A predictive range query
has a query regionR and a future timet, and asks about the objects
expected to be insideR after timet. A mobility model [24] is used
to predict the coming path of each of the underlying objects and
employ the prediction results to evaluate predictive rangequeries.
Most of existing work considers query region as a rectangle,how-
ever the Transformed Minkowski Sum supports range queries with
circular regions [70]. This is done by determining whether atime
parameterized bounding rectangular, as a moving object, intersects
a moving circle that represents a range query. The initial rectan-
gle of the object and the velocity of each edge in this rectangle are
considered to compute the position and the rectangle after acertain
duration of time in the future.

(2) K-nearest-neighbor queries, e.g., [5, 50, 70]. A predictive
K-nearest-neighbor query has a location pointP , a future timet,
and asks about theK objects expected to be closest toP after time
t. Two algorithms, RangeSearch and KNNSearchBF, [70] are in-
troduced to traverse spatio-temporal index tree (TPR/TPR∗-tree)
to find the nodes that intersect with the query circular region for
Range and KNN queries, respectively. Sometimes an expiry time

interval is attached to aKNN query result [57, 58]. Thus, theKNN
query answer is presented in the form of <result, interval>, where
the interval indicates the future interval during which thereported
answer is valid.

(3) reverse-nearest-neighbor queries, e.g., [5, 64]. Unlike the
predictiveKNN query which finds the objects expected to be the
nearest to a given query region, predictive reverse nearestneigh-
bor (RNN) query finds out the objects expected to have the query
region as their nearest neighbor. This query is useful in service dis-
tribution applications such as ad-hoc networking to assignmobile
devices to the nearest communication service point. For example,
an algorithm [5] is proposed to evaluateRNN queries during some
specific future time duration starting at the query time. This work
assumes the objects movements to be in a linear behavior.

(4) aggregate queries, i.e., [55]. A predictive aggregate query
has a query regionR and a future timet, and asks about the number
of objectsN predicted to be insideR after timet. A comprehensive
technique [55] that employs adaptive multi-dimensional histogram
(AMH), historical synopsis, and stochastic method is used to pro-
vide an approximate answer for aggregate spatio-temporal queries
for the future, in addition to the past, and the present.

(5) continuous queries, e.g., [26, 36, 41, 63]. The difference be-
tween asnapshotpredictive query and acontinuousone is that the
later needs to be continuously reevaluated many times through out
its life in the system. The rate of reevaluation depends on the time
gaptgap between each two consecutive reported answers specified
in the received queryQ. Accordingly, continuous queryQ needs to
be stored at the server side until the end of its life. For example,
a quadratic-based kNN [36] algorithm is introduced for process-
ing predictive continuousKNN queries, and a differential update
technique is used to maintain the query answers. Next, a probabilis-
tic evaluation [12, 18, 63] is considered for processing continuous
range queries.

Additional work considersquery selectivitywhich plays a com-
plementary role in the area of predictive spatio-temporal query pro-
cessing and optimization, i.e., [11, 13, 61, 60]. Selectivity predic-
tion is defined as the number of objects expected to be retrieved
divided by the size of the underlying objects data set. Accurate
estimation for the predicted query selectivity is essential in query
optimization and evaluation. For example, spatio-temporal his-
tograms [11, 61] are used to predict spatio-temporal query selec-
tivity.

To sum up, although the extensive investigation for the major-
ity of different types of predictive queries, but each of theexisting
work supports one or two query types and ignore the rest. Con-
sequently, there is still a lack for one general framework that can
support all or at least most of the mentioned query types.

2.2 Prediction Functions
In terms of the underlying prediction function, existing algo-

rithms for predictive spatio-temporal query processing can be clas-
sified into three categories:

(1) Linearity-based prediction, where the underlying prediction
function is based on a simple assumption that objects move ina
linear function in time along the input velocity and direction. So,
query processing techniques in this category, e.g., [5, 50,54, 58,
60], take into consideration the position of a moving point at a
certain time reference, its direction, and the velocity to compute
and store the future positions of that object in a TPR-tree-based
index [52]. When a predictive query is received, the query proces-
sor retrieves the anticipated position in the given time [54]. Part
of the related work in this category concerns with the applications
of linearity-based prediction models to answer nearest neighbor



queries [50] and reverse nearest neighbor queries [5], or toestimate
the query selectivity [60].

