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Abstract—With the tremendous growth in stored data, the role
of database systems has become more significant than ever before.
Standard query workloads, such as the TPC-C and TPC-H
benchmark suites, are used to evaluate and tune the functionality
and performance of database systems. Running and configuring
benchmarks is a time consuming task. It requires substantial sta-
tistical expertise due to the enormous data size and large number
of queries in the workload. Subsetting can be used to reduce the
number of queries in a workload. An existing workload subsetting
technique selected queries based on similarities of the ranks of
the queries for low-level characteristics, such as cache miss rates,
or based on the execution time required in different computer
systems. However, many low-level characteristics are correlated,
produce similar behaviors. Also, raw execution time as a metric
is too diffuse to capture important performance bottlenecks.
Our goal is to select a subset of queries that can reproduce
the same bottlenecks in the system as the original workload.
In this paper, we propose a statistical approach for creating
a database query workload based on performance bottlenecks
(SCRAP). Our methodology takes a query workload and a set of
system configuration parameters as inputs, and selects a subset
of the queries from the workload based on the similarity of
performance bottlenecks. Experimental results using the TPC-
H benchmark and the PostgreSQL database system, show that
the reduced workload and the original workload produce similar
performance bottlenecks, and the subset accurately estimates the
total execution time.

I. INTRODUCTION

With the rapid expansion of the internet, data is growing at

an exponential rate. Businesses are building larger databases to

cope with this enormous data growth rate [1]. The performance

of a database is critical for the success of a business. The

performance of a database system is highly dependent on

the physical database design, some examples include, index

selection, materialized views selection, and data partition-

ing [1]–[3]. The performance of a database also depends on

the appropriate values of the configuration parameters.

Database administrators (DBAs) use query workloads to

tune the physical design of databases to find the proper values

of the configuration parameters. The TPC-C and TPC-H are

the examples of workloads which are used to evaluate and tune

a database system. One of the major problems with database

benchmarking is the difficulty of setting database parameters

and database layout which requires a complex skill set [4].

The difficulty of using benchmarks is the massive data size

and the large number of queries in the workload. The TPC-H

benchmark has 22 read-only queries and two update queries.

The TPC-H benchmark database size varies from 1GB to

100TB. Many of the queries, for example, Q1, Q9, and Q22,

require long time to execute. Also the execution time varies

based on the database size and the existence of indexes. It is

not unreasonable that, to reflect current growth of data, we

have to increase the size of the TPC-H benchmark to 10EB

(exa bytes).

To finish the evaluation and tuning within a feasible time,

DBAs use subsetting to select a representative subset of the

workload which reduces the execution time but preserves the

fidelity of the original workload. The subset is selected based

on the high level knowledge of the operational behaviors

of the queries from the query execution plan, for example,

either join bound or scan bound, or based on similarities be-

tween the ranking of different low-level metrics and execution

time in different computer system. Two queries can produce

similar high-level run-time behavior but can have different

performance bottlenecks in the system. Moreover, many low-

level metrics are not independent. Which is compounded

with the problem of the execution time in different computer

systems being a very coarse metric to capture performance

bottlenecks of the system. Using a subset based on inappro-

priate metrics, can lead to a wrong conclusion of the systems

performance bottlenecks. For example, subset workload may

ignore a parameter which has a significant impact on the

system performance. Misdirected tuning efforts increase total

cost of ownership of a database system [5]–[8]. To address

these problems, a sound methodology which can help DBAs

to find an appropriate subset of the query workload to correctly

identify the system performance bottlenecks parameters is

needed.

Our goal in this work is to find a subset of the work-

load based on the performance bottlenecks of the constituent

queries. To achieve this goal, we propose a statistical approach

for creating a compact representational query workload from

an original workload for a database system based on perfor-



mance bottlenecks (SCRAP). In particular, SCRAP addresses

the following problem: Given a DBMS, a set of configuration

parameters, a range of values for all parameters, and a query

workload, find a subset of the workload which can produce

similar performance bottlenecks as the original workload. The

Workload is modeled as a set of SQL statements, for example,

SELECT, UPDATE, DELETE, INSERT, and CREATE VIEW

statements. A workload can be a set of benchmark queries, for

example, TPC queries, or can be a set of data manipulation

language (DML) statements collected over a fixed amount of

time using profiling tools.

SCRAP uses a design of experiments based PLACKETT

& BURMAN (P&B) design methodology [9] to estimate the

effect of a parameter on the database system performance. The

main idea is to conduct a set of selected experiments based

on a specification such that these experiments will provide a

sampling of the entire search space. The parameter values are

set only to the maximum and minimum values. Stimulating

the system with extreme values for nondecreasing monotonic

input will provoke the maximum response for each input.

Another assumption we make here is that only single and two-

factor parameters interactions are significant. Based on these

assumptions, SCRAP employs P&B design which reduces the

search space from exponential to linear. For each query, the

effects of all parameters form a vector of effects. Based on

the Euclidean distance among these vectors, SCRAP clusters

similar queries in the same group. Finally, from each group,

one query is selected to form the subset of the query workload.

SCRAP will help DBAs of all knowledge levels to identify

performance bottlenecks in the system based on the statistical

data. Using the TPC-H benchmark [10] and the PostgreSQL

database system [11], we demonstrate that SCRAP selects a

subset of the workload, which produces performance bottle-

necks similar to the complete workload. Our contributions in

this paper are:

• A methodology for clustering database queries. The

queries of a database workload are clustered based on the

similarities among their system performance bottlenecks

parameters.

• Providing experimental evidence. Our experimental re-

sults show that the performance bottlenecks produced

by the reduced workload are similar to the bottlenecks

produced by the original workload.

