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Abstract

Sensor networks have been used in many surveillance systems, providing statisti-
cal information about monitored areas. Accurate counting information (e.g., the dis-
tribution of the total number of targets) is often importantfor decision making. As
a complementary solution to double-counting in communication, this paper presents
the first work that deals with double-counting in sensing forwireless sensor networks.
The probability mass function (pmf) of target counts is derived first. This, however, is
shown to be computationally prohibitive when a network becomes large. A partition-
ing algorithm is then designed to significantly reduce computation complexity with a
certain loss in counting accuracy. Finally, two methods areproposed to compensate
for the loss. To evaluate the design, we compare the derived probability mass function
with ground truth obtained through exhaustive enumerationin small-scale networks.
In large-scale networks, wherepmf ground truth is not available, we compare the ex-
pected count with true target counts. We demonstrate that accurate counting within
1 ∼ 3% relative error can be achieved with orders of magnitude reduction in computa-
tion, compared with an exhaustive enumeration-based approach.

Key words: Wireless Sensor Networks, Target Detection, Duplicate Counting, Graph
Partitioning

1. Introduction

Wireless sensor networks have been widely used to monitor many types of environ-
ments such as battlefields [1], buildings [2] and habitats [3, 4]. One of the key design
objectives of these monitoring systems is to acquire and verify information about the
number of targets/events within the system at any given point of time. For example, (i)
in a battlefield, a commander needs to estimate enemy capability by counting different
types of targets in an area to issue a counter-force attack strategically; (ii) in a building,
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a manager might want to turn off some facilities if the numberof people in a certain
area is less than a certain threshold; (iii) in geysers fieldsmonitoring, the number of
eruptions indicates the activity pattern underneath. In all these cases, although it is
not necessary to have precise counting information, it is important to obtain reasonable
total count values through a sensor network.

In general, there are two types of errors that would lead to inaccurate counts: miss-
detection and double-counting. Miss-detection is normally addressed by using reli-
able sensing hardware [5] and/or robust detection algorithms [6, 7, 8], while double-
counting is a more challenging problem, because it involvesduplicates in both com-
munication and sensing. Several excellent projects have investigated how to avoid the
double-counting problem in communication. For example, synopsis diffusion [9] uses
energy-efficient multi-path routing schemes to transmit order-and duplicate-insensitive
(ODI) data aggregates. Recently, CountTorrent [10], uses Abstract Prefix Tree (APT)
to ensure all values are counted once through distributive queries. We observe that
these solutions work well by assuming original count valuesfrom each sensor is not
duplicated. However, sensor nodes are normally densely deployed with a high-degree
of redundancy (overlapping), therefore double-counting by adjacent sensors could be
significant and should not be ignored. Although many researchers have studied the
double-counting problem in communication, to our knowledge, this paper presents the
first attempt to address the double-counting problem in the context of sensing in sensor
networks. By avoiding double-counting in both communication and sensing, accurate
statistical counting can be achieved.

To address double-counting in sensing, one straightforward solution is to use so-
phisticated identification sensors to differentiate targets by analyzing their signatures
such as acoustic emission or thermal radiation. This approach requires high-cost sensor
nodes and possibly introduces excessive energy consumption. Naturally, we raise the
following question:how to avoid double-counting statistically, using low-cost sensors
without identification capacity?

The main idea of our solution is to derive a probability mass function (pmf) of
total target counts, using partition and compensation methods. With thepmf available,
one can obtain the expected total count that approaches ground truth, i.e., the actual
number of targets in the system. Specifically, the main contribution of this work lies in
following aspects:

• Given separate counts from overlapping sensor nodes, we derive a probability
mass function (pmf) of total target counts, from which various types of statistical
information (e.g., expected value, variance, range, min and max) can be inferred
accurately.

• We propose an accuracy-aware partitioning algorithm to reduce the computa-
tional complexity of calculating a system-wide probability mass function.

• Two algorithms are proposed to compensate for the inaccuracy introduced by the
partitioning process. The first algorithm sacrifices certain accuracy in exchange
of very fast computation, while the second algorithm achieves high accuracy
with adjustable computation overhead.
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The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 presents the derivation of probability mass function, followed by the complexity
analysis in Section 4. Section 5 describes how computation complexity can be sig-
nificantly reduced by partitioning. Section 6 introduces two compensation algorithms
for better accuracy. Section 7 discusses several practicalissues. Simulation results are
presented in Section 8. We conclude this paper in Section 9 with our summary and
directions for future work.

2. Related Work

To obtain accurate target counts, a monitoring sensor system shall prevent miss-
detection as well as double-counting. Miss-detection can be reduced by introducing
reliable hardware design. For example, XSM motes [5] incorporate a band-pass fil-
ter to enhance the detection of acoustic emission, a digitalpotentiometer to detect a
wide range of signals, and a polyethylene film to reduce the effect of sunlight. Be-
sides hardware enhancements, advanced detection algorithms [6, 7, 8] have also been
proposed to avoid mis-detection with minimal energy consumption. VigilNet [7] uti-
lizes a multi-level detection algorithm with in-situ adaptive thresholds to avoid both
false positive and false negative detections in changing weather conditions. Feng et
al. [8] propose a collaborative tracking algorithm with distributed Bayesian estimation
to improve reliability based on current and previous estimation (beliefs) from sets of
sensors.

Even with reliable detection at individual nodes, accuratetotal counts would not
be obtained if a target is counted multiple times (double-counting). Double-counting
problem has been investigated in the context of communication. The summarization
of total counts without duplicates could be achieved by building a spanning tree rooted
at the base. Individual counts are aggregated along a tree from leaves to the root as
suggested in TAG [11]. However, this spanning-tree-based approach could suffer loss
of counts severely, due to node or communication failures. For example, a single node
failure could lose the count of a whole subtree beneath it. Toaddress this limitation,
synopsis diffusion [9] utilizes multi-path routing to deliver count information. The
authors prove that duplicate-insensitive (ODI) count aggregation can be achieved by
using Flajolet and Martin’s algorithm (FM) [12], which counts distinct elements in a
multiset. CountTorrent [10] allocates binary labels to individual nodes using an Ab-
stract Prefix Tree and disseminates the(label, count) pairs through multi-path routing.
Count values are aggregated only when two binary labels differ only in their last bit.
Labeled aggregates ensure all values are counted only once during communication. A
recent paper [13] proposes to use a linear time probabilistic counting algorithm [14]
to deal with duplicate counting and the proposed method is shown to achieve higher
accuracy and lower overhead compared with the FM algorithm.