(2) Historical-based prediction, where the predication function
uses object historical trajectories to predict the object next trajec-
tory. Then, query processing techniques in this category, e.g., [7,
15, 24, 27, 33, 30, 55] are applied to trajectory of location points.
Existing work in this category is based on either mobility model [24]
or ordered historical routes [7, 15, 30]. The mobility model[24]
is used to capture different possible turning patterns at different
roads junctions, and the travel speed for each segment in theroad
network for each single object in the system. Then, the modelis
used to predict the future trajectory of each object, and based on
that they can answer predictive range queries. The main concern
of that model is to put more focus on the prediction of the object
behavior in junctions based on historical data of objects trajecto-
ries. In the ordered historical routes, the stored past trajectories
are ordered according to the similarity with the current time and
location of the object and the top route is considered the most pos-
sible one [7, 15, 30, 32, 33]. Some of the existing work in this
category is employed for predicting the current object trajectory in
non-euclidian space [27] such as road-level granularity. For exam-
ple, a Predictive Location Model (PLM) [27] is proposed to predict
locations in location-based services. This model considers the start
point as the object current location while the end point could be
any of the possible exit points. PLM computes the shortest path
trajectory between the current location and each of the exitpoints,
then the trajectory with the highest probability is considered the
predicted path. Moreover, a probabilistic prediction function based
on Markov models [33] is introduced for short-term route predic-
tion, while Bayes rule is adapted to predict the final destination of
a moving object [15, 32, 35].

(3) Other prediction functions, where more complicated predic-
tion functions are employed to realize better prediction accuracy.
Query processing techniques in this category, e.g., [23, 56, 69, 70]
are adjusted based on the outcome of the prediction function. Exist-
ing work in this category either exploits a single function [56, 70],
or mixes between two or more functions to form a hybrid prediction
model [23, 69]. As an example for a single function, a Transformed
Minkowski Sum [70] is used to answer predictive queries withcir-
cular regions, while Recursive Motion Function (RMF) [56] is used
to predict a curve that best fits the recent locations of a moving ob-
ject and accordingly answer range queries. In the hybrid functions
category, two methods [23, 69] are combined to evaluate predictive
range and nearest neighbor queries in highly dynamic and uncertain
environments.

Unfortunately, all the employed prediction functions either: (a)
support only short-term prediction in terms of seconds, minutes, or
next edge prediction, (b) support long-term prediction butassume a
linearity movement of the underlying moving objects which is not
a realistic assumption, or (c) based on complex techniques with a
significant computation cost that can not scale up for large number
of objects. As a result, there is still a need for prediction models
that can support long-term prediction as well as short-termpredic-
tion with the ability to scale up to huge query workloads and large
number of moving objects.

2.3 Indexing Techniques
A wide variety of data structures are proposed to index spatio-

temporal data to support predictive query evaluation and process-
ing. Some of the existing work assumes simple movement pattern
for the underlying moving objects while others handles morecom-
plex objects behavior. The most popular spatio-temporal indices
can be categorized with respect to the base data structure asfol-

lows.
(1) R-tree based, e.g., [4, 51, 52, 53, 59]. Time Parameter-

ized R-tree (TPR-tree) [52] is an extension of R-tree by adding
the time parameter which can be used to support querying current
and projected future positions of moving objects. The TPR-tree
was enhanced to the TPR∗-tree [59] by introducing some improved
construction algorithms. Rexp-tree [51] is proposed as an access
method that indexes the current and predicted locations of moving
objects assuming that their positions expire after specified time pe-
riods. A different technique based on convex hull property [3] is
introduced for indexing objects with nonlinear trajectories using a
traditional index structure.

(2) B-tree based, e.g., [9, 22, 67]. An indexing schema called
Bx-tree [22] based on B+-tree, uses a linear technique to index
changes in the underlying data values such as moving-objects loca-
tions. Based on this Bx-tree index, some algorithms were provided
to answer predictive range andKNN queries on near-future posi-
tions of the indexed objects. Bdual -tree is an enhancement of B-tree
by taking into consideration the velocity in addition to theloca-
tion while indexing the moving objects [67]. Next, a Self-Tunable
Spatio-Temporal B+-tree, termed ST2B-tree, is introduced [9] to
handle frequent updates for objects locations. This is doneby al-
lowing automatic online rebuilding of its subtrees using a different
set of reference points and different grid size without significant
overhead. The key for an entry in the ST2B-tree index consists of
a time part in addition to a space part. The time part is based on
dividing the dimension into equivalent partitions, while the space
part is based on the Voronoi diagram for dividing the space.

