The CareDB Context and Preference-Aware
Database System

Justin J. Levandoski*

Mohamed E. Khalefa2

Mohamed F. Mokbel?

'Microsoft Research, Redmond, WA, USA, justin.levandoski@microsoft.com
2Alexandria University, Alexandria, Egypt, khalefa@cs.umn.edu
3University of Minnesota, Minneapolis, MN, USA, mokbel@cs.umn.edu

ABSTRACT

This paper provides an overview of the CareDB context
and preference-aware database system. CareDB provides
efficient and scalable personalized query answers to users
based on their preferences and current surrounding context.
Traditional relational database system employ rigid “all or
nothing” semantics when answering queries. CareDB moves
beyond such rigidness by providing support for ”preference-
aware” query processing methods. Specifically, CareDB sup-
ports a plethora of multi-objective preference methods ca-
pable of finding the “best alternatives” according to users’
given preference objectives. This paper first describes the
architecture of the CareDB system. It then describes the
details for three of CareDB’s novel query processing charac-
teristics: (1) a generic and extensible preference-aware query
processing engine, (2) a framework to gracefully handle con-
textual attributes that are expensive to retrieve, and (3) a
framework to efficiently process queries over uncertain con-
textual data. Finally, it describes a prototype of the CareDB
system and discusses interesting future research directions
in personalized systems.

1. INTRODUCTION

Currently, database systems are extremely rigid: a user
submits a query with a set of constraints to the database,
and the system returns a set of answers that are exact
matches for the constraints. In the worst case, the database
may return no answers if the given constraints are too re-
strictive. For many application scenarios (e.g., location-
based services, point-of-interest finders), users want from the
database only a few “best” answers according to their per-
sonal preferences and context (e.g., location, weather). For
instance, when searching for a restaurant, a user may want
the database to return only five restaurants that present the
best trade-off between minimizing the price and travel time
to the restaurant, while maximizing the restaurant rating.

In the database literature, a number of multi-objective
preference methods have been proposed that are capable of

Permission to copy without fee all or part of this materiganted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

PersDB 2011 Workshop, September 2, 2011, Seattle, Washington, USA
Copyright 2011 VLDB Endowment, ACM 000-0-00000-000-0@/

evaluating a set of user preference constraints. Examples of
these methods include top-k [6], skylines [3], hybrid multi-
object methods [2], k-dominance [4], k-frequency [5], and
top-k dominance [22]. In general, the point of proposing
new preference methods is to challenge the notion of “best”
answers. Given the large number of preference methods al-
ready proposed, and likely to be created in the future, a
fundamental research issue has become how to embed the
semantics of each preference method within a database man-
agement system that may execute arbitrary queries com-
posed of relational operators (e.g., selection, joins).

Another important consideration is how to integrate dy-
namic contezrtual data into preference query processing.
Contextual data refers to any interesting data about the user
or her environment that can help refine a preference answer.
Such data is readily available through third-party web ser-
vices. For instance, when searching for restaurants, a user
may want to take into account travel time (e.g., using Bing
or Google Maps) or restaurant reviews (e.g., Yelp). While
useful, this contextual data poses two main problems when
integrated with preference query processing: (1) the con-
textual attributes are expensive to derive relative to static
data stored locally in a database (e.g., retrieved from a third
party over a network) and (2) contextual data may contain
uncertainty (e.g., restaurant prices reported as a range).

The CareDB project, started at the University of Min-
nesota in 2008, addresses the goal of embedding compre-
hensive support for context and preference-aware query pro-
cessing within a database system. This paper describes the
CareDB context and preference-aware database system that
was built as a result of this project. CareDB addressees
two core systems challenges: (1) support for various multi-
objective preference evaluation methods (e.g., skyline, top-
k) within the query processor and (2) integration of sur-
rounding contextual data (e.g., traffic, weather) within the
query processor, calling for support for gracefully handling
expensive attributes and uncertain data. CareDB is a com-
plete database system; all technical details discussed in this
paper have been realized and experimentally evaluated in
the PostgreSQL [19] open-source database system.

The rest of this paper describes how CareDB addresses
the core systems research challenges behind embedding con-
text and preference within a database query processor. Sec-
tion 2 provides an overview of the CareDB architecture.
Section 3 describes the novel technical features of CareDB.
Section 4 describes a CareDB prototype. Finally, Section 5
discusses future research directions based on our experience
building CareDB, while Section 6 concludes this paper.

