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Abstract—The NAND flash memory based storage has faster
read, higher power savings, and lower cooling cost compared
to the conventional rotating magnetic disk drive. However, in
case of flash memory, read and write operations are not sym-
metric. Write operations are much slower than read operations.
Moreover, frequent update operations reduce the lifetime of the
flash memory. Due to the faster read performance, flash-based
storage is particularly attractive for the read-intensive database
workloads, while it can produce poor performance when used
for the update-intensive database workloads. This paper aims to
improve write performance and lifetime of flash-based storage for
the update-intensive workloads. In particular, we propose a new
hierarchical approach named as deferred update methodology.
Instead of directly updating the data records, first we buffer the
changes due to update operations as logs in two intermediate
in-flash layers. Next, we apply multiple update logs in bulk to
the data records. Experimental results show that our proposed
methodology significantly improves update processing overhead
and longevity of the flash-based storages.

I. INTRODUCTION

NAND flash memory is increasingly adopted as main data

storage media in mobile devices, such as PDAs, MP3 players,

cell phones, digital cameras, embedded sensors, and notebooks

due to its superior characteristics such as smaller size, lighter

weight, lower power consumption, shock resistance, lesser

noise, non-volatile memory, and faster read performance [7],

[11], [15], [16]. Recently, to boost up I/O performance and

energy savings, flash-based Solid State Disks (SSDs) are also

being increasingly adopted as a storage alternative for mag-

netic disk drives by laptops, desktops, and datacenters [1], [2],

[9], [14]. Due to the recent advancement of the NAND flash

technology, it is expected that NAND flash based storages will

greatly impact the designs of the future storage subsystems [4],

[9], [11], [12].

A distinguishing feature of flash memory is that read opera-

tions are very fast compared to magnetic disk drive. Moreover,

unlike disks, random read operations are as fast as sequential

read operations as there is no mechanical head movement.

However, a major drawback of the flash memory is that it

does not allow in-place update (i.e., overwrite) operations.

Figure 1 gives an overview of a flash-based storage device. In

flash memory, data are stored in an array of flash blocks (as

shown in Figure 1). Each block spans 32-64 sectors, where

a sector is the smallest unit of read and write operations.

Sectors are also commonly referred as pages. However, in

Fig. 1. NAND Flash-Based Storage

the rest of this paper, we use sector in order to distinguish

it from a conventional database page. Sector write operations

in a flash memory must be preceded by an erase operation.

Within a block, sectors must be written sequentially (in low to

high address order) [4]. The in-place update problem becomes

complicated as write operations are performed in the sector

granularity, while erase operations are performed in the block

granularity. The typical access latencies for read, write, and

erase operations are 25 microseconds, 200 microseconds, and

1500 microseconds, respectively [4]. In addition, before an

erase operation is being done on a block, the live (i.e., not over-

written) sectors from that block need to be moved to pre-erased

blocks. Thus, an erase operation incurs lot of sectors read

and write operations, which makes it a performance critical

operation. Besides the asymmetric read and write latency

issue, flash memory exhibits another limitation: a flash block

can only be erased for limited number of times (e.g., 10K-

100K) [4].

Faster read performance of the flash memory will be par-

ticularly good to speed up the read-intensive type workloads,

e.g., decision support systems (DSS). However, flash memory

can produce poor performance when used for other work-

loads that require frequent random update operations. Exam-

ples of such workloads include online transaction processing

(OLTP), mobile applications, and spatio-temporal applications.

These update-intensive applications perform a lot of small-to-

moderate size random write operations that are much smaller

than the flash sector size [11]. This will be very problematic

for the flash memory as once data is written in a flash sector,

no further data can be written without erasing the entire block

containing that sector. Thus, update-intensive applications suf-

fer from performance degradation as erase operations are much978-1-4244-7153-9/10/ $26.00 @2010 IEEE



slower than write operations. Moreover, frequent erasure of the

blocks will decrease lifetime of flash memory.

The flash translation layer (FTL) is an intermediate layer

inside a flash-based storage (as shown in Figure 1) that hides

the internal details of flash memory (i.e., in-place update

problem) and allows existing disk-based application to use

flash memory without any significant modifications [8]. Thus,

update-intensive applications can be greatly benefited by using

a flash-based storage equipped with FTL. However, not all

flash-based storage devices use FTL [5], [15]. For these

devices, flash driver can provide the internal flash information.