(3) kd-tree based, e.g., [6, 14, 44, 62]. MOVIES is a main mem-
ory indexing technique [6, 14] proposed to handle the high frequent
updates while guaranteeing fast response to predictive queries on
moving objects data. It is based on the kd-tree data structure [44,
62] and its main idea is to create new indexes for the most updated
pieces of the main index and throw them away from the main mem-
ory after some short time period.

(4) Quad-tree based, e.g., [48]. A dual transformation is used in
an indexing method called STRIPES [48] to index the predicted tra-
jectories in a dual transformed space. Trajectories for objects in a
d-dimensional space become points in a higher-dimensional, (a 2d-
dimensional), space. This dual transformed space is then indexed
using a regular hierarchical grid decomposition indexing structure.
More detailed review and comparison between the existing tech-
niques for indexing the current and predictive locations ofmoving
objects is covered in [8, 40, 44].

2.4 Uncertainty
Unlike most of existing work in predictive queries that assume

the deterministic behavior of objects movements, few research tri-
als assume uncertainty about these movements. Basically, uncer-
tainty deals with stochastic, (probabilistic movement patterns), of
the underlying objects with respect to object locations andveloci-
ties at different time stamps. The existing few trials in thearea of
predictive queries over uncertain moving objects data can be clas-
sified according to their aim as follows.

(1) Indexinge.g., [69]. To index uncertain motions of a set of
moving objects, the Bx -tree is enhanced and two movement infer-
encing techniques are introduced to obtain anticipated objects loca-
tions in non-deterministic format. This work assumes uncertainty
for the given past locations and velocities. The adapted Bx -tree and
the inference techniques are employed to evaluate predictive range
andKNN queries.

(2) Modelinge.g., [49, 56]. Unlike the work that is based on a de-
terministic linear movement, a Recursive Motion Function (RMF) [56]



Figure 2: Example of Space Sharing in Overlapped Regions

is presented to model uncertain motion patterns in different shapes
e.g. polynomial, sinusoid, circle, and ellipse. This work assumes
uncertainty about the representation of objects movementspatterns.
Moreover, a Spatio-Temporal Prediction tree, STP-tree [56], is in-
troduced to index these uncertain movement patterns and to answer
predictive queries. Next, a model called PutMode [49] is intro-
duced to predict next trajectory using uncertain data aboutobjects
locations. However, none of the predictive spatio-temporal queries
are explicitly supported.

3. CHALLENGE 1: QUERY PROCESSING
In this section, we study the challenges and opportunities that

are still open problems and need to have an insight look in thearea
of query processing and optimization. Basically, existingsolutions
suffers from the following limitations.

(1) Each one of the existing work is applicable for only one pre-
dictive query type or two at most. So, there is a lack for a generic
predictive query processor that can support to a wide variety of
query types i.e., range,KNN, aggregate, reverse-KNN. General-
ity of predictive query processor is not only in terms of query type
but also it expands to include the shape of query region. Thus, a
generic query processer should be able to answer queries in differ-
ent shapes such as rectangular, circular, or any other irregular poly-
gons. Another generality dimension is query continuity. Whether a
predictive query is snapshot or continuous, or stationary or moving,
a complete query processor should be able to support all of these
essential variations.

(2) Existing solution do not introduce a sufficient level of scal-
ability. Most of existing techniques were tested against low work-
loads i.e., in terms of thousands of objects and/or queries,while real
needs require processing technique to scale to millions of objects
and queries within very short time unit. Yet, realistic scalability
with low computation cost and fast response time is still an impor-
tant challenging problem.

(3) To the best of our knowledge, none of the existing solutions
can be supported by the existing infrastructure of databaseman-
agement systems. The reason for that is because existing query pro-
cessing techniques rely on special indexing structures i.e., STRIPES
or TPR-tree or assumes a certain framed processing environment
i.e., linear movements of all moving objects. Yet, in addition to the
generality and scalability features illustrated in the previous lines, it
is a vital research point to introduce predictive query processor that
is feasible to integrate with conventional data managementsystems
without major modification in their infrastructure.

One of the common concepts employed to allow generality of
query processor issharingwhich can be used to maximize the ben-
efit from the overlapping among received queries. Using thiscon-
cept can significantly reduce the total computation cost. Examples
of sharing include.