User User, User, n
User Preferences 1 2 n Envgon:ne:ntal
and Context l [- l ; Context
ST - 0 NG R A
X 3
' %u =
User

Queries
Query Preference- and Context-Aware
Building Query Processing and Optimization

CareDB
A A A
DB-speclﬁc o L Yoy
Context
Data, Data Sources Data

Figure 1: CareDB Architecture

Query

Result

2. CareDB ARCHITECTURE

This section provides an overview of the CareDB context
and preference-aware database system, depicted in Figure 1.

Input. Besides queries expressed in SQL, CareDB takes
preference and contertual data as input. Preferences are
specified by a user and stored in a profile. In CareDB, a sin-
gle user preference maps to single data attribute. The struc-
ture of a preference is (Attribute, Preference, [Valuel),
where attribute is a single data attribute, preference de-
scribes a user “wish” for that attribute, and value (numeric,
categorical, or boolean) is optional determined by the type
of preference. Preferences for a user are stored in their pref-
erence profile. The available preferences are based on the
theoretical foundation of PreferenceSQL [12]. Preferences
can be hard (e.g., equals) or soft (e.g., highest, lowest),
and specified over numeric or categorical attributes. Fur-
thermore, the user may specify a ranking function (either
user-defined or built-in) over multiple attributes in order to
perform top-k preference evaluation.

In addition, ClareDB has three input context types, each
context can be either static (rarely changed) or dynamic
(frequently changing)

1. User context. User context is any extra information
about a user. Examples of static user context data
include income, profession, and age while dynamic at-
tributes include current user location or status (e.g.,
“at home”, “in meeting”).

2. Database contert. Database context refers to data
sources (e.g., restaurant, hotel, and taxi databases)
that are registered with CareDB, representing data in
the domain a user wishes to query. As an example,
for a restaurant database, static context data includes
price, rating, and operating hours while dynamic con-
text includes current waiting time.

3. Environment context. Environment context is any in-
formation about the user’s surrounding environment,
assumed to be stored at a third party and consulted
by the query processor. A dynamic environmental con-
text includes road traffic, while a relatively static con-
text includes weather information.

Query Building Module and Preference Queries.
The purpose of the query building module (rounded square
in Figure 1) is to personalize queries for each user such that
the best answers are returned. The user submits simple SQL
queries without constraints (e.g., “Find me a restaurant”).
The query building module creates preference queries by

' User Preference Profile

User Query: “Find me a Restaurant”
SELECT R.Name, R.Location

) Attr Pref Val FROM Restaurant

. . . SRR LY
¢+ Ratin, Highest

H s € Query Building s Context

s Groups Equals “Yes” v Catalog

:Travel Time Lowest SELECT R.Name, R.Location

H FROM Restaurant R, Review RV

WHERE R.id=RV.id AND R.Groups = “Yes”

PREFERRING R.Price dl, RV.Rating dl

TravelFn (R.Location, User Location,
Road Network, Traffic) d3

USING Skyline Min dl, Min d2, Min d3

3 Price Lowest

Figure 2: Preference queries in CareDB

augmenting the submitted query with the preference con-
straints stored in the user’s preference profile. Preference
queries contain traditional relational constraints (e.g., se-
lection conditions), as well as new preference constraints
added to a preferring clause. In general, hard preference con-
straints are added to the where clause while soft preference
constraints are specified in the preferring clause. Meanwhile,
a using clause specifies what preference method will be used
to evaluate the preference constraints to produce an answer.
An example preference query for restaurants is given in Fig-
ure 2 that employs the skyline method in the using clause
to produce a preference answer.

Query Processor. The preference and context-aware
query processing and optimization engine is responsible for
executing preference queries in CareDB. The main novelty
of CareDB lies in this query processing engine. The main
responsibilities of this module are as follows. (1) Embed
various types of preference-aware query processing within a
relational database engine. Specifically, we aim to support
various types of multi-objective preference methods, e.g.,
skylines [3], k-dominance [4], top-k dominance [22]. Each
method accepts preference objectives like those specified in
the preferring clause of the query in Figure 2. However, given
the same constraints, each method may produce a different
preference answer for a given data set. (2) Support the
integration of context-aware query processing. Contextual
data (e.g., traffic and weather information) is assumed to be
retrieved from a third-party source and expensive to derive
relative to data stored locally in the database. (3) Support
preference and context-aware query evaluation that involves
uncertain data.