In some cases, operating system provides FTL functionality.

For example, Windows Mobile emulates FTL in software [15].

In this paper, we are focusing on this type of flash devices.

In addition, we are focusing on flash-based storage with

reconfigurable FTL. The intuition of using a reconfigurable

FTL is as follows. For the most of flash-based storage products

available in the market, internal hardware architectures and

FTL designs are not well known [4]. As a result, applications

are designed (or modified) based on generic FTL behavior.

Although this is adequate for the applications designed for

the general computing environment, but for the environments

(i.e., high end servers or supercomputers) running a fixed

set of applications (i.e., database management systems), huge

performance gain could be obtained by using customized

flash-based storages designed with application specific FTL.

This benefit is demonstrated by a recent project [17], which

implements FTL in a reconfigurable hardware (i.e., field-

programmable gate array). Each running application has access

to FTL and it can reconfigure FTL design based on its own

requirements.

In this paper, we propose a novel hierarchical update pro-

cessing strategy, named deferred update methodology, which

significantly improves the in-place update processing overhead

and longevity of the flash-based storage used for a database

management system (DBMS). Our goal is to reduce the

number of expensive erase operations due to the processing

of in-place update operations through two intermediate flash

storage layers. The main idea is that we always write the

changes due to newly incoming updates as logs to the first

intermediate layer. Once first layer is full, to make free space

we populate the logs from the first layer to the second layer.

The first layer acts as a scratch area for the second layer.

Finally, when the second intermediate layer is also full, we

populate its contents into their actual locations in the flash

erase units. These two layers help to batch a set of update logs

for the same erase unit together. Finally, we can apply them at

once. This results in a huge saving of erase operations where

a block is erased only once for a set of bulk updates. Since

erase is the most expensive operation, therefore reduction

of the number of erase operations helps to improve write

performance. On the other hand, this will also help to increase

the lifetime of the flash memory due to the limited number of

erase operations allowed per block.

Our key contributions can be summarized as follows.

∙ A hierarchical update processing methodology named

as deferred update methodology to improve slow write

performance and lifetime of the NAND flash memory.

The cost of achieving such improvements is only few

flash memory blocks.

∙ A thorough theoretical analysis of the trade-offs in terms

of erase operations, space overhead, and data retrieval

overhead for different alternative designs compared to the

deferred update methodology.

The remainder of the paper is organized as follows: Sec-

tion II describes the related work. Section III describes the

deferred update methodology in detail. Section IV gives ana-

lytical models of the different alternative designs. Section V

explains our experimental results. Finally, Section VI con-

cludes the discussion.

II. RELATED WORK

There is substantial recent interest in utilizing flash memory

for non-volatile storage in applications including databases

and sensor networks. Here, we are discussing the works

that are related to the update processing issues of the flash

memory. The existing works can be classified into two main

categories. First: designing flash-friendly data structures. For

example, MicroHash [18], FlashDB [16], random sampling

data structure [15], FD-tree [13], and Lazy-Adaptive Tree [3]

propose new or modified index structures for flash-based

storage. However, these works cannot be directly extended to

improve flash memory’s update processing problem as they

mainly target specific index structures. In contrast, our goal

is to design a generic solution for database table-spaces as

well as index structures. Second: improving update processing

performance for the flash-based database servers. This includes

in-page-logging (IPL) technique [11]. Our work also falls into

this category. In the rest of this section, we discuss IPL in

detail and distinguish our work from it.

The state-of-the-art technique of handling updates in flash

memory is the in-page logging (IPL) approach [11]. The main

idea of IPL is to reserve one of data pages in a flash erase unit

as log page for storing the update logs. Each page consists of

multiple flash sectors. When a data page becomes dirty, the

changes are recorded as update logs in an in-memory update

log sector. Once the log sector becomes full or dirty data

page is evicted from the buffer, then the in-memory update

log sector is written to the corresponding log page. Whenever

a log page becomes full, the update logs in the log page are

combined with the original data records in the data pages in

that erase unit. The first problem of IPL is that if the data pages

have very little update locality, then in-memory log sectors

will contain small amount of data, as a result log page space

will be under-utilized. This space under-utilization accelerates

frequent erase operations, which will slow down performance

and affects the lifetime of the flash memory. Second problem

with IPL is that if power goes off, the update logs stored in

the memory will be lost, thus data inconsistency problem will

arise. Our work in this paper targets to develop an efficient

update processing methodology that (1) reduces the number

of erase operations, (2) increases the space utilization, and (3)



Fig. 2. Logical Flash Memory view for a DBMS in the deferred
update methodology

avoids data consistency problem.