(a) Sharing parts of the queries interest, e.g., query Q1 asks "find
out all vehicles expected to be in region R1 after 30 minutes" and
query Q2 asks "find out taxi vehicles expected to be in region R1

(a) Range Query (b) Aggregate Query

Figure 3: Example of Data Structure Sharing to Serve Different
Query Types

after 30 minutes". Clearly, there is a relationship betweenthe inter-
est of Q1 and the one for Q2 that can be expressed as Q2 ⊂ Q1. So,
we can make use of Q1 answer to get the answer for Q2 without the
need to reprocess Q2 from scratch.

(b) Sharing parts of the space between query regions. For ex-
ample, assume we have region R1 of query Q1 and region R2 of
another query Q2 where R1 ∩ R2 6= φ. By applying the sharing
concept, we can use the overlapped space from one query to pre-
pare the answer for other queries. The example given in Figure 2
provides that the region R4 is fully covered by the other three re-
gions. Consequently, the predicted answer in R4 can be returned
without further computation as it simply can be composed from the
existing answers of the overlapped parts from other queries, given
they have a common interest in other variables such as futuretime
period.

(c) Sharing the same piece of data structure. For example an
answerfield can by used to answer range query by carrying a list
objects inside a given region and also can be customized to answer
an aggregate query by counting the number of objects expected
to show up in that region. Figure 3 illustrates sharing the same
data structure element to serve different type of queries. This con-
cept of sharing is employed by thePandasystem [19] to support
a wide variety of predictive spatio-temporal queries including pre-
dictive range,KNN, and aggregate queries. However, there is still
a question about its ability to scale up to large network graph with
millions of nodes and edges rather than a space partitioned into
hundreds or thousands of grid cells.

4. CHALLENGE 2: PREDICTION FUNC-
TION

Except few attempts, most of the existing work assumes a linear
movement pattern for moving objects. Initially, that assumption
is not realistic, since actual objects have more complex movement
patterns as they rarely move in straight lines. Although some of the
used prediction functions to answer predictive queries cansupport
long-term prediction, but they share major drawbacks such as poor
accuracy, scalability limitation, and bad response time. In fact, the
majority of existing prediction functions can fit only in short-term
prediction. The term short-term prediction can be defined with re-
spect to time in terms of few seconds in the future and with respect
to space in terms of next turn, junction or destination, while the
term long-term prediction can be defined in terms of tens of min-
utes in the future time, next complete trajectory, or anticipated final
destination.

Figure 4 gives an example for a long-term prediction function
used to predict a final destination [15, 32] of a given moving object.
The way this prediction function works is demonstrated as follows.
Initially, the given space in which objects move is partitioned into
6 × 6 squared cells numbered from 1 to 36. The current trajectory
of object O1 is drawn as a line started at cellC15 and headed to
cell C18. The sequence of cells representingO1 in its current trip
is SO1

= {C15, C16, C22, C23, C18}. The color of a cell indicates



Figure 4: Final Destination Prediction

its probability of being a destination to the objectO1 given its se-
quenceSO1

. The darker the cell color, the higher the probability
of this cell to be a destination toO1. As the object moves toward
its final trip destination, the prediction function updatesits compu-
tation. So, some of the grid cells become more likely destination
(e.g.,C24), and others become less, (e.g.,C31). However, this func-
tion suffers from two main shortcomings. First, it can only predict
a final destination for a moving object and it fails to predictits next
complete pass. Second, it does not have the sense of time, which
means it can not predict the location of objectO1 after a specified
time periodt in the future.

Not only predicting forthcoming location/trajectory of a moving
object is challenging, but also predicting its anticipatedsize and
shape is challenging, specially in highly dynamic environments.
For example if a tornado, as a moving object, has a rectangular
shape in the current time and its current location is known, it is
not an easy task to predict the answer for a question like "findout
commuters that might be hit by this tornado in the next 30 min-
utes". This example is one of the most difficult predictive tasks, as
commuters change their locations and velocities and also the tor-
nado modifies its shape, size, speed, and direction. Taking all of
these factors into consideration makes prediction more complex,
and challenging.

Challenges in the area of prediction functions can be summarized
in the following statement. There is still an essential needto find a
well-designed prediction function that is able to precisely support
long-term as well as short-term prediction, has the sense oftime,
able to capture changes in objects recent behavior, and efficiently
scale up to large numbers of moving objects.

5. CHALLENGE 3: UNCERTAINTY
In this section, we discuss the challenging points that should be

addressed while designing a model for predicting next/finaldesti-
nation, or complete trajectory of moving objects given imprecise
spatio-temporal data.

