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Abstract

Sensor networks have been used in many surveillance sygteaviding statisti-
cal information about monitored areas. Accurate countirigrmation (e.g., the dis-
tribution of the total number of targets) is often importémt decision making. As
a complementary solution to double-counting in commuidcatthis paper presents
the first work that deals with double-counting in sensingvitreless sensor networks.
The probability mass functiorp(nf) of target counts is derived first. This, however, is
shown to be computationally prohibitive when a network mese large. A partition-
ing algorithm is then designed to significantly reduce cotapon complexity with a
certain loss in counting accuracy. Finally, two methods@mposed to compensate
for the loss. To evaluate the design, we compare the derrazhpility mass function
with ground truth obtained through exhaustive enumeraticsmall-scale networks.
In large-scale networks, whepanf ground truth is not available, we compare the ex-
pected count with true target counts. We demonstrate thatraie counting within
1 ~ 3% relative error can be achieved with orders of magnitudectolnin computa-
tion, compared with an exhaustive enumeration-based appro

Key words: Wireless Sensor Networks, Target Detection, Duplicaten@ing, Graph
Partitioning

1. Introduction

Wireless sensor networks have been widely used to monitoy types of environ-
ments such as battlefields [1], buildings [2] and habitatgl]30ne of the key design
objectives of these monitoring systems is to acquire andfii@formation about the
number of targets/events within the system at any giventpditime. For example, (i)
in a battlefield, a commander needs to estimate enemy cépdlyilcounting different
types of targets in an area to issue a counter-force atteatiegically; (ii) in a building,
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a manager might want to turn off some facilities if the numbkpeople in a certain
area is less than a certain threshold; (iii) in geysers figidsitoring, the number of
eruptions indicates the activity pattern underneath. Inhase cases, although it is
not necessary to have precise counting information, it goirtant to obtain reasonable
total count values through a sensor network.

In general, there are two types of errors that would leaddodarate counts: miss-
detection and double-counting. Miss-detection is norynatldressed by using reli-
able sensing hardware [5] and/or robust detection alguostf6, 7, 8], while double-
counting is a more challenging problem, because it invotiigslicates in both com-
munication and sensing. Several excellent projects hawsiigated how to avoid the
double-counting problem in communication. For exampleppgis diffusion [9] uses
energy-efficient multi-path routing schemes to transndeorand duplicate-insensitive
(ODI) data aggregates. Recently, CountTorrent [10], udestract Prefix Tree (APT)
to ensure all values are counted once through distributiarigs. We observe that
these solutions work well by assuming original count valinem each sensor is not
duplicated. However, sensor nodes are normally denselpygleghwith a high-degree
of redundancy (overlapping), therefore double-countipgtliacent sensors could be
significant and should not be ignored. Although many reseaschave studied the
double-counting problem in communication, to our knowlkeddis paper presents the
first attempt to address the double-counting problem in éiméext of sensing in sensor
networks. By avoiding double-counting in both communigatind sensing, accurate
statistical counting can be achieved.

To address double-counting in sensing, one straightfahwalution is to use so-
phisticated identification sensors to differentiate te&sd® analyzing their signatures
such as acoustic emission or thermal radiation. This apgpnauires high-cost sensor
nodes and possibly introduces excessive energy consumNturally, we raise the
following question:how to avoid double-counting statistically, using low4{ceasnsors
without identification capaci®y

The main idea of our solution is to derive a probability massction pmf) of
total target counts, using partition and compensation atsthWith thepmf available,
one can obtain the expected total count that approachesdtouth, i.e., the actual
number of targets in the system. Specifically, the main dmution of this work lies in
following aspects:

e Given separate counts from overlapping sensor nodes, visedeprobability
mass functiongmf) of total target counts, from which various types of statést
information (e.g., expected value, variance, range, méhraax) can be inferred
accurately.

e We propose an accuracy-aware partitioning algorithm taicedhe computa-
tional complexity of calculating a system-wide probalititass function.

e Two algorithms are proposed to compensate for the inacgimroduced by the
partitioning process. The first algorithm sacrifices certicuracy in exchange
of very fast computation, while the second algorithm acbéettsigh accuracy
with adjustable computation overhead.



The rest of the paper is organized as follows. Section 2 dgasirelated work. Sec-
tion 3 presents the derivation of probability mass functfolowed by the complexity
analysis in Section 4. Section 5 describes how computatiompéexity can be sig-
nificantly reduced by partitioning. Section 6 introduces vompensation algorithms
for better accuracy. Section 7 discusses several pratgats. Simulation results are
presented in Section 8. We conclude this paper in Sectiortt® auir summary and
directions for future work.

2. Related Work

To obtain accurate target counts, a monitoring sensor reystall prevent miss-
detection as well as double-counting. Miss-detection cameoluced by introducing
reliable hardware design. For example, XSM motes [5] inotafe a band-pass fil-
ter to enhance the detection of acoustic emission, a digitintiometer to detect a
wide range of signals, and a polyethylene film to reduce tfecebf sunlight. Be-
sides hardware enhancements, advanced detection aigelith 7, 8] have also been
proposed to avoid mis-detection with minimal energy constion. VigilNet [7] uti-
lizes a multi-level detection algorithm with in-situ ad&ptthresholds to avoid both
false positive and false negative detections in changingtirez conditions. Feng et
al. [8] propose a collaborative tracking algorithm withtdisuted Bayesian estimation
to improve reliability based on current and previous edtioma(beliefs) from sets of
Sensors.

Even with reliable detection at individual nodes, accutatal counts would not
be obtained if a target is counted multiple times (doublenting). Double-counting
problem has been investigated in the context of commuwicafifhe summarization
of total counts without duplicates could be achieved byding a spanning tree rooted
at the base. Individual counts are aggregated along a tee [Baves to the root as
suggested in TAG [11]. However, this spanning-tree-bagpdaach could suffer loss
of counts severely, due to node or communication failures.ekample, a single node
failure could lose the count of a whole subtree beneath itaddress this limitation,
synopsis diffusion [9] utilizes multi-path routing to dedr count information. The
authors prove that duplicate-insensitive (ODI) count aggtion can be achieved by
using Flajolet and Martin’s algorithm (FM) [12], which cagrdistinct elements in a
multiset. CountTorrent [10] allocates binary labels toiwdlal nodes using an Ab-
stract Prefix Tree and disseminates théel, count) pairs through multi-path routing.
Count values are aggregated only when two binary labelerdiffily in their last bit.
Labeled aggregates ensure all values are counted only omicgy@&ommunication. A
recent paper [13] proposes to use a linear time probabitistinting algorithm [14]
to deal with duplicate counting and the proposed methodasvehto achieve higher
accuracy and lower overhead compared with the FM algorithm.

