
Identifying Unsafe Routes for Network-Based Trajectory Privacy

Aris Gkoulalas-Divanis∗ Vassilios S. Verykios† Mohamed F. Mokbel‡

Abstract
In this paper, we propose a privacy model that offers trajectory pri-
vacy to the requesters of Location-Based Services (LBSs), by uti-
lizing an underlying network of user movement. The privacy model
has been implemented as a framework that (i) reconstructs the user
movement from a series of independent location updates, (ii) identi-
fies routes where user privacy is at risk, and (iii) anonymizes online
user requests for LBSs to protect the requester for as long as the
service withstands completion. In order to achieve (iii), we pro-
pose two anonymization techniques, the K–present (weak) and the
K–frequent (strong) trajectory anonymity, and a second chance ap-
proach that takes over when anonymization fails to ensure that the
privacy of the user is preserved. To the best of our knowledge, this
is the first work to propose a trajectory privacy model that utilizes
an underlying network of user movement to offer in an interactive
way personalized privacy to online user requests on trajectory data.

1 Introduction
The technological advances in sensors and wireless commu-
nications, along with the advances in the telecommunication
industry have made possible the offering of high accuracy in
location tracking at an affordable cost. The increased loca-
tion accuracy gave rise to a series of location-based appli-
cations, the so-called Location-Based Services (LBSs), that
exploit positional data to offer high-end services to their sub-
scribers. The new computing paradigm is changing the way
people live and work but also poses a series of challenges as
it touches upon delicate privacy issues. Without strict safe-
guards, the deployment of LBSs and the sharing of location
information may easily lead the way to an abuse scenario.
As an effect, sophisticated algorithms that offer privacy to
the users of LBSs have to be devised.

A wide variety of algorithms has been recently proposed
for the offering of privacy in LBSs (e.g., [3, 6, 10, 11, 12,
16]). Although some of the proposed approaches assume a
decentralized scenario where the mobile devices of the users
cooperate to offer privacy to the requester (e.g., [7, 8]), the
majority of existing work is based on the centralized scenario

∗Department of Computer and Communication Engineering, University
of Thessaly, Volos, Greece. Email: arisgd@inf.uth.gr

†Department of Computer and Communication Engineering, University
of Thessaly, Volos, Greece. Email: verykios@inf.uth.gr

‡Department of Computer Science and Engineering, University of Min-
nesota, Minneapolis, USA. Email: mokbel@cs.umn.edu

of a trusted server. This scenario has certain benefits and
is also employed in the current work. It can be described
as follows: We consider a population of mobile users who
are supported by some telecommunication infrastructure,
owned by a telecom operator. Every user owns a mobile
device that periodically transmits a location update to some
traffic monitoring system residing in a trusted server of
the telecom operator. A set of LBSs are available to the
subscribed users through service providers that collaborate
with the telecom operator. We assume that these service
providers are not trusted; if a user submits a request for an
LBS directly to the service provider then her identity can be
revealed and her privacy can be compromised. Motivated
by this fact, the centralized scenario requires that every user
request for an LBS has to be submitted to a trusted server
of the telecom operator. The role of the trusted server is to
filter the incoming user requests and to produce anonymous
equivalents that can be safely forwarded to the (unsafe)
service providers in order to be serviced. To produce the
anonymous equivalent to an original user request, the trusted
server has to incorporate algorithms that (i) remove any
obvious identifiers that are part of the user request (e.g.,
user ID, name, etc) and (ii) effectively transform the exact
location of request into a spatiotemporal area that includes a
sufficient number of other users in the system to prevent the
attacker from locating the requester.

The transformation of the exact user location (x, y) at
the time of request t to a spatiotemporal area (A(x, y),
[t1, t2]) is achieved through the use of (spatial) K–
anonymity. The K–anonymity principle for relational data
[17, 18] requires that each record in a given dataset is indis-
tinguishable from at least K − 1 other records with respect
to a certain set of identifying variables, known as the quasi-
identifier. In the context of LBSs, the K–anonymity princi-
ple requires that the spatiotemporal area that is produced by
the trusted server from the exact location of the user request
is such that the identity of the requester cannot be disclosed
with a probability that is larger than 1/K, among K − 1
other users. Existing work on privacy in LBSs fails to ad-
dress one or more real-world challenges as (i) it does not
consider that users typically move in a network-confined en-
vironment (e.g., a road network), which allows for certain
decisions to be made with respect to the offering of privacy,
(ii) all user requests are anonymized in the same manner no
matter what the location of the user is at the time of request,

as well as her future locations until the provision of the ser-
vice, and (iii) it does not build on existing DBMSs that have
numerous advantages over ad-hoc/“from scratch” implemen-
tations: data independence and efficient access; reduced time
for maintenance; querying support for a vast amount of data;
data integrity and security; uniform data administration; con-
current access, recovery from crashes, and fault tolerance.

In this paper we improve current state-of-the-art al-
gorithms for the offering of privacy in LBSs by provid-
ing a solution that addresses all the above mentioned chal-
lenges. Specifically, to address the first challenge, we make
use of the network modeling capabilities offered by modern
DBMSs, which allow us to capture user movement within
an underlying network. To address the second challenge, we
utilize the history of location updates for every user in the
system (as collected by the trusted server) to build represen-
tative patterns of user movement. We argue that a traffic pat-
tern can be used to breach user privacy when it reaches an
outside party, even if it lacks of any user identification data.
To motivate this argument, think of a scenario where a user
goes by certain city areas when she commutes to work in
more or less the same times in weekdays. This frequent be-
havior of the user can lead to a possible identification simply
by matching either the origin of her trip to some public do-
main geocoded information for the house, or the destination
to the location of the business facility that this user works.
Furthermore, a possible matching of a series of location up-
dates with a frequently traveled route of a user may also eas-
ily lead to her identification. To adequately protect the pri-
vacy of the user, we utilize the identified traffic patterns to
deliver to the user the most appropriate between two types of
trajectory K–anonymity. Finally, to address the third chal-
lenge, we implement our proposed solution on top of Oracle,
while we discuss its possible implementation on top of other
modern DBMSs.