The importance of dealing with uncertainty while processing
predictive queries comes from the fact that spatio-temporal data is
usually imprecise. Data uncertainty results from many sources such
as the erroneous in GPS readings, accuracy limitation in measuring
devices, infrequent readings due to battery shortage, communica-
tion delays and computation limitations, inexact velocityestima-
tions, environmental obstacles such as buildings and severe weather
that obstruct the communication between reading devices and satel-
lites, and the stochastic objects motion behavior. As a result, there
is a vital need to take into consideration data uncertainty while sup-
porting predictive query processing. Basically, not considering the

(a) Exact Trajectory (b) Imprecise Trajectory

Figure 5: Impact of Uncertainty on Prediction

imprecise nature of data leads to inaccurate prediction forobject
future location.

Figure 5 illustrates the difference between defining an object tra-
jectory using exact location points (Figure 5)a versus the one de-
fined using imprecise locations (Figure 5b). In Figure (Figure 5b),
object locations at different time stamps are expressed in circular
regions rather than exact points. Accordingly, giving these impre-
cise locations to a predictive query processor as an input produces
imprecise prediction for its next path.

Little work has been done in this area. For example, in a recent
work [65], a new concept based onu-bisector is used to evalu-
ate two types ofKNN queries, namely, Possible Nearest Neighbor
Query (PNNQ) and Trajectory Possible Nearest Neighbor Query
(TPNNQ) given imprecise object location represented as circular
regions rather than exact points. However, this work does not sup-
port evaluation of predictive queries. Even for those few trials that
attempt to support predictive queries, they still have accuracy, gen-
erality, and scalability issues. Consequently, it is challenging to
process different kinds of predictive queries given imprecise and
uncertain data about objects locations, velocities, and nondetermin-
istic motion behaviors. Expected solutions should consider being
online, which means consuming less computation time as objects
dynamically change their locations and velocities.

6. CHALLENGE 4: MONITORING
Tracking and monitoring moving objects is a fundamental chal-

lenge in the area of predictive spatio-temporal queries. The ob-
jective of this challenge is to capture moving objects updates that
result from changing their locations, directions, and/or velocities,
and efficiently handle the effect of those updates. To the best of the
authors’ knowledge, existing literatures do not address the moving
objects monitoring and tracking problem while consideringpre-
dictive queries. They only consider it for queries in the current
time such asKNN and range queries [38, 43, 68]. The challeng-
ing in this point arises from the fact that many factors should be
optimized. These factors not only include correctly capturing ob-
jects updates, but also reducing the number of updates to capture
and send to the server, hence, reducing the communication cost
between the server and the moving objects, which in turns safes
the computation time required to handle the received updates. To
achieve this objective, expected solution can benefit from the tech-
niques used in the previous work which include, (a) specifying
some regions in the given space in which objects movements are
known to mostly affect queries results, and outside those regions
updates are neglected, and (b) predicting the next trajectory of an
object and report only updates if its real movement is different from
the predicted one.



7. CHALLENGE 5: PRIVACY PRESERVING
Although preserving users privacy while evaluating their queries

is a fundamental issue for the database filed in general and for the
spatio-temporal data processing in specific, but none of theexist-
ing work, to the best of authors’s knowledge, discusses the privacy
issue in predictive spatio-temporal query processing. Ignoring pri-
vacy means we assume that users are willing to reveal their ex-
act trajectories data while asking for some location-basedservices
which is not always true assumption in many applications, specially
with data management outsourcing.

Concealing moving objects’ trajectories while evaluatingpredic-
tive query is challenging because of the fact that there is noaccu-
rate prediction output if there is no precise history as input. So at
one side, query processor needs to have an image of objects move-
ments to be able to answer predictive queries. However, on the
other side, users do not want to uncover their privacy by revealing
all of their movements. In order to resolve this issue, many com-
mon techniques for dealing with privacy while answering location-
based queries in the current time can be adapted for protecting pri-
vacy while responding to location-based queries for the future. Ex-
amples for these techniques includeanonymization[1, 29] which
aims to make an object’s location unrecognized amongK other ob-
jects,cloaking[17, 25, 39] which aims at expressing locations into
bounding rectangles rather than exact points,perturbationwhich
replaces or stuffs the real location values with synesthetic values
such as noise addition [34],cryptography[16] which turns location
readings into unreadable format to anyone except those who have
the decryption key, andtransformation[28] which protects users
locations by converting the underlying space into another space.