3. CareDB TECHNICAL FEATURES

A distinguishing feature of CareDB is its integration of
preference and context concepts inside the database query
processor. In this section, we describe the details of three
novel systems features of CareDB: (1) FlexPref: the generic
and extensible preference query processing engine of CareDB
that includes an efficient preference-aware join operator,
(2) a preference query processing framework for efficiently
handling computationally-bound contextual data, and (3) a
framework for efficiently answering preference queries for un-
certain data.

3.1 FlexPref: An Extensible Preference
Query Processing Framewor k
CareDB queries can be evaluated using any number of
preference methods (e.g., skyline, top-k, k-dominance) based
on the constraints given in the preferring clause. Thus, the

" CareDB
DB

Query Processor

| FlexPref

Figure 3: FlexPref

query processor must be aware of how to evaluate any of
these methods. One approach is to create a user-defined-
function that evaluates preference on-top of a query plan.
A second approach is to create custom operators for each
preference method that can be integrated with the query
processor. CareDB takes a third approach by implementing
FlexPref [15], a general and extensible framework for im-
plementing preference evaluation methods inside the query
processor. Figure 3 relates the main idea of FlexzPref. The
framework is built into the PostgreSQL query processor,
and only FlexPref touches the query processor. Each new
preference method added to the system is “plugged into”
FlexPref by registering only three functions: (1) PairwiseC-
ompare: given two data objects P and Q, update the score
of P and return whether P or Q can never be a preferred
object based on a pairwise comparison of objects. (2) IsPre-
ferredObject: given a data object P and a set of preferred
objects S, return true if P is a preferred object and can be
added to S, false otherwise. (3) AddPreferredToSet: given a
data object P and a preference set S, add P to S and remove
or rearrange objects from S, if necessary.

The main idea behind FlexPref is separation of duties.
(1) The registered functions, specific to each preference
method, define the semantics of the method’s preference cri-
teria. These functions define how one object is qualitatively
better than the other. These functions are not aware of the
internals of the query processor. (2) The generalized frame-
work is responsible for efficient preference query processing
by injecting preference evaluation as close to the native data
operators as possible (i.e., selections, joins). The generalized
framework uses the registered functions to evaluate the se-
mantics of the specific preference method. With FlexPref,
a preference evaluation method can “live” inside the query
processor with minimal implementation effort compared to
a custom approach. FlexPref consists of a set of generic,
extensible relational operators. The basic idea is that each
operator is written in terms of the extensible functions. The
operator implements the common query processing function-
ality common across all supported multi-objective prefer-
ence methods. During query runtime, the appropriate plu-
gin functions for a specific preference method are used by
the operators to evaluate the semantics of that method. In
the rest of this section, we discuss three operators that make
up the FlexPref framework.

3.1.1 Selection Operator

The selection operator produces the preference answer
from data stored in a single table. The basic idea of the

SELECT R.id, H.id
FROM Restaurants R, Hotels H
WHERE R.city=H.city, R.groups="yes”
PREFERRING R.price rp, H.rating hr,
R.rating rr
USING KFrequency min rp, max hr,
max rr with k=2;

Restaurant R
R.price, R.rating

Figure 4: Preference join

selection operator is to implement a block-nested loop al-
gorithm to execute single-table preference evaluation (as-
suming data is not indexed). The operator compares tuples
pairwise, using the plugin functions to evaluate the specific
preference semantics, and incrementally builds a preference
answer set.

