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Abstract

For the past two decades, fractals (e.g., the Hilbert and Peano
space-filling curves) have been considered the natural method
for providing a locality-preserving mapping. The idea behind a
locality-preserving mapping is to map points that are nearby in
the multi-dimensional space into points that are nearby in the
one-dimensional space. In this paper, we argue against the use
of fractals in locality-preserving mapping algorithms, and present
examples with experimental evidence to show why fractals produce
poor locality-preserving mappings. In addition, we propose an
optimal locality-preserving mapping algorithm, termed the Spec-
tral Locality-Preserving Mapping algorithm (Spectral LPM, for
short), that makes use of the spectrum of the multi-dimensional
space. We give a mathematical proof for the optimality of Spectral
LPM, and also demonstrate its practical use.

1. Introduction

An important factor for multi-dimensional databases
is how to place the multi-dimensional data into a one-
dimensional storage media (e.g., the disk) such that the
spatial properties of the multi-dimensional data are pre-
served. A mapping function � is required to map the
multi-dimensional space into the one-dimensional space.
Locality-Preservation is a desirable property for the map-
ping function � . Mapping data from the multi-dimensional
space into the one-dimensional space is considered locality-
preserving if the points that are nearby in the multi-
dimensional space are nearby in the one-dimensional space.

Fractal space-filling curves (e.g., the Hilbert and Peano)
have long been used as a locality-preserving mapping [4]
for multi-dimensional similarity search queries, spatial join,
R-tree packing, declustering, spatial access methods, and
GIS applications. In this paper, we go beyond the idea
�
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of fractals for locality-preserving mappings and propose a
novel and optimal algorithm that does not depend on frac-
tals. Instead, the proposed algorithm, termed the Spectral
Locality-Preserving Mapping algorithm (Spectral LPM, for
short), depends on the spectral properties of the points in
the multi-dimensional space.

2. The Fractal Mapping

Fractals divide the space into a number of fragments, vis-
iting the fragments in a specific order. Once a fractal starts
to visit points from a certain fragment, no other fragment
is visited until the current one is completely exhausted. By
dealing with one fragment at a time, fractals perform a local
optimization based on the current fragment. Thus, fractals
suffer from the boundary effect problem where points far
from the fragment borders are favored. Points that lie near
to the fragment borders fare the worst. Figure 1 gives an
example of this boundary effect on three different fractal
locality-preserving mapping algorithms, the Peano, Gray,
and Hilbert space-filling curves. In each curve, the space
is divided into four quadrants. ��� and �	� lie on two dif-
ferent quadrants. Although 
 ������	��
���� in the two-
dimensional space, they are very far from each other in
the one-dimensional space. The distance between ��� and
��� in the one-dimensional space will be ��������������� if we
use the mapping algorithms based on the Peano, Gray, and
Hilbert space-filling curves, respectively. The boundary ef-
fect problem in fractals is unavoidable, and it results in non-
deterministic results.

(b) The Gray SFC (c) The Hilbert SFC(a) The Peano SFC.
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Figure 1. Fractal Mapping.
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3. The Spectral LPM Algorithm

In this paper, we present the Spectral Locality-
Preserving Mapping (LPM) algorithm, an optimal mapping
with respect to all data points. Spectral LPM avoids the
drawbacks of fractals by using a global optimization instead
of a local one. By global optimization, we mean that all
multi-dimensional data points are taken into account when
performing the mapping. Unlike fractals, Spectral LPM
does not favor any set of points over the others. In general,
spectral algorithms use the eigenvalues and eigenvectors of
the matrix representation of a graph. Spectral algorithms [5]
have been widely used in graph partitioning, data clustering,
linear labeling of a graph, and load balancing. The optimal-
ity of the spectral order in many applications is discussed
in [1, 3]. Figure 2 gives the pseudo code of the Spectral
LPM. An example of applying the Spectral LPM to a set of
two-dimensional points in a ��� � grid is given in Figure 3.
Notice that Figures 3b and 3c correspond to the first and
second steps of Spectral LPM, while Figure 3d corresponds
to steps 3, 4, and 5 in Spectral LPM.

Algorithm Spectral LPM
Input: A set of multi-dimensional points P.
Output: A linear order S of the set P.

1. Model the set of multi-dimensional points � as a graph �����	��
� such that
each point ������ is represented by a vertex ������ , and there is an edge��� � ����������
 if and only if � � ��� ��� �"! � .

2. Compute the graph Laplacian matrix #$���%�&!(')���%� ��* �+�� . ',���� is
the Diagonal matrix of � where ')���%� ��� ! the degree of vertex � � . * ����
is the adjacency matrix of � where * ���%� � � = 1 iff the edge ��-.�./��$��
 .

3. Compute the second smallest eigenvalue 021 and its corresponding eigenvector3 1 of #$���%� , known as the Fiedler Vector

4. For each -4! �6587 , assign the value 92� to ��� and hence to ���
5. The linear order : of � is the order of the assigned values of � � ’s.

6. return : .

7. End.

Figure 2. Pseudo code for the Spectral LPM.

The optimality of the Spectral LPM is proved with the
following theorems. The proofs of these theorems are
omited for brevity.