In our privacy model we assume an attacker who has
knowledge of the following: (i) the frequent movement be-
havior of all the users in the system, computed by the trusted
server as part of its functionality, (ii) the location updates
of the users, (iii) the anonymized versions of all the requests
transmitted by the trusted server to the service providers, and
(iv) the algorithms used by the trusted server to support user
privacy. The proposed privacy model is implemented as a
framework that comprises of four phases. In the first phase,
the trusted server uses the collected location updates, along
with the underlying network of user movement, to recon-
struct the (recent) history of movement for each user in the
system. In the second phase, the reconstructed user move-
ment is used to identify the frequent movement behavior of
each user. Frequent movement behavior is captured as ei-
ther safe or unsafe with respect to user privacy, based on
whether it is also ordinary or atypical for a significantly large
number of nearby users. In the third phase, we provide the

Figure 1: Anonymity strategies in the network aware model.

user with trajectory K–anonymity for handling online user
requests on trajectory data. K–anonymity is essential to pro-
tect the privacy of the users, starting from the point of request
for a service and continuing for as long as the requested
service withstands completion. As part of our framework,
we deliver two types of trajectory K–anonymity. K–present
(weak) trajectory anonymity identifies K–1 subjects that are
close to the requester at the time of request and thus could
have issued the request (from the viewpoint of the service
provider). On the other hand, K–frequent (strong) trajectory
anonymity collects the subjects that are near the requester at
the time of request and for whom the current route of the
requester is also frequent. As shown in Fig. 1, the choice
of the anonymity strategy depends on the location of the re-
quester at the time of request and her subsequent locations
until the completion of the service provision. In the offering
of trajectory K–anonymity, our model takes special care to
protect the requester from sequential tracking. In sequential
tracking, the attacker examines the anonymity regions, pro-
duced for the protection of the user as part of an on-going
service, to locate subjects that participate in only some of
these regions. Since the requester has to be part of all the
anonymity regions computed for her protection, through the
process of elimination, the confidence of the attacker regard-
ing the identity of the requester can substantially increase.
The final phase of the proposed framework deals with the
event of failure in the provision of trajectory K–anonymity.
In this case, the trusted server postpones the servicing of the
user request for a small period of time. After that, if the
anonymization process fails again, the requester is protected
by blocking the servicing of the request.

The proposed privacy framework relies on a user privacy
profile that stores the necessary information related to the
privacy requirements of the user. This includes (i) the pre-
ferred value of K (in K–anonymity) for each requested LBS,
(ii) (a pointer to) the frequent routes of the user, and (iii) the
minimum spatial area Amin, around the requester, where the
participants of the anonymity set should be searched for so
that the user is adequately covered up. This threshold defines
the minimum extend of the spatial area that must replace the
real location of the user, in the anonymized request. Apart
from Amin the system has knowledge of the coarsest spa-
tial resolution Amax required for the provision of each LBS.

This is a system-defined parameter that provides the maxi-
mum area of the anonymity set (with respect to the requested
service) in order to ensure that the service can be delivered.

The contributions of this work are as follows:

• We propose a privacy model that utilizes an underlying
network that confines user movement to deliver, in an
interactive way, different levels of user privacy to online
user requests in trajectory data.

• By using the movement history of the users in the sys-
tem, we automatically extract patterns depicting the fre-
quent movement behavior of each user. By contrasting
these patterns with those of the rest of the population in
the system, we classify each of them as either safe or
unsafe with respect to the privacy of the user.

• We propose a privacy model that utilizes the unsafe
patterns of the requester to deliver the most appropriate
between two alternatives for trajectory K–anonymity,
while protecting the user from sequential tracking.

The remainder of this paper is structured as follows.
Section 2 presents the related work, while Section 3 intro-
duces the necessary terminology. In Section 4, we present
the algorithms that support the proposed privacy methodol-
ogy. Section 5 presents a set of issues that pertain to the
implementation of the system framework. Section 6 con-
tains the experimental evaluation and Section 7 concludes
this work.

2 Related work
Several approaches have been recently proposed for the sani-
tization of trajectory data [1, 2, 13, 19]. All these approaches
aim at constructing a privacy-aware version of some col-
lected trajectory data, to allow for data publication. On the
other hand, our model offers privacy in online requests for
trajectory data. For this reason, our methodology lies closer
to algorithms offering location privacy in LBSs than to of-
fline approaches for trajectory privacy. Thus, in what fol-
lows, we review state-of-the-art work in the area of location
privacy in LBSs, contrasting it to our methodology.

Gruteser and Grunwald [10] anonymize location data
through the use of a spatial and a temporal cloaking strat-
egy. For the spatial cloaking, the total area covered by the
anonymizer is recursively subdivided into equi-size quad-
rants, until the quadrant where the user is located contains
at least K–1 other subjects. The temporal cloaking incurs
after the spatial cloaking and delays the servicing of the re-
quest until the anonymity requirements are met.

Bettini, et al. [3] keep track of the personal history of
location updates of each user of LBSs, along with a sequence
of spatiotemporal patterns that act as a pseudo-identifier for
this particular user. Each pattern involves an area and a

time span, while the sequence of the patterns is accompanied
by a recurrence formula defining the minimum number of
observations that led to its characterization as hazardous for
the privacy of the user. Although this work sets a new
perspective in the provision of privacy to location data, it
lacks the reporting of any results.

Mokbel, et al. [16] present a privacy-aware query
processing system that offers location K–anonymity. A
partitioning approach similar to [10] is applied, with the
entire area of the anonymizer being divided in a grid fashion
and organized in a pyramid structure. Then, a bottom-up
anonymization algorithm iterates over the different layers
of the pyramid to identify the aggregate cells that capture
the requester along with her neighbors and satisfy both K–
anonymity and the minimum covered area.

Gruteser and Liu [11] attack the anonymity problem in
the context of disclosure-control by proposing a user-driven
partitioning of the area covered by the LBSs into safe and
sensitive regions. Whenever the user is located within one
of her sensitive regions, the system defers from providing
location updates to the service providers. Furthermore,
the proposed anonymity strategy ensures that no location
updates are released that would give away which, of at least
K sensitive areas, the user visited.

Kalnis, et al. [12] present the nearest neighbor cloaking
algorithm that generates anonymity sets where the requester
is expected to be located far from the center of the anonymity
region. To achieve that, it determines the K–1 nearest
neighbors of the requester and then randomly selects one of
them to formulate a new region that contains its K–1 nearest
neighbors. The region of anonymity is then computed as the
MBR of the second region, expanded if necessary to include
the requester.

An approach for the mining of frequent trajectory pat-
terns (T –patterns) was recently proposed by Giannotti, et al.
[9]. The trajectories are modeled as temporally annotated
sequences capturing a set of elements (the places of interest)
along with typical transition times to move from one ele-
ment to another. An example of a T –pattern is Home 15min−→
Park 30min−→ Work. The authors provide algorithms both for
the identification of the places of interest and the mining of
frequent T –patterns.