Although double-counting can be eliminated in communaratithe final aggre-
gated count could still be incorrect, if the targets withiedapping regions are counted
more than once. According to [15], the percentage of oveitapregion in sensor net-
works under random deployment is indeed significant. Fomga, with an average
node density of 5, the overlapping percentage is 86% andamithverage node density



of 14, the overlapping percentage would be as high as 99.9k&refore, we argue
double-counting is common in sensing and hence needs todvessgd accordingly.

3. Problem Definition and Assumptions

We consider a network model where counting sensor nodesiagemly deployed
in a region (e.g., an open area or a room in a building) withwkmtocations [16, 17].
They are used to monitor different types of targets, suctehiles on the road, people
in the room, or any other objects of interests. Counting bdipais supported, using
photoelectric-based sensors such as the one in [18]. That salues at individual
sensors are reported to a base node, where the probabikty fomaction pmf) of the
total number of distinct targets is calculated. Since thstesp-wide total count is the
objective, a centralized solution at the base is a natuaogeh for sensor networks,
which is also compatible with counting communication meithim TAG [11], Synopsis
Diffusion [9], and CountTorrent [10].

To simplify the description, the sensing range of these a@de treated as circles.
It should be noted that the accuracy of our method only dependhe size of the area,
not the shape of the area. In case of irregular sensing aredlspds proposed in [19]
shall be used to obtain the size of sensing areas.

This work assumes spatial distribution of targets withia #rea is known (e.qg.,
complete spatial randomness, spatial aggregation o$pdtibition). Without loss of
generality, we use Poisson distribution [20, 21, 22] as &izie exemplary distribution
to present our methodology through the paper. We expectighrlbvel idea can be
applied to non-Poisson distributions, although matherabtierivation would be quite
different.

Under the Poisson distribution, targets are uniformlyritisted in the area of in-
terest with intensity of. The A value can be either known a prior or estimated online
(as we explain later). The probability that there arergets in the regior of size S
can be computed as follows:

€_>‘S()\S)k

P(N(s) = k) = —

1)
Suppose there are in totAl sensor nodes. Thg;, sensor node; whose sensing
area is circle”; has detected; targets in its sensing range, whére i < N. Suppose
the N sensing circles of these nodes divide the whole arealifitaon-overlapping
subareas. Each subaréd,, wherel < k < M, may belong to one or more circles.
As a result, each circle is the union of a subset of all thebaraas. We say/;,, c C;
if My, is within the subset of thg,, circle C;. If we further useN (M}, ) to denote the
number of distinct targets in subarg4,, we will have the following equation:

ni =N(C;) = Y N(My). 2)
M CC;

Since the subareas are non-overlapping, the total numloistofct targets detected by
the N sensor nodes (denotedBswill be equal to the sum of the number of targets in



each subarea, which can be computed by the following equatio

N M
T =N(JCi) =D N(My). 3)
1=1 k=1

The objective of this work is to find the probability mass fundion (pmf) of the
total target count 7" in Equation (3), given the individual countsn; from all nodes,
with low computation complexity. Particularly, the probability that the total number
of distinct targets equals togiven the count information can be expressed as

P(T:t|N(Cl) :nl,N(Cg) = MNg, - ,N(CN) :TLN). (4)
C1 C1
C2 C2
a) Two-Target Case b) One-Target Case

Figure 1: A simple example:Two-Circle Case

We start with a simple example as shown in Figure (1). Two@emsdes; andw,
whose sensing circles aé@ andC- divide the whole region into three subareas;,
M, and M3. Suppose both of sensor nodes detect one target, there @mossible
scenarios as shown in Figure (1a) and Figure(1b). The dbgeist to calculate the
probability that there are in total two (or one) distincigits in this area, respectively.
For simplicity, we define notatior: m, m2, m3 > as the joint probability thaid/,
hasm; targets,M; hasms targets and\/3 hasmg targets. An example is shown as
follows:

< 1,0,1 >= P(N(M;) = 1)P(N(Mz) = 0)P(N(Ms) = 1). (5)

Using the definition of conditional probability, from (2B)and (4), we get,

P(T =2|N(C1) = 1,N(C2) =1)
P(T = 2,N(Cy) = 1,N(Cy) = 1)
P(N(C; = 1,N(Cy) = 1)
P(N(M;) = 1,N(Ms) = 0,N(Ms) = 1)
Sheo PON(My) =1 — k,N(Ma) = k,N(M3) = 1 — k)
<1,0,1>
Sheo <1 -k k1 —k>
<1,0,1>

= . 6
<1,0,1>+<0,1,0 > ©
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The penultimate equality holds becaude, M, and M3 are non-overlapping subareas
and the numbers of targets in these subareas are indepeaddaim variables. Since
each term in Equation (6) can be computed using EquatiomvélLyan finally compute
the probability for any givenand thus compute the conditiorpahf of the total number
of distinct targets.

