
Pantheon: Exascale File System Search for
Scientific Computing

Joseph L. Naps, Mohamed F. Mokbel, David H. C. Du

Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN, USA

{naps, mokbel, du}@cs.umn.edu

Abstract. Modern scientific computing generates petabytes of data in
billions of files that must be managed. These files are often organized, by
name, in a hierarchical directory tree common to most file systems. As
the scale of data has increased, this has proven to be a poor method of file
organization. Recent tools have allowed for users to navigate files based
on file metadata attributes to provide more meaningful organization. In
order to search this metadata, it is often stored on separate metadata
servers. This solution has drawbacks though due to the multi-tiered archi-
tecture of many large scale storage solutions. As data is moved between
various tiers of storage and/or modified, the overhead incurred for main-
taining consistency between these tiers and the metadata server becomes
very large. As scientific systems continue to push towards exascale, this
problem will become more pronounced. A simpler option is to bypass
the overhead of the metadata server and use the metadata storage inher-
ent to the file system. This approach currently has few tools to perform
operations at a large scale though. This paper introduces the prototype
for Pantheon, a file system search tool designed to use the metadata
storage within the file system itself, bypassing the overhead from meta-
data servers. Pantheon is also designed with the scientific community’s
push towards exascale computing in mind. Pantheon combines hierar-
chical partitioning, query optimization, and indexing to perform efficient
metadata searches over large scale file systems.

1 Introduction

The amount of data generated by scientific computing has grown at an extremely
rapid pace. This data typically consists of experimental files that can be gigabytes
in size and potentially number in the billions. Tools for managing these files are
built upon the assumption of a hierarchical directory tree structure in which files
are organized. Data within this tree are organized based on directory and file
names. Thousands of tools, such as the POSIX API, have been developed for
working with data within this hierarchical tree structure.

The POSIX API allows for navigation of this hierarchical structure by al-
lowing users to traverse this directory tree. While the POSIX API is sufficient
for directory tree navigation, its ability to search for specific files within the

directory tree is limited. Within the confines of the POSIX API, there are three
basic operations that one is able to use to search a directory hierarchy for de-
sired information: grep, ls, and find. Each one of these operations searches for
data in their own way, and come with their own requirements and limitations.
The grep operation performs a näıve brute force search of the contents of files
within the file system. This approach presents an obvious problem, namely its
lack of scalability. A single grep search would need to be performed over giga-
bytes, or even terabytes of information. As grep is not a realistic solution for
data at current scale, it clearly will not be a solution for future scale. A better
possible route is to use the POSIX operation ls, that is instead based on file
names. The ls operation simply lists all files that are within a given directory.
In order to facilitate a more efficient file search, scientists used ls in conjunction
with meaningful file names. These files names would contain information such
as the name of experiments, when such experiments were run, and parameters
for the experiment. By using such names, along with the wild-card(*) operator,
one would perform a search for desired information based on file names. This
solution also had its own problems. First, this technique is dependent on a con-
sistent application of conventions between file names. Even something such as
parameters being in different orders could prevent such a search from return-
ing the needed information. Second, as experiments grow in complexity, more
parameters must be maintained, resulting in long file names that are difficult
to remember and work with. The POSIX operation find allows navigation of
files via metadata informaiton, a much more attractive file search option than
either grep or ls. Metadata represents information about the file, as opposed to
information within the file. Such information includes items such as file owner,
file size, and time of last modification. Unfortunately, the find is not sufficient
for the large scale searches needed for the scientific computing community.

To solve the limitations imposed by simple POSIX commands, research began
to develop full featured metadata search tools at an enterprise (e.g. Google [1],
Microsoft [2], Apple [3], Kazeon [4]) as well as the academic level (e.g. Spy-
glass [5]). These tools added to the richness of current metadata searching capa-
bilities, but also possessed their own limitations. Enterprise solutions typically
index their data by using a standard database management system. This stores
all metadata information as flat rows, thus losing the information that can be
inferred from the directory hierarchy itself. Also, the need for a single metadata
server can cause scalability problems in large, distributed computing systems.
Relationships between files based on their location in the hierarchy are lost. Spy-
glass [5] exploited these hierarchical structure relationships, but at the expense
of losing the query optimization and indexing powers of a database management
system.