Each of the aforementioned techniques has some merits and draw-
backs. For examplecloakingcan achieve sufficient privacy while
providing an accurate answer for predictive queries about tornado
movements in a given city or zip code rather than an exact point.
However, for predictive nearest neighbor queries,cloakingcan not
provide such accurate answer. A comprehensive study is required
to assert which technique can be adjusted to support predictive
spatio-temporal queries while preserving privacy of the underlying
moving objects.

8. CHALLENGE 6: AUTHENTICATION
Authentication is a consequence issue to the age of cloud com-

puting and data management outsourcing. The emersion of the
clouds with its offered services in affordable cost, encourages the
outsourcing of data management from the data ownerDO side to
be located at the data management service providerSP side. With
this phenomenon, user’s query is received, processed and the an-
swer is returned by the service providerSP. With the assumption
that service providers are not always trust worthy , the returned an-
swers from their side are not trusted to be accurate. For Example,
TheSP might be hacked such that a certain instance is added to
all returned results, or theSP itself might be not trust worthy, so it
might change the results by adding, removing or modifying some
parts of the returned answer.

This schema triggers the need for techniques to check the accu-
racy of the returned answer at the user side. Consequently, some
techniques for authenticated query processing [10, 66] in which the
query answer returned by the untrustedSP can be tested against
the completeness and soundness are introduced. Completeness of
answer means that no correct piece of data that should be included
in the final results is disappeared from the returned answer to users.
Soundness means that no modification, neither by adding non ex-
istence record nor modifying an existing one, takes place onthe

Figure 6: Example of Authenticated Index (MH-tree)

result [47].
Although authentication is an essential issue in the paradigm of

data management outsourcing, but we did not come across any re-
lated work that addresses this issue on moving objects data neither
for current time queries nor predictive queries. Even for recent
work [20], it handles the authentication problem with preserving
users’ privacy for queries on static objects at current timeinstance.
To the best of our knowledge, until now, all existing work in this
area deals only with authentication for current time queries over
stationary objects.

The big portion of those existing techniques for authenticated
query processing is based on, (a) an authenticated data structure
(ADS) such as MB-tree and MH-tree [37], and MR-tree [47], which
stores the outsourced data along with hash values computed for
each tuplet and signed by theDO, Figure 6 , and (b) the concept
of verification objectVO for carrying out the answer records with
additional digest (hash) values. At the client side, this verification
object is used to check the soundness and the completeness ofthe
answer where the summation of the received hash values should be
equal to the hash value of the root.

The second main technique used in the authentication existing
work is signature aggregation [45, 46], in which each recordin
the database has a signature from the data ownerDO. The dif-
ference between the authenticated data structure technique and the
signature aggregation technique is that the later guarantees higher
concurrency processing for authenticated transactions, and it needs
smaller number of verification objects which reduces the commu-
nication cost for sending those objects to the users. However, sig-
nature aggregation suffers from significant update overhead at the
DO side and also costs more for verifying the received answer at
the client side.

Addressing the problem of authenticated processing for predic-
tive spatio-temporal queries is a challenging. The core difficulty of
this challenge comes from the dynamic nature of moving objects
updates about their locations, velocities, and directions. With each
update, the data ownerDO needs to refresh her signature on the
outsourced data and resend the latest copy to the service provider
SP. Obviously, this will lead to a significant communication and
computation overhead that overwhelms any gains from data out-
sourcing service.

9. CONCLUSION
In this paper, we address the problem of predictive spatio-temporal

query processing from different dimensions, namelyquery opti-
mization, prediction functions, indexing and access methods, and
uncertainty. We argue that it is the time for data base community to
think in providing a complete, generic, and scalable query proces-
sor over spatio-temporal data, and being feasible to integrate with
conventional DBMSs. We discussed some of the key challengesre-



searches should face while thinking to build a solution for this vital
problem. To handle these challenges, the target solution should an-
swer questions such as: (a) how to make the query processor inthe
target solution able to support a wide variety of predictivequeries
includingKNN, range, and aggregate queries, (b) how to provide
a prediction function that acts accurately for long-term prediction
as well as short-term prediction, (c) how to deal the imprecise data
about objects locations, directions, and velocities, (d) how to mon-
itor the underlying moving objects such that relevant updates are
only captured, (e) how to provide answers for users’ querieswhile
preserving their location privacy, and finally (f) how to give users
a tool to validate the correctness, and the completeness of the re-
ceived answers in case that the data management is outsourced.
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