Noting that all the terms in the denominator of Equation @)1(,0,1 > and <
0,1,0 >) are the probability of possible solutions that satisfyd¢hant condition of all
circles (N(Cy) = 1,N(C3y) = 1) while the numerator< 1,0,1 >) is the probability
of the only solution that satisfies both the count conditiod ¢he total number of
distinct targets conditioriN(Cy) = 1,N(C2) = 1, T = 2). Similarly, we can derive
the equation for a more general case, i.e., for a region thsibken divided intd/
subareas by sensor nodes, Equation (4) can be computed as

P(T = t|N(Cy) = n1,N(Ca) = ng, -+ ,N(Cx) = ny)
P(T = t,N(C1) = n1,N(Cy) = ng,--- ,N(Cn) = nn)
P(N(C1) = n1,N(C2) = ng,--- ,N(Cx) = nn)

Z{m;}e(AﬂB) <mh,mb, - mhy, >

= (7)

Z{mk}eA <mi,ma, -, My >

where< my,mo,--- ,mys > is defined similarly as before, but extended to a more
general case;m;} denotes the set dfny, mo,--- ,mu}, {my} € A means for each
term in the denominator, the corresponding; } satisfies the count condition of the
N circles so that it is a solution to a set of equatighdefined as follows:

ZMkccl mE =11
ZI\I;CCCQ mE =12
A : . ®)
ZI\I;CCCN Mg =Ny
N(Mk) = Mg ZO,Vl S k S M

Also, for each term in the numerator, the corresponding, } satisfies both the
count condition and the total number condition. As a resalth{m,} is a solution to
both A and B whereA is defined in Equation (8) ang is defined as follows:

B:mi+mo+---+my=t 9

4. Complexity Analysis

In order to determine the conditionainf of the total number of distinct targets
we need to compute the probability in Equation (7) for evesggible value of. Sev-
eral interesting observations can be captured from Equéfip First, the numerator
is actually a subset of the denominator for a particular eafit. All these subsets
are disjoint and sum to the denominator, which is consistéthit the fact that all the
values of the probability mass function sum up to 1. Secamdyder to compute the
denominator, we need to solve equation atagnd find all solutions. As a result, the



Algorithm 1 Enumeration Algorithm
Input: Graph Information, Equation A
Output: Thepmf of total target countg’
1: for k=1to M do
UB(my) = min{n;} whereM;, C C;
/lget upper bound for eachy,
: end for
: D« 0 /linitialize the denominator
N(t) < 0,V possiblet  /finitialize numerators
. for every possible target distributicn my, ms, - - - ,mp; > do
if <mq,mo,---,my >is avalid solution tad then
d«+— ]‘[2{:1 P(N(My) = my) [lcalculate probability
D — D +d [/lupdate denominator
towm = S0 Mk, N(tsum) = N(tsum) +d //update numerator
9: endif
10: end for
11: for every possible value agfdo
122 P(T=tC;=n;) = % /ffinal probability computation
13: end for

N

complexity of computing the probability for a single valuetas exactly the same as
computing the whole probability mass function since we nieefihd all solutions to
A anyway. Third, since all the variables i are non-negative integers, we have to
exhaustively list all the solutions of. We develop an algorithm using an exhaustive
enumeration-based method to compute Equation (7) as shogarithm (1), based
on these observations.

The complexity of finding the conditionpimf using Algorithm (1) depends on the
size of the solution space to equation arrawhich is the product of the upper bound
of all the subareas:

M
fr=0(J] UB(mx)) (10)
k=1

whereU B(m,) denotes the upper bound (the maximum possible number)gtiin
subared\l;, and can be computed as

UB(my) = min{n;} whereM} C C;. (11)

For example, ifM; is the overlapping area @f,, C> andC5 with counting values 2, 3
and 5. Then the upper boundsef; is 2 so that it would not violate circl€,'s counting
result.

Obviously,f; is an exponential function g/, which is the number of non-overlapping
subareas divided by th¥ circles. In a densely depolyed networi, would be much
greater thanV. Hence, the exponential complexity of Algorithm (1) makegro-
hibitive to be applied in large-scale sensor networks.



G1 G2

Figure 2: An Example of Natural Partitioning Case

5. Partitioning Design

In the previous section, we have concluded that a lafgealue makes the compu-
tation time intolerable, which also indicates that redgcld can significantly reduce
computation complexity. Figure (2) shows théfcircles belong to two disjoint groups
G, and G- at initial deployment time. We note this deployment rareippens in
a dense network, however, we use this example to show therpmvpartitioning in
reducing complexity. Suppose the numbers of subareés iand G, are M, and
Mg, respectively. Sincé&/; andG,, are disjoint, the total numbers of distinct targets
in G; andG, (denoted byl; andT3) are independent random variables. As a result,
we can compute themf of T} andT, separately and then combine the two functions
to compute thegmf of 7" which is equal to the sum of these two independent random
variables:T' = T} + T». The method used to combine two independent distributions
can be found in textbooks [23] and will not be discussed. Hezeare interested in
how much complexity can be reduced by partitioning. It'sacinat the complexity of
the combination process is the product of the sizes of th@kaspace of7; andGs.

This value is negligible compared to the complexity of tharaeration process. Thus,
the total complexity of this method can be computed in Equiaii 2).

My M;+ Mo
=0(JJOBm))+ [ UB(m)). (12)
k=1 k=M;+1

If the values of\f; and M5 are similar inG; andGs, f> is much less thaifi;, espe-
cially whenM is large. Let's comparé, with f; using the example shown in Figure
(2). Suppose all sensors detediargets for simplicity. If we compute the conditional
pmf using Equation (7) directly, the cost i3(n?2). If we compute thgomf for G
andG, separately and then combine them to get the total, the comtypsecording to
Equation (12) isD(n'!). Generically, if multiple disjoint groups exist in the araad
the maximum size of each grodp is bounded, the computation complexity is:

MAX

fs=o0 [] UB(my)) (13)

k=1



whereM AX is the maximum number of subareas of each group. It's obtoatthe
f3 is a polynomial function of\/.

5.1. Deleting Zero Count Circles

In the previous section, we have shown that disjoint groegdsice the complexity
significantly. However, given a space covered by sensors)dtkenot always the case
that the circles are disjoint. Therefore, it is necessapattition the nodes into groups
as well as compensate for the loss of accuracy caused byigrarng.

Recall that< m1, mo, m3 > is defined as the probability that; hasm; targets,
M, hasme targets andV/s hasms targets. Sinc&(My)s are all independent due to
the fact thatMys are non-overlapping, the decomposability<ofn, ms, ms > can
be easily derived from Equation (5) as follows:

< mi,mg, m3g >
= < mi, M2, * ><*,%,mMm3 >

= <M,k k >k, Mg, * ><*, %, Mg > (14)

where the symbol “*” means the number within the correspogdiubarea can be
any value. Based on this property, the effect of eliminatirmpro-count node can be
studied.