3.1.2 Join Operator

FlexPref integrates preference evaluation with the join op-
eration, resulting in an operator named PrefJoin [11, 15].
For example, the preference query depicted in Figure 4
involves a join between the Restaurant and Review rela-
tions, where preference evaluation is performed using at-
tributes from both relations. A naive method to implement
a preference-aware join would be join all necessary data and
perform preference evaluation afterward. PrefJoin improves
upon this naive strategy by using the extensible plugin func-
tions to prune tuples before the join that have no chance of
contributing to the final preference answer. The PrefJoin al-
gorithm consists of four phases, namely, local pruning, meta-
data preparation, join, and refinement. The local pruning
phase filters out, from each input relation those tuples that
are guaranteed not to be in the final preference set. The
metadata preparation phase associates metadata with each
remaining tuple used to optimize the join. The join phase
uses the metadata to decide on which tuples should be joined
together. Finally, the refinement phase finds the final pref-
erence set from the output of the join phase. These steps
enhance join performance as joins are usually non-reductive,
thus pruning tuples early reduces the output of the join,
which in turn means less data must be processed in subse-
quent operations after the join.

3.1.3 Sorted List Operator

If all attributes in a preference query are available in
sorted order (e.g., data stored using the decomposed stor-
age model [7]), FlexPref takes advantage of this property
through a sorted list operator. The basic idea of this op-
erator is to implement a general-case threshold algorithm,
originally made popular for top-k ranking (e.g., Fagin’s TA
algorithm [8]). Tuples are read, one-by-one, in round-robin
fashion from each list. Processing ends, producing a com-
plete and correct preference answer, once a stopping condi-
tion is met. Different preference methods may have differ-

SELECT R.id, R.Location
FROM Restaurants R,
MapPoint M
PREFERRING R.price p, R.rating r,
M. travelTime (R.Location,
User.Location) t
USING TopKDomination min p, min t,
max r with k=10;

Preference
Evaluation
M

Restaurant R
R.price, R.rating

Microsoft™ 4
®
MapPoint
.travelTime (R.Location,
User.Location)

Figure 5: Expensive attribute query

ent stopping conditions, thus the extensible plugin functions
are used to determine when to stop round-robin processing.
The advantage of the sorted list operator is that a com-
plete and correct preference answer can be computed after
reading only a portion of the sorted data, which reduces the
1/0 overhead compared to processing queries over unsorted,
non-indexed data.

3.2 Query Processing with Expensive
Contextual Data

In CareDB, it is assumed that some attributes will be ex-
pensive to derive, as determining their value may require ex-
tensive computations (e.g., road network travel time), or re-
quire retrieval from a third party (e.g., remote web service).
Figure 5 gives an example query (and plan) to find a pre-
ferred restaurant using the top-k domination method [22],
where attributes price and rating are stored in a local re-
lation, while the travel time attribute is requested from the
Microsoft MapPoint [17] web service based on the restaurant
and user locations.

In this case, attributes retrieved through third-party data
sources (e.g,. MapPoint) are considered ezpensive due to
the network overhead/delay in transmitting the values of
this attribute to the query processing source. Meanwhile,
processing data stored locally at the query processor is con-
sidered a relatively cheap operation. Coupling preference
query processing with a mix of “cheap” and “expensive” at-
tributes changes the algorithmic cost model of preference
query processing. As a concrete example, we ran a simple
experiment in CareDB (implemented in PostgreSQL) com-
paring retrieval costs of location and third-party data. The
retrieval of a single expensive attribute (driving time from
the Microsoft MapPoint web service [17]) takes 502 ms. Al-
ternatively, the time needed to read a cold and hot 8 KB
buffer page from disk is 27 ms and 0.0047 ms, respectively.
Clearly, local DBMS operations incur order of magnitudes
less cost than retrieving a single expensive attribute. Under
these circumstances, the preference-aware query processor
should avoid computing the expensive attributes whenever
possible.

The CareDB query processor is designed to take these
challenges into account. CareDB employs a preference eval-
uation operator that computes the preference answer by re-

Expensive Attribute Requests
3rd Party Web Services,
User-Defined Functions (UDF),

Random
Access

Random
Access,

Phase III: Cleaning

Pruned
Objects
L

Trash

Final Prefe Answer

Figure 6: Solution overview

trieving as few expensive data attributes as possible [16].
The main idea is to employ a three-phase query processing
framework outlined in Figure 6, consisting of an the ini-
tialization phase, pruning phase, and cleaning phase. Each
phase has a computation step applied to the “cheap” at-
tributes and a request step that issues either a random-access
or range request to retrieve “expensive” attributes.