Theorem 1 : A vector ;=<?>A@�B�CD@FEGC�H�H�H"CI@FJLK that represents theM one-dimensional values of M multi-dimensional points repre-
sented as a graph N�>POCIQRK is considered to provide the global
optimal locality-preserving mapping if ; satisfies: SUT M H VW<XZY\[ �^] [ ��_P`ba >A@	cedf@�g K EWh H ikj X c�l�Jc�l$B @ Ec <8m C X c+l�Jc+l$B @Fcn<po
Theorem 2 : The optimization problem in Theorem 1 is equiva-
lent to: SUT M H Vq<p;srnt; h H iujv;�r�;w<xm CD;sr$yz<Uo
Theorem 3 [2]: The solution of the optimization problem in The-
orem 2 is the second smallest eigenvalue { E and its corresponding
eigenvector ;�E .
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Figure 3. The Spectral LPM algorithm.

4. Extensibility of the Spectral Mapping

Assume that we need to map points in the multi-
dimensional space into disk pages, and we know (from ex-
perience) that whenever point | in � 9 is accessed, there
is a very high probability that point } in page �k~ will be
accessed soon afterwards. To force mapping | and } into
nearby locations in the one-dimensional space using Spec-
tral LPM, we add an edge �.| ��}�� to the graph � . By adding
this edge, we inform Spectral LPM that | and } need to be
treated as if they have Manhattan distance � � � in the
multi-dimensional space.

Another extensibility feature in Spectral LPM is that
we can change the way we construct the graph � . Fig-
ure 4 gives the modeling of two-dimensional points in a
��� � grid with the resulting spectral order after applying
Spectral LPM for four-connectivity (Figures 4a, 4b) and
eight-connectivity graphs (Figures 4c, 4d). More generally,
points in the multi-dimensional space can be modeled as a
weighted graph, where the weight � of an edge �	�.� � ��� � �
represents the priority of mapping � � and � � to nearby lo-
cations in the one-dimensional space1. Notice that the op-
timality proof of Spectral LPM is valid regardless of the
graph type. The idea of Spectral LPM is that it is optimal
for the chosen graph type.

1In this case, ����k� c�c���� Y c ] g _P`baR� c g , and �6�A�k� c g���� � c g if�������2���U� , o.w., ����k� c g���� . The objective function of Theorem 1
will be � ��� Y�[ �^] [ ��_P`ba � c g ��� c�� � g � E .

(a) (b) (c) (d)

Figure 4. Variation of the Spectral LPM.
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5. Experimental Results

In the experiments, we concentrate on the effect of Spec-
tral LPM on nearest-neighbor and range queries. Due to
its optimality, Spectral LPM will give superior performance
when applied to other applications. We compare Spec-
tral LPM with three fractal algorithms based on the Peano,
Gray, and Hilbert space-filling curves and a row-major
(Sweep) mapping as a simple and straightforward non-
fractal mapping algorithm. The experiments in Figure 5 an-
swer the following question: If the Manhattan distance be-
tween any two points � - , � / in the multi-dimensional space
is � ' , then what is the Manhattan distance � � between the
same two points in the one-dimensional space? The lower� � the better the locality-preserving mapping for near-
est neighbor queries. Figure 5a gives the maximum one-
dimensional distance for any two five-dimensional points.
In general, non-fractal algorithms have better performance
than the fractals. In Figure 5b, we compute the Manhattan
distance over only one dimension of the two-dimensional
space. By the curves Sweep-X and Sweep-Y, we mean the
Manhattan distance over the � and � dimensions, respec-
tively. The performance of the Sweep mapping have much
variation when measuring the distance over the � and �
dimensions. However, for the Spectral mapping, the perfor-
mance is very similar for the two dimensions. Thus, Spec-
tral LPM provides fair mapping where it does not discrimi-
nate between the two dimensions.

Experiments in Figure 6 answers the following ques-
tion: For any multi-dimensional range query, what is the
difference between the minimum and the maximum one-
dimensional values of the points that lie inside the range
query? The smaller the difference the better the locality-
preserving mapping. Keeping the difference as small as
possible allows a sequential access from the minimum point
to the maximum point while eliminating the records that
lie outside the range query. Figure 6a gives the maxi-
mum difference between the maximum and minimum one-
dimensional points for a certain range query in the four-
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Figure 5. Nearest Neighbor queries
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Figure 6. Range queries.

dimensional space. Spectral LPM gives an outstanding per-
formance compared to the other mappings. Figure 6b gives
the standard deviation of the distance difference between
the maximum and minimum one-dimensional values for
any multi-dimensional range query in the four-dimensional
spaces. For all possible partial range queries with a cer-
tain size and dimensionality, we plot the standard deviation
of the difference between the maximum and the minimum
values of the points that lie inside the query in the one-
dimensional space. The lower the standard deviation the
more fair the locality-preserving mapping.

6. Conclusion

In this paper, we argue against the use of fractals as a basis for
locality-preserving mapping. Then, we propose the Spectral LPM;
a provably optimal algorithm for mapping the multi-dimensional
space into the one-dimensional space such that the points that are
nearby in the multi-dimensional space would still nearby in the
one-dimensional space. Experimental analysis shows the superior
performance of Spectral LPM over the long used fractal algorithms
for similarity search queries and range queries. We believe that
Spectral LPM can efficiently replace the fractal locality-preserving
mapping algorithms in many other applications, e.g., multimedia
databases, spatial join, declustering, multi-dimensional indexing,
and GIS applications.
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