Suppose node;, whose sensing circle iS; as shown in Figure (3), detects zero
targets, which means, = 0. It's possible that there still exist other zero-count leisc
besides); but they would not affect the discussion here. From Equd@dme have

ny = Z mk:ka:O. (15)
k=1

M, CCq

wherez is the number of subareasdn . (z = 5 in the example shown in Figure (3)).
For simplicity, these subareas are namediasms,--- ,m.. Noting that Equation
(15) is also an equation iA. Since all them;s are nonnegative, all the solutions to
A satisfy the condition that, = 0,V1 < k < z, which can be easily interpreted as
the number of targets in any subarea within cir¢lg should be zeroBased on this,
Equation (7) can be further rewritten as

P(T = t|]N(Cy) = n1,-- ,N(Cn) = nn)

B Z{m;}e(An By <My, My, My >
B Z{mk}EA < mi, Mg, -+, My >
_ Xmpecann) <ML Mk S K My iy >
Z{mk}€A<m1,'” STz, ke ok > ke R M1, TN D>

<0,--- 70>Z{m;c}e(AmB) <y kMg, My >
B <Ov"'70>Z{mk}eA<*v"'v*vszrla"'va>
 Xpmjye(anB) < Mgyt My > 16)
- Z{mk}GA < My, , My > '



Figure 3: Deleting a Zero Count Circle

Vz VG

Vs

1% 1%
4 Vs 7
Figure 4: The Corresponding(V, E) of Figure (3)
The last equality holds because 0, --- ,0 > is a constant value which can be

computed using Equation (1) and hence is canceled out irutiatién.

From Equation (16) we can conclude that deleting a zero4omagte does not cause
any loss of accuracy since the result in Equation (16) is #mesas the computation
in a similar network where”; is excluded. As a result, given a number of sensor
nodes, the zero-count circles can be deleted first beforg@uatation. There are two
major benefits from doing this. Firstly, by deleting the zeomnt circles the number of
subareas is reduced. Reducingfurther reduces the complexity as we have discussed
before. Secondly, the whole graph can sometimes be pasiimto groups by deleting
these circles, especially when there are several zerotcirgltes. If the circles can be
divided into groups that are not overlapping with each otte®; andG> shown in
Figure (3), the complexity can be significantly reduced.

5.2. Partition with Balanced Minimal Cuts

In the previous section, we have shown that deleting a zeoboimode simplifies
the computation without losing accuracy. In this subsectie describe how to divide
a sensor network into several balanced groups, each withdsabnumber of subareas,
while incurring minimal loss of accuracy. Our solution issbd on observation that
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we have less uncertainty in number of counts, if 1) the sizthefoverlapping area
between different groups is small, and/or 2) the nhumber rgfets in the overlapping
area is small.

With the consideration of the complexity of cutting and fi'tcompensation algo-
rithm, our partition algorithm is recursive and pairwisdiogal. The network is firstly
divided into two groups, one of which has a bounded numbeulodieas. If the size of
the other group is still out of range, the partitioning altjon is applied again until all
groups have bounded number of subareas andjhejis can be computed separately.
The algorithm is described in more detail in the next few sghiens.

5.2.1. Optimization Objectives

Based on the layout of overlapping areas, a sensor netwarkeanodeled into a
topologyG(V, E), whereV is the set of theV sensor nodes, , v, - - - , vy and edge
e;; exists between nodg andv; if and only if the sensing areas of the two nodes
andwv; overlap with each other. The weight of the edggis decided by both the size
of overlapping area and the count values of nagemndv;. Formally,

) Wirsiyming) GG # 0
€ij = €55 = {0 c, mCJ 0 (17)

wherers;; is the percentage that the overlapping area between cireled j out of
the total area of circlé and circlej, W is an increasing function ofs;;, n; andn;,
respectively. A good example &F is W (rs;;,ni, n;) = rs;; x (n; +n;). Figure (4)
shows the correspondirg(V, E') of the sensor network in Figure (3).

If we partitionG into two subgroupss; andGs, we can define the objective func-
tion f.; as the sum of the weights of all the edges cut by the partitiore precisely,
fob; can be expressed by the following equation:

fobj = Z eij. (18)
v; €G1
v;€G2

The objective is to find a partition that minimizgs, .

5.2.2. Partition Algorithm

We develop a partition algorithm based on the Fiduccia-Mstses (FM) Algo-
rithm [24]. For a given graph, the goal is to find a partitioattllivides the circles
into two groups and minimizef,,; as described before. We bound the size of the first
groupG; so that thepmf of 77 can be computed directly. We apply the partitioning
algorithm toGs recursively, until the size offs is small enough and we can compute
thepmf of T, directly as well.

We name the objective functiof),; as thecutting sizesince it denotes the total
weight of cutting edgedy a partition. The size off; should always be smaller than
the maximum size such that tipenf of 77 can be computed directly. The size of each
group should also be greater than a minimum size in order totaia the accuracy of
counting. These requirements on the size of the two grougpteamed as thbalance
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BR: V| V) BR: V4 Vs; Locked: V3

Cutting Size: 2; Gain 001-2-1 Cutting Size: 1; Gain -2-2-10-1
Step 3 Step 4
' Vs ' V,
v: _m‘vl
| | \%
V4 v V. 5
| Vv, 3 |
BR: V| V3; Locked: Vv, V3 BR: v, Vs; Locked: Vv, V3 Vy
Cutting Size: 3; Gain 02 10-1 Cutting Size: 3; Gain 02 -101
Step 5
Vs
| VS
BR: V3 V4; Locked: V1,V2, V3 V4 BR: V| Vy; Locked: V| V2 V3 V4 Vs
Cutting Size: 3; Gain 00 101 Cutting Size: 2
Pass++ Solution

This Pass stops since all

vertices are locked. Partition in Step 2 is selected
Choosing the one that has |:> as the initial partition of the
the best cutting size and next pass
start the next pass.