III. DEFERRED UPDATE METHODOLOGY

In this section, we present the deferred update methodology

that aims to improve write performance and increase lifetime

of the flash-based database systems. The more detailed de-

scription can be found in the longer version of this paper [6].

The main idea of deferred update methodology is to process

updates through an intermediate two-level storage hierarchy

consisting of an update memo and log page(s). This inter-

mediate layer helps to reduce the number of expensive erase

operations. Conceptually, we group the database pages by the

erase unit containing them and named as data blocks, while

update memo is a set of erase units which is used as a scratch

space. In each data block, some data pages are also reserved

for storing update logs. We name these reserved pages as

log pages. Figure 2 represents a logical view of an NAND

flash memory that employs our proposed deferred update

methodology. The boundary of flash memory is depicted by

the solid rectangle. In this example, flash memory has eight

erase blocks, which are depicted by the fine dotted rectangles.

Out of the eight erase blocks, two blocks are reserved as

update memo blocks, which are bounded by the solid dotted

rectangles; while the remaining six blocks are used as data

blocks. In each data block, there are four data pages. One of

the data pages will be reserved as log page, which is marked

in shaded in gray. Each data page consists of four flash sectors

as depicted by the smallest solid rectangles.

The left side of Figure 3 gives an overview of the update

processing methodology through update memo and log pages.

The update processing has three steps. Step 1: when an update

transaction (i.e., INSERT, UPDATE, or DELETE) occurs, the

changes made by the transactions are stored as update logs

in the available sectors of the update memo blocks. Step 2:

when update memo is full, the latest update logs are flushed to

the log pages of the corresponding data blocks. A timestamp

counter is used to identify the latest update logs. In addition, an

index is used to speed up the flushing process. Step 3: when

the log pages of a data block are also full, the update logs

are stored in-place with the old data records. Without update

memo and log pages, for every in-place update operation, we

would need to erase a flash block. However, with the help of

update memo and log pages, processing of the in-place update

Fig. 3. Overview of the deferred update methodology

operations are deferred. The update memo acts as a buffer and

supplies multiple update logs at once to the log pages. These

logs are stored compactly in the log pages. Thus, update memo

provides the opportunity to compact more update logs and to

bulk updates once for each block, which internal log pages

cannot do. Overall, update memo and log pages helps to reduce

total number of block erase operations due to in-place updates

by amortizing cost of single data block erase operation among

multiple update operations.

The right side of Figure 3 gives an overview of the query

processing steps in deferred update methodology. Queries

are processed in the reverse order of the update processing

method. It also consists of three steps. Step 1: a raw query

result set is generated from the data records stored in the

data pages using the traditional query processing techniques.

Step 2: initial raw query result set is modified through the

update logs stored in the relevant log pages. Step 3: the new

result set is modified further by processing the latest update

logs stored in the update memo. A flash-friendly hash index is

used to expedite this step. The second and third steps ensure

that query result is correct.

There is a trade-off between the gain in the update process-

ing performance and query processing overhead. Keeping lot

of update logs in the update memo and log pages improves up-

date processing performance. However, this strategy increases

the overhead of query processing as we have to scan larger

update memo and more log pages to generate correct results.

The number of blocks in the update memo and the number log

pages in a data block, are the two tuning parameters to control

the performance gain of the deferred update methodology.