Phase I: initialization. Given a dataset D, Phase I
forms an initial query answer (abbr. S.:) by running the
preference query over the “cheap” (i.e., local) attributes. A
random access request then retrieves the “expensive” at-
tributes for objects in S.. Phase I does not incur unnec-
essary requests, i.e., requests for expensive attributes asso-
ciated with objects not in the preference answer, as it re-
trieves only the expensive attributes for those objects that
are guaranteed to be in the final answer.

Phase II: pruning. Given the dataset D from Phase I,
this phase performs three main operations: (a) Making a
range request to retrieve the expensive attributes for a small
sample of objects that are not in the initial answer S,
(b) Creating a pruning set P by combining the returned
objects from the range request with some of the objects in
Sc. A set of objects M C (P — S.) are added to the final
preference answer at this point. (¢) Using P to prune a set
of incomplete objects L that are guaranteed not to be in the
final answer regardless of their expensive attribute values.
Thus, the efficiency of our framework is to mazimize the
number of objects in L.

Phase III: cleaning This final phase takes as input the
dataset (D — L), and computes a final answer by first mak-
ing a random request for remaining incomplete objects in
D — (LUS.). Any dominated objects are then discarded.
Any remaining objects are added to the final preference an-
swer. Ideally, Phase III is unnecessary as all incomplete (and
non-preferred) objects would be pruned by Phase II. Real-
istically, Phase III may incur some unnecessary requests.

3.3 Handling Data Uncertainty in CareDB

Given the growing number of applications that generate
uncertain data (e.g., e.g., sensors, human entry errors), it
is likely that some data registered with CareDB will con-
tain uncertainty. Thus, CareDB employs a query processing
framework, named UPref [10], capable of answering pref-
erence queries over data containing a mix of certain and
uncertain attributes. UPref assumes uncertain attributes
are represented as a continuous range of values, common
in many real-life applications (e.g., biological data, spatial
databases, sensor monitoring, and location-based services).

R C | ¥ nttpy//www-users.csumn.edu/~justin dex.php P & [F-
({}a re D B Welcome Justin Sign outy
» Eoi
Set
Top 3 [] resuts
Find Me Restaurants
AXTERUSS g — = z w
sl Brosdur 5
72 z >
| Vi@ sl [.
543 & % Betrami Industrial 2.
= o e £ Faicon
e A B_E Henepin A Larpente
%) + & it A £ frepn s Heights™ """
V%
B Universiy of 5
RN PSR e b o 3 R H
i s @ Marcy:Hoimes Sl B £ 2 Paul Campus ‘(1) z
Nori LUoop | & = 2 & %, i s
N 4 +° Minneapolis B 2‘1 F"j-;"\ww] 3
e % = S . A z H
RS vy & Langfort | igbioave
ourioivy @0 PakA e
j’ & CLNg s Univel i S
& Fe 0t S S Ere Py
it Rive.)’V,!,"7 &
i)
5 e 2 south St W Plerc
aeest “Aninony | @
o= 3
w0 B o
2 Y 8
e i)
S s
stisles waein st wniter 2 > = =
i - 5 @w@
LynLake 2 oL)
AUt L 5t edaiaib B ehes R, 23 werharale] Meriam o v
WGoogleas enms |2 @) Longtetian L lles el E20EGR T el Use

Figure 7: CareDB Demo Application

UPref consists of two main phases for evaluating prefer-
ence queries, following a filter-refine approach. The main
reason behind using a filter-refine approach is that the brute-
force approach involves the exponential process [13] of com-
puting the probability that an object P in a data set D is
a preferred object by comparing P to all other objects in
D that affect P’s probability. Thus, the first phase of UP-
ref estimates an upper-bound probability for each object P
to be a preferred object. If an object has an upper-bound
probability that falls below the user-given threshold H, it
is immediately filtered from the preference answer. Such
an approach is advantageous as an object can be filtered
on-the-fly, without comparing it with every other object.