Although double-counting can be eliminated in communication, the final aggre-
gated count could still be incorrect, if the targets within overlapping regions are counted
more than once. According to [15], the percentage of overlapping region in sensor net-
works under random deployment is indeed significant. For example, with an average
node density of 5, the overlapping percentage is 86% and withan average node density
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of 14, the overlapping percentage would be as high as 99.9%! Therefore, we argue
double-counting is common in sensing and hence needs to be addressed accordingly.

3. Problem Definition and Assumptions

We consider a network model where counting sensor nodes are randomly deployed
in a region (e.g., an open area or a room in a building) with known locations [16, 17].
They are used to monitor different types of targets, such as vehicles on the road, people
in the room, or any other objects of interests. Counting capability is supported, using
photoelectric-based sensors such as the one in [18]. The count values at individual
sensors are reported to a base node, where the probability mass function (pmf) of the
total number of distinct targets is calculated. Since the system-wide total count is the
objective, a centralized solution at the base is a natural approach for sensor networks,
which is also compatible with counting communication methods in TAG [11], Synopsis
Diffusion [9], and CountTorrent [10].

To simplify the description, the sensing range of these nodes are treated as circles.
It should be noted that the accuracy of our method only depends on the size of the area,
not the shape of the area. In case of irregular sensing areas,methods proposed in [19]
shall be used to obtain the size of sensing areas.

This work assumes spatial distribution of targets within the area is known (e.g.,
complete spatial randomness, spatial aggregation or spatial inhibition). Without loss of
generality, we use Poisson distribution [20, 21, 22] as a concrete exemplary distribution
to present our methodology through the paper. We expect our high-level idea can be
applied to non-Poisson distributions, although mathematical derivation would be quite
different.

Under the Poisson distribution, targets are uniformly distributed in the area of in-
terest with intensity ofλ. Theλ value can be either known a prior or estimated online
(as we explain later). The probability that there arek targets in the regions of sizeS

can be computed as follows:

P (N(s) = k) =
e−λS(λS)k

k!
. (1)

Suppose there are in totalN sensor nodes. Theith sensor nodevi whose sensing
area is circleCi has detectedni targets in its sensing range, where1 ≤ i ≤ N . Suppose
the N sensing circles of these nodes divide the whole area intoM non-overlapping
subareas. Each subarea,Mk, where1 ≤ k ≤ M , may belong to one or more circles.
As a result, each circle is the union of a subset of all these subareas. We sayMk ⊂ Ci

if Mk is within the subset of theith circle Ci. If we further useN(Mk) to denote the
number of distinct targets in subareaMk, we will have the following equation:

ni = N(Ci) =
∑

Mk⊂Ci

N(Mk). (2)

Since the subareas are non-overlapping, the total number ofdistinct targets detected by
theN sensor nodes (denoted asT ) will be equal to the sum of the number of targets in
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each subarea, which can be computed by the following equation:

T = N(
N
⋃

i=1

Ci) =
M
∑

k=1

N(Mk). (3)

The objective of this work is to find the probability mass function (pmf ) of the
total target count T in Equation (3), given the individual countsni from all nodes,
with low computation complexity. Particularly, the probability that the total number
of distinct targets equals tot given the count information can be expressed as

P (T = t|N(C1) = n1, N(C2) = n2, · · · , N(CN ) = nN). (4)

C2

C1

M2
M1

M3

C2

C1

M2
M1

M3

a) Two-Target Case b) One-Target Case

Figure 1: A simple example:Two-Circle Case

We start with a simple example as shown in Figure (1). Two sensor nodesv1 andv2

whose sensing circles areC1 andC2 divide the whole region into three subareas:M1,
M2 andM3. Suppose both of sensor nodes detect one target, there are two possible
scenarios as shown in Figure (1a) and Figure(1b). The objective is to calculate the
probability that there are in total two (or one) distinct targets in this area, respectively.
For simplicity, we define notation< m1, m2, m3 > as the joint probability thatM1

hasm1 targets,M2 hasm2 targets andM3 hasm3 targets. An example is shown as
follows:

< 1, 0, 1 >= P (N(M1) = 1)P (N(M2) = 0)P (N(M3) = 1). (5)

Using the definition of conditional probability, from (2), (3) and (4), we get,

P (T = 2|N(C1) = 1, N(C2) = 1)

=
P (T = 2, N(C1) = 1, N(C2) = 1)

P (N(C1 = 1, N(C2) = 1)

=
P (N(M1) = 1, N(M2) = 0, N(M3) = 1)

∑1
k=0 P (N(M1) = 1− k, N(M2) = k, N(M3) = 1− k)

=
< 1, 0, 1 >

∑1
k=0 < 1− k, k, 1− k >

=
< 1, 0, 1 >

< 1, 0, 1 > + < 0, 1, 0 >
. (6)
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The penultimate equality holds becauseM1, M2 andM3 are non-overlapping subareas
and the numbers of targets in these subareas are independentrandom variables. Since
each term in Equation (6) can be computed using Equation (1),we can finally compute
the probability for any givent and thus compute the conditionalpmf of the total number
of distinct targets.

Noting that all the terms in the denominator of Equation (6) (< 1, 0, 1 > and <

0, 1, 0 >) are the probability of possible solutions that satisfy thecount condition of all
circles (N(C1) = 1, N(C2) = 1) while the numerator (< 1, 0, 1 >) is the probability
of the only solution that satisfies both the count condition and the total number of
distinct targets condition (N(C1) = 1, N(C2) = 1, T = 2). Similarly, we can derive
the equation for a more general case, i.e., for a region that has been divided intoM
subareas byN sensor nodes, Equation (4) can be computed as

P (T = t|N(C1) = n1, N(C2) = n2, · · · , N(CN ) = nN )

=
P (T = t, N(C1) = n1, N(C2) = n2, · · · , N(CN ) = nN )

P (N(C1) = n1, N(C2) = n2, · · · , N(CN ) = nN )

=

∑

{m′
k
}∈(A

⋂

B) < m′
1, m

′
2, · · · , m

′
M >

∑

{mk}∈A < m1, m2, · · · , mM >
(7)

where< m1, m2, · · · , mM > is defined similarly as before, but extended to a more
general case,{mk} denotes the set of{m1, m2, · · · , mM}, {mk} ∈ A means for each
term in the denominator, the corresponding{mk} satisfies the count condition of the
N circles so that it is a solution to a set of equationsA defined as follows:

A :



























∑

Mk⊂C1
mk = n1

∑

Mk⊂C2
mk = n2

...
∑

Mk⊂CN
mk = nN

N(Mk) = mk ≥ 0, ∀1 ≤ k ≤M

. (8)

Also, for each term in the numerator, the corresponding{m′
k} satisfies both the

count condition and the total number condition. As a result,each{m′
k} is a solution to

bothA andB whereA is defined in Equation (8) andB is defined as follows:

B : m1 + m2 + · · ·+ mM = t (9)

4. Complexity Analysis

In order to determine the conditionalpmf of the total number of distinct targetsT ,
we need to compute the probability in Equation (7) for every possible value oft. Sev-
eral interesting observations can be captured from Equation (7). First, the numerator
is actually a subset of the denominator for a particular value of t. All these subsets
are disjoint and sum to the denominator, which is consistentwith the fact that all the
values of the probability mass function sum up to 1. Second, in order to compute the
denominator, we need to solve equation arrayA and find all solutions. As a result, the
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Algorithm 1 Enumeration Algorithm
Input: Graph Information, Equation A
Output: Thepmf of total target countsT

1: for k = 1 to M do
2: UB(mk) = min{ni} whereMk ⊂ Ci

//get upper bound for eachmk

3: end for
4: D ← 0 //initialize the denominator
5: N(t)← 0, ∀ possiblet //initialize numerators
6: for every possible target distribution< m1, m2, · · · , mM > do
7: if < m1, m2, · · · , mM > is a valid solution toA then
8: d←

∏M

k=1 P (N(Mk) = mk) //calculate probability
D ← D + d //update denominator
tsum =

∑M
k=1 mk, N(tsum) = N(tsum) + d //update numerator

9: end if
10: end for
11: for every possible value oft do
12: P (T = t|Ci = ni) = N(t)

D
//final probability computation

13: end for

complexity of computing the probability for a single value of t is exactly the same as
computing the whole probability mass function since we needto find all solutions to
A anyway. Third, since all the variables inA are non-negative integers, we have to
exhaustively list all the solutions ofA. We develop an algorithm using an exhaustive
enumeration-based method to compute Equation (7) as shown in Algorithm (1), based
on these observations.

The complexity of finding the conditionalpmf using Algorithm (1) depends on the
size of the solution space to equation arrayA which is the product of the upper bound
of all the subareas:

f1 = O(

M
∏

k=1

UB(mk)) (10)

whereUB(mk) denotes the upper bound (the maximum possible number) of targets in
subareaMk and can be computed as

UB(mk) = min{ni} whereMk ⊂ Ci. (11)

For example, ifM1 is the overlapping area ofC1, C2 andC3 with counting values 2, 3
and 5. Then the upper bound ofm1 is 2 so that it would not violate circleC1’s counting
result.

Obviously,f1 is an exponential function ofM , which is the number of non-overlapping
subareas divided by theN circles. In a densely depolyed network,M would be much
greater thanN . Hence, the exponential complexity of Algorithm (1) makes it pro-
hibitive to be applied in large-scale sensor networks.
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G2
G1

Figure 2: An Example of Natural Partitioning Case

5. Partitioning Design

In the previous section, we have concluded that a largeM value makes the compu-
tation time intolerable, which also indicates that reducing M can significantly reduce
computation complexity. Figure (2) shows thatN circles belong to two disjoint groups
G1 andG2 at initial deployment time. We note this deployment rarely happens in
a dense network, however, we use this example to show the power of partitioning in
reducing complexity. Suppose the numbers of subareas inG1 andG2 areMG1 and
MG2 , respectively. SinceG1 andG2 are disjoint, the total numbers of distinct targets
in G1 andG2 (denoted byT1 andT2) are independent random variables. As a result,
we can compute thepmf of T1 andT2 separately and then combine the two functions
to compute thepmf of T which is equal to the sum of these two independent random
variables:T = T1 + T2. The method used to combine two independent distributions
can be found in textbooks [23] and will not be discussed. Herewe are interested in
how much complexity can be reduced by partitioning. It’s clear that the complexity of
the combination process is the product of the sizes of the sample space ofG1 andG2.
This value is negligible compared to the complexity of the enumeration process. Thus,
the total complexity of this method can be computed in Equation (12).

f2 = O(

M1
∏

k=1

(UB(mk)) +

M1+M2
∏

k=M1+1

(UB(mk)). (12)

If the values ofM1 andM2 are similar inG1 andG2, f2 is much less thanf1, espe-
cially whenM is large. Let’s comparef2 with f1 using the example shown in Figure
(2). Suppose all sensors detectn targets for simplicity. If we compute the conditional
pmf using Equation (7) directly, the cost isO(n22). If we compute thepmf for G1

andG2 separately and then combine them to get the total, the complexity according to
Equation (12) isO(n11). Generically, if multiple disjoint groups exist in the areaand
the maximum size of each groupGi is bounded, the computation complexity is:

f3 = O(M

MAX
∏

k=1

UB(mk)) (13)
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whereMAX is the maximum number of subareas of each group. It’s obviousthat the
f3 is a polynomial function ofM .

5.1. Deleting Zero Count Circles
In the previous section, we have shown that disjoint groups reduce the complexity

significantly. However, given a space covered by sensor nodes, it’s not always the case
that the circles are disjoint. Therefore, it is necessary topartition the nodes into groups
as well as compensate for the loss of accuracy caused by partitioning.

Recall that< m1, m2, m3 > is defined as the probability thatM1 hasm1 targets,
M2 hasm2 targets andM3 hasm3 targets. SinceN(Mk)s are all independent due to
the fact thatMks are non-overlapping, the decomposability of< m1, m2, m3 > can
be easily derived from Equation (5) as follows:

< m1, m2, m3 >

= < m1, m2, ∗ >< ∗, ∗, m3 >

= < m1, ∗, ∗ >< ∗, m2, ∗ >< ∗, ∗, m3 > (14)

where the symbol “*” means the number within the corresponding subarea can be
any value. Based on this property, the effect of eliminatinga zero-count node can be
studied.