In this paper, we present the prototype of the Pantheon system. Pantheon
is a file system search tool designed for the large scale systems used within
the scientific computing community. Pantheon combines the query optimization
and indexing strategies of a database management system with the ability to
exploit the relationships between files based on locality used in current file system

search. For our initial prototype, we focused on the effects of basic database style
query optimization and indexing when implemented over a more tailored file
system partitioning scheme. To this end, we implemented a detailed partitioning
algorithm with simple query optimization and indexing built on top.

Pantheon’s core is separated into three primary components: partitioning,
query optimizer, and indexing. The partitioning component is responsible for
separating the directory hierarchy into disjoint partitions. We present a general
partitioning algorithm, but any custom algorithm may be used. Partitioning is
needed in order to avoid a system-wide bottleneck. Without partitioning, all
searches would be forced to go through a single set of indexes. This would create
an obvious bottleneck that would severely limit the scalability of the system.
Query optimization is a well known technique from database management sys-
tems [6]. The Pantheon optimizer collects statistics on a per-partition basis, and
evaluates query plans using a basic cost model. This strategy selects predicates
that will prune the largest number of possible files from the result. This simple
technique results in a significant performance boost over picking predicates at
random. The indexing component maintains B+-Tress and hash tables, also on
a per-partition basis. A single index is kept for every metadata attribute that
can be searched. Taking this approach gives Pantheon two distinctive advan-
tages. First, this indexing method ties in very well with our query optimization.
Second, the use of individual indexes allows Pantheon to quickly adapt should
attributes be added to the system, as could be the case with extended attributes.

The rest of the paper is organized as follows. Section 2 discusses work related
to Pantheon. Section 3 gives a high level overview of the Pantheon system.
Section 4 details the partitioning system used in Pantheon. Section 5 discusses
the Pantheon query optimizaer and interface. Section 6 gives an overview of the
indexing system used in Pantheon. Section 7 looks at the experimental evaluation
of the Pantheon system. The paper is concluded with Section 8.

2 Related Work

At an enterprise level, numerous products have been developed allowing for
metadata search [1–4]. At an academic level, the closest work to Pantheon is
Spyglass [5]. Spyglass uses a technique known as hierarchical partitioning [7],
which is based on the idea that files that are close to each other within the
directory tree tend to be searched together often. Pantheon presents an algorithm
that exapnds upon this idea in two primary ways. First, many modern large
scale systems use storage architectures that involve multiple tiers of storage. In
such systems, data is moved between multiple layers of storage in a dynamic
fashion. From the standpoint of the file system, this results in sudden changes
to the directory hierarchy that must be accounted for. Pantheon’s partitioning
algorithm is able to adapt to data being migrated into the directory hierarchy.
Second, Pantheon monitors query patterns and allows for the partition structure
to be changed based on changes to query loads. For indexing, Spyglass uses
a single KD-Tree [8] built over each partition. This approach to indexing has

Pantheon

. . .
Indexes

Partitions Over Storage

Indexes Indexes

Partition Query Optimizer Partition Query Optimizer Partition Query Optimizer

Partition Partition Partition

Partition Map

Storage

Long Term
Storage

USER

Fig. 1. Pantheon System Architecture

several drawbacks. First, using a multi-dimensional index limits the performance
scalability of the system if the number of attributes being indexed were to grow
very large. By splitting attributes into multiple indexes Pantheon is able to
adapt in the case that additional attributes are introduced to the system more
gracefully. Second, having a single index per partition means that Spyglass is
unable to take advantage of the attribute distribution of a partition. Spyglass also
lacks any form of a query optimizer. Using query optimization, in conjunction
with a richer set of indexing structures, Pantheon is able to make intelligent
decisions when dealing with queries to the file system.