The second phase of UPref computes a final preference
probability for all objects returned from Phase I within a
user-given tolerance. Phase II employs a novel and efficient
probability calculation method that only performs as much
computation as is necessary to guarantee a final probability
calculation error falls within the user given tolerance. This
efficiency comes through breaking the uncertainty range of
an object into segments, and using these segments to com-
pute an upper and lower bound probability for an object.
These probability bounds are then tightened by iteratively
partitioning segments (making the bound calculations more
precise) until the calculation error falls within the user given
threshold, or the upper bound probability for an object be-
comes lower than the user given threshold value. Phase II
wisely chooses a segment to partition that is guaranteed to
maximally tighten an object’s upper and lower bound, min-
imizing the number of iterations. Thus, no computation is
wasted in calculating an object’s final preference probability.
Much like FlexPref and the expensive attribute framework,
UPref is designed to be generic and extensible, capable of
supporting many well-known preference methods within a
single framework.

4. CAREDB PROTOTYPE

To demonstrate the wusefulness and functionality of
CareDB, we implemented a location-based restaurant and
hotel finding application using the Google Maps API, de-
picted in Figure 7, which interacts with the CareDB server
implemented within PostgreSQL [19]. In the application,
users can set their CareDB preference profile explicitly using
a profile editor window. The editor allows the user to specify
their preference objectives, as well as the preference method
used to evaluate these objectives. Since the CareDB query
processing framework (i.e., FlexPref) is generic and extensi-
ble, we provide a number of different preference methods to
the user (e.g., skyline [3], top-k [6], top-k domination [22]).
To process queries, the application forwards a simple query
to CareDB (e.g., “find me a restaurant”) where it is injected
with preference and context constraints based on the users’s
preference profile. CareDB returns (1) the personalized pref-
erence SQL query that was run on the database, which can
be displayed the application using a drop-down menu, and
(2) the personalized query answers that are displayed on an
embedded Google Maps interface.

5. FUTURE DIRECTIONS

Our experience building CareDB sparked interest in many
novel directions within the area of personalized systems. We
now outline four interesting research directions on the bor-
der of data management systems and personalization.

Database support for recommender systems. Ex-
perts from the recommender system community do not con-
sider using a database to implement recommendation logic
using relational operators. However, recent work on bench-
marking recommender system architectures [14] reveals that
integrating databases and recommender systems allows ex-
isting recommenders to become more scalable and robust.
Currently, most recommender systems assume all necessary
data fits in memory, and truncate important data structures
if this assumption does not hold, in turn decreasing recom-
mendation accuracy [21]. Furthermore, some high-quality
recommendation techniques (e.g., user-based collaborative
filtering [20]) have been abandoned altogether for large data
due to efficiency problems. To address these drawbacks,
an interesting open research direction would study how
databases can support integration of existing recommenda-
tion techniques. Specifically, this direction would investigate
coupling recommendation techniques with relational opera-
tors, new storage approaches for recommender data, and
adapting current database components to efficiently handle
dynamic properties found in recommendation applications
(e.g., high update rates for recommender data structures).

Location-aware personalization. The use of mo-
bile, location-based service applications is on the rise, and
many of these applications require personalization (e.g., per-
sonalized restaurant/store finders, location-based advertis-
ing). Location-based environments present two primary
challenges for personalization. (1) Continuous query pro-
cessing. Location-based applications are by definition mo-
bile, and require support for continuous queries since per-
sonalized answers change with user movement. In this
vein, an interesting direction would be to adapt CareDB
to continuous query environments. Specifically, this direc-
tion would investigate generic continuous preference-aware
database operators coupled with an adaptive optimization

scheme, where the operator pipeline for long-running pref-
erence queries may require re-optimization and re-ordering
due to changes in the query environment. (2) Novel location-
based personalization methods. This direction would address
personalization techniques intended specifically for location-
based services. Specifically, this area would involve inves-
tigation of location-based recommendation techniques that
take into account both the location of a candidate recom-
mendation items (e.g., restaurants), as well as the spatial
locality of community opinions in the system.

Geo-social systems. The flourishing worldwide use of
powerful mobile devices (e.g., smart phones), coupled with
social networking applications, has brought about geo-social
systems (e.g., Foursquare, Facebook Places), whereby user
activities in the system contain locations as well as tradi-
tional attributes (e.g., friend updates, location-based check-
ins, restaurant reviews). Such systems are coming into
vogue, and pose interesting data management research chal-
lenges [18]. The general open research issues in this area
would consider how best to achieve: efficient and scalable
delivery methods for spatial news feeds customized to user
access patterns, ranking and summarization techniques for
location-based news items personalized for each system user,
and the creation of novel real-time geo-social analysis tech-
niques. Each of these issues poses interesting scalability and
efficiency challenges for systems that must scale to a large
amount of concurrent users.