Suppose nodev1, whose sensing circle isC1 as shown in Figure (3), detects zero
targets, which meansn1 = 0. It’s possible that there still exist other zero-count circles
besidesv1 but they would not affect the discussion here. From Equation(2) we have

n1 =
∑

Mk⊂C1

mk =

z
∑

k=1

mk = 0. (15)

wherez is the number of subareas inC1. (z = 5 in the example shown in Figure (3)).
For simplicity, these subareas are named asm1, m2, · · · , mz. Noting that Equation
(15) is also an equation inA. Since all themks are nonnegative, all the solutions to
A satisfy the condition thatmk = 0, ∀1 ≤ k ≤ z, which can be easily interpreted as
the number of targets in any subarea within circleC1 should be zero. Based on this,
Equation (7) can be further rewritten as

P (T = t|N(C1) = n1, · · · , N(CN ) = nN )

=

∑

{m′
k
}∈(A

⋂

B) < m′
1, m

′
2, · · · , m

′
M >

∑

{mk}∈A < m1, m2, · · · , mM >

=

∑

{m′
k
}∈(A

⋂

B) < m′
1, · · · , m′

z, ∗, · · · , ∗ >< ∗, · · · , ∗, m′
z+1, · · · , m′

M >
∑

{mk}∈A < m1, · · · , mz, ∗, · · · , ∗ >< ∗, · · · , ∗, mz+1, · · · , mM >

=
< 0, · · · , 0 >

∑

{m′
k
}∈(A

⋂

B) < ∗, · · · , ∗, m′
z+1, · · · , m

′
M >

< 0, · · · , 0 >
∑

{mk}∈A < ∗, · · · , ∗, mz+1, · · · , mM >

=

∑

{m′
k
}∈(A

⋂

B) < m′
z+1, · · · , m

′
M >

∑

{mk}∈A < mz+1, · · · , mM >
. (16)
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Figure 3: Deleting a Zero Count Circle

v2

v9

v4 v7

v5

v3

v1

v6

v8

Figure 4: The CorrespondingG(V, E) of Figure (3)

The last equality holds because< 0, · · · , 0 > is a constant value which can be
computed using Equation (1) and hence is canceled out in the function.

From Equation (16) we can conclude that deleting a zero-count node does not cause
any loss of accuracy since the result in Equation (16) is the same as the computation
in a similar network whereC1 is excluded. As a result, given a number of sensor
nodes, the zero-count circles can be deleted first before computation. There are two
major benefits from doing this. Firstly, by deleting the zero-count circles the number of
subareas is reduced. ReducingM further reduces the complexity as we have discussed
before. Secondly, the whole graph can sometimes be partitioned into groups by deleting
these circles, especially when there are several zero-count circles. If the circles can be
divided into groups that are not overlapping with each otherasG1 andG2 shown in
Figure (3), the complexity can be significantly reduced.

5.2. Partition with Balanced Minimal Cuts

In the previous section, we have shown that deleting a zero-count node simplifies
the computation without losing accuracy. In this subsection we describe how to divide
a sensor network into several balanced groups, each with bounded number of subareas,
while incurring minimal loss of accuracy. Our solution is based on observation that
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we have less uncertainty in number of counts, if 1) the size ofthe overlapping area
between different groups is small, and/or 2) the number of targets in the overlapping
area is small.

With the consideration of the complexity of cutting and future compensation algo-
rithm, our partition algorithm is recursive and pairwise optimal. The network is firstly
divided into two groups, one of which has a bounded number of subareas. If the size of
the other group is still out of range, the partitioning algorithm is applied again until all
groups have bounded number of subareas and theirpmfs can be computed separately.
The algorithm is described in more detail in the next few subsections.

5.2.1. Optimization Objectives
Based on the layout of overlapping areas, a sensor network can be modeled into a

topologyG(V, E), whereV is the set of theN sensor nodesv1, v2, · · · , vN and edge
eij exists between nodevi andvj if and only if the sensing areas of the two nodesvi

andvj overlap with each other. The weight of the edgeeij is decided by both the size
of overlapping area and the count values of nodesvi andvj . Formally,

eij = eji =

{

W (rsij , ni, nj) Ci

⋂

Cj 6= ∅

0 Ci

⋂

Cj = ∅
(17)

wherersij is the percentage that the overlapping area between circlesi andj out of
the total area of circlei and circlej, W is an increasing function ofrsij , ni andnj ,
respectively. A good example ofW is W (rsij , ni, nj) = rsij × (ni + nj). Figure (4)
shows the correspondingG(V, E) of the sensor network in Figure (3).

If we partitionG into two subgroupsG1 andG2, we can define the objective func-
tion fobj as the sum of the weights of all the edges cut by the partition.More precisely,
fobj can be expressed by the following equation:

fobj =
∑

vi∈G1
vj∈G2

eij . (18)

The objective is to find a partition that minimizesfobj.

5.2.2. Partition Algorithm
We develop a partition algorithm based on the Fiduccia-Mattheyses (FM) Algo-

rithm [24]. For a given graph, the goal is to find a partition that divides the circles
into two groups and minimizesfobj as described before. We bound the size of the first
groupG1 so that thepmf of T1 can be computed directly. We apply the partitioning
algorithm toG2 recursively, until the size ofG2 is small enough and we can compute
thepmf of T2 directly as well.

We name the objective functionfobj as thecutting sizesince it denotes the total
weight ofcutting edgesby a partition. The size ofG1 should always be smaller than
the maximum size such that thepmf of T1 can be computed directly. The size of each
group should also be greater than a minimum size in order to maintain the accuracy of
counting. These requirements on the size of the two groups are termed as thebalance
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v1
v2

Step 4

BR: v2,v5; Locked: v2,v3,v4
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v4
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v5
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the best cutting size and 
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v1

v2

Cutting Size: 2

v2
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v1

BR: v3,v4; Locked: v1,v2,v3,v4

Cutting Size: 3; Gain：0 0  1 0 1

v3
v3
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Figure 5: An Example of Partition Algorithm

requirements(BR). The goal of our algorithm is tofind a partition that has the minimum
cutting size while satisfying the balance requirements.

As shown in Figure 5, the partition algorithm consists of several iterations, called
passes. Each pass has several steps. In each step, a vertex that has the bestgain is
selected and moved to the other group. Thegain of a vertex represents how much the
cutting size can be reduced by moving this vertex to the othergroup. A vertex can be
only moved once in a single pass and BR should always be satisfied. A single pass
process stops when all vertices have been moved once or moving any unmoved vertex
violates BR. Then the best partition (the one has the minimumcutting size) during the
whole pass is selected as the starting partition of the next pass process.

An example of how the first pass works in a simple network is shown in Figure (5).