Our paper follows the widely adopted paradigm of an
intermediate trusted server (e.g., [10, 16]) that handles all the
sensitive location data, leaving the service providers to deal
only with anonymous data. Instead of delaying the servicing
of the requests ([10]), our proposed methodology relies on
the recent history of user location updates to identify subjects
that were near the requester within a reasonable amount of
time and who could have initiated the request. Following
[3], our model keeps track of the movement history of each
user in the system. However, we capture the routes that
were traveled by the users, instead of storing the sequence

of received location updates. Our approach partitions the
history of location updates into a set of safe and unsafe
routes per user, but unlike [11] these regions have also
a temporal dimension and correspond to actually traveled
routes. This is also the difference of our work to [9] since
our model captures the particular route that the user has
followed between any two consecutive “places of interest”,
discriminating among alternative routes to move from one
location to another. As in [12] our proposed anonymization
approach takes care in positioning the requester far from the
center of the computed anonymity region, ensuring that he or
she cannot be identified with a probability that is higher than
1/K. However, unlike [12], it achieves that without paying
the extra cost of searching for more neighbors than the
minimum required. Finally, this is the first work to propose a
methodology for the provision of personalized trajectory K–
anonymity in a network-confined environment and to offer a
network aware solution for the automatic extraction of the
safe and the unsafe routes of the users. To our knowledge,
this is also the first work to build a privacy framework for
LBSs on top of a modern spatial DBMS.

3 Terminology
Let o denote a moving object. A location update is a tuple (o,
x, y, t) stating that user o was located at (x, y) at time t (Fig.
2(a)). The trusted server collects for each subscribed user,
his or her sequence of location updates and uses this informa-
tion to reconstruct the user history of movement. However,
this information cannot be directly used to draw any signifi-
cant conclusions regarding the movement habits of the user.
For this reason, the movement history of each user needs
to be decomposed into smaller blocks, the trajectories. The
decomposition of the movement history into trajectories is
necessitated by the need to identify frequent movement pat-
terns of users, having the most interesting granularity for the
application at hand. A trajectory of a moving object o is a
part of the movement history of this object that consists of a
sequence of consecutive location updates, beginning at some
instance (xstart, ystart, tstart) and terminating at another
instance (xend, yend, tend) (Fig. 2(c)). The decomposition
of the movement history to a set of trajectories, takes place
by identifying stops that denote the immobility of the ob-
ject for a sufficiently large period of time, indicated by the
system parameter tstop (e.g., half hour). Having identified
such stops, the reconstructed history of user movement (cap-
tured as a compound 3D polyline that approximates real user
movement) that is bounded by two consecutive stops, cor-
responds to a trajectory. The time period of a stop is prop-
erly adjusted to avoid accounting for delays that are too short
(i.e., the stop of a car in a road intersection or in the traffic
lights) and may cause unwanted segmentation. The decom-
position of the user history of movement into trajectories is
application-specific, meaning that different applications may

Figure 2: The building blocks of user movement.

require a different value of tstop to handle different types of
moving objects (e.g., pedestrians, cars) and generate mean-
ingful trajectories. Finally, a trajectory consists of segments,
where a segment is the reconstructed history of user move-
ment that connects two consecutive location updates and de-
fines the itinerary that the user followed (Fig. 2(b)). Any part
of a trajectory, independently of its start point and end point,
is called a route (Fig. 2(d)).

The trajectories allow us to expose some interesting
knowledge for the user by tracking regularities in her move-
ment. In the proposed privacy model, a trajectory is said to
be valid when all its segments define actual itineraries in the
underlying network (i.e., are consistent to the network) and
has a concrete start and end point. To protect the privacy
of the user when submitting requests for LBSs, the system
has to identify routes of the user that are frequent. These are
called frequent routes and are defined as follows:

DEFINITION 3.1. (Frequent route) A route of a moving
object o is defined as frequent if it appears among the
trajectories of o a number of times that is larger than a
minimum (system-defined) frequency threshold freq.

The number of times that the route appears in the trajec-
tories of o is called the frequency of the route. Furthermore,
any route that is not frequent is called infrequent. Directly
related to the notion of a frequent route are the definitions of
a safe and an unsafe route.

DEFINITION 3.2. (Safe route) A route of a moving object o
is considered as safe if it is frequent for o and also frequent
for at least K–1 other moving objects in the system.

Similarly, a route of a moving object o is considered as
unsafe if it is frequent for o and also frequent for at most K–
2 other moving objects in the system. A request of a moving
object o for an LBS, is defined as follows:

DEFINITION 3.3. (Request for an LBS) A request Rc for
an LBS is a tuple in the form Rc = <o, sid, x, y, t, data>,
where o is the requester, sid is the identifier of the requested
service, (x, y) is the location of object o at the time of request
t, and data is any necessary service-specific information.

Depending on the user location and time when request-
ing an LBS and the consecutive locations and times when

she submits location updates until the service is provided,
the proposed approach delivers two types of trajectory K–
anonymity1. In what follows, we define the notion of an
anonymity set, as well as the two types of offered K–
anonymity.

DEFINITION 3.4. (Anonymity set) Given a moving object o
sending a request Rc for an LBS, we define the anonymity
set of o, to be (at least) K–1 objects that are close to o at the
given point in time (who could have initiated request Rc).

DEFINITION 3.5. (K-present anonymity) A moving object
o, when submitting a request, is K–present anonymous if
each participant of its anonymity set could be a potential
issuer of the request from within an area that is near to the
requester and within a time period that is close to the time of
request.

DEFINITION 3.6. (K-frequent anonymity) A moving object
o, when submitting a request, is K–frequent anonymous
if each participant of its anonymity set shares the same
frequent route with object o and passes by near the location
of the requester at a time period that is close to the time of
request.

4 Network aware privacy model
This section introduces the network aware privacy model
for the offering of trajectory K–anonymity. Our model
consists of four phases. Phase I reconstructs the history of
user movement and decomposes it into trajectories. Phase II
detects the frequent routes for each user and separates them
into either safe or unsafe with respect to his or her privacy
requirements. Phase III is responsible for the provision
of trajectory K–anonymity. Finally, Phase IV offers a
service delaying or denying mechanism that is employed to
safeguard the privacy of the users when K–anonymity fails.
In what follows, we consider a spatial network (graph) N (V ,
E) that models the real network topology of user movement
through a set of nodes V and edges E. A node n ∈ V
represents a road intersection and an edge (n, n′) ∈ E
represents the existence of a road part that connects nodes
n and n′.