IV. ANALYSIS OF LOG PAGES AND MEMO

We analyze deferred update methodology that uses both

update memo and log pages compared to the other three

alternative approaches to process Nu update transactions. (1)

No Log and No Memo Approach: this is the existing design

with no change for flash memory i.e., this model has no log

pages and no update memo. (2) Log Page Only Approach:

In this model, each data block contains nl number of log

pages. However, no update memo is maintained. This is similar
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TABLE II
ANALYTICAL COMPARISON OF DIFFERENT ALTERNATIVE DESIGNS USING log pages AND update memo

Symbol Description

DBsize Database size in bytes
B Flash block size in bytes
P Database page size in bytes
S Flash sector size in bytes
nl Number of log pages per data block
us Average update log size in bytes
nul Average number of update logs each data

block receiving during memo cleaning
Nu Total number of update transactions
ND Total number of data blocks
Nq Total number of data blocks containing

data records satisfying query q
NM Total number of update memo blocks
NE Total number of block erase operations

to process Nu update transactions
qoverℎead Query processing overhead
Soverℎead Space overhead

TABLE I
SYMBOLS DESCRIPTION

to the model adopted by the IPL technique [11], when setting

nl = 1. (3) Update Memo Only Approach: This model

has only update memo. However, no log pages are maintained.

There are NM blocks in the update memo. At first, update logs

are stored in the memo. When memo is full, update logs are

merged with the old data records. The functionality of this

approach is quite similar to the space-efficient FTL design

work [10].
Our measure of analysis are (a) space overhead (soverℎead),

(b) query processing overhead (qoverℎead), and (c) total num-

ber of erase operations (NE). During this analysis, without

loss of generality, we assume that the update transactions are

uniformly distributed to all database pages and average update

log size (us) is less than a flash sector size (S). To simplify

the analysis, we further assume that there is no index over the

update logs stored in the update memo and each overwrite

operation in the flash memory incurs an erase operation.

Table I introduces various symbols used in this analysis.

Table II summarizes the total number of erase operations

performed, space requirements, and query processing overhead

for different alternative designs using log pages and update

memo. The detailed analysis can be found in the longer version

of this paper [6].

V. EXPERIMENTAL RESULTS

We compare deferred update methodology with in-page

logging (IPL) technique [11] and Update Memo Only ap-

proach to handle update transactions. IPL is the state-of-the-art

Parameter Value

Block size 256 KB
Sector size 4 KB
Data Register Size 4 KB
4KB-Sector Read to Register Time 25 �s
4KB-Sector Write Time from Register 200 �s
Serial Access time to Register (Data bus) 100 �s
Block Erase Time 1500 �s

TABLE III
PARAMETERS VALUES FOR NAND FLASH MEMORY

technique for handling update transactions for the flash-based

storage. It is a special case of Log Page Only approach (as

described in Section IV) with one log page per erase unit.

On the other hand, the working principle of Update Memo

Only approach is very similar to space-efficient log-based FTL

design work [10]. We do not consider No Memo and No Log

approach in the comparison, as it is not suitable for processing

update transactions [11] in the flash-based storage.

Simulator and Traces. To evaluate deferred update method-

ology, similar to IPL technique [11], we have implemented

a standalone event-driven simulator in the C language on the

Linux platform. We use synthetic traces to evaluate deferred

update methodology. The update transactions in this trace are

uniformly distributed over all database pages and there is

almost no temporal locality (less than 1%). This trace emulates

one of worst writes access patterns for the flash memory. The

online transaction processing (OLTP) type applications exhibit

quite close behavior to this trace. The size of an update log

in each transaction lies in between 20-100 bytes. We assume

that each database page size is 8 KB.

Performance Calculation Formulas. To calculate the update

processing time, we use the following formula: total number

of erase operations * erase time + total sector read operations

* ( sector read time + page register access time) + total

sector write operations * ( sector write time + page register

access time). While for the query processing overhead we

use: the numbers of extra flash sectors read due to query

processing* (sector read time + page register access time).

During query processing, the simulator takes query selectivity

and returns the numbers of extra flash sectors to process that

query. Table III gives the various flash parameters values used

to in the experiments. These values are taken from the SSD

design project [4].
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Fig. 4. Performance trends with varying space overhead in a 100 MB database. Here, ‘Memo’ stands for Update Memo Only approach.