The remainder of the paper is organized as follows: Sec-

tion II describes the related work; Section III describes our ex-

perimental methodology and a brief overview of the statistical

P&B design; Section IV describes SCRAP in detail; Section V

describes the experimental setup; Section VI explains our

results; finally, Section VII concludes the discussion.

II. RELATED WORK

Simplified database benchmarks have been previously used

for analyzing the efficiency of the processor and memory

configurations [4], [12]–[14]. The reduced benchmarks have

been shown to produce similar results with a significant

reduction in simulation time [14]–[16]. The existing work on

reducing database workload can be classified into two cate-

gories: scaling down benchmark size and subsetting. SCRAP

belongs to the second category.

Scaling down benchmark size: Dbmbench identifies that a

benchmark can be reduced along three dimensions: database

size, workload complexity, and concurrency level [13]. Simul-

taneously scaling along these three dimensions, Dbmbench

produces µTPC-H and µTPC-C that more than 95% ac-

curately captures the memory and processor performance of

the online transaction processing and decision support systems

workloads, respectively.

Subsetting: Studies in [14]–[16] use subsetting. They do not

provide analysis of how the subsets are selected. Subsetting

has been applied to the the TPC-H query workload [17], based

on the Principal Component Analysis (PCA) of low-level

performance metrics such as instruction count, cache miss rate.

The drawback of this approach is that many low-level metrics

are correlated and measure similar characteristics. Another

group selected a subset of queries based on the similarity

between the ranking of execution times of different computer

systems for the queries of a workload [18]. Nonetheless,

ranking based on the execution time in different computers

systems is too diffuse to capture the performance bottlenecks.

Moreover, this method cannot be applied for a single computer

system. In contrast, SCRAP is a more fine-grained and clusters

queries based on the similarity between the performance

bottlenecks parameters for a single system.

SCRAP uses the P&B design methodology to estimate

the effect of a configuration parameter on database system

performance. Similar approach is used to select a subset

of microarchitecture benchmarks [19]. Our novelties in this

paper are the following: applying P&B method to a database

system, as opposed to P&B applied in context of hardware,

but we have applied it to software applications, showing how

to cluster queries instead of clustering the whole benchmark

programs, finding Euclidean distance using three different

methods and showing all the methods produce almost similar

results. Moreover, database queries have different behaviors

from the microarchitecture benchmarks. Query signatures like

TPC-H have input parameters where the input values are

selected from a range of values. Depending on value selection,

query execution plans differ drastically from each other. To

find an accurate representation of the workload, DBAs have to

consider multiple values for the query signature input param-

eters. This is very different from benchmark programs, where

the benchmark programs behaviors are reasonably consistent.

III. DESIGN OF EXPERIMENTS BASED STRATEGY

SCRAP uses similarity between the effects of configuration

parameters on the database system performance to cluster

queries of a workload. To estimate the effect a parameter,

SCRAP employs a design of experiments based approach. The

main goal of design of experiments is to gather maximum

information about the parameters of a system with minimum

amount of time and effort [20]. A full factorial design, for

example ANOVA, can be used to estimate the effects of



all main parameters and all of their interactions. It requires

an exponential number of experiments. In a database, there

are hundreds of configuration parameters and each parameter

can assume multiple values. For example, PostgreSQL has

approximately 100 configuration parameters and every param-

eter can assume multiple possible values. If we assume that

every parameter has only two possible values, in this case

for applying a full factorial design methodology, we need to

conduct 2100 experiments, which is not feasible in terms of

time and effort.

In order to reduce number of experiments from exponential

to linear, we make two assumptions. First assumption is

that stimulating system with monotonic input parameter with

extreme values will provoke maximum response for each input

parameter. Second assumption is that only single factor and

two-factor interactions are important to be considered. Based

on these two assumptions, SCRAP employs a two-level facto-

rial design named the P&B design with foldover [21], which

accurately quantifies main effects and two-factor interactions

using only a linear number of experiments.

To apply the P&B design with foldover to estimate the

effects of N configuration parameters for a database query, we

have to conduct 2X experiments, where X is the next multiple

of four greater than N . Each experiment is conducted based

on a specification given by the P&B design matrix, which has

N columns and 2X rows. The entry [i,j] in the design matrix

corresponds to the value to be set for the j-th parameter of

the i-th experiment. Each entry in the matrix is either “+1”

or “-1”. “+1” means high value and “-1” means low value.

The first row of the design matrix is selected from [9], based

on the value of X . Next X − 1 rows are generated by right-

cyclic shifting of the immediate preceding row. In the X-th

row, each entry is set to “-1”. The lower X rows are generated

by reversing the sign of the entries of the upper X rows.

For each experiment, the execution time of a query is

recorded. The effect of the j-th parameter is calculated by

multiplying the [i,j] entry value with the query execution time

for i-th experiments and summing all the effects across all

2X rows. The magnitude of the summed value of execution

times gives an estimation of the effect of a parameter on the

database performance for the corresponding query. The effects

of all configuration parameters form a vector of effects for a

query. The similarities between the effect vectors are used to

cluster the queries of a database workload.

IV. METHODOLOGY

This section describes our methodology in detail. SCRAP

consists of four phases. The first phase estimates the effects

of all configuration parameters for the constituting queries of

a workload, using the P&B design methodology. The second

phase determines whether a query is sensitive to tuning or not,

and forms a cluster consisting of all tuning insensitive queries.

The third phase clusters the tuning sensitive queries based

on similarities among performance bottlenecks. The fourth

phase selects a query from each cluster to form a subset

of the original query workload. The outline of the SCRAP

Algorithm 1 The Outline of the SCRAP Algorithm for

Finding a Subset of the Query Workload

1: Input: a query workload, a set of parameters, and their high and
low values.