4.1 Phase I: Reconstruction of user movement Under
the network aware model, movement is restricted to a series
of routes that are consistent to the underlying network. The
existence of inaccuracies in the location updates that are
collected by the trusted server, as well as the existence of

1Trajectory K–anonymity differs from the widely adopted location K–
anonymity (see the approaches presented in Section 2) as it preserves the
privacy of the requester for as long as the requested service withstands
completion. This means that the whole user trajectory, starting from the time
of request and for as long as the requested LBS is in progress, is protected
from disclosure.

Figure 3: Possible motion curves and the role of buffers.

irregularities in the movement behavior of the users, make
the process of movement history reconstruction complicated.
Specifically, given any type of physical network (such as a
road network), an object is rather rare to transmit the exact
same sequence of location updates when following the same
route at two different occasions (e.g., at two distinct days of
the month). An example of this situation is highlighted in
Fig. 3, where the user is shown to have crossed the same
road links but has sent different location updates in each of
the two trajectories (see the red polylines).

Algorithm 1 Reconstruction of user movement.
Input: Two consecutive location updates A, B.
Output: Reconstructed movement from location A to location B.

1: function RECONSTRUCT(A(xA, yA, tA), B(xB , yB , tB))
2: INSERTTONET(A); INSERTTONET(B) � insert A, B to the network
3: Cand routes P ← GET m SHORTEST ROUTES(A, B, m)
4: foreach Pi ∈ P do
5: tAB,i ← COMPUTE TRAVEL TIME(Pi)
6: end foreach
7: REMOVEFROMNET(A); REMOVEFROMNET(B) � remove A, B
8: return route having argmini(|tAB,i + tA − tB |)
9: end function

10: procedure INSERTTONET(p(xp, yp, tp))
11: if � buffered geometry G with p ∈ G then
12: G ← GET NEAREST NEIGHBOR(p) � nearest link
13: end if
14: p ← PROJECT(p, unbuffered G)
15: Let u, v be the end points of G
16: set G as inactive
17: add edges up and pv
18: update mean travel time(up, pv, G) � approx. time to traverse up and pv
19: set edges up and pv as active
20: end procedure

21: procedure REMOVEFROMNET(p(xp, yp, tp))
22: identify the edges Q, R where p ∈ Q, p ∈ R
23: get the other end points u, v of the edges Q, R
24: remove edges Q, R and vertex p
25: reset edge uv to active
26: end procedure

Thus, a methodology is needed to deal with the uncer-
tainty regarding the recording of an exact location of an ob-
ject at a certain time. Research works, such as [14, 15]
(among others), study the reconstruction of movement in a
network-confined environment. Our approach is a simplified
version of [14] that offers good computational speed and re-
quires less data housekeeping. It is shown to perform well,
by providing accurate reconstruction at a degree that is suf-
ficient for the workings of the proposed anonymization tech-
nique. As part of our model, the links of the underlying net-

Figure 4: Frequent routes in the network aware model.

work (e.g., corresponding to a road or a road part) are con-
sidered to be cylindrical areas in the three-dimensional (3D)
space, as shown in Fig. 3. This process is called buffering
and has been first used in [20]. In our model, the radius of
the cylinder defines the spatial extend of the link and depends
on its topology in the underlying network. The advantage of
this representation is that it abstracts away possible recording
and measurement errors and identifies when two trajectories
are the same, even if they do not coincide in space and time.
Buffers allow us to map the collected points to the appropri-
ate links of the network.

The reconstruction algorithm applies an incremental,
edge–by–edge strategy that iteratively constructs the 3D
polyline of the user history of movement from the corre-
sponding location updates. Specifically, given two consec-
utive location updates the algorithm reconstructs the corre-
sponding segment by identifying the most probable route
that the moving object has followed through the (links of
the) network. To achieve that, it compares the actual time
that was needed by the moving object to cover the distance
between two consecutive location updates, to the mean travel
time as attained through the network (e.g., through estimates
based on the current road traffic condition information). All
links of the network have a buffer equal to the width of the
modeled road (see Fig. 3). Algorithm 1 provides the details
of our implementation. In the rare event that the collected
user location update does not lie inside a buffered link of the
network, we apply nearest-neighbors matching to capture the
corresponding link. Some alternative strategies can be found
in [4, 21].

After the reconstruction of the user movement history,
the next step is its decomposition into trajectories. This is an
application-specific process and thus knowledge is required
regarding the appropriate value of tstop with respect to the
considered application. Assuming that we have this kind of
knowledge, the decomposition of the user movement history
into trajectories is a straight-forward process.

4.2 Phase II: Identification of frequent routes The
knowledge of the trajectories of the users allows us to com-
pute their frequent routes and to subsequently classify them
as either safe or unsafe. The identification of the frequent

Algorithm 2 Derivation of the frequent routes.
Input: Object o along with all its trajectories tr; time interval w to search for frequent

routes and frequency threshold freq.
Output: The frequent routes of o in time interval w.

1: procedure FREQUENTROUTES(o, tr, N , w, freq)
2: trw ← { tr |t ∈ w } � parts of the trajectories that are in w
3: declare Hash Count{} ← ∅
4: foreach trajectory T ∈ trw do
5: L ← GET OVERLAPS(geom(T), link geom(N))
6: foreach l ∈ L do � for each link of L
7: Count{l.linkid}++ � keep track of the traversal
8: end foreach
9: end foreach

10: declare List F ← ∅ � list of frequently visited links
11: foreach f ← key (Count) do
12: if Count{f} ≥ freq then
13: INSERT(F, f) � f is frequent
14: end if
15: end foreach
16: FR ← (F, w) � frequent routes of o in w
17: end procedure

routes of a user, proceeds as follows. Consider Fig. 4 where a
set of trajectories is presented for a time interval w = [t1, t2].
Assuming that all four trajectories belong to the same mov-
ing object o and the frequency threshold (see Definition 3.1)
is 3, areas R1, R2 and R3 correspond to frequently traveled
routes for this object.