• Step 1: Initially, the vertices are divided into two groups randomly as shown in
Figure (5) wherev1, v2 belongs to one group andv3, v4 andv5 belong to the
other. This is the starting partition. Before performing any moving, thegain
of each vertex is computed. Suppose all the edges in the figurehave an equal
weight of 1. Then for vertexv3, the gain of moving it to the other group is 1
since the cutting size changes from 2 to 1. The gain of all the other vertices can
also be computed in this way. We use (0, 0, 1, -2, -1) to denote the gain of the
verticesv1, v2, v3, v4, v5. Suppose the BR in this example requires the size of
each group should be no less than 2. Due to this requirement,v1 andv2 can
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Algorithm 2 Partitioning Algorithm
Input: G andCi

Output: PartitionPnew : {G1, G2}
1: Pold ← {G1, G2} //a random initial partition
2: {V } ← all vertices inG1 or G2

3: repeat
4: index← 0, Pold = Pnew //starting a “pass”
5: repeat
6: Compute the gain for all the vertices inV
7: v← An unlocked vertex satisfies BR and has the maximum gain
8: if v ∈ G1 then
9: G1 ← G1 − v; G2 ← G2 + v

10: else
11: G1 ← G1 + v; G2 ← G2 − v

12: end if
13: Psave[index + +]← {G1, G2} //record partition for each step
14: until no vertices inV can be moved
15: Pnew ← A minimum cutting partition inPsave //the output of the “pass”
16: Unlock all vertices //end of a “pass”
17: until Pold == Pnew

not be moved since it violates BR. Based on these observations, v3 is selected
to move to the other group since it has the best gain. It is alsomarked aslocked
after it is moved. A locked vertex can not be moved any more in the following
steps during the current pass process.

• Step 2: In step 2, the gain of each vertex is updated.v4, v5 can not be moved
in this step due to the balance requirement althoughv4 has the best gain.v3 can
not be moved either since it has been locked. As a result,v2 is selected to move
to the other group although its gain is negative, i.e., moving v2 makes the result
worse.

• Other Steps:Similar process continues until Step 6 when all vertices arelocked.

• Selection and Unlock:The partition in Step 2 is selected as the starting parti-
tion of next pass process since it has the smallest cutting size. All vertices are
unlocked, ready for next pass.

A pass, which includes the above steps, repeats itself untilthere is no positive gain
from moving any more, i.e., the partition selected at the endof a pass is the same as its
starting partition at the beginning of this pass. Then this partition is the final partition
of the algorithm.

In the example shown in Figure (5), the output of the second pass process is the
same as its starting partition which is the partition in Step2 in the figure. This partition
is the final result. The whole process of the algorithm is shown in Algorithm (2). The
complexity of this algorithm isO(n2).
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For a large network, the partition algorithm is applied recursively on the partitioned
subgraphs until the size of each subgraph is below the boundMAX.

6. Accuracy Compensation

In Section 5, we described how we can partition using minimalcutting. We can
reduce the computational complexity to a certain level by setting the maximal size of
each subgraph to a thresholdMAX. However, partitioning leads to loss of accuracy. In
this section, we propose two methods to compensate for the loss of accuracy caused by
partitioning.

C4

C5

G1
G2

M1

C1 C2

C3

C6

C7

C8

C9

C10

Figure 6: An Example of Partitioning

We start with an example shown in Figure (6). In this figure, there are 10 circles in
total. Suppose there is no zero count circle as in this example. Using the partitioning
algorithm described in Section 5, we can identify the best place of the first partitioning
should be betweenC1 andC2, where there is only one overlapping subarea denoted as
M1 as shown in the figure. Then the whole graph will be divided into two groups with
the six circles on the left belonging toG1 and the four circles on the right belonging to
G2.

We can compute thepmf of the total number of distinct targets forG1 andG2

(denoted asT1 andT2) separately. If we estimate the finalpmf by simply combining
thepmf of T1 andT2 asT = T1 +T2, assuming that they are independent, there would
be two main factors making the result inaccurate.

1. T1 andT2 are actually dependent since the two groups have an overlapping sub-
areaM1. As a result, summing them up using the method of summing up two
independent random variables will bring error.

2. The targets inM1 are counted twice since they belong to bothG1 andG2.

We propose two methods to compensate for the errors caused bythese two factors.
The first method compensates for errors by deducting thepmf counts in the overlapping
area, called Partitioning Compensation Minus (P.C.Minus). The second method com-
pensates by adding thepmf counts in the overlapping area, called Partitioning Com-
pensation Plus (P.C.Plus). P.C.Minus is simple and efficient for complex topologies
and extremely large-scale, while P.C.Plus achieves high accuracy with more overhead.
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6.1. Partition Compensation Minus
A major factor that will cause the result to be inaccurate is that the targets in the

overlapping area of the two groups have been counted twice. In order to eliminate such
an error, we need to estimate the number of targets in the overlapping area (denoted
asTol) and then subtract it from the final result. Formally, ifT1 andT2 are random
variables denoting the target distribution of the two subgraphsG1 andG2, respectively,
Tol is the target distribution of the overlapping region, then the final target distribution
T can be derived by combining the three random variables as:

T = T1 + T2 − Tol (19)

As discussed in Section (4), the cost of computing thetrue pmf of the number of
targets in the overlapping area is no less than the cost of computing thepmf of the
total number of targets within the whole network. We only include a certain number
of circles in the computation ofTol in P.C.Minus. As shown in Figure (6), we can
only includeC1 andC2 in the computation of thepmf of Tol. We can also include
C3, C8 and other circles in the computation. The more circles that are included, the
more accurate the result is and the more computation overhead. However, if we include
circles that are too far away from the overlapping area, the computation cost increases
much faster than the accuracy we gain. This is because the further circles are away from
each other, the less correlated they are. If the number of subareas in the overlapping
area is no larger thanMAX, Tol can be computed directly by using Algorithm (1).
Otherwise further partitioning on the overlapping graph isneeded thus P.C.Minus is
actually recursive. Based on these analysis, we develop thealgorithm of P.C.Minus as
shown in Algorithm (3). In essence, it first obtains thepmf of T1, T2, Tol of G1, G2

and the overlapping region respectively. Thepmf of total countT is calculated as in
Equation (19).

6.2. Partition Compensation Plus
The P.C.Minus algorithm reduces the duplicate count in the overlapping area and

gives a certain level of compensation to the final result. However, it doesn’t solve the
problem thatT1 andT2 are not independent. Moreover,Tol is also not independent
with T1 andT2. In order to improve accuracy further, we develop the P.C.Plus method
in this section.