Space Overhead IPL Memo Only Deferred Update

6.8% nl = 2 NM = 27 nl = 1, NM = 14
10.5% nl = 3 NM = 42 nl = 1, NM = 29
14.5% nl = 4 NM = 58 nl = 2, NM = 31
18.8% nl = 5 NM = 75 nl = 2, NM = 48
23.3% nl = 6 NM = 93 nl = 3, NM = 51
28.3% nl = 7 NM = 113 nl = 3, NM = 71
33.5% nl = 8 NM = 134 nl = 4, NM = 76
39.3% nl = 9 NM = 157 nl = 4, NM = 99

TABLE IV
VALUES OF nl AND NM FOR SAME SPACE OVERHEAD

A. Parameter Selection

In-page logging (IPL) technique [11] uses number of log

pages per block (nl) and Memo Only approach uses num-

ber of update memo blocks (NM ), while deferred update

methodology uses both nl and NM . The space and query

processing overhead depend on nl and NM . We vary nl from

1 to 31, and NM from 1 to 400, for a database of size

100 MB processing one million update transactions. Since,

three different approaches use various parameters, to make

a fair evaluation, we estimate the average update processing

time and query processing time for the same space overhead.

Table IV gives different parameters values for which average

update processing time is minimum among all configurations.

Because IPL technique uses only log pages and deferred

update methodology uses both log pages and update memo,

we set the minimum value of nl to 2 for IPL.

Figure 4(a) gives the average update processing time for the

same space overhead. As expected, with the increase of space

overhead, the average update processing time decreases in all

three approaches. Compared to IPL, deferred update method-

ology improves average update processing time by 50%-

63%, while Update Memo Only approach improves update

procesing time by 1%-17%. The average update processing

time decreases with the increase of the space, as we can buffer

more update logs and apply them in bulk. This helps to reduce

the total number of erase operations. This trend is shown by

Figure 4(c). Erase operations are performed in the block-level

and before erasing a block we need to move data and write

them back. Thus, erase operations incur huge latency. With

the decrease in the number of erase operations, this latency

overhead decreases, which consequently helps to improve the

update processing performance. On the other hand, Figure 4(b)

shows that in IPL with the increase of space overhead, the

query processing overhead also increases. This happens as

with the increase in space, more update logs are buffered and

we need to process more logs to generate correct query result.

Compared to IPL, deferred update methodology incurs query

processing overhead up to 17%, while Update Memo Only

approach incurs query processing up to 44%.
Analytical Model Check. The performance trend in Fig-

ure 4 is consistent with the analytical model developed in

Section IV. Table II shows that with increase of number of

log pages (nl) in IPL (which is a Log Page only approach),

space overhead increases, erase counts decreases (which helps

to improve update processing performance), and query pro-

cessing overhead increases due to additional processing of

the larger number of update logs stored in the log pages.

Similarly, Table II shows that for the Update Memo Only

approach, with the increase in number of update memo block

(NM ), space overhead also increases. However, this additional

space helps to hold more update logs (nul), which reduces the

total number of erase operations, and consequently improves

the update processing performance. In contrast, increasing

NM introduces query processing overhead due to additional

processing of the larger number of update logs stored in the

larger update memo. According to Table II, in deferred update

methodology, increasing both (nl) and (NM ) contribute to the

increased space overhead. However, larger nl and NM help

to hold larger number of update logs (nul) and process them

in bulk, which reduces the total number of erase operations.

Thus, it helps to improve update processing time. On the other

hand, query processing overhead increases with the increased

space overhead due to processing of large number of update

logs.

B. Scalability

We demonstrate the scalability of the deferred update

methodology with the increase in the number of update trans-

actions and size of a database. We keep the space overhead

same (i.e., 6.8%) for all three approaches. First, we vary

the number of update transactions from one million to 100

millions as shown in Figure 5. Next, we vary database size as

well as in proportion vary the number of update transactions
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Fig. 5. Scalability with varying the number of update transactions in a 100 MB database. Here, ‘Memo’ stands for Update Memo Only
approach.
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Fig. 6. Scalability with varying database size. Here, ‘Memo’ stands for Update Memo Only approach.

as shown in Figure 6. Both figures show that the deferred

update methodology scales very well with the increase in

update transactions as well as data size.

VI. CONCLUSION

In this paper, we have proposed a flash-friendly hierarchi-

cal update processing technique, named as deferred update

methodology. Our main goal is to improve update processing

overhead and increase lifetime of flash memory by reducing

the total number of erase operations preformed in order to

process update transactions. Our experimental results show

the deferred update methodology outperforms state-of-the-art

update processing techniques.
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