Figure 5: An Example of Partition Algorithm

requirement$BR). The goal of our algorithm is tiind a partition that has the minimum
cutting size while satisfying the balance requirements

As shown in Figure 5, the partition algorithm consists ofesaliterations, called
passes Each pass has several steps. In each step, a vertex thditehbastgain is
selected and moved to the other group. e of a vertex represents how much the
cutting size can be reduced by moving this vertex to the alhaup. A vertex can be
only moved once in a single pass and BR should always be edtisAA single pass
process stops when all vertices have been moved once or giamrnunmoved vertex
violates BR. Then the best partition (the one has the minirautting size) during the
whole pass is selected as the starting partition of the reesd process.

An example of how the first pass works in a simple network issshim Figure (5).

e Step 1:Initially, the vertices are divided into two groups randgras shown in
Figure (5) wherevy, vo belongs to one group and, v, andwvs belong to the
other. This is the starting partition. Before performing anoving, thegain
of each vertex is computed. Suppose all the edges in the fitaue an equal
weight of 1. Then for vertexs, the gain of moving it to the other group is 1
since the cutting size changes from 2 to 1. The gain of all therovertices can
also be computed in this way. We use (0, 0, 1, -2, -1) to dem&eain of the
verticesvy, v, v3, v4, V5. Suppose the BR in this example requires the size of
each group should be no less than 2. Due to this requiremerind v, can

12



Algorithm 2 Partitioning Algorithm

Input: G andC;

Output: PartitionP,,c, : {G1, G2}
1: Pyg — {G1,G2} [larandom initial partition
2: {V} « all vertices inG; or G

3: repeat

4: index« 0, P,jq = P,ew [/lstarting a “pass”

5. repeat

6: Compute the gain for all the verticesin

7 v <« An unlocked vertex satisfies BR and has the maximum gain
8: if v e Gy then

9: Gi1— G —v;Ga—Ga+v

10: else

11: Gi— G +v,Gy—Gy—v

12: end if

13: Psoyelindex + +] — {G1,G2}  Ilrecord partition for each step

14:  until no vertices inV can be moved

15:  Phew < A minimum cutting partition inP,.,.  //the output of the “pass”
16:  Unlock all vertices //end of a “pass”

17: until P,jg == Prew

not be moved since it violates BR. Based on these obsergatigrs selected
to move to the other group since it has the best gain. It israkdked adocked
after it is moved. A locked vertex can not be moved any moré@following
steps during the current pass process.

e Step 2: In step 2, the gain of each vertex is updateg, vs can not be moved
in this step due to the balance requirement althaughas the best gain;; can
not be moved either since it has been locked. As a resuis, selected to move
to the other group although its gain is negative, i.e., mgpwinmakes the result
worse.

e Other Steps: Similar process continues until Step 6 when all verticesaleed.

e Selection and Unlock: The partition in Step 2 is selected as the starting parti-
tion of next pass process since it has the smallest cuttiey g\ vertices are
unlocked, ready for next pass.

A pass, which includes the above steps, repeats itselfthetié is no positive gain
from moving any more, i.e., the partition selected at the@ralpass is the same as its
starting partition at the beginning of this pass. Then thigifion is the final partition
of the algorithm.

In the example shown in Figure (5), the output of the secorsd paocess is the
same as its starting partition which is the partition in S2ép the figure. This partition
is the final result. The whole process of the algorithm is shawAlgorithm (2). The
complexity of this algorithm i) (n?).
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For a large network, the partition algorithm is applied msérely on the partitioned
subgraphs until the size of each subgraph is below the bibLxXi

6. Accuracy Compensation

In Section 5, we described how we can partition using minicudding. We can
reduce the computational complexity to a certain level hWtirgpthe maximal size of
each subgraph to a thresh®ltAX. However, partitioning leads to loss of accuracy. In
this section, we propose two methods to compensate for fisefaccuracy caused by
partitioning.

Figure 6: An Example of Partitioning

We start with an example shown in Figure (6). In this figureréhare 10 circles in
total. Suppose there is no zero count circle as in this exarmying the partitioning
algorithm described in Section 5, we can identify the best@lof the first partitioning
should be betweei; andC,, where there is only one overlapping subarea denoted as
M, as shown in the figure. Then the whole graph will be divided tato groups with
the six circles on the left belonging &, and the four circles on the right belonging to
Ga.

We can compute thpmf of the total number of distinct targets faf; and G-
(denoted ad andT3) separately. If we estimate the firainf by simply combining
thepmf of T} andT; asT = T + Ts, assuming that they are independent, there would
be two main factors making the result inaccurate.

1. Ty andT; are actually dependent since the two groups have an ovartappb-
arealM;. As a result, summing them up using the method of summing ap tw
independent random variables will bring error.

2. The targets i/, are counted twice since they belong to b6thandGs.

We propose two methods to compensate for the errors caugbedry two factors.
The first method compensates for errors by deductingtifiecounts in the overlapping
area, called Partitioning Compensation Minus (P.C.Mindi$)e second method com-
pensates by adding thmnf counts in the overlapping area, called Partitioning Com-
pensation Plus (P.C.Plus). P.C.Minus is simple and effid@ncomplex topologies
and extremely large-scale, while P.C.Plus achieves highracy with more overhead.

14



6.1. Partition Compensation Minus

A major factor that will cause the result to be inaccuratéhit the targets in the
overlapping area of the two groups have been counted twiaarder to eliminate such
an error, we need to estimate the number of targets in théappeng area (denoted
asT,;) and then subtract it from the final result. Formally7if and7: are random
variables denoting the target distribution of the two salpiysG'; andGs, respectively,
T, is the target distribution of the overlapping region, thie final target distribution
T can be derived by combining the three random variables as:

T=T+T,—Ty (19)

As discussed in Section (4), the cost of computingtthie pmf of the number of
targets in the overlapping area is no less than the cost opating thepmf of the
total number of targets within the whole network. We onlyluge a certain number
of circles in the computation df,; in P.C.Minus. As shown in Figure (6), we can
only includeC; andCs in the computation of themf of T},;. We can also include
Cs3, Cs and other circles in the computation. The more circles thatirecluded, the
more accurate the result is and the more computation overkiavever, if we include
circles that are too far away from the overlapping area, tmputation cost increases
much faster than the accuracy we gain. This is because tinefuircles are away from
each other, the less correlated they are. If the number @reab in the overlapping
area is no larger thaMAX, T,; can be computed directly by using Algorithm (1).
Otherwise further partitioning on the overlapping grapiméeded thus P.C.Minus is
actually recursive. Based on these analysis, we developlgiogithm of P.C.Minus as
shown in Algorithm (3). In essence, it first obtains tvaf of 71, 15, T, of G1, G2
and the overlapping region respectively. Tgmaf of total countT” is calculated as in
Equation (19).