We explain the algorithm of P.C.Plus using the example in Figure (6). We start with
a simple assumption that both ofC1 andC2 have detected one target. The number of
targets in the overlapping subareaM1 will have only two possibilities:N(M1) = 0
andN(M1) = 1.

We defineC′
1 = C1 − M1 and C′

2 = C2 − M1. C′
1 and C′

2 are both partial
circles excluding the overlapping subareaM1. For a fixedN(M1) = m1, the count
information ofC′

1 andC′
2 can be derived from the following equations:

N(C′
1) = N(C1)−N(M1)

N(C′
2) = N(C2)−N(M1). (20)

We further defineG′
1 = G1 − M1 andG′

2 = G2 − M1 whereG′
1 andG′

2 are
disjoint as shown in Figure (7) and the correspondingT ′

1 andT ′
2 are independent. We
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Algorithm 3 Partitioning Compensation Minus (P.C.Minus)
Input: G1, G2, Mol

Output: pmf of total target countsT
1: {Ci} ← minimum set of circles cover all overlapping subareas ofG1 andG2

2: Mol← sizeof{Ci}
3: if Mol < MAX then
4: Cq ← the nearest circle from overlapping subareas
5: Mol ← sizeof ({Ci}+ Cq)
6: while Mol < MAX do
7: {Ci} ← {Ci}+ Cq

8: end while
9: else

10: Compute thepmf of Tol by further partitioning
11: end if
12: Compute thepmf of T1 directly or by further partitioning
13: Compute thepmf of T2 directly or by further partitioning
14: Compute the finalpmf of T

whereT = T1 + T2 − Tol

useT ′
1(m1) andT ′

2(m1) to denote the counts inG′
1 andG′

2, respectively, under the
condition that there arem1 targets withinM1. Thepmf of T ′

1(m1) andT ′
2(m1) are

computed for each particularm1, using the count and size information ofC′
1, C′

2.
Similarly, T (m1) denotes the total count under the condition that there arem1 targets
within M1. Finally,T can be expressed as follows:

T = P (N(M1) = 0)(T ′
1(0) + T ′

2(0) + 0)

+P (N(M1) = 1)(T ′
1(1) + T ′

2(1) + 1) (21)

whereP (N(M1) = m1) denotes the probability that there arem1 targets in subarea
M1. From Equation (21) we could see that if we find thepmf of N(M1) we can
compute the finalpmf of T by enumerating all the possiblem1 values, computing
thepmf of T ′

1(m1) andT ′
2(m1) for eachm1 and then combining them with different

weightsP (N(M1) = m1).
In the general case when there arek overlapping subareasM1, M2, · · · , Mk, the

process is quite similar. Thepmf of {N(M1), N(M2), · · · , N(Mk)} is computed
first. Then, for a particular value{N(M1) = m1, N(M2) = m2, · · · , N(Mk) =
mk}, the count information of the overlapping circles are updated. T (m1, · · · , mk)
can then be computed by simply combining the two independentrandom variables
T ′

1(m1, · · · , mk) andT ′
2(m1, · · · , mk) plus the sum of{mk}. Thepmf of T can be

computed as the sum of theseT (m1, · · · , mk) values with different weight. The algo-
rithm for the general case is shown as Algorithm (4).

It’s not difficult to find that the P.C.Plus method has eliminated error caused by
both of the two factors. The only inaccuracy comes from the estimation of thepmf of
overlapping subareas. If we compute thepmf accurately, the complexity will be no
less than the complexity of computing the final distribution. Like in P.C.Minus, only a
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Figure 7: P.C.Plus Method

Algorithm 4 Partition Compensation Plus (P.C. Plus)
Input: G1, G2, Mk

Output: pmf of total target countsT
1: G′

1 = G1 −M1 −M2 − · · · −Mk,
G′

2 = G2 −M1 −M2 − · · · −Mk

2: Compute thepmf of {N(M1), · · · , N(Mk)}
3: for each{m1, · · · , mk} do
4: Update count information for the remainder of overlapping circles
5: end for
6: Compute thepmf of T ′

1 andT ′
2

7: Compute thepmf of T (m1, · · · , mk)
whereT (m1, · · · , mk) = T ′

1 + T ′
2 + m1 + · · ·+ mk

8: Compute the finalpmf:
T =

∑

P (N(M1) = m1, · · · , N(Mk) = mk)× T (m1, · · · , mk)

subset of circles are included in the computation of thepmf of {N(M1), · · · , N(Mk)}.
The P.C.Plus algorithm works well when the topology is simple and the intensityλ

is small, i.e., there are not too many overlapping subareas and the numbers of targets
within most circles are small. Otherwise the complexity will be too high because we
need to computeT ′

1 andT ′
2 multiple times for every possible value ofm1, m2, · · · , mk.

The times we repeat on computing thepmf of the same block is exponential with
respect to the number of overlapping subareas. It is also exponential with respect to
the average ofmk although we have already reduced the complexity to a polynomial
function ofM . However, P.C.Plus is perfect when it is used in a network with simple
topology and moderate intensity as shown in the evaluation.

7. Practical Issues

In this section we discuss some practical issues including the estimation of the
intensityλ (7.1) and the missing counting values (7.2).
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7.1. The Estimation ofλ

In previous sections, the intensityλ is a predetermined parameter in the calculation
of thepmf. However, in most of the real cases, the target distributionis unknown. As a
result,λ should be estimated based on the counting values reported bysensor nodes.

SupposeC1, C2, · · · , CN are the sensing areas ofN sensor nodes,N(C1), N(C2),
· · · , N(CN ) are their counting values andS(C1), S(C1), · · · , S(C1) are the corre-
sponding size of the sensing area. Then the estimatedλ based on theseN sensor nodes
can be computed as

λest =

∑N
i=1 N(Ci)

∑N

i=1 S(Ci)
(22)

where the numerator is the sum of all the counting values including duplicate counts
and the denominator is the sum of all the sensing areas including overlapping area.

In Section 8 we evaluate the performance of our algorithm with both trueλ and
estimatedλ.

7.2. The Estimation of Missing Counting Values

In reality, some of the counting values reported to the base station can be missing
due to node failures or encounter a long delay due to the unreliable nature of wireless
communication. In order to get a more accuratepmf of the total number of targets, it
is important to estimate the missing counting values instead of simply ignoring them.