3 System Architecture

Figure 1 gives the architecture for the Pantheon system. Partitions exist over
the storage layer of the system, and within each partition we have the query op-
timizer, where distribution statistics are stored, as well as the partition indexes.
The figure also gives the basic flow of a query within the Pantheon system. The
query begins at the partition map. This map simply determines which parti-
tions must be accessed in order to respond to the query. Each required partition
produces the result of the query, which is then passed back to the user.

Pantheon also uses a modular design in its operations. Each of the three pri-
mary components are totally independent of one another. Only basic interfaces
must remain constant. We believe this to be important for two primary reasons.
First, by modularizing the design, we give scientists the ability to quickly add
custom features based on their individual needs. Such examples of this could
include a custom partitioning module or a different indexing structure that may
be more suited to their data and querying properties. Second, a modular design
will make it easier for additional components to be added to the system to adapt
to new storage and architecture paradigms.

4 Partitioning

The partitioner is the heart of the Pantheon system. Without the partitioner, we
would be forced to construct a single set of indexes over the data space that we
wish to search. This will create a massive bottleneck that would slow down all
aspects of the system, and severely limit system scalability. Similar techniques
can be seen in distributed file systems [9–12].

A common pattern found in studies on metadata [5, 13–15] is that of spatial
locality of metadata. Spatial locality is the general concept that files that are
located close to one another in the directory hierarchy tend to have significantly
more similarities in metadata values and tend to be queried together more often.
This is typically the result of how files tend to be organized by users within the
directory hierarchy. So, files that are owned by a user u will tend to reside close
to one another in the directory tree, i.e. they will tend to reside in u’s home
directory. When lookinging possible algorithms for partitioning our directory
tree we explored works that looked into disk page based tree partitioning [16].
The general idea of our partitioning algorithm is as follows. We begin with the
root of the directory tree R and proceed to find all leaves of the directory tree.
From this point we place each leaf into its own partition and mark it as being
processed. We then proceed up the tree processing all interior nodes such that
all of their children have been marked as processed. If the interior, parent, node
is able to be merged into a partition with all of its children, we merge them. In
the event that there is not enough room, we create a new partition with only this
interior node. Following this step, the interior node is marked as processed. This
work continues all the way up the tree until we get to the root node. For more
specifics about this process, refer to the pseudocode presented in Algorithm 1.

Initially, the entire directory tree must be partitioned in this manner. Since
this process may take some time, it is run as a background process so that normal
system function may continue.

5 Query Optimizer

Query optimization is a well studied problem in the field of database manage-
ment systems. Database systems typically use a cost based model [6] to estimate
optimal query plans. The gain in bringing the idea of the query optimizer from
databases to file systems is significant. Query optimization research is on of the
primary reasons that database systems have been able to perform so well in real
world environments.

Formally, the job of Pantheon’s query optimizer is a follows: Given a query
Q and a series of predicates P1, . . . , Pn, the query optimizer finds a plan for
evaluation of these predicates that is efficient. Using the query optimizer, indexes
are used to prune the possible result set. From there a scan can be performed
over this pruned data space. If done properly, this pruned data space will be
significantly smaller than the original. This results in a scan that can be done
very quickly. More so, this scan can be performed as a pipelined process that is
done as results are being returned from the index.

Algorithm 1 Pantheon Partitioning Algorithm

1: Pantheon-Tree-Partition(T)
2: Input: A tree rooted at T
3: Output: A mapping from nodes in T to partitions
4: while There are nodes in T not yet processed do
5: Choose a node P that is a leaf or one where all children have been processed
6: if P is a leaf node then
7: Create a new partition C containing node P
8: else
9: Let P1, . . . , Pn be the children of P

10: Let C1, . . . , Cn be the partitions that contain P1, . . . , Pn.
11: if Node P and the contents of the partitions C1, . . . , Cn can be merged into

a single partition then
12: Merge P and the contents of C1, . . . , Cn into a new partition C, discarding

C1, . . . , Cn.
13: else
14: Create a new partition C containing only P
15: end if
16: end if
17: end while

For Pantheon’s query optimization, the decisions is based primarily on the
selectivity of a given predicate. The selectivity represents how effective that
predicate is at reducing the overall data set. A predicate will low selectivity
percentage will prune more extraneous items, while a predicate with high selec-
tivity percentage will prune less such values. This distinction is important, as
not choosing the proper index when evaluation a query can lead to a significant
decrease in query response time.

To track the selectivity, we need to keep basic statistics about the files on a per
partition basis. For each attribute within a partition, we construct a histogram.
Given an input value, these histograms quickly return an estimate as to the
percentage of values that will satisfy that query.

6 Indexing

The initial indexing implementation uses simple and well known indexing struc-
tures as a baseline evaluator. We use multiple single dimensional indexes over
the attributes in conjunction with query optimization. In the event that a new
attribute is added to the file system, we simply construct an index over that new
attribute, and continue operation as normal.

The metadata attributes being indexed are those typically found in a stan-
dard file system including: file mode, file owner, file group, time of last access,
time of last modification, time of last status change, and file size. These attributes
are then separated into two groups. One group represents those attributes for
which range queries make sense. This includes all of the time attributes as well as
file size. The remaining attributes are those where only equivalence queries make

20 40 60 80 100
0

20

40

60

80

Selectvty (%)

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

find
KD−Tree
Pantheon

(a) Nondistributed

20 40 60 80 100
0

5

10

15

20

25

Selectivity (%)

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

find
KD−Tree
Pantheon

(b) Distributed

Fig. 2. Query Response Time vs Selectivity

sense. These include file mode, owner, and group. Each attribute that has been
deemed an equivalence attribute is indexing using hash table. Each attribute
that will be searched over a range is indexed using a B+-Tree. These indexes
were chosen due to the fact that each handle their own respective query types
very well.

7 Experimental Evaluation

Experimental evaluation is meant to provide us a baseline for which future work
may be compared. There are two other techniques that we test Pantheon against.
The first is the POSIX operation find. This is simply to show Pantheon’s viability
over the näıve method. The second is testing Pantheon’s processing over that
of a KD-Tree. This is the indexing used by the Spyglass system, and provides a
good competitor to examine Pantheon’s strengths and weaknesses.

Pantheon is implemented as a FUSE module [17] within a Linux environment
over an ext4 file system. For the default partition cap size we used 100,000. This
was the same cap used in [5] and we see no reason to change this for experiments
where partition size is held constant. The default selectivity used is 20% unless
otherwise noted. The default number of attributes indexed was 8.

Experimentation was done over two different system configurations. The first
of which is refered to as the nondistributed configuration. This was done on a
single node system consisting of a dual-core 3 GHz Pentium 4 with 3.4 GB of
RAM. The distributed tests were done on a 128 node cluster. Each node in the
cluster consisted of two processors at 2.6 GHz with 4 GB of RAM.

In Figure 2 we see the effect on query response time when we vary the selec-
tivity of a single query predicate. First, It shows that find is not any competition
to Pantheon. As such, it will not be considered in future experiments. Second, it
shows that using selectivity as a metric for the query optimizer is a good idea. In
both cases we see that if Pantheon evaluates based on the most selective index,
there is an improvement in query response time over that of a KD-Tree.

8 10 12 14 16 18
0

20

40

60

80

100

120

Number of Attributes Indexed

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

Pantheon
KD−Tree

(a) Nondistributed

8 10 12 14 16 180

20

40

60

80

100

120

Number of Attributes Indexed

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

Pantheon
KD−Tree

(b) Distributed

Fig. 3. Query Response Time vs Number of Attributes Indexed

0 2 4 6 84

5

6

7

8

9

10

Number of Predicates

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

Pantheon QO
Random

(a) Nondistributed

0 2 4 6 83

4

5

6

7

8

9

Number of Predicates

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

)

Pantheon QO
Random

(b) Distributed

Fig. 4. Query Response Time vs Number of Predicates

Figure 3 relates query response time to the number of attributes being in-
dexed. Here is where Pantheon shows significant improvement over a KD-Tree
based approach. As the number of dimensions increases without the partition
size changing, the performance of the KD-Tree suffers greatly. Due to the fact
that Pantheon indexes attributes separately, it does not show any noticeable
change as the number of attributes increases.

Figure 4 displays how the Pantheon query optimizer is able to improve query
performance as the number of predicates increases. Here, we generated query
predicates for random attributes with random values. These results strengthen
the case for using query optimization. If predicates are chosen at random, we
see is significant increase in the overall time needed to response to queries.

8 Conclusion

Here we have presented the foundational work for the Pantheon indexing sys-
tem. Pantheon represents a combination of ideas from both file system search
and database management systems. Using these ideas Pantheon plays on the
strength of each of the two fields to accomplish its goal. We have shown through

experimentation that Panteon is either competitive or outperforms current file
system indexing strategies. We intend to use this prototype as a test bed for
future work in aspects of partitioning, query optimization, and indexing within
the context of file system search.

References

1. G. Inc., “Google enterprise,” http://www.google.com/enterprise.
2. M. Inc., “Enterprise search from microsoft,”

http://www.microsoft.com/enterprisesearch.
3. Apple, “Spotlight server: Stop searching, start finding,”

http://www.apple.com/server/macosx/features/spotlight.
4. Kazeon, “Kazeon: Search the enterprise,” http://www.kazeon.com.
5. A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Miller, “Spyglass: Fast, scal-

able metadata search for large-scale storage systems,” in Proccedings of the 7th
conference on File and storage technologies. USENIX Association, 2009, pp. 153–
166.

6. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price, “Access path
selection in a relational database management system,” in Proceedings of the 1979
ACM SIGMOD international conference on Management of data. ACM, 1979,
pp. 23–34.

7. S. Weil, K. Pollack, S. Brandt, and E. Miller, “Dynamic metadata management
for petabyte-scale file systems,” in Proceedings of the 2004 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 2004, p. 4.

8. J. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

9. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch, “The Sprite
network operating system,” Computer, vol. 21, no. 2, pp. 23–36, 1988.

10. S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A scalable, high-
performance distributed file system,” in Proceedings of the 7th symposium on Op-
erating systems design and implementation. USENIX Association, 2006, p. 320.

11. B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz, “NFS
version 3 design and implementation,” in Proceedings of the Summer 1994 USENIX
Technical Conference, 1994, pp. 137–151.

12. J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and F. Smith,
“Andrew: A distributed personal computing environment,” Communications of the
ACM, vol. 29, no. 3, p. 201, 1986.

13. N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch, “A five-year study of file-system
metadata,” ACM Transactions on Storage (TOS), vol. 3, no. 3, p. 9, 2007.

14. J. Douceur and W. Bolosky, “A large-scale study of file-system contents,” ACM
SIGMETRICS Performance Evaluation Review, vol. 27, no. 1, p. 70, 1999.

15. A. Leung, S. Pasupathy, G. Goodson, and E. Miller, “Measurement and analysis
of large-scale network file system workloads,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference. USENIX Association, 2008, pp.
213–226.

16. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan, “Clustering techniques for
minimizing external path length,” in Proceedings of the International Conference
on Very Large Data Bases. Citeseer, 1996, pp. 342–353.

17. FUSE, “File system in user space,” http://fuse.sourceforge.net.