2: Output: a subset of the query workload which produces same
performance bottlenecks as the input workload.

3: Estimate the effects of all parameters for each query of the
workload.

4: Determine whether a query is sensitive to parameter tuning or
not.

5: Cluster the sensitive queries.
6: Select a query from each cluster and insensitive query group to

form the subset workload.

methodology is given in Algorithm 1. Each phase is discussed

in detail in the following subsections. At end of this section,

we discuss how to select input parameters and query workload

to improve the accuracy of the SCRAP.

A. Effect Estimation

In the first phase of SCRAP, a design of experiments based

P&B design with foldover methodology to estimate the effect

of each parameter. Based on the number of input parameters,

the P&B design matrix is formed. Each row of the design

matrix corresponds to one experiment and column values

in that row specify the values that need to be set for the

parameters for the corresponding experiment.

For each query of the workload, we conduct experiments

according to P&B design matrix specification and record

the execution time of the query. The net effect a parameter

is estimated by multiplying query execution time with the

corresponding “+1” or “-1”, summing across all rows, and

finally taking the magnitude of the summation. The relative

magnitude of the effect can be used to rank the parameters

based on their impact on the database system performance.

B. Insensitive Query Identification

In a query workload, there are some queries for which

the execution time varies very small amount with the change

in parameters values. We define them as tuning insensitive

queries. If the all execution times of a query are virtually

equivalent for all the experiments conducted according to the

P&B design matrix specification, it means that the correspond-

ing query’s performance is not affected by parameter value

changes. All insensitive queries of a workload are clustered

in a group. Coefficient of Variation (COV) of the execution

times of a query is used to determine a query’s sensitivity to

parameter value change. The threshold of the COV should be

selected based on the application expected behavior. Typically,

a threshold of 0.05 for the COV is a good estimate.

C. Clustering Queries

In this phase, the tuning sensitive queries are clustered

based on the similarities among the estimated effects of the

parameters. This is done in three steps. First, the estimated

P&B effects of the all configuration parameters for the sensi-

tive queries are either normalized or ranked to from a vector



of performance bottlenecks. Second, a similarity metric is

defined. Third, a threshold of the similarity metric is used

to cluster the queries.

1) Vector Formation: The effects of all parameters for a

query is either normalized or ranked to form a vector of

performance bottlenecks. These vectors are used to find similar

queries. The vector can be formed in different ways. In this

paper, we try the following three methods.

The first method is the normalizing a effect with respect

to the sum of effects. For example, we have four parameters

and a query has the P&B effects 142, 12, 182, and 145

for these parameters. The sum of the effects is 481. The

normalized effects with respect to sum effects are 142/481,

12/481, 182/481, and 145/481, or 0.3, 0.03, 0.38, and 0.3,

respectively. So the vector will be < 0.3, 0.03, 0.38, 0.3 >.

The second method is the normalizing a effect with respect

to the maximum effect. For example, the maximum effect for

the query in the earlier example is 182. Normalizing with

respect to maximum effect gives us the effects of 142/182,

12/182,182/182, and 145/182, or 0.78, 0.07, 1.0, and 0.80,

respectively. By normalizing the effect with respect to the

maximum effect, we can estimate how each parameter affects

performance compared to the maximum effect for a query.

Here, the vector is < 0.78, 0.07, 1.0, 0.80 >.

The third method is to rank the queries according to

relative magnitude the effects. A simple approach is to sort the

effects descending order of their magnitude. However, if there

are some effects which are almost similar, ranking method

inaccurately assigns different ranks to them. Often several of

the parameters are close enough in sensitivity that the accuracy

of P & B limits the ability to select which rank is greater,

the queries with similar sensitives are grouped to remove

this difficulty. To overcome this problem, we normalize the

sensitivity values with respect to the maximum effect, round

the normalized effect up to the first decimal point, and assign

all parameters with the same normalized effects the same

rank. The choice of rounding up to the first decimal digit is

selected to ensure the queries that are less then one order

of magnitude of the maximum query are assigned to ranking

group. The ranking assigned in a group is the largest ranking of

a parameter in that group. For the example query normalized

with respect to the maximum effect gives 0.8, 0.1, 1.0, and

0.8 and and the corresponding vector is < 3, 4, 1, 3 >.

2) Metric Selection: SCRAP uses the Euclidean distance

between two queries to determine clustering. The Euclidean

distance between the normalized P&B effects vectors (or rank

vectors) for each query is used for finding the similarities be-

tween queries. The smaller the Euclidean distance is, the more

similar the corresponding queries are. If there is N parameters

and X = [x1, x2, . . . , xN ], and Y = [y1, y2, . . . , yN ] repre-

sents the effect or the ranked vector for query QX and QY ,

respectively. The Euclidean distance between them is defined

as: [(x1 − y1)
2

+ (x2 − y2)
2

+ · · · + (xN − yN )
2
]
1/2

.

3) Cluster Formation: A dendrogram is used to graphically

illustrate clusters produced by a clustering algorithm. The Eu-

clidean distance is calculated between each query, and placed

into a distance matrix. The groups with the smallest Euclidean

distances are grouped first, and the grouping continues until

there is only one cluster left. Based on threshold value, the

dendrogram shows which queries will form a cluster. To get

a more accurate representation, we can use a tighter (smaller)

threshold. If we are more concerned of reducing the run

time, we can choose a large threshold value. Several statistical

software packages can generate the clustering diagrams. For

example, we can use R [22], statistiXL [23], and SPSS [24].

D. Query Subset Selection

Once all the clusters among the queries are identified,

one query is selected from each cluster to form the subset

workload. A query can be select based on different criteria.