6.2. Partition Compensation Plus

The P.C.Minus algorithm reduces the duplicate count in trexlapping area and
gives a certain level of compensation to the final result. elew, it doesn't solve the
problem that7; andT; are not independent. Moreovdr,; is also not independent
with 77 andT5. In order to improve accuracy further, we develop the Pii. Riethod
in this section.

We explain the algorithm of P.C.Plus using the example imf&g6). We start with
a simple assumption that both 6 andC, have detected one target. The number of
targets in the overlapping subaré# will have only two possibilitiesN(M;) = 0
andN(M;) = 1.

We defineC]; = Cy — M; andCl = Cy — M;. Cf andC} are both partial
circles excluding the overlapping subarkg. For a fixedN(M;) = m;, the count
information ofC; andC, can be derived from the following equations:

N(C) = N(C1) — N(M:)
N(Ch) = N(Cs) = N(My). (20)

We further defineG|, = G1 — M; andG, = G2 — M; whereG) and G}, are
disjoint as shown in Figure (7) and the correspondiii@ndT}, are independent. We
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Algorithm 3 Partitioning Compensation Minus (P.C.Minus)
Input: Gy, Ga, M,
Output: pmf of total target countg’
{C;} < minimum set of circles cover all overlapping subarea§'ofandG,
. M, < sizeof{C;}
cif My, < MAX then
C, « the nearest circle from overlapping subareas
M, — sizeof (C;} + Cy)
while M, < MAX do
{Ci} = {Ci} + Cy
end while
else
Compute thegmf of T, by further partitioning
- end if
: Compute thgmf of Ty directly or by further partitioning
: Compute themf of T directly or by further partitioning
: Compute the fingbmf of T’
whereT =T, + Ty — Ty,

© o NGOk WDNR

[ Sy Y
A WNR O

useT}(my) andTy(m;) to denote the counts i@ andGY%, respectively, under the
condition that there aren; targets withinM;. The pmf of T7(m4) andT5(m,) are
computed for each particulan;, using the count and size information 61, C.,.
Similarly, T'(m1) denotes the total count under the condition that thereraréargets
within M;. Finally, T' can be expressed as follows:

T - P(N( 1) = 0)(T{(0) + T3(0) +0)
+P(N(M,) = 1)(T{(1) + T3(1) + 1) (21)

where P(N(M;) = m,) denotes the probability that there arg targets in subarea
M. From Equation (21) we could see that if we find thef of N(M;) we can
compute the finapmf of T' by enumerating all the possibte; values, computing
the pmf of T3 (m1) andTj(m,) for eachm, and then combining them with different
weightsP(N(M7) = myq).

In the general case when there areverlapping subarea¥/,, Mo, - - - , M, the
process is quite similar. Thpmf of {N(M;), N(Maz),--- ,N(My)} is computed
first. Then, for a particular valuéN(M;) = mi,N(Mz) = ma, -+ ,N(My) =
my, +, the count information of the overlapping circles are updat’(m, - -- ,my)
can then be computed by simply combining the two independerom variables
T{(my,--- ,my) andT5(mq,--- ,my) plus the sum ofm;}. Thepmf of T can be
computed as the sum of theBém,, - - - , my,) values with different weight. The algo-
rithm for the general case is shown as Algorithm (4).

It's not difficult to find that the P.C.Plus method has elimi@therror caused by
both of the two factors. The only inaccuracy comes from thignadion of thepmf of
overlapping subareas. If we compute {maf accurately, the complexity will be no
less than the complexity of computing the final distributibike in P.C.Minus, only a
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Figure 7: P.C.Plus Method

Algorithm 4 Partition Compensation Plus (P.C. Plus)
Input: Gy, Ga, My,
Output: pmf of total target countg’

1 G/1 =G1— My — My —---— My,
GL=Gy— My — My —---— M

2: Compute theomf of {N(M7),--- , N(My)}

3: for each{my,--- ,my} do

4 Update count information for the remainder of overlappimgles

5: end for

6: Compute themf of 7| andT}

7: Compute themf of T'(mq, - -, my)

whereT' (mq,--- ,mg) =T{ + Ty +m1 + -+ my
8: Compute the fingbmf:
T=>PNM;)=mq, - ,N(Mg) =myg) x T(mq,--- ,my)

subset of circles are included in the computation ofghe of {N(M3), - - - , N(My)}.
The P.C.Plus algorithm works well when the topology is sergoid the intensity
is small, i.e., there are not too many overlapping subaredttee numbers of targets
within most circles are small. Otherwise the complexityl wé too high because we
need to comput@; and7’;, multiple times for every possible valuewof, , ma, - - - , my.
The times we repeat on computing thef of the same block is exponential with
respect to the number of overlapping subareas. It is alsorexgial with respect to
the average ofn; although we have already reduced the complexity to a polyalom
function of M. However, P.C.Plus is perfect when it is used in a networhk wiitnple
topology and moderate intensity as shown in the evaluation.

7. Practical Issues

In this section we discuss some practical issues includiegestimation of the
intensity A (7.1) and the missing counting values (7.2).
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7.1. The Estimation of

In previous sections, the intensikyis a predetermined parameter in the calculation
of thepmf However, in most of the real cases, the target distribuamknown. As a
result,A should be estimated based on the counting values reporteghispr nodes.
Suppose&’y, Cy, - - -, Cy are the sensing areas dfsensor nodes8y(C1), N(Cs),
.-+, N(Cy) are their counting values ar{C}), $(C1), ---, $(C1) are the corre-
sponding size of the sensing area. Then the estimabaded on thes® sensor nodes
can be computed as

N
YD) 2

)\est = 3N o
>i=18(Ci)
where the numerator is the sum of all the counting valuesidinl duplicate counts
and the denominator is the sum of all the sensing areas ingjuyerlapping area.
In Section 8 we evaluate the performance of our algorithnhm With true) and
estimated.

7.2. The Estimation of Missing Counting Values

In reality, some of the counting values reported to the bts@®a can be missing
due to node failures or encounter a long delay due to the iabtelnature of wireless
communication. In order to get a more accunamef of the total number of targets, it
is important to estimate the missing counting values imstéaimply ignoring them.

Suppose the couting value of tith node whose sensing are&ig”;) is not avail-
able. Then the counting val®é(C;) can be estimated as

N(Cy) = AS(Ch) (23)
where) is the intensity of the targets’ Poisson distributionAlis unknown, the esti-
mated)\.,; in Equation (22) can be used.

8. Evaluation

In this section we compare the performance of each algoiithierms of both ac-
curacy and computation overhead in different scales of ordsvconsisting of 10 to
1000 nodes. If not specified, the nodes are randomly gerkirate a 2D unlimited
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space. Targets are also randomly generated with equal lplitpaverywhere. We
run all the simulations using Matlab on a computer with aell2t13GHz Core2Duo
processor. In not specified, we assume the intensisyknown and the target distribu-
tion is homogeneous Poisson. We also study the impact ofipahtssues including
unknown), non-uniform target distribution and missing countingues.

8.1. On Small-Scale Networks

In this experiment, we compare the performance of diffeadgdrithms in a small-
scale network, where ten sensor nodes are overlapped with ather with a total
number of subareak/ = 20. The area of each sensing circle is set to 9 units and the
total coverage of these ten sensor nodes is 63 units. Thatmeber of distinct targets
in the region isl2 which corresponds td =~ 0.2. The reason that we study this small-
scale scenario is to compare thef estimated by each algorithm with the trpenf
directly, which is impossible in large-scale networks sittee truegomf of Equation (7)
is always too complex to compute.

Figure (8) shows a typical example of thenf computation in a ten-node network
using four different methods: Direct Computation (D.C.)igthcorresponds to (i) the
Truepmf in the figure, (ii) Partition Method with P.C. Plus, (iii)R&ion Method with
P.C. Minus and (iv) Partition Method without any compermatat all (P.O.). In this
network, the count information i§1,1,1,3,5,2,1,2,1)0 The true number of targets is
12,

Compared with the Trupmf in Figure (8), P.C. Plus gives the most accurate result
that thepmf it computes is almost the same as the Tpod P.C. Minus is less accurate
than P.C. Plus, butis still a good estimation. Pinef computed by P.O. has a horizontal
shift of about2 due to the fact that the targets within the overlapping aseee ibeen
counted twice. If we simply estimate the number of targetablging the numbers
reported by each node, we will g&t, which is worse than any of these methods.

We run similar simulation200 times. In each simulation) is fixed to 0.2 and
targets are randomly regenerated to make the count infarmdifferent. The expected
values ofT' (denoted asF (7)) are calculated from themf computed by the four
methods. The average absolute errofgf") is compared in Figure (9). Note that the
true expected value dF in each simulation is arount2, from which we can see the
accuracy of P.C.Minus with a relative error of about 0.8% Br@l Plus with a relative
error of 0.3%.

Figure (10) shows the average running time comparison @nskale) between
P.C.Plus, P.C.Minus and direct computation for varigsisrom 0.07 to 0.21. We don't
include P.O. in the comparison here, because the compleityO. is almost the same
as that of P.C. Minus. From Figure (10), we can see when(.2, the running time of
P.C. Plus and P.C. Minus are less than 1% of the running tintéreft computation.
Compared with the results shown in Figure (8) and Figure (@)can conclude that
P.C. Plus is the best choice in small-scale network.

8.2. On Large-Scale Linear Networks

We place 100 nodes linearly. We study linear networks in iotdecompare the
performance of both P.C.Plus and P.C.Minus, which is simiilahe reason we study
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small-scale networks. The size of each sensing circle lisssti to 9 and the total
coverage is around 600. We vaxyfrom 0.01 to 0.2 (The expected number of targets
in the region varies from 10 to 130). Since this is a largdesnatwork wherel/ is
around 200, the Truemfis no longer available. As aresult, the average expectegval
of T'is compared in the evaluation.

For each), a fixed number of targets are generated randomly. Thrediqart
methods (P.C. Plus, P.C. Minus and P.O.) are used to compeifartf of 7. Then
E(T) is calculated and recorded. We run similar simulations 2@@g for each\
and compare the average B{T) with the true number of targets generated in the
simulation.

Figure (11) shows the comparison of averdgd’) computed by each algorithm.
It also shows the estimation by the naive method of simplyiregldp all the count
information which corresponds to the “UB” in the figure. Frdine figure we can see
that in terms of average expected valudoboth P.C. Plus and P.C. Minus give a very
good estimation with less than 2% relative error while P& & higher expected value
as expected. However, P.O. is still much better than theemaithod.

Figure (12) shows the comparison of average running time®f Plus and P.C.
Minus. Again P.O. is not included in the figure since it almioss the same running
time as P.C. Minus. From the figure we can see that as the itytenscreases, P.C.
Plus has a greater increase in running time since it suféersrtuch from repeatedly
computing thepmf of the same block. The running time of P.C. Minus also inaeas
when )\ increases, but much slowly than P.C. Plus. From these odits@ng we con-
clude that in large-scale linear networks, P.C. Plus is algboice when\ is moderate
while P.C. Minus is the best choice wharns large.

Figure (13) shows the running time of P.C. Minus for netwarssisting of differ-
ent numbers of sensor nodes from 100 to 1000 whexfixed to 0.1. From the figure
we can see as the number of sensor nodes increases, thegtinmenof P.C.Minus
increases linearly.

8.3. On 2-Dimensional Large-Scale Networks

We place 100 nodes randomly in a 2-Dimensional area. Sire¢ofhology this
time is too complex, P.C. Plus is too complex to use sincedtiaéoo many iterations.
As a result, only the performance of P.C. Minus and P.O. ampawed here, using
similar simulations as described in (8.2). Figure (14) shive comparison of average
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E(T)when) varies from 0.01 to 0.25. It also shows the estimation of tieenmethod
UB. From the figure we can see that P.C. Minus gives a very gsth&tion with less
than 2% relative error in terms of expected valueTofP.O. gives a higher expected
value as expected, but the estimation is still better than UB

8.4. Impact of Estimated

In (8.1), (8.2) and (8.3) we use a given intensitiy the simulation in order to com-
pare the performance of each algorithm. However, the iittemgormation is some-
times not available. As a resul,should be estimated using just the count information.
We use the method in (7.1) to estimate thef the target distribution. For example, in
the small scale network in (8.1), if the count information{is1,1,3,5,2,1,2,10and
the size of each circle is 9, can be estimated as= 717.

We repeat the simulation in (8.1) using estimateth P.C. Plus, P.C. Minus and
P.O. while keeping an actualin the direct computation to obtain the result of the True
pmf Figure (15) shows thpmf computation result in the same scenario as in (8.1),
where the count information i§1,1,1,3,5,2,1,2,1)0and the true number of target is
12. Comparing Figure (15) with Figure (8) we can see pihe computed by the three
algorithms are slightly changed, but P.C.Plus and P.C.Mare still good approxima-
tions.

Figure (16) shows the average absolute error of the expeatad ofT" in small-
scale network. From the figure we can see the average absotaténcreases by less
than 0.1 when estimatetl is not so accurate. However, the difference is negligible
since E(T) is around12 and the relative error is still less than 2% for P.C.Plus and
P.C.Minus.

Figure (17) shows the absolute erroriofI") computed using an estimatadvith
E(T) computed using trug in large-scale linear network of the same setting in Figure
(11). Comparing the two figures we can see the inaccuragycaluses a relative error
of less than 1% for both P.C.Plus and P.C.Minus.

Based on all comparisons we conclude that our algorithm eagalily applied to
the real scenarios even)fis not available.

8.5. Impact of Non-Uniform Distribution

In previous evaluation we have shown that the P.C. Plus aadvifius can ap-
proximate theomf of T very well, under the assumption that the targets are unlform
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distributed. However, it's not always the case that thegtsrgre uniformly distributed
with the same intensity everywhere. In this subsection we study the case that tar-
gets are non-uniformly distributed, i.e\,in each subarea can be different. Again an
estimated\ is used in the computation of each algorithm.

We study large-scale linear networks to compare the pedoom of all three par-
tition methods. We divide the 100-node linear network inGadifferent sub-networks
each of which has a random intenskyalue when we distribute targets. In the simula-
tion, A is estimated using the same technique as in (8.4). Figujesti8vs the simula-
tion results of averag®(T) in this scenario. From the figure we can see P.C.Plus and
P.C.Minus are both robust with less than 2% relative err¢inécchange of distribution

models.

8.6. Impact of Sensing Irregularity

We study how sensing irregularity affects our design. It @t noting that the
calculation of theomf depends only on the size of the area, not the shape of the area,
regardless of which partitioning method is used. As a reaigtfocus on the inaccurate
area information caused by sensing irregularity. Figugg $hows the simulation result
of P.C.Minus with up to 10% randomly generated perturbatioarea information
using the same network settings as in Figure (11). Similsultean be obtained by
P.C.Plus, which is in Figure (20). From the figures we can Beanaccuracy in area
information only affects the expected target counts bytleas 1%. Hence, our design

is insensitive to sensing irregularity.
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8.7. Impact of Missing Counting Values

We study the impact of missing counting values. First, wegthe example of the
ten-node small-scale network in Figure (8) where the puné of the total number of
targetsis available. In this network, the counting infotionais still {1,1,1,3,5,2,1,2,1)0
We suppose one of the counting values is missing. Figureo@hpares themf com-
puted by P.C.Plus with the trysmf using or not using the estimation method as de-
scribed in (7.2). From this figure we can see with the estiomatethod, the result
matches the ground truth very well. If the estimation metisotbt used, themf shifts
to the left since the counting values are simply ignored.

We study the performance of our estimation method in lacgdesnetworks. We
vary the percentage of the sensor nodes whose countingsvateefor some reason
not available. Again, we use the same network setting asguar€i(11). For different
missing percentage from 5% to 40%, the average expectedanohiargets based on
the estimation method in (7.2) are shown in Figure (22). Rtumfigure we can see as
the missing percentage increases, the accuracy @ittieomputation becomes worse
as expected. This figure also shows the simulation resutichais 10% missing values
without using our estimation method. Itis not difficult teeddat without the estimation
for missing counting values, the computation accuracy éhavorse than that of the
network with 40% missing values using the estimation methwd conclude that the
estimation for missing counting values is very importardiider to get an accurapenf
computation result.

9. Conclusion

The double-counting problem has been sufficiently adddegsehe context of
communication, however, to our knowledge, there is no ixgssolution for double-
counting problem in sensing. This paper presents an effiaieth accurate method to
estimate the number of targets within a monitored area wifilidate counts among
adjacent sensors.

Using a partition method, we significantly reduce the corapoh complexity of
calculating the probability mass function of total courliising several compensation
methods, we improve the accuracy with adjustable communakioverhead. This work
is theoretical in nature, however, it can be practicallyligpsince most sensor sys-
tems do not require precise counts, but reasonable acastiteations. As a result,
statistical counting is a viable approach. To inspect wéetur solution is practical
with respect to several assumptions we make, we evaluatietign with estimated
values as well as non-uniform distributions. Results retreaaccuracy of statistical
counting degrades slightly when the triués unknown and targets are non-uniformly
distributed. Through extensive simulation over variousdki of network settings, we
demonstrate that accurate statistical counting within 3% relative error can be ob-
tained with orders of magnitude reduction in computati@mpared with the exhaus-
tive enumeration-based approach. Without loss of getgrale use Poisson distribu-
tion as a concrete example, we believe the ideas of partitittm balanced minimal
cuts and accuracy compensation are applicable to othettdisgributions as well.
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