Algorithm 2 presents our implementation that derives
the frequent routes of an object o when given all its trajec-
tories in the system. The algorithm considers a pre-specified
time interval w and retrieves all the trajectories (or routes)
of user o that are time-consistent with respect to w. A tra-
jectory (or route) is time-consistent with respect to a given
time interval w, if all its spatiotemporal points (x, y, t) have
t ∈ w. Threshold freq indicates the minimum number of
trajectories for the overlapping regions to be considered as
frequent routes for o. For each trajectory of o in w, the algo-
rithm identifies the links that it traverses and keeps a counter
on the traversals. Then, it uses the collected counters to re-
trieve the links of the network that are frequently traveled by
the moving object. The derivation of the frequent routes of
object o in w, from the corresponding links, is performed by
examining the end points of the links and by joining together
links that share end points. To identify the global frequent
routes of an object, Algorithm 2 has to be executed for the
different time intervals w. Through the knowledge of the fre-
quent routes of a moving object, the computation of its safe
and unsafe routes, given a specific value of K as declared in
the user profile, is straightforward.

In what follows, we investigate some issues that pertain
to the automatic identification of the frequent (safe or unsafe)
routes of each moving object o in the system.

4.2.1 Selecting the appropriate time intervals w Since
the identification of the frequent routes of a moving object o
depends on a set of time intervals w, a first issue that needs
further investigation regards the rationale behind the selec-

tion process for these intervals. By construction, w allows
us to account for small time differences that are expected
to be encountered in the regularly followed itineraries of a
user. For example, a person may leave her house at 8:02am
one morning to go to work, while the next day she leaves at
8:15am to follow the same itinerary. As is obvious, the sys-
tem should be capable of identifying that the followed routes
are the same (in a spatiotemporal sense) even if they do not
perfectly coincide in time. Furthermore, depending on the
existing network traffic conditions, a user may need a differ-
ent amount of time for the same itinerary from one day to
another.

Generally speaking, we consider that the selection of
the appropriate size of w is an application-specific task.
However, the size of w is expected to be smaller when user
movement is more probable (e.g., at rush hours) and larger
when user immobility is expected (e.g., during the late night
hours). By using this convention, a reasonable amount of
frequent routes is expected to be derived, leading to the best
possible protection of the privacy of the user. Finally, it is
also possible to have the different time intervals (i.e., w’s) be
automatically adjusted by the system based on the movement
history of each user (i.e., recorded as part of the user profile
and subsequently used to derive the frequent routes for this
particular user). This will allow for accounting for different
movement behaviors of distinct users in the system.

4.2.2 Addressing (computational) cost-related issues
The computation of the frequent routes of a user is a costly
operation, particularly due to the expected large number
of the trajectories that have to be taken into consideration.
However, there are two key issues that allow us to proceed
towards this direction:

• The computation can proceed offline through the use
of a dedicated server and thus do not affect the online
operation of the system. When computed, the new fre-
quent routes will replace the old ones that are currently
associated with the user profile.

• The behavior of a user is not expected to radically
change from day to day, and even if it does change, it
will still take some time until the old frequent routes
become invalid (i.e., until the new routes of the user
become frequent). As a result, the frequent routes of a
user do not have to be constantly updated but only once
in a while, based on the used freq threshold.

4.3 Phase III: Trajectory K-anonymity The third phase
in the process of privacy preservation is the provision of the
trajectory K–anonymity. If K–anonymity is successfully
provided to the user, then this is also the last phase of the
process. Algorithm 2 computed the list of frequent routes
FR for each moving object o. In order for the privacy

Figure 5: Matching requests to frequent routes.

preservation mechanism to adequately protect the privacy
of a requester, the system should be capable of deciding
when a user request matches a frequent route of the user
and, subsequently, whether this route is safe or unsafe. In
what follows, we concentrate on the first part. Regarding
the second part, the classification of the frequent routes of a
user into safe and unsafe is a matter of building an efficient
lookup table that maintains this information.

Consider Fig. 5 that depicts a user o initiating a request
r for an LBS. Assume that the temporal coordinate of the
request matches four of the frequent routes of the user (i.e.,
‘a’, ‘b’, ‘c’ and ‘d’ as shown in Fig. 5), each of which
is buffered based on the width of the corresponding road.
Moreover, as is shown in Fig. 5, some of these routes
share common regions (e.g., ‘a’ and ‘b’), while others are
disjoint (e.g., ‘c’ and ‘d’). The system should be capable
of identifying that this request was made from within the
regions of a frequent route of user o and proceed to provide
K–frequent anonymity (if ‘a’ is a safe route) or K–present
anonymity (if ‘a’ is an unsafe route). The matching part
of the trajectory anonymization process proceeds in two
steps: The first step examines the location of the request and
identifies if it lies inside any of the frequent routes of the
user. If this is the case, then the system takes the appropriate
actions depending on whether the route is safe or unsafe. The
second step takes place at each subsequent location update
transmitted by the mobile device of the user and for as long
as the user remains within a frequent route. If the user leaves
his or her frequent routes, then the system offers K–present
anonymity and continues to check the subsequent locations
to detect whether the user has entered a frequent route. This
process continues until the service is provided to the user.

Algorithm 3 provides the details of our implementation.
In the first run, the algorithm isolates from the set of all the
frequent routes of user o the ones that are time-consistent
with respect to the time of request t. Then, we proceed
to identify if the location (x, y) of the user at the time of
request lies inside any of these geometries. The matching
geometries, if any, are maintained in a list M. Notation
geom(FR) (lines 4, 9 and 13 of Algorithm 3) is used
to demonstrate that only the spatial component (i.e., the
geometry) of the frequent route is currently examined. Thus,

Algorithm 3 Match of requests to frequent routes.
Input: Current user request Rc, user’s frequent routes FR, indicator frun of whether

this is the first or an intermediate user request for this service and (if not the first
request) the matched route of the last user request FR’.

Output: Boolean value denoting whether the match was successful or unsuccessful.

1: function MATCHREQUEST(Rc, FR, frun, <in-out> FR’)
2: if frun = true then � this is the first request
3: FR← {(F, w) ∈ FR|t ∈ w} � frequent routes of the user in w
4: M ← GET GEOM INSIDE(Rc|x,y , geom(FR))
5: if M = null then
6: return false � request made from infrequent route
7: else
8: declare List FR’ ← ∅
9: FR’ ← GET ANYINTERACT(M, geom(FR)) � identify frequent

routes in FR that are not disjoint to the matched route M
10: return true � request made from a frequent route
11: end if
12: else � not the first run
13: M ← GET GEOM INSIDE(Rc|x,y , geom(FR’))
14: if M = null then
15: frun ← true � initialize for the next run
16: return false � user left the frequent route
17: else
18: return true � user is still in a frequent route
19: end if
20: end if
21: end function

Figure 6: Euclidian vs network distance for the computation
of the participants in the anonymity set.

the temporal component is ignored. In the event that the
request was initiated at a location outside the frequent routes
in FR, the user is provided with K–present anonymity and
the algorithm is re-executed in the next location update
(unless the request has been serviced in the meanwhile).
Otherwise, the system identifies all the geometries that are
not disjoint to M and stores them in a list FR’ that is used in
subsequent location updates regarding the same service. List
FR’ is used to store the frequent route, where the request was
initiated, along with all the related (non-disjoint) frequent
routes from FR. Considering the scenario presented in Fig.
5, FR’ will store routes ‘a’ and ‘b’. This is due to the fact
that since the user initiated the request when inside frequent
route ‘a’, the only possible frequent routes that he or she can
follow without traversing an infrequent route, are ‘a’ and ‘b’.
Given the fact that a user may have a substantial number of
frequent routes in the considered time frame w, the use of
the routes in FR’ typically alleviates the system from a lot of
unnecessary work.

Algorithm 4 presents the way that trajectory K–
anonymity is delivered to a user that sent a request Rc given
the spatial threshold Amin. The goal of the algorithm is to
identify the K–1 trajectories of the users, for the time inter-
val w = [tn−1, tn] that satisfy the appropriate anonymity re-

Algorithm 4 Offering of trajectory K–anonymity.
Input: User request Rc, value of K in K–anonymity, minimum generalization area

Amin.
Output: The computed circular anonymity region C that satisfies Amin.

1: function GENERALIZEREQUEST(Rc, K, Amin)
2: declare List of Geom AS ← ∅ � initialize the anonymity set
3: declare Geometry C ← ∅
4: AS ← GET K NN(Rc, K–1, α) � find the nearest neighbors of the

requester
5: CK ← GET CENTROID(AS, w) � centroid of the routes in w
6: RK ← GET DISTANCE(CK , K–th NN) � compute the distance from the

center to the furthest neighbor

7: if RK <

√
Amin

π then

8: RK ←
√

Amin
π � ensure that the distance fulfils the Amin requirement

9: end if
10: C ← CREATE CIRCLE(CK , RK) � create the anonymity region C
11: return C
12: end function

quirements and to return the spatiotemporal region that cov-
ers all the K users (including the requester). An important
observation is that a trajectory does not need to lie com-
pletely inside the considered spatial region, for its user to
be encountered in the anonymity set of o. Rather, even if a
small part of the trajectory is inside the spatial region at some
time in w, the corresponding user is counted in the anonymity
set. Another important issue relates to the calculation of the
distances between the point of request and the various tra-
jectories in the system. In our implementation, the distance
between the requester and a trajectory is captured as the min-
imum distance between the point of request and the nearest
point of the trajectory to the requester. This means that dis-
tances are not computed based on the underlying network of
movement, a decision that is justified in Fig. 6.

Algorithm 4 identifies the K–1 routes that are nearest
to the route of the requester in w and stores them in a list
AS . The α parameter in the computation of the K near-
est neighbors (including the requester) indicates the type of
anonymity that is sought (K–present vs K–frequent) to al-
low the algorithm to search among the corresponding users.
Having identified the participants of the anonymity set, the
algorithm computes the centroid of the corresponding routes
(with respect to w) in AS. This point CK will be the center
of the anonymity region of requester r. Following that, the
algorithm computes the distance RK of CK to the most dis-
tant route in AS. The final step of Algorithm 4 is to compute
the circle C centered at CK and having a radius RK . This cir-
cle corresponds to the anonymity region for user r. To ensure
that the anonymity region satisfies the Amin privacy require-
ment, the computed radius of the circle is tested against the
minimum acceptable radius

√
Amin/π and is augmented if

necessary. Figure 7 presents the way Algorithm 4 offers 9-
anonymity to user r. The center of the circular anonymity
region corresponds to the centroid of the users. Notice that
by construction, all the K users in the anonymity region are
equi-probable to be the senders of request r, since the cen-

Figure 7: The computed region of K–anonymity.

troid of the routes in AS is uniquely defined.
In a service that can be completed within one location

update, Algorithm 4 produces the anonymity region that re-
places the space/time coordinates of the original request. On
the other hand, if multiple location updates are necessary
for the completion of the service, then the following strat-
egy is applied. First, Algorithm 4 is executed and the area
of request is generalized to satisfy K–anonymity. The K–1
subjects of the computed anonymity set are maintained by
the trusted server for as long as the current LBS withstands
completion. At each subsequent location update that needs
to be transmitted to the service providers, the trusted server
adjusts the time coordinate of the request and applies Algo-
rithm 4 (lines 5–10) to generate a region of anonymity that
contains (possibly among others) the original K subjects.
This new region of anonymity, provided that it satisfies the
Amax threshold, blocks the sequential tracking attack and
offers privacy to the requester. However, if the Amax thresh-
old is surpassed, the privacy of the user is under threat and a
service delaying or denial mechanism has to take over.

4.4 Phase IV: Service delaying or denial There are cir-
cumstances when the proposed approach for the offering of
trajectory K–anonymity to the requesters of LBSs may fail.
This situation may occur for several reasons, such as an ex-
ceptionally high value of K defined in the profile of the
requester or tight spatiotemporal generalization constraints
(Amax, w) required for the provision of the service. In all
such cases, an approach has to be employed to effectively
protect the identity of the requester. The proposed approach
introduces a small delay in the servicing of the request, in
the hope that in the meanwhile (i) more users will approach
the requester, thus become part of his or her anonymity set,
and/or (ii) the requester will move to a more populated re-
gion. Specifically, we defer the servicing of the request for
a pre-specified time period and then re-execute Algorithm
4 for the provision of trajectory K–anonymity. If the algo-
rithm fails again, then we protect the privacy of the user by
denying the servicing of his or her request.

5 System implementation
In this section, we investigate some details that pertain to
the implementation of the presented algorithms as part of
the trusted server. Our implementation relies on a spatial
database engine that stores all the necessary types of spatial
(network of user movement) and spatiotemporal data (move-
ment history, trajectories, frequent routes) and efficiently
performs a set of spatial and temporal calculations for the
provision of trajectory anonymization. A table stores all the
users in the system along with references to their profiles and
histories of movement. The profile of a user corresponds to
a set of triples < sid, K, Amin > and is kept in a (spatial)
table. Furthermore, tight to each profile is the set of fre-
quent routes of the corresponding user. These, are kept in a
(spatial) table consisting of tuples in the form of < routeID,
geometry, time-interval >, where the geometry depicts the
traveled route through the network as a collection of the links
that were traversed by the user, and the time-interval corre-
sponds to the (unanchored) time that this route is typically
followed by the user. For each frequent route, a table stores
the values of K for which the route is safe or unsafe for the
user. The user history of movement is kept in two separate
tables: the table of the complete history of movement and the
table of the user trajectories. Both tables store the data as a
collection of geometries related to the actual segments, their
start-time and end-time. A sequenceID is tight to each seg-
ment to denote its position in the geometry and to allow for
the unification of the segments to build larger parts of a tra-
jectory. Besides the user-related data, the spatial DBMS also
stores the underlying network topology N of user movement
through a set of structures provided by the DBMS. Finally,
all the geometries in the spatial tables are indexed using R–
trees and the metadata of the network are updated to include
the appropriate costs for the various calculations.

The implementation of the proposed model is based on
the Oracle DBMS and Java, and makes use of the Oracle
Java API to allow their communication. The choice of Ora-
cle was made primarily due to its inherent support for spa-
tial networks, a support that is currently missing from other
DBMSs. On the other hand, Java allows for the maximum
open-endness of our framework. As a first step in our imple-
mentation, we use a network aware trajectory data generator
that generates a set of trajectories (as a series of location up-
dates) which are consistent to a given network. In sequel,
both this data and the underlying network are transformed
into the appropriate formats and are stored in Oracle. Fi-
nally, through the supported spatial functions of the DBMS
our privacy model reconstructs the user history, computes the
frequent routes and provides trajectory K–anonymity. Al-
though our implementation was based on the spatial engine
of Oracle, the proposed framework can be easily migrated
(with the necessary adjustments) to any other spatial DBMS.
To support this claim, Table 1 summarizes the spatial func-

Table 1: Mapping the spatial functions to their equivalents in the Oracle and IBM DB2 DBMSs.
Spatial Function Oracle Spatial DBMS DB2 Spatial DBMS
GET m SHORTEST ROUTES NETWORK MANAGER.ALL PATHS(m, constraints) unsupported

GET NEAREST NEIGHBOR NETWORK MANAGER.NEAREST NEIGHBORS(1) unsupported

GET OVERLAPS SDO OVERLAPS DB2GSE.ST Overlaps

GET GEOM INSIDE SDO INSIDE DB2GSE.ST Contains

GET ANYINTERACT SDO ANYINTERACT DB2GSE.ST Relate

GET K NN DISTANCE SDO NN (k) & SDO WITHIN DISTANCE(dist) DB2GSE.ST Distance

CREATE {CIRCLE, SQUARE} SDO GEOMETRY DB2GSE.ST Geometry

GET CENTROID SDO GEOM.SDO CENTROID DB2GSE.ST Centroid

tions that were used in the provided algorithms and presents
their equivalents for two major spatial DBMSs, namely Or-
acle and IBM DB2. Similar functions can be found in other
DBMS with spatial capabilities, as well as functions needed
for the computation of buffers, the identification of the length
of roads or road parts, and the identification of geometries
that are within a distance from an origin. This functional-
ity is delivered in Oracle through functions SDO BUFFER,
SDO LENGTH and SDO WITHIN DISTANCE.

Table 2: The characteristics of the datasets.
Parameter Dataset 1 Dataset 2 Dataset 3

#objects 4,100 9,200 96,500

#classes 2 6 6

max time 2,000 3,000 8,000

report probability 1 0.9 0.7

6 Experimental evaluation
The proposed algorithms were implemented using Java and
Oracle on Windows XP on a 3.2 Ghz Intel Pentium D pro-
cessor equipped with 4GB of main memory. To evaluate
the algorithms, we used Brinkhoff’s network aware gen-
erator of moving objects [5] and generated three datasets
of trajectories based on the road network of the Oldenburg
city. Brinkhoff’s generator is commonly used in most of the
papers related to spatiotemporal datasets, as it models real
world networks with synthetic data. The generated datasets
experience different characteristics in terms of the number
of moving objects and their classes, the maximum time of
movement, and the probability of an object to report its posi-
tion at each time. Table 2 summarizes their properties. The
number of classes denotes the different types of moving ob-
jects (e.g., cars, trailers, motorbikes) that are considered in
the generated data. Each moving object is assigned to a
unique class that defines its maximum allowable speed in the
network. Furthermore, the time of generation, the duration
of existence and the time of disappearance of a moving ob-
ject are different for the various objects. In conformance to
Brinkhoff’s generator, we use an integer type as the unit time

instance un and set the whole time period from 0 to the cor-
responding maximum time as reported in Table 2. Note that
since our framework is unique in the utilization of the under-
lying network for the offering of online trajectory anonymity,
no comparisons have been made with other approaches.

In Brinkoff’s generator, each object is routed through
the links of the network to move from its origin to its final
destination. The use of a routing algorithm for the generation
of movement has as a consequence that no subtrajectory of
an object is repeated and thereof no frequent routes exist.
To solve this issue, for each moving object, we randomly
selected a set of consecutive location updates (creating a
temporal interval w) and produced 3 new trajectories of this
object that contained only these updates. Thus, we achieve
to artificially generate frequent routes for the various users.
The resulting datasets were used in the experiments.

We conducted three sets of experiments. The first set,
presented in Fig. 8, tests the scalability of the proposed al-
gorithms. Specifically, Fig. 8(a) shows the time that was
needed to update the last segment of a user’s history of move-
ment (for a number of users), given knowledge of the previ-
ous location of the user. The approach first checks if the new
location update lies in the same link of the network as the
last known, and otherwise executes Algorithm 1. As one can
observe, the runtime for dataset 3 is higher compared to the
other two datasets, since, due to the irregular location up-
dates, Algorithm 1 is executed more often. Moreover, since
we have no knowledge regarding the time needed for the
traversal of each link of the network, Algorithm 1 identifies
the shortest route with respect to the distance that needs to
be traveled by the object. Figure 8(b) shows the time needed
to identify the frequent routes of each user and generate the
corresponding lookup table. In this experiment, the w pa-
rameter is adjusted based on the values that were selected on
trajectory addition stage, described earlier. The value of freq
was set to 3. Figure 8(c) presents the time needed to compute
the nearest neighbors to a requester, which is the primary op-
eration of K–anonymization. As one can observe, the figure
demonstrates the runtime that is needed for the computation
of the anonymity set in K–present anonymity since it selects

(a) Reconstruction of user movement (b) Identification of frequent routes (c) Provision of K-anonymity

Figure 8: Scalability of the algorithms in the network aware model.

all the nearest neighbors of the requester. However, the run-
time of K–frequent anonymity (for the same value of K) can
be approximated through the graph by considering that more
neighbors than K have to be found near the requester. For
this experiment, a hundred requests were randomly gener-
ated, each by selecting a location update from the history of
movement of a user, considering this as the point of request
and setting w to have an extent of 10 location updates2. The
reported times are averages over 100 runs.

The second and third sets of experiments (shown in
Fig. 9 and Fig. 10, respectively) illustrate the success ratio
of the proposed K–anonymity approaches, when applied
on continuous queries where the servicing of the request
requires 3 location updates. Each experiment involves a
set of spatial (denoted as the maximum radius of the K–
anonymity region) and temporal (denoted as the maximum
number of time units un prior to the current time) constraints,
and a value of K in 10–100. In all experiments, we set the
Amin parameter such that the anonymity set is guaranteed
to cover a circular area of radius equal to 50 meters, away
from the requester. In both cases of trajectory anonymity,
failure corresponds to the lack of identifying the necessary
neighbors of the requester throughout the period of the
servicing of the request. The reported ratios are an average
over 100 runs coming from randomly selected users and
spatiotemporal points in their trajectories.

7 Conclusions
In this paper, we presented a privacy model for the offer-
ing of personalized trajectory K–anonymity by utilizing an
underlying network of user movement. Through a series
of phases, our proposed model reconstructs the user move-
ment, identifies safe and unsafe routes for each user, filters
incoming user requests and offers the most suitable among
two variants of trajectory K–anonymity, namely K–present
(weak) and K–frequent (strong) anonymity. In the event that
anonymity fails to be offered to the user, an alternative ap-

2Please notice that this w refers to the extent of the temporal cloaking
that is offered by the K–anonymity algorithm and is not related to the time
interval that is used for the identification of the frequent routes of a user.

proach is employed to ensure that the user is still protected.
Through experiments, we demonstrated the effectiveness of
our model towards protecting any portion of the user trajec-
tory that is under threat.

Acknowledgments
Aris Gkoulalas-Divanis and Vassilios S. Verykios are sup-
ported in part by the EU project GeoPKDD (IST–6FP–
014915). Mohamed Mokbel’s research is supported in
part by the National Science Foundation under Grants IIS–
0811998, IIS–0811935, and CNS–0708604.

References

[1] O. Abul, M. Atzori, F. Bonchi, and F. Giannotti. Hiding
sensitive trajectory patterns. In Proceedings of the 7th IEEE
International Conference on Data Mining Workshops, pages
693–698, 2007.

[2] O. Abul, F. Bonchi, and M. Nanni. Never walk alone:
Uncertainty for anonymity in moving objects databases. In
Proceedings of the 24th IEEE International Conference on
Data Engineering, pages 376–385, 2008.

[3] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy
against location-based personal identification. In Proceedings
of the 2nd VLDB Workshop on Secure Data Management,
pages 185–199, 2005.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-
matching vehicle tracking data. In Proceedings of the 31st
International Conference on Very Large Data Bases, pages
853–864, 2005.

[5] T. Brinkhoff. A framework for generating network-based
moving objects. Geoinformatica, 6(2):153–180, 2002.

[6] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving
user location privacy in mobile data management infrastruc-
tures. In Proceedings of the 6th Privacy Enhancing Technol-
ogy Workshop, 2006.

[7] G. Ghinita, P. Kalnis, and S. Skiadopoulos. Mobihide: A
mobilea peer-to-peer system for anonymous location-based
queries. In Proceedings of the 10th International Symposium
on Advances in Spatial and Temporal Databases, pages 221–
238, 2007.

Figure 9: Success ratios for 10, 50 and 100−present trajectory anonymity on continuous queries.

Figure 10: Success ratios for 10, 25, 50 and 100−frequent trajectory anonymity on continuous queries.

[8] G. Ghinita, P. Kalnis, and S. Skiadopoulos. Prive: anonymous
location-based queries in distributed mobile systems. In
Proceedings of the 16th International Conference on World
Wide Web, pages 371–380, 2007.

[9] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Tra-
jectory pattern mining. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 330–339, 2007.

[10] M. Gruteser and D. Grunwald. Anonymous usage of location-
based services through spatial and temporal cloaking. In
Proceedings of the 1st International Conference on Mobile
systems, Applications and Services, pages 31–42, 2003.

[11] M. Gruteser and X. Liu. Protecting privacy in continuous
location-tracking applications. IEEE Security and Privacy
Magazine, 2(2):28–34, 2004.

[12] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Pre-
venting location-based identity inference in anonymous spa-
tial queries. IEEE Transactions on Knowledge and Data En-
gineering, 19(12):1719–1733, 2007.

[13] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
Proceedings of the 24th IEEE International Conference on
Data Engineering, pages 277–286, 2008.

[14] F. Marchal, J. Hackney, and K. W. Axhausen. Efficient map
matching of large global positioning system data sets: Tests
on speed-monitoring experiment in zurich. Transportation

Research Record, 1935:93–100, 2006.
[15] N. Meratnia and R. A. de By. Trajectory representation in

location-based services: Problems and solution. In Proceed-
ings of the 4th International Conference on Web Information
Systems Engineering Workshops, pages 18–24, 2003.

[16] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new Casper:
Query processing for location services without compromising
privacy. In Proceedings of the 32nd International Conference
on Very Large Data Bases, pages 763–774, 2006.

[17] P. Samarati. Protecting respondents’ identities in microdata
release. IEEE Transactions on Knowledge and Data Engi-
neering, 13(6):1010–1027, 2001.

[18] L. Sweeney. K-anonymity: A model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[19] M. Terrovitis and N. Mamoulis. Privacy preservation in
the publication of trajectories. In Proceedings of the 9th
IEEE International Conference on Mobile Data Management,
pages 65–72, 2008.

[20] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain.
Managing uncertainty in moving objects databases. ACM
Transactions on Database Systems, 29(3):463–507, 2004.

[21] H. Yin and O. Wolfson. A weight-based map matching
method in moving objects databases. In Proceedings of the
16th International Conference on Scientific and Statistical
Database Management, pages 437–446, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