Real-time recommender systems. The advent of dy-
namic online applications (e.g., online news, social networks)
challenges many of the traditional assumptions made by ex-
isting recommendation techniques. In these environments,
there is a rapid turnover of candidate recommendation items
(e.g., news stories, friend status updates in social networks),
as well as a high rate of community feedback (e.g., news
story “Diggs”, Facebook “likes”, Foursquare “check ins”).
However, many of the well-known personalization and rec-
ommendation techniques, such as collaborative filtering [1,
9, 20, 21], are not built to handle such dynamic environ-
ments, as they employ a compute-intensive offline phase that
builds a statistical model, incorporating new items and user
feedback, in order to produce recommendations. Thus, an
interesting area of research would be to study methods to
adapt existing, high-quality recommendation techniques to
cope with these new, dynamic environments.

6. CONCLUSION

This paper described the CareDB system, a full-fledged re-
lational database system capable of providing personalized
answers to users based on their preference and surround-
ing context. The architecture of CareDB was first presented
that provided an overview of the input (user preferences and
contextual information) along with the query processing ob-
jectives of CareDB. The paper then presented an overview of
three novel technical features of CareDB, namely, an exten-
sible query processing framework, the ability to gracefully
handle contextual data that is expensive to derive at query
runtime, and the ability to efficiently provide preference
query processing support for uncertain data. An overview
of the CareDB prototype was also given, along with a dis-
cussion of interesting future directions in personalized data
management systems sparked by our experience in building
CareDB.

7. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions. TKDE,
17(6):734-749, 2005.

[2] W.-T. Balke and U. Giintzer. Multi-objective Query
Processing for Database Systems. In VLDB, 2004.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker. The
Skyline Operator. In ICDE, 2001.

[4] C.-Y. Chan et al. Finding k-Dominant Skylines in
High Dimensional Space. In SIGMOD, 2006.

[5] C.-Y. Chan et al. On High Dimensional Skylines. In
EDBT, 2006.

[6] S. Chaudhuri and L. Gravano. Evaluating Top-K
Selection Queries. In VLDB, 1999.

[7] G. P. Copeland and S. N. Khoshafian. A
Decomposition Storage Model. In SIGMOD, 1985.

[8] R. Fagin et al. Optimal Aggregation Algorithms for
Middleware. In PODS, 2001.

[9] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating Collaborative Filtering
Recommender Systems. ACM Transactions on
Information Systems, TOIS, 22(1):5-53, 2004.

[10] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski.
Skyline Query Processing for Uncertain Data. In
CIKM, 2010.

[11] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski.
PrefJoin: An Efficient Preference-Aware Join
Operator. In ICDE, 2011.

[12] W. KieBling. Foundations of Preferences in Database
Systems. In VLDB, 2002.

[13] C. Koch and D. Olteanu. Conditioning Probabilistic
Databases. In VLDB, 2008.

[14] J. J. Levandoski, M. D. Ekstrand, M. J. Ludwig,

A. Eldawy, M. F. Mokbel, and J. T. Riedl. RecBench:
Benchmarks for Evaluating Performance of
Recommender System Architectures. In VLDB, 2011.

[15] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa.
FlexPref: A Framework for Extensible Preference
Evaluation in Database Systems. In ICDE, 2010.

[16] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa.
Preference Query Evaluation over Expensive
Attributes. In CIKM, 2010.

[17] Microsoft MapPoint:
http://www.microsoft.com/mappoint/.

[18] M. F. Mokbel et al. Personalization, Socialization,
and Recommendations in Location-based Services 2.0.
In PersDB, 2011.

[19] PostgreSQL: http://www.postgresql.org.

[20] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of
the ACM Conference on Computer Supported
Cooperative Work, CSWC, 1994.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-Based Collaborative Filtering Recommendation
Algorithms. In Proceedings of the International World
Wide Web Conference, WWW, 2001.

[22] M. L. Yiu and N. Mamoulis. Efficient Processing of
Top-k Dominating Queries on Multi-Dimensional
Data. In VLDB, 2007.