Execution time: The first method is to select a query based

on the execution time. We can select the query with the lowest

execution time. This helps to reduce the execution time of the

subset workload. However, it can lead to a poor representation

of the workload. Another approach is to select the query with

the largest execution time among the queries of a cluster.

This leads to a better representation of the workload, but

increase the execution time of the subset workload. We can

also select a query that has execution time close to the average

execution time of the all queries of the cluster it belongs to.

This approach has the advantage of representing all queries

reasonably.

Impact on workload ranking:The second method is to select

a query based on its impact on the workload ranking. We can

select a query from a cluster which results in the smallest

change in the overall workload ranking. This method can

potentially results in preserving the bottlenecks within the

workload. We can also select the query which has the smallest

Euclidean distance to the other queries of that cluster. This

method selects the query which represents the queries of the

cluster in the best manner.

E. Selection of Workload and Parameters

The accuracy of the subset produced by SCRAP depends

on workload and input parameters selected for identifying

performance bottlenecks. In this section, we discuss how to

select a workload and a set of input parameters.

Selection of a workload: Selection of a workload can be

done by selecting a set of queries from a benchmark, or by

collecting queries over a period of time using profile tools

when the database system is running. A larger workload has a

higher probability of capturing the important bottlenecks of the

system, but at the cost of the extra time required for collecting

data for the clustering. A database benchmark defines a work-

load in terms of query signatures, which are descriptions of

the information which is needed from a database using specific

structured query language (SQL) operators in an abstract form,

allowing an application to specify the specific values. The

specification for selecting input values of the queries is given

in benchmark documentation. For example, SELECT name

FROM student table WHERE gpa > X, is a query signature

which gives the list of the students having GPA greater than



CPU Two Intel XEON 2.0GHz w/ HT

Memory 4 X 512MB DDR DIMM

HDD Hitachi Ultrastar, 73.5 G, 10,000 RPM

TABLE I
MACHINE DESCRIPTION

X , where X can be chosen within a range according to

benchmark specification. How a query is executed inside a

database depends on the values of the input parameters and

availability of indexes on the input parameters. Although a

query signature is the same, based on the selection of the

input parameter values either sequential scan or index scan

may be used by internal query executor. To select a workload

based on a set of query signatures, multiple values of the input

parameter should be used to accurately represent actual query

workload. This issue is discussed further in detail in Section

VI-B.

Selection of parameters: SCRAP produces the bottlenecks

of the system with respect to the system parameters based on

the impact of the parameters in system performance. All the

parameters which are relevant for the database system under

consideration must be included for finding the bottlenecks.

Each query of workload is used to find the bottlenecks.

Bottlenecks are used to cluster the queries. In order for the

clustering to be accurate, the collection of the parameters

needs to reflect all possible performance bottlenecks of the

system. It is a good idea not to include the parameters which

are not relevant. Irrelevant parameters increase the chance of

finding inaccurate regression results due to aliasing [25], [26].

It is possible to use P&B design method to determine the

relevant parameters, but we are not addressing this issue in

this paper.

V. EXPERIMENTAL SETUP

For collecting experimental data, we use PostgreSQL 8.2

database system and the TPC-H benchmark. The description of

the machine used for running experiments is given in Table I.

The TPC-H benchmark models a decision support system

(DSS) [10]. For this experiment, the TPC-H database is pop-

ulated by the data generation program dbgen using a scaling

factor (SF) of one. A scaling factor of one corresponds to

data size of 1GB. The TPC-H workload consists of 22 read

only queries and two updates queries. For demonstration, we

use only read-only queries. Queries are generated by using

the query generation program qgen. We modify all 22 queries

by adding EXPLAIN ANALYZE so that every query generates

a query execution plan and total execution time, but does not

generate any output results.

The PostgreSQL8.2 has approximately 100 configuration

parameters [11]. For this demonstration, we only use those

configuration parameters that are relevant to the read-only

queries. Table II gives the high and low values for all 15 con-

figuration parameter used in this demonstration. The values are

selected according to recommendations made in the Postgres

Parameter High Low
Value Value

effective cache size (pages) 81920 8192

maintenance work mem (pages) 8192 1024

shared buffers (pages) 16384 1024

temp buffers (pages) 8192 1024

work mem (KB) 8192 1024

random page cost 2.0 5.0
(Relative to single sequential page cost)

cpu tuple cost 0.01 0.03
(Relative to single sequential page cost)

cpu index tuple cost 0.001 0.003
(Relative to single sequential page cost)

cpu operator cost 0.0025 0.0075
(Relative to single sequential page cost)

Checkpoint timeout (seconds) 1800 60

deadlock timeout (milliseconds) 60000 100

max connections 5 100

fsync true false

geqo true false

stats start collector false true

TABLE II
THE POSTGRESQL8.2 CONFIGURATION PARAMETERS AND THEIR

VALUES USED. EACH PAGE SIZE IS 8KB.

documentation [11]. The values of each parameter are chosen

in a range such that it will act as monotonic parameter.

Although, fsync and checkpoint_timeout are not

relevant for the read-only queries, but they are included to

verify that our method is working correctly. The effect of these

two parameters on the PostgreSQL performance will be very

insignificant for the read-only queries. If their rankings/effects

become low compared to other parameters, then it will give

an indication that SCRAP identifies performance bottlenecks

of the system in the correct order.

VI. RESULTS

The P&B effects of all configuration parameters are calcu-

lated using the P&B design with foldover. The resulting effects

are shown in Table IV. In order to identify the insensitive

parameters, a coefficient of variation(COV) of 0.05 is selected

as the threshold. This value was selected based upon the query

results. Through observation, queries with a COV less than

0.05 improperly identified bottlenecks, selecting parameters

which have no effect upon performance, the variation of the

parameter sensitives was often too low to accurately rank the

parameters. The resulting cluster is shown in Table III.

Once the insensitive queries are removed from the workload

the effects are normalized. Normalized to the sum of effects

is shown in Table V, normalized to maximum effect is shown

in Table VI, and the ranking is shown in Table VII.

To cluster the workload, a threshold for the Euclidean

distance must be selected. In this analysis, the threshold is

gradually incremented, and the subset workload ranking is

compared of the workload ranking. The largest threshold

which maintains a representation to the full workload ranking

is selected. Once the queries are clustered, a query from that

cluster is chosen to represent the cluster. For this experiment,



Query COV max min
execution execution

time time

Q1 0.47 550132 189345

Q2 0.93 669063 45870

Q3 0.11 156749 101811

Q5 0.83 30.67 1.21

Q8 0.14 184459 108664

Q9 0.85 561527 71895

Q13 0.16 70561 44879

Q16 0.11 22017 15848

Q19 0.06 72690 63733

Q20 1.41 2140531 60710

Q21 0.22 1692037 831455

Q4 0.01 0.97 0.93

Q6 0.01 0.50 0.48

Q7 0.02 113730 105025

Q10 0.02 1.63 1.51

Q11 0.02 6372 5801

Q12 0.03 1.10 0.98

Q14 0.02 1.03 0.94

Q15 0.01 1.19 1.14

Q17 0.04 82384 74717

Q18 0.02 149872 136601

Q22 0.03 2629 2323

TABLE III
COEFFICIENT OF VARIATION (COV), MAXIMUM, MINIMUM OF

EXECUTION TIMES FOR EACH QUERY. QUERIES WITH COV LESS

THAN 0.05 ARE CONSIDERED AS INSENSITIVE TO PARAMETER

VALUE CHANGES. THESE QUERIES ARE GROUPED TOGETHER IN

THE BOTTOM HALF OF THE TABLE.

the query which results in the smallest impact upon the

workload ranking is selected, under the assumption that the

workload ranking would be best represented if it was as close

as possible to the full workload. This method is performed by

incrementally clustering a query, testing the clustering options,

and selecting the query which has the lowest impact upon

overall ranking.

In the rest of this section, we will compare the three methods

previously discussed in Section IV-C. First, the bottlenecks

produced by the subset are evaluated by different clustering

techniques against the original workload bottlenecks. Second,

we use the subset to predict the execution time of the full

workload. Finally, this section ends with a comparison be-

tween two workloads based upon the same query signature.

A. Clustering Validation

In this section, we estimate the quality of the represen-

tational workload produced by SCRAP. We compare the

clustering due to the Euclidean distance of vectors produced

by three different methods: normalization with respect to the

sum of effects, normalization with respect to max effects, and

ranking. In addition to these three methods, we form clustering

by randomly selecting queries to verify the clustering has a

dependence upon the clusters chosen. To validate the repre-

sentational workload, two additional analysis are performed.

The P&B design will be applied to a workload and the

representational workload. The full workload ranking will then

be compared to the representational workload. Next, using the

Fig. 1. DENDROGRAM OF THE QUERIES BASED ON SIMILARITIES

AMONG EUCLIDEAN DISTANCE OF VECTORS FORMED BY NOR-
MALIZED EFFECTS WITH RESPECT TO THE SUM OF EFFECTS. CIR-
CLE DENOTES CLUSTER AND VERTICAL LINE DENOTES THRESH-
OLD.

representational workload, the overall execution time of the

full workload is estimated.

Figures 1, 2, and 3 show the dendrograms of queries based

on the Euclidean distance between the vectors formed by

normalizing with respect to the sum of effects, normalized

with respect to maximum effects, and ranking, respectively.

Initially a threshold is selected in the dendrogram and gradu-

ally incremented until the estimated workload ranking deviates

from the complete workload ranking. In the dendrograms, y-

axis represents the queries and x-axis represents the similarity

among queries based on Euclidean distance. For sensitive

queries in Figure 1, there are two clusters {Q3, Q8, Q9, Q20}
and {Q2, Q13} based on threshold Euclidean distance of 15.

In Figure 2, there are three clusters {Q1, Q8, Q16}, {Q19,

Q21}, and {Q2, Q13} based on a threshold Euclidean distance

of 1.2. In Figure 3, there are three clusters {Q2, Q13, Q19}
and {Q3, Q8} based a threshold Euclidean distance of 17.

Normalizing with respect to both the sum and maximum

clustered four queries, while the ranking method was only

able to cluster three queries before the ranking was adversely

effected.

To validate the workload bottlenecks, P&B was run upon

the entire workload, a subset of these queries was used to

estimate the complete workload’s ranking. If the representa-

tional workload displays the same ranking as the unclustered

workload, the bottleneck of the system is represented properly;

an indicator that the ranking method was performing correctly.

A random clustering was used to test the value of clustering

by bottlenecks.

To rank the workload, the parameter sensitivities are

summed for each query. The summed parameter are then

ranked. When a subset of queries is used, weighting is needed.

If a query represents M number of queries, it is given a

weighting of M , to ensure that the cluster is still given

equal representation for the full workload. When queries are

clustered, the query that is selected to remain is assigned a



Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21

Checkpoint timeout 63139 28711 11325 57.130 8910 602068 4130 1590 20594 2388937 207883

deadlock timeout 11923 5582 16801 1.004 64500 54715 5214 1546 21605 2356317 100185

fsync 59809 13556 20707 0.705 4534 274194 3424 1329 22334 2399193 31385

max connections 97626 68939 34326 56.675 77876 628112 3678 1792 16788 2364189 117188

shared buffers 162386 2459527 25049 1.696 34787 770430 132957 5997 139032 2450275 2632182

stats start collector 71420 28909 22561 1.142 25181 328104 4278 2122 17883 2376664 179365

cpu index tuple cost 10651 103431 11380 0.808 42106 149179 2460 1697 16344 2381224 657371

cpu operator cost 81071 130508 57606 56.299 46111 349389 480 1714 41086 3664134 15003

cpu tuple cost 58019 48172 31252 56.356 74791 48262 5808 1836 50802 2370930 398057

effective cache size 75846 6874535 43373 56.156 11954 304263 238544 979 27854 2407511 627016

geqo 3858 30488 56499 56.704 82480 529011 853 1679 18327 2377343 141108

maintenance work mem 75774 74429 26012 0.747 127031 780976 1351 1048 10422 2397854 413680

random page cost 8693 46948 17519 397.908 43699 1694532 3447 2145 6969 1127905 490531

temp buffers 101473 42060 45193 0.861 31217 571133 2713 1238 11522 2391281 240543

work mem 5523703 13295 183039 56.548 359544 142035 24839 63760 3027 2370169 310306

TABLE IV
THE P&B EFFECTS OF ALL CONFIGURATION PARAMETERS FOR TPC-H QUERIES WHICH ARE SENSITIVE TO PARAMETER VALUE

CHANGES.

Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21

Checkpoint timeout 0.99 0.29 1.88 7.13 0.86 8.33 0.95 1.76 4.85 6.67 3.17

deadlock timeout 0.19 0.06 2.79 0.13 6.23 0.76 1.20 1.71 5.09 6.58 1.53

fsync 0.93 0.14 3.44 0.09 0.44 3.79 0.79 1.47 5.26 6.70 0.48

max connections 1.52 0.69 5.70 7.08 7.53 8.69 0.85 1.98 3.95 6.60 1.79

shared buffers 2.54 24.67 4.16 0.21 3.36 10.66 30.62 6.63 32.75 6.84 40.11

stats start collector 1.11 0.29 3.74 0.14 2.43 4.54 0.99 2.35 4.21 6.63 2.73

cpu index tuple cost 0.17 1.04 1.89 0.10 4.07 2.06 0.57 1.88 3.85 6.65 10.02

cpu operator cost 1.27 1.31 9.56 7.03 4.46 4.83 0.11 1.89 9.68 10.23 0.23

cpu tuple cost 0.91 0.48 5.19 7.04 7.23 0.67 1.34 2.03 11.96 6.62 6.07

effective cache size 1.18 68.96 7.20 7.01 1.16 4.21 54.94 1.08 6.56 6.72 9.56

geqo 0.06 0.31 9.38 7.08 7.97 7.32 0.20 1.86 4.32 6.64 2.15

maintenance work mem 1.18 0.75 4.32 0.09 12.28 10.81 0.31 1.16 2.45 6.69 6.30

random page cost 0.14 0.47 2.91 49.69 4.22 23.45 0.79 2.37 1.64 3.15 7.48

temp buffers 1.58 0.42 7.50 0.11 3.02 7.90 0.62 1.37 2.71 6.68 3.67

work mem 86.24 0.13 30.37 7.06 34.75 1.97 5.72 70.47 0.71 6.62 4.73

TABLE V
THE P&B EFFECTS OF ALL CONFIGURATION PARAMETERS NORMALIZED TO THE SUM OF EFFECTS.

weighting. Calculating the estimated ranking is accomplished

by multiplying the query’s sensitivity by the weighting, and

summing the weighted effects.

The representational workload ranking is compared to the

workload in Table VIII. In all three methods of forming

clusters, the primary bottlenecks remain the same. Both of

the normalizing techniques had a consistent ranking, the

main eight bottlenecks remain unchanged with four queries

clustered. The ranking method has a fairly consistent workload

ranking, it maintained the top six parameters when the excep-

tion of swapping the fourth/fifth parameter with only three

queries are clustered.

The randomly clustered queries have a poor representation

of the full workload according to the result in Table IX. The

top five parameters maintained their ranking, but the order of

the ranking has shifted when only two queries are clustered.

It is apparent that SCRAP’s clustering is able to cluster four

queries without significantly changing the query ranking.

The execution time of the entire workload is estimated using

the subsets produced by three different clustering methods.

In order to validate that the queries are representative of the

Rank Before clustering After clustering

1 work mem work mem

2 effective cache size shared buffers

3 shared buffers effective cache size

4 cpu operator cost random page cost

5 random page cost cpu operator cost

6 temp buffers geqo

7 maintenance work mem temp buffers

8 deadlock timeout deadlock timeout

9 geqo maintenance work mem

10 cpu tuple cost cpu tuple cost

11 checkpoint timeout checkpoint timeout

12 fsync max connections

13 cpu index tuple cost cpu index tuple cost

14 max connections fsync

15 stats start collector stats start collector

TABLE IX
WORKLOAD RANKING FOR RANDOMLY SELECTED CLUSTERS.

entire workload, the subset of the workload is used to predict

the workload under the default case, as well as a tuned case

using a new set of values for three parameters. The values are

given in Table X.



Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21

Checkpoint timeout 0.008 0.001 0.011 0.143 0.010 0.799 0.000 0.047 0.009 0.595 0.046

deadlock timeout 0.004 0.004 0.197 0.003 0.160 0.770 0.015 0.034 0.006 0.594 0.127

fsync 0.004 0.003 0.047 0.004 0.018 0.884 0.006 0.032 0.009 0.605 0.047

max connections 0.007 0.017 0.244 0.141 0.173 0.301 0.007 0.042 0.002 0.603 0.069

shared buffers 0.010 0.345 0.018 0.006 0.072 0.267 0.573 0.114 1.000 0.636 1.000

stats start collector 0.004 0.013 0.093 0.005 0.015 0.272 0.017 0.052 0.003 0.599 0.082

cpu index tuple cost 0.008 0.016 0.175 0.004 0.095 0.466 0.011 0.037 0.002 0.598 0.213

cpu operator cost 0.004 0.032 0.383 0.141 0.073 1.000 0.021 0.035 0.009 1.000 0.018

cpu tuple cost 0.005 0.012 0.141 0.140 0.136 0.501 0.010 0.038 0.008 0.599 0.128

effective cache size 0.003 1.000 0.282 0.139 0.033 0.980 1.000 0.022 0.001 0.604 0.142

geqo 0.003 0.014 0.411 0.142 0.221 0.378 0.005 0.041 0.006 0.599 0.073

maintenance work mem 0.009 0.017 0.326 0.004 0.288 0.387 0.002 0.033 0.012 0.615 0.232

random page cost 0.011 0.001 0.173 1.000 0.143 0.809 0.010 0.057 0.003 0.206 0.046

temp buffers 0.015 0.004 0.280 0.004 0.056 0.896 0.007 0.030 0.002 0.603 0.059

work mem 1.000 0.011 1.000 0.141 1.000 0.465 0.097 1.000 0.001 0.605 0.022

TABLE VI
THE P&B EFFECTS OF ALL CONFIGURATION PARAMETERS NORMALIZED TO THE MAXIMUM EFFECT.

Parameter Q1 Q2 Q3 Q5 Q8 Q9 Q13 Q16 Q19 Q20 Q21

Checkpoint timeout 15 2 14 15 11 3 2 2 1 4 1

deadlock timeout 1 15 1 8 1 14 12 1 15 14 15

fsync 15 1 7 8 15 11 12 15 11 4 5

max connections 15 15 7 15 2 3 15 15 13 4 5

shared buffers 15 15 14 8 6 7 1 15 11 14 15

stats start collector 15 15 7 8 11 11 15 15 3 1 15

cpu index tuple cost 15 15 7 8 6 15 15 15 3 14 8

cpu operator cost 15 15 2 8 6 7 12 15 11 14 15

cpu tuple cost 15 15 14 15 11 14 12 15 11 14 5

effective cache size 15 15 14 1 15 1 12 15 14 15 8

geqo 15 15 14 15 6 14 12 15 11 14 15

maintenance work mem 15 15 14 15 11 11 3 15 11 14 8

random page cost 15 15 15 8 15 4 12 15 11 14 5

temp buffers 15 15 7 15 11 7 12 15 12 14 15

work mem 15 15 14 15 15 11 12 15 11 14 15

TABLE VII
RANKING OF THE ALL CONFIGURATION PARAMETERS USING ROUNDING NORMALIZED EFFECT WITH RESPECT TO MAXIMUM EFFECT UP

TO THE FIRST DECIMAL POINT METHOD.

Parameter New value

effective cache size 12288

shared buffers 12288

work mem 4096

TABLE X
PARAMETER VALUE USED FOR TUNING THE SYSTEM.

Default value New value %∆

full workload 3219 2973

subset (Normalized to Max) 3207 2978 0.18%

subset (Normalized to Sum) 2646 2563 18.81%

subset (Rank) 3465 3182 7.33%

subset (Random Cluster) 4514 4331 42.94%

TABLE XI
ESTIMATION OF EXECUTION TIME IN MILLISECONDS USING THE

SUBSET QUERIES.

To estimate the execution time of the entire workload, the

workload was weighted. The weighting is calculated by taking

the average execution time (obtained in the P&B experiment)

of all queries that are represented by that query divided by

that queries’ execution time.

For both the default case and the tuned case, the execution

times were collected five times and averaged. The default

case uses the default parameter values given by PostgreSQL.

The resulting data is given in Table XI. The estimation for

the normalization to the maximum effect estimated the total

execution time within 0.18%. The normalization to the max-

imum effect clearly gives the most effective representational

workload, giving the most consistent workload ranking and

estimating the execution time the most accurately.

B. Query Workload Comparison

In a database system, how a query will be executed inter-

nally depends on the input parameters used in the correspond-

ing query signature. A constant query signature does not mean

the database will always process the query in the same manner.

Query signature contains a placeholder for the input parameter.

The input parameter can be set to random values according to

the workload documentation or the application of interest. The

random values can have drastic effects on a query execution

plan. For example, if a query requests the list of the names

of university students over 15 years old, the database query



Normalized to Sum Normalized to Max Ranking by Rounding

Rank Before clustering After clustering Before clustering After clustering Before After

1 work mem work mem work mem work mem work mem work mem

2 shared buffers shared buffers effective cache size effective cache size shared buffers shared buffers

3 effective cache size effective cache size shared buffers shared buffers effective cache size effective cache size

4 random page cost random page cost cpu operator cost cpu operator cost cpu operator cost cpu operator cost

5 cpu operator cost maintenance work mem random page cost random page cost random page cost maintenance work mem

6 maintenance work mem geqo temp buffers temp buffers maintenance work mem random page cost

7 geqo max connections maintenance work mem maintenance work mem geqo geqo

8 cpu tuple cost cpu operator cost deadlock timeout deadlock timeout temp buffers deadlock timeout

9 max connections cpu tuple cost geqo cpu index tuple cost deadlock timeout max connections

10 deadlock timeout deadlock timeout cpu tuple cost geqo max connections cpu index tuple cost

11 cpu index tuple cost cpu index tuple cost checkpoint timeout cpu tuple cost cpu index tuple cost cpu tuple cost

12 temp buffers checkpoint timeout fsync checkpoint timeout cpu tuple cost temp buffers

13 checkpoint timeout temp buffers cpu index tuple cost fsync stats start collector stats start collector

14 fsync stats start collector max connections max connections checkpoint timeout checkpoint timeout

15 stats start collector fsync stats start collector stats start collector fsync fsync

TABLE VIII
WORKLOAD RANKING USING THREE DIFFERENT VECTORS FORMED BY EFFECT NORMALIZED TO SUM, EFFECT NORMALIZED TO MAX,

AND RANKING BY ROUNDING METHODS.
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Fig. 2. DENDROGRAM OF THE QUERIES BASED ON SIMILAR-
ITIES AMONG EUCLIDEAN DISTANCE OF VECTORS FORMED BY

THE NORMALIZED EFFECTS WITH RESPECT TO THE MAXIMUM

EFFECT. CIRCLE DENOTES CLUSTER AND VERTICAL LINE DENOTES

THRESHOLD.

executor will choose to use a sequential scan irrespective of

whether an index of ages exists or not, as most of the student’s

ages qualify this condition. However, if a query requests a list

of the name students whose ages are over 60, the database

will use an index on age. To find how random values in same

query signature will affect clustering, two sets using the same

query signatures are compared.

Table XII gives the normalized ranking of two sets of the

same queries of data. For illustration, only queries Q1 and Q3

are shown. This does not mean that all of the queries showed

different ranking; Q5 and Q13 had very similar ranking

as shown in Table XIII. This implies that a set of query

signatures can not be completely characterized. The more

values tested for the query signatures, the more accurately the

query signature will be represented in the workload. If it is

decided to cluster a workload with 22 query signatures, and

to test five values for each query signature, SCRAP would be

executed on all 110 queries.
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Q16

Q1

Q20

Q9

Q21
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Fig. 3. DENDROGRAM OF THE QUERIES BASED ON SIMILARITIES

AMONG EUCLIDEAN DISTANCE OF VECTORS FORMED BY RANK

OF THE PARAMETERS. CIRCLE DENOTES CLUSTER AND VERTICAL

LINE DENOTES THRESHOLD.

Parameter S1Q3 S2Q3 ∆ S1Q9 S2Q9 ∆

checkpoint timeout 0.01 0.02 0.01 0.80 0.17 0.63

deadlock timeout 0.20 0.00 0.19 0.77 0.19 0.58

fsync 0.05 0.10 0.05 0.88 0.01 0.88

max connections 0.24 0.10 0.14 0.30 0.21 0.09

shared buffers 0.02 0.30 0.28 0.27 0.45 0.18

stats start collector 0.09 0.18 0.09 0.27 0.13 0.14

cpu index tuple cost 0.17 0.10 0.07 0.47 0.02 0.45

cpu operator cost 0.38 0.02 0.37 1.00 0.05 0.95

cpu tuple cost 0.14 0.24 0.10 0.50 0.09 0.41

effective cache size 0.28 0.01 0.27 0.98 0.01 0.97

geqo 0.41 0.02 0.39 0.38 0.23 0.15

maintenance work mem 0.33 0.09 0.24 0.39 0.46 0.08

random page cost 0.17 0.02 0.15 0.81 1.00 0.19

temp buffers 0.28 0.10 0.18 0.90 0.07 0.83

work mem 1.00 1.00 0.00 0.46 0.19 0.28

TABLE XII
COMPARISON OF QUERIES WITH THE SAME QUERY SIGNATURE

AND DIFFERENT SENSITIVITIES.

VII. CONCLUSION

The current rapid growth of data forces businesses to

build larger databases. Larger the databases are the more

difficult to tune due to the large number of queries, the



Parameter S1Q5 S2Q5 ∆ S1Q13 S2Q13 ∆

checkpoint timeout 0.14 0.14 0.00 0.00 0.02 0.02

deadlock timeout 0.00 0.00 0.00 0.02 0.02 0.01

fsync 0.00 0.00 0.00 0.01 0.02 0.01

max connections 0.14 0.15 0.00 0.01 0.01 0.01

shared buffers 0.01 0.00 0.01 0.57 0.56 0.01

stats start collector 0.01 0.00 0.00 0.02 0.02 0.00

cpu index tuple cost 0.00 0.00 0.00 0.01 0.01 0.00

cpu operator cost 0.14 0.14 0.00 0.02 0.00 0.02

cpu tuple cost 0.14 0.14 0.00 0.01 0.03 0.02

effective cache size 0.14 0.14 0.00 1.00 1.00 0.00

geqo 0.14 0.14 0.00 0.01 0.00 0.00

maintenance work mem 0.00 0.00 0.00 0.00 0.01 0.01

random page cost 1.00 1.00 0.00 0.01 0.01 0.00

temp buffers 0.00 0.00 0.00 0.01 0.02 0.01

work mem 0.14 0.14 0.00 0.10 0.11 0.01

TABLE XIII
COMPARISON OF QUERIES WITH THE SAME QUERY SIGNATURE

AND SIMILAR SENSITIVITIES.

large execution times of workloads, and the difficulty of

creating a test workload that represents the real workload of

the system. SCRAP has potential as a method to reduce the

high cost of database tuning while improving the confidence

that the primary database bottlenecks are tested. SCRAP is

presented as a method for creating a compact representational

workload. SCRAP clusters queries based on the similarities

among their performance bottleneck parameters. Our results

show SCRAP reduces the 22 read-only TPC-H queries down

to eight. The subset of queries has been shown to estimate

the performance bottlenecks with accuracy, and estimate the

overall execution time with only a 0.18% error. We find

that the same query signature produces different peformance

bottlenecks depending on the input parameter values. This

suggests that to correctly characterize a workload consisting

of query signatures, multiple values for each parameter should

be used in a manner such that these values estimate the entire

search space for that query signature.
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