On Query Processing and Optimality Using
Spectral Locality-Preserving Mappings*

Mohamed F. Mokbel Walid G. Aref

Department of Computer Sciences, Purdue University
{mokbel,aref}@cs.purdue.edu

Abstract. A locality-preserving mapping (LPM) from the multi-
dimensional space into the one-dimensional space is beneficial for many
applications (e.g., range queries, nearest-neighbor queries, clustering, and
declustering) when multi-dimensional data is placed into one-dimensional
storage (e.g., the disk). The idea behind a locality-preserving mapping is
to map points that are nearby in the multi-dimensional space into points
that are nearby in the one-dimensional space. For the past two decades,
fractals (e.g., the Hilbert and Peano space-filling curves) have been con-
sidered the natural method for providing a locality-preserving mapping
to support efficient answer for range queries and similarity search queries.
In this paper, we go beyond the idea of fractals. Instead, we investigate a
locality-preserving mapping algorithm (The Spectral LPM) that uses the
spectrum of the multi-dimensional space. This paper provably demon-
strates how Spectral LPM provides a globally optimal mapping from the
multi-dimensional space to the one-dimensional space, and hence out-
performs fractals. As an application, in the context of range queries and
nearest-neighbor queries, empirical results of the performance of Spectral
LPM validate our analysis in comparison with Peano, Hilbert, and Gray
fractal mappings.

1 Introduction

An important consideration for multi-dimensional databases is how to place the
multi-dimensional data into a one-dimensional storage media (e.g., the disk)
such that the spatial properties of the multi-dimensional data are preserved. In
general, there is no total ordering that fully preserves spatial locality. A map-
ping function f that maps the multi-dimensional space into the one-dimensional
space provides a total ordering for the multi-dimensional data. A desirable prop-
erty for the mapping function f is locality-preservation. Mapping data from the
multi-dimensional space into the one-dimensional space is considered locality-
preserving if the points that are nearby in the multi-dimensional space are nearby
in the one-dimensional space.

Locality-preserving mappings from the multi-dimensional space into the one-
dimensional space are used in many applications, for example:

* This work was supported in part by the National Science Foundation under Grants
11S-0093116, ETA-9972883, 11S-0209120, and by Purdue Research Foundation.

— Range query processing [11,14,26,37]: A locality-preserving mapping en-
hances the performance of multi-dimensional range queries. In a range query,
it is preferable that the qualifying records be located in consecutive blocks
rather than being randomly scattered in disk. A good locality-preserving
mapping maps the records that lie in the query window in the multi-
dimensional space into a consecutive set of blocks in disk.

— Nearest-neighbor finding and similarity search [14, 33, 44]: Multi-dimensional
data is stored in disk using a locality-preserving mapping such that the
nearest-neighbor for any point P can be retrieved by performing a sequential
scan in the forward and backward directions from P. The quality of the
locality-preserving mapping algorithms is determined by: (1) the amount of
sequential data that needs to be accessed to find the nearest-neighbor and
(2) the accuracy of the result.

— Spatial join of multi-dimensional data [38]: Multi-dimensional data is
mapped into a one-dimensional domain using a locality-preserving mapping.
The transformed data is stored in a one-dimensional data structure, e.g., the
B*-Tree [7], and a one-dimensional spatial join algorithm is applied.

— Spatial access methods [43]: Spatial objects located in disk storage are or-
dered according to the one-dimensional value of their central point, which is
obtained from a locality-preserving mapping of the multi-dimensional space.
This mapping minimizes the number of times a given page is retrieved from
disk.

— R-Tree Packing [28]: The multi-dimensional central points of a set of rectan-
gles are mapped into a one-dimensional domain using a locality-preserving
mapping. Then, the rectangles are packed into the R-Tree [20] based on the
one-dimensional value of their central points.

— Other uses of locality-preserving mappings include GIS Applications [5],
declustering [12], multi-dimensional indexing [32], multimedia databases [35],
disk scheduling [2], image processing [47], the traveling salesman problem [3],
and bandwidth reduction for sampling signals [4].

These applications use space-filling curves (SFCs) [42], and fractals [34] to pro-
vide locality-preserving mappings. Examples of these curves are the Hilbert
SFC [22], the Peano SFC [39], and the Gray SFC [10]. The Hilbert SFC is
used for locality-preserving mapping in [13, 14, 26, 28, 32, 33, 43] while the Peano
SFC is used for locality-preserving mapping in [5, 38,47]. The Gray SFC is used
for locality-preserving mapping in [10, 11].

In this paper, we go beyond the idea of using fractals as a means of a locality-
preserving mapping. Instead, we develop a Spectral Locality-Preserving Mapping
algorithm (Spectral LPM, for short) [36], that makes use of the spectrum of
the multi-dimensional space. Although we focus on the effect of Spectral LPM
in enhancing the performance of range queries and nearest-neighbor queries,
we believe that Spectral LPM can efficiently replace any of the fractal locality-
preserving mappings in the applications mentioned above. The contributions of
this paper can be summarized as follows:

1. We argue against the use of fractals as a basis for locality-preserving mapping
algorithms and give some examples and experimental evidence to show why
the fractal-based algorithms produce a poor mapping (Section 2).

2. We introduce the Spectral LPM algorithm, an optimal locality-preserving
mapping algorithm that depends on the spectral properties of the multi-
dimensional points. As in the case of fractals, the Spectral LPM algorithm
can be generalized easily to any multi-dimensional space (Section 3).

3. We define the notion of global optimality in locality-preserving mappings
with respect to all multi-dimensional points, and prove that the Spectral
LPM achieves this optimality (Section 4) while fractals do not. Also, we show
that there are many cases that are infeasible to be mapped using fractals,
while the same cases can be easily mapped optimally using Spectral LPM
(Section 5).

4. As an application, in the context of range queries and nearest-neighbor
queries, we provide empirical results of the performance of Spectral LPM
using real data sets. The performance results validate our analysis in com-
parison with several fractal mappings. We demonstrate that Spectral LPM
is superior to the fractal-based algorithms that have long been used for
locality-preserving mappings (Section 6).

The rest of this paper is organized as follows: Section 2 provides the motivation
for the spectral-based algorithm by showing the drawbacks of the fractal-based
algorithms. Algorithm Spectral LPM is introduced in Section 3. Section 4 gives
the proof of optimality of Spectral LPM. Section 5 demonstrates how Spec-
tral LPM may incorporate additional requirements to the locality-preserving
mapping. Experimental results comparing the performance of the spectral- and
fractal-based mapping algorithms are presented in Section 6. Finally, Section 7
concludes the paper.

2 Locality-Preserving Mappings: The “Good”, The
“Bad”, and The “Optimal”

In this section, we start by describing what properties an optimal locality-
preserving mapping algorithm should have, and then discuss whether or not
such a mapping is feasible. Next, we discuss the fractal locality-preserving map-
ping algorithms based on the Peano, Gray and Hilbert space-filling curves. We
give examples that show why these algorithms produce a poor mapping. Finally,
we discuss the idea of a spectral locality-preserving mapping that avoids the
drawbacks of the fractal mapping.

2.1 The “Good” Mapping

An optimal locality-preserving mapping algorithm maps the multi-dimensional
space into the one-dimensional space such that the distance between each pair of
points in the multi-dimensional space is preserved in the one-dimensional space.

d
I
AD—$—¢F
W
}
T

@ (b)

Fig. 1. The Optimal Locality-Preserving Mapping with respect to P.

However, such a mapping is not feasible. For example, for any point P in the
D-dimensional space, there are 2D neighboring points with Manhattan distance
M = 1. Mapping P and its neighbors into the one-dimensional space allows
only two neighbors to have M = 1. Thus, the distance between 2(D — 1) of the
points cannot be preserved. The best we can do in this case is to divide the 2D
neighbor points into two equal groups with D points in each group, and map the
first group to the right of point P in the one-dimensional space, and the other D
points to the left of P. The same argument is valid for points with Manhattan
distance M > 1. The idea of such a mapping is that it guarantees that the
points with Manhattan distance k& from P in the multi-dimensional space will
be nearer to P in the one dimensional space than the points with Manhattan
distance k + 1.

Figure la gives an example of Point P in the two-dimensional space, where
it has four neighbors with M = 1 (the white points) and eight neighbors with
M = 2 (the gray points). Mapping P and its white neighbors into the one-
dimensional space as in Figure 1b, results in only two points with M = 1 and
another two points with M = 2. Mapping the eight gray neighbors results in
placing four of them to the right of P and the other four to the left of P. Such a
mapping is considered an optimal locality-preserving mapping with respect to P,
since all the points that have M = 1 (the white points) in the two-dimensional
space are nearer to P in the one-dimensional space than any of the points that
have M = 2 (the gray points) in the two-dimensional space.

Although this locality-preserving mapping algorithm seems to be simple and
optimal with respect to P, the mapping does not guarantee its optimality with
respect to any other point. For example, consider the two white points (), R that
have |P—@Q| =1, |P — R| = 2 in the one-dimensional space as in Figure 1b. With
respect to R, in the two-dimensional space, |[R—Q| = 2 and |R—P| = 1. However,
in the one-dimensional space, the situation is reversed where |R — Q| = 1 and
|R — P| = 2. Thus, locality is not preserved from the two-dimensional space
into the one-dimensional space with respect to R. This means that this mapping
is not an optimal locality-preserving mapping for each individual point in the
multi-dimensional space. In Section 4, we will define how a locality preserving
mapping algorithm can be optimal with respect to all the points in the space.

(8) The Peano SFC. (b) The Gray SFC (¢) The Hilbert SFC

Fig. 2. The Fractal Locality-Preserving Mapping.

2.2 The Fractal Mapping

For the past two decades, recursive space-filling curves, which are special cases
of fractals [34], have been considered a natural method for locality-preserving
mappings. Mandelbrot [34], the father of fractals, derived the term fractal from
the Latin adjective fractus. The corresponding Latin verb frangere means “to
break” or “to fragment”. Thus, fractals divide the space into a number of frag-
ments, visiting the fragments in a specific order. Once a fractal starts to visit
points from a certain fragment, no other fragment is visited until the current
one is completely exhausted. By dealing with one fragment at a time, fractal
locality-preserving mapping algorithms perform a local optimization based on
the current fragment.

Local optimization is the major drawback in fractal locality-preserving map-
ping algorithms. Consider the case of two points F; and P; that lie on the bound-
aries of two different fragments and |P; — P;| = 1. Although P; and P; are near
to each other in the multi-dimensional space, they will be far from each other in
the one-dimensional space because they lie in different fragments. Figure 2 gives
an example of this boundary effect on three different fractal locality-preserving
mapping algorithms, the Peano, Gray, and Hilbert space-filling curves. In each
curve, the space is divided into four quadrants. Each quadrant is divided recur-
sively into another four quadrants, as in the upper right quadrant. Notice that,
in these fractals, a quadrant represents a fragment of the space. For points P;
and P, in Figure 2, although |P; — P2| = 1 in the two-dimensional space, the
distance between P; and P, in the one-dimensional space will be 6,5, 11 for the
fractal mapping algorithms based on the Peano, Gray, and Hilbert space-filling
curves, respectively. Things become even worse if we consider a finer resolution.
For example, consider points P; and Py in Figure 2. |[Ps — P4| = 1 in the two-
dimensional space. The two points lie in two different quadrants and are far from
each other in the one-dimensional space. The distance between P3 and Py in the
one-dimensional space will be 22,47, 43 if we use the mapping algorithms based
on the Peano, Gray, and Hilbert space-filling curves, respectively.

The boundary effect problem in fractal locality-preserving mapping algo-
rithms is unavoidable, and results in non-deterministic results. Any application
that uses a locality-preserving mapping algorithm would expect to have the same

performance in preserving the locality for all multi-dimensional points. Fractal
mapping algorithms favor the points that lie far from fragment borders. Points
that lie near to the fragment borders fare the worst. In Section 6 we show how
this property affects the performance of the fractal mapping algorithms.

[33,44] address the boundary problem in fractals by using more than one
space-filling curve. In [33], multiple shifted copies of the data are stored, where
each copy is ordered by the Hilbert space-filling curve. In this case, if two points
lie on the boundary of one copy of the data, then they will not lie on the boundary
in the shifted copy. An algorithm for similarity search queries would search in
all the shifted copies. A similar idea is proposed in [44], where multiple different
space-filling curves are used for the same set of data. In this case, the set of
candidate nearest neighbors is formed from the union of neighbors in accordance
with the different space-filling curves. As can be observed, these are all heuristics
for preserving the locality using fractals.

2.3 The Spectral Mapping

In this paper, we propose the use of the Spectral LPM, an optimal locality-
preserving mapping with respect to all data points, to support multi-dimensional
range queries and nearest-neighbor queries. The optimality proof is presented in
Section 4. Spectral LPM avoids the drawbacks of the fractal algorithms by using
a global optimization instead of a local one, where global optimization means
that all multi-dimensional data points are taken into account when performing
the mapping. Notice that the local optimization in fractals is achieved by con-
sidering only the points in the current fragment during the mapping process.
Unlike fractals, Spectral LPM does not favor any set of points over the others;
all points are treated in a similar way.