Suppose the couting value of theith node whose sensing area isS(Ci) is not avail-
able. Then the counting valueN(Ci) can be estimated as

N(Ci) = λS(Ci) (23)

whereλ is the intensity of the targets’ Poisson distribution. Ifλ is unknown, the esti-
matedλest in Equation (22) can be used.

8. Evaluation

In this section we compare the performance of each algorithmin terms of both ac-
curacy and computation overhead in different scales of networks consisting of 10 to
1000 nodes. If not specified, the nodes are randomly generated into a 2D unlimited
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space. Targets are also randomly generated with equal probability everywhere. We
run all the simulations using Matlab on a computer with an Intel 2.13GHz Core2Duo
processor. In not specified, we assume the intensityλ is known and the target distribu-
tion is homogeneous Poisson. We also study the impact of practical issues including
unknownλ, non-uniform target distribution and missing counting values.

8.1. On Small-Scale Networks

In this experiment, we compare the performance of differentalgorithms in a small-
scale network, where ten sensor nodes are overlapped with each other with a total
number of subareasM = 20. The area of each sensing circle is set to 9 units and the
total coverage of these ten sensor nodes is 63 units. The truenumber of distinct targets
in the region is12 which corresponds toλ ≈ 0.2. The reason that we study this small-
scale scenario is to compare thepmf estimated by each algorithm with the truepmf
directly, which is impossible in large-scale networks since the truepmf of Equation (7)
is always too complex to compute.

Figure (8) shows a typical example of thepmf computation in a ten-node network
using four different methods: Direct Computation (D.C.) which corresponds to (i) the
Truepmf in the figure, (ii) Partition Method with P.C. Plus, (iii)Partition Method with
P.C. Minus and (iv) Partition Method without any compensation at all (P.O.). In this
network, the count information is{1,1,1,3,5,2,1,2,1,0}. The true number of targets is
12.

Compared with the Truepmf in Figure (8), P.C. Plus gives the most accurate result
that thepmf it computes is almost the same as the Truepmf. P.C. Minus is less accurate
than P.C. Plus, but is still a good estimation. Thepmf computed by P.O. has a horizontal
shift of about2 due to the fact that the targets within the overlapping area have been
counted twice. If we simply estimate the number of targets byadding the numbers
reported by each node, we will get17, which is worse than any of these methods.

We run similar simulations200 times. In each simulation,λ is fixed to 0.2 and
targets are randomly regenerated to make the count information different. The expected
values ofT (denoted asE(T )) are calculated from thepmf computed by the four
methods. The average absolute error ofE(T ) is compared in Figure (9). Note that the
true expected value ofT in each simulation is around12, from which we can see the
accuracy of P.C.Minus with a relative error of about 0.8% andP.C.Plus with a relative
error of 0.3%.

Figure (10) shows the average running time comparison (in log scale) between
P.C.Plus, P.C.Minus and direct computation for variousλs from 0.07 to 0.21. We don’t
include P.O. in the comparison here, because the complexityof P.O. is almost the same
as that of P.C. Minus. From Figure (10), we can see whenλ ≈ 0.2, the running time of
P.C. Plus and P.C. Minus are less than 1% of the running time ofdirect computation.
Compared with the results shown in Figure (8) and Figure (9) we can conclude that
P.C. Plus is the best choice in small-scale network.

8.2. On Large-Scale Linear Networks

We place 100 nodes linearly. We study linear networks in order to compare the
performance of both P.C.Plus and P.C.Minus, which is similar to the reason we study
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small-scale networks. The size of each sensing circle is still set to 9 and the total
coverage is around 600. We varyλ from 0.01 to 0.2 (The expected number of targets
in the region varies from 10 to 130). Since this is a large-scale network whereM is
around 200, the Truepmf is no longer available. As a result, the average expected value
of T is compared in the evaluation.

For eachλ, a fixed number of targets are generated randomly. Three partition
methods (P.C. Plus, P.C. Minus and P.O.) are used to compute the pmf of T . Then
E(T ) is calculated and recorded. We run similar simulations 200 times for eachλ
and compare the average ofE(T ) with the true number of targets generated in the
simulation.

Figure (11) shows the comparison of averageE(T ) computed by each algorithm.
It also shows the estimation by the naive method of simply adding up all the count
information which corresponds to the “UB” in the figure. Fromthe figure we can see
that in terms of average expected value ofT , both P.C. Plus and P.C. Minus give a very
good estimation with less than 2% relative error while P.O. has a higher expected value
as expected. However, P.O. is still much better than the naive method.

Figure (12) shows the comparison of average running time of P.C. Plus and P.C.
Minus. Again P.O. is not included in the figure since it almosthas the same running
time as P.C. Minus. From the figure we can see that as the intensity λ increases, P.C.
Plus has a greater increase in running time since it suffers too much from repeatedly
computing thepmf of the same block. The running time of P.C. Minus also increases
whenλ increases, but much slowly than P.C. Plus. From these observations we con-
clude that in large-scale linear networks, P.C. Plus is a good choice whenλ is moderate
while P.C. Minus is the best choice whenλ is large.

Figure (13) shows the running time of P.C. Minus for networksconsisting of differ-
ent numbers of sensor nodes from 100 to 1000 whenλ is fixed to 0.1. From the figure
we can see as the number of sensor nodes increases, the running time of P.C.Minus
increases linearly.

8.3. On 2-Dimensional Large-Scale Networks

We place 100 nodes randomly in a 2-Dimensional area. Since the topology this
time is too complex, P.C. Plus is too complex to use since it needs too many iterations.
As a result, only the performance of P.C. Minus and P.O. are compared here, using
similar simulations as described in (8.2). Figure (14) shows the comparison of average
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E(T ) whenλ varies from 0.01 to 0.25. It also shows the estimation of the naive method
UB. From the figure we can see that P.C. Minus gives a very good estimation with less
than 2% relative error in terms of expected value ofT . P.O. gives a higher expected
value as expected, but the estimation is still better than UB.

8.4. Impact of Estimatedλ

In (8.1), (8.2) and (8.3) we use a given intensityλ in the simulation in order to com-
pare the performance of each algorithm. However, the intensity information is some-
times not available. As a result,λ should be estimated using just the count information.
We use the method in (7.1) to estimate theλ of the target distribution. For example, in
the small scale network in (8.1), if the count information is{1,1,1,3,5,2,1,2,1,0} and
the size of each circle is 9,λ can be estimated asλ = 17

9×10 .
We repeat the simulation in (8.1) using estimatedλ in P.C. Plus, P.C. Minus and

P.O. while keeping an actualλ in the direct computation to obtain the result of the True
pmf. Figure (15) shows thepmf computation result in the same scenario as in (8.1),
where the count information is{1,1,1,3,5,2,1,2,1,0} and the true number of target is
12. Comparing Figure (15) with Figure (8) we can see thepmf computed by the three
algorithms are slightly changed, but P.C.Plus and P.C.Minus are still good approxima-
tions.

Figure (16) shows the average absolute error of the expectedvalue ofT in small-
scale network. From the figure we can see the average absoluteerror increases by less
than 0.1 when estimatedλ is not so accurate. However, the difference is negligible
sinceE(T ) is around12 and the relative error is still less than 2% for P.C.Plus and
P.C.Minus.

Figure (17) shows the absolute error ofE(T ) computed using an estimatedλ with
E(T ) computed using trueλ in large-scale linear network of the same setting in Figure
(11). Comparing the two figures we can see the inaccuracy ofλ causes a relative error
of less than 1% for both P.C.Plus and P.C.Minus.

Based on all comparisons we conclude that our algorithm can be easily applied to
the real scenarios even ifλ is not available.

8.5. Impact of Non-Uniform Distribution

In previous evaluation we have shown that the P.C. Plus and P.C.Minus can ap-
proximate thepmf of T very well, under the assumption that the targets are uniformly

21



0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.05

0.1

0.15

0.2

λ

A
bs

ol
ut

e 
E

rr
or

 o
f E

(T
)

 

 

P.C. Plus
P.C. Minus
P.O.

Figure 17: Average Absolute
Counting Error Vs. Estimatedλ

0.02 0.04 0.06 0.08 0.1 0.12
10

20

30

40

50

60

70

80

Average λ

A
ve

ra
ge

 E
(T

)

 

 

True Value
P.C. Plus
P.C. Minus
P.O.

Figure 18: Expected Count with
Non-uniform Distribution

0.05 0.1 0.15

20

40

60

80

100

120

λ

A
ve

ra
ge

 E
(T

)

 

 

P.C.Minus with 10% Error
P.C.Minus

Figure 19: The Impact of Sensing
Irregularity

0.05 0.1 0.15

20

40

60

80

100

120

λ

A
ve

ra
ge

 E
(T

)

 

 

P.C.Plus with 10% Error
P.C.Plus

Figure 20: The Impact of Sensing
Irregularity

8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Targets

P
ro

ba
bi

lit
y

 

 

With Estimation
True pmf
Without Estimation

Figure 21: An Example of Miss-
ing Value Estimation
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Figure 22: E(T ) vs. Missing
Counting Values

distributed. However, it’s not always the case that the targets are uniformly distributed
with the same intensityλ everywhere. In this subsection we study the case that tar-
gets are non-uniformly distributed, i.e.,λ in each subarea can be different. Again an
estimatedλ is used in the computation of each algorithm.

We study large-scale linear networks to compare the performance of all three par-
tition methods. We divide the 100-node linear network into 10 different sub-networks
each of which has a random intensityλ value when we distribute targets. In the simula-
tion,λ is estimated using the same technique as in (8.4). Figure (18) shows the simula-
tion results of averageE(T ) in this scenario. From the figure we can see P.C.Plus and
P.C.Minus are both robust with less than 2% relative error tothe change of distribution
models.

8.6. Impact of Sensing Irregularity

We study how sensing irregularity affects our design. It is worth noting that the
calculation of thepmf depends only on the size of the area, not the shape of the area,
regardless of which partitioning method is used. As a result, we focus on the inaccurate
area information caused by sensing irregularity. Figure (19) shows the simulation result
of P.C.Minus with up to 10% randomly generated perturbationin area information
using the same network settings as in Figure (11). Similar result can be obtained by
P.C.Plus, which is in Figure (20). From the figures we can see the inaccuracy in area
information only affects the expected target counts by lessthan 1%. Hence, our design
is insensitive to sensing irregularity.
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8.7. Impact of Missing Counting Values

We study the impact of missing counting values. First, we study the example of the
ten-node small-scale network in Figure (8) where the truepmf of the total number of
targets is available. In this network, the counting information is still{1,1,1,3,5,2,1,2,1,0}.
We suppose one of the counting values is missing. Figure (21)compares thepmf com-
puted by P.C.Plus with the truepmf, using or not using the estimation method as de-
scribed in (7.2). From this figure we can see with the estimation method, the result
matches the ground truth very well. If the estimation methodis not used, thepmf shifts
to the left since the counting values are simply ignored.

We study the performance of our estimation method in large-scale networks. We
vary the percentage of the sensor nodes whose counting values are for some reason
not available. Again, we use the same network setting as in Figure (11). For different
missing percentage from 5% to 40%, the average expected number of targets based on
the estimation method in (7.2) are shown in Figure (22). Fromthis figure we can see as
the missing percentage increases, the accuracy of thepmf computation becomes worse
as expected. This figure also shows the simulation result based on 10% missing values
without using our estimation method. It is not difficult to see that without the estimation
for missing counting values, the computation accuracy is even worse than that of the
network with 40% missing values using the estimation method. We conclude that the
estimation for missing counting values is very important inorder to get an accuratepmf
computation result.

9. Conclusion

The double-counting problem has been sufficiently addressed in the context of
communication, however, to our knowledge, there is no existing solution for double-
counting problem in sensing. This paper presents an efficient and accurate method to
estimate the number of targets within a monitored area with duplicate counts among
adjacent sensors.

Using a partition method, we significantly reduce the computation complexity of
calculating the probability mass function of total counts.Using several compensation
methods, we improve the accuracy with adjustable computational overhead. This work
is theoretical in nature, however, it can be practically applied since most sensor sys-
tems do not require precise counts, but reasonable accurateestimations. As a result,
statistical counting is a viable approach. To inspect whether our solution is practical
with respect to several assumptions we make, we evaluate thedesign with estimatedλ
values as well as non-uniform distributions. Results reveal the accuracy of statistical
counting degrades slightly when the trueλ is unknown and targets are non-uniformly
distributed. Through extensive simulation over various kinds of network settings, we
demonstrate that accurate statistical counting within1 ∼ 3% relative error can be ob-
tained with orders of magnitude reduction in computation, compared with the exhaus-
tive enumeration-based approach. Without loss of generality, we use Poisson distribu-
tion as a concrete example, we believe the ideas of partitionwith balanced minimal
cuts and accuracy compensation are applicable to other target distributions as well.
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