In general, spectral algorithms use the eigenvalues and eigenvectors of the
matrix representation of a graph. Spectral algorithms are based on the spectral
theory which relates a matrix to its eigenvalues and eigenvectors [46]. Spectral
theory is attributed to David Hilbert, from a series of six papers collected and
published as one volume in [23]. Although spectral algorithms are well known for
more than 90 years, their use in the computer science fields began in [9], where
the eigenvectors of the adjacency matrix A(G) of a graph G are used in graph
partitioning. A milestone in spectral algorithms is due to Fiedler [15,16] who
proposed using the eigenvalues and eigenvectors of the Laplacian matrix L(QG)
of a graph G instead of the adjacency matrix A(G). Following Fiedler’s work, all
spectral algorithms turn out to use the Laplacian matrix L(G). Spectral algo-
rithms have been widely used in graph partitioning [40,41], data clustering [29],
linear labeling of a graph [27], and load balancing [21]. The optimality of the
spectral order in many applications is discussed in [6,19, 27,29, 45]. To the au-
thors’ knowledge, the use of a spectral mapping in database systems to support
range and similarity search queries is novel.

P [A set of multi-dimensional points where [P] = n.

S A linear order of all the points in P.
G(V, E)|A graph G with undirected edges FE and vertices V, where [V] = n.

i The degree of vertex v; € V.
A(G) |The adjacency matrix of G where A(G);; =0, and A(G);; =1 if
the edge (i,j) € E, o.w A(G);; = 0.
D(G) |[The diagonal matrix of G where D(G);; = d;, and D(G);; = 0,Vi # j.
L(G) |The Laplacian matrix of G where L(G);; = d;, and L(G);; = —1 if
(i¢,j) € E, o.w L(G);; = 0. For any graph G, L(G) = D(G) — A(G).
A2 |The second smallest eigenvalue for L(G).

X2 |The eigenvector (z1, 22, - ,%») that corresponds to the eigenvalue A2
(Also known as the Fiedler vector [16]).
e The unary vector (1,1---,1).

Table 1. Symbols used in the paper.

Algorithm Spectral LPM
Input: A set of multi-dimensional points P.
Output: A linear order S of the set P.

1. Model the set of multi-dimensional points P as a graph G(V,E) such that each
point P; € P is represented by a vertez v; € V', and there is an edge (vi,v;) € E if
and only if |P; — Pj| = 1.

2. Compute the graph Laplacian matriz L(G) = D(G) — A(G).

3. Compute the second smallest eigenvalue Ao and its corresponding eigenvector Xa
of L(G).

4. For each i =1 — n, assign the value z; to v; and hence to P;

5. The linear order S of P is the order of the assigned values of P;’s.

6. return S.

7. End.

Fig. 3. Pseudo code for the Spectral LPM.

3 The Spectral Mapping Algorithm

For the remainder of this paper, we use the notations and definitions given in
Table 1. Based on this notation, the pseudo code for the Spectral LPM algorithm
is given in Figure 3.

Figure 4 gives an example of applying Spectral LPM to a set of two-
dimensional points in a 3 x 3 grid. The main idea of Spectral LPM is to model
the multi-dimensional points as a set of vertices V' in an undirected, unweighted
graph G(V, E) with an edge e € E between two vertices if and only if the two
vertices represent two points with Manhattan distance M = 1. Figure 4b gives
the graph modeling of the multi-dimensional points in Figure 4a. Then, the
Laplacian matrix is computed as in Figure 4c, where row ¢ in L(G) represents
vertex v; € V. Note that the order used in numbering the vertices in G in Fig-
ure 4b is not important. Different orders result in different permutations of the
rows in L(G), which will yield the same result. The main step in Spectral LPM
is to compute the second smallest eigenvalue A2, also known as the algebraic
connectivity of the graph [15], and its corresponding eigenvector X5, also known

2 -1 0-1 0 0 0 0 0

L L L -1 3-10-10 0 0 0

0-1 2 0 0-120 0 0

L=|1 0 0 3-1 0-1 00

0 -1 0-1 4-1 0-1 0

L o ® 0 0-1 0-1 3 0 0 -1

00 0-1 0 0 2-1 0

00 0 0-1 0-1 3 -1

Y Y Y 00 0 0 0 -1 0 -1 2

(a) Multi-dimensional Points (b) Graph G(V,E) (c) The Laplacian Matrix L(G)

=1

%= (=0.01, ~0.29, —0.57, 0.28, 0, =0.28, 0.57, 0.29, 0.01)
§=(2,1,5,0,4,8,3,7,6)

(d) The second eigen value/vecor, and the linear order (e) The Spectral Order

Fig. 4. The Spectral LPM algorithm.

as the characteristic valuation of the graph [15] or Fiedler vector [16]. Figure 4d
gives Ay and X, for L(G) in Figure 4c. The eigenvalues and eigenvectors of a
matrix can be determined by any of the well known general iterative methods,
e.g., [8,31]. More specific numerical methods to compute the Fiedler vector are
proposed in [24,30]. For a survey on iterative methods for computing eigenval-
ues, the reader is referred to [18]. Finally, the value z; € X, is assigned to each
vertex v; € V and point p; € P. The spectral order S is determined by order-
ing the vertices and hence the points according to their assigned values, as in
Figures 4d and 4e.

4 The Optimality of the Spectral Mapping

An optimal mapping preserves the locality from the multi-dimensional space
into the one-dimensional space. In Section 2, we showed how a mapping can be
optimal with respect to a given point in the multi-dimensional space, and we
called such mapping a local optimal mapping. We showed in Figure 1 that we
can not have such local optimal mapping for each individual point in the multi-
dimensional space. In this section, we show how a mapping can be considered
globally optimal for all points in the space. Then, we prove that Spectral LPM
achieves this optimality.

Definition 1. : A wvector X = (z1,Z2,...,Z,) that represents the n one-
dimensional values of n multi-dimensional points represented as a graph G(V, E)
is considered to provide the globally optimal locality-preserving mapping from the
multi-dimensional space into the one-dimensional space if X satisfies the follow-
ing optimization problem:

Minimizef = Z (zi —x;)? Sit: zifba:f = 1,%@- =0 (1)
i=1

(visvj)€E =1

As in Figure 4, the locality-preserving mapping problem from the multi-
dimensional space into the one-dimensional space is the same as the problem of
embedding a graph G into a line L. A globally optimal mapping maps any two
vertices v;,v; € V where (v;,v;) € E to the points x;, z; respectively such that
|z; —z ;| is minimized. In other words, the points with Manhattan distance M =1
in the multi-dimensional space are required to be near to each other in the one-
dimensional space. By making this concept global over all the edges in the graph
(recall that there is an edge in the graph between each pair of points with M = 1),
we obtain the objective function: Minimizef =37, ., g |2i—2;|. To avoid the
absolute operation, we use the square for the difference between any two points.
The objective function becomes Minimizef = 3, , cp(®i — ;)% However,
the minimization problem is invariant under translation, yielding an infinite
number of solutions for X. For example, the vectors X and X + a give the same
result for f. To force a unique solution to the optimization problem, we pick any
valid solution X and apply a transformation by a = —Average(X"). Thus, the
mapping vector X would be X = X — Average(X"). The constraint ;1 z; =0
forces a choice for X such that Yot wmi = Y — iy Average(X') =
Stz —n(XZ] z;/n) = 0. Another problem for the objective function is
the existence of a trivial solution where all z;’s are set to 0, and hence f will
be 0. To find a non-trivial solution, we normalize X by dividing all z;’s by
| z |= /27 + 22 + - -- + 22. With this normalization, an additional constraint
is added where Y ;27 = 1.

3

Theorem 1. : The optimization problem in Definition 1 is equivalent to the
following optimization problem:

Minimizef = XTLX St: X'X=1,XTe=0 (2)

Proof. From the definition of the Laplacian matrix, we have L(G) = D(G) —
A(G). Therefore, the objective function can be rewritten as follows:

XTLX =X"DX - XTAX (3)

However, XTDX and XTAX can be rewritten in terms of 2;’s as follows:

d 0---0 1 dizy
XTpx =xT (_) d_2 (_) x,z = (2122 Tn) a2
00-d,) \a, dozn) @
“N = Y (2 4ad)
i=1 (vi,v;)EE

and

E(’Ul,’l}j)EE Ty

Z) T n
XTAXz(xlxg---xn) (UNJT)EE ! =Zm,~ Z z;=2 Z ;T

i=1 (vi,v;)€EE (vi,vi)EE

(5)

Z(v" 2;)EE Ty

substituting from 4, 5 into 3 results in:

XTLx = Z (2} +a7) — 2 Z iz = Z (z; — 2;)°

(visv;)€E (viyv;)€E (vi,vj)€E

So, the objective function f = Z(ij)e p(®i—x;)? is equivalent to the objective
function f = XTLX . The two constraints X7 X =1 and X7e = 1 are just the
vector form representation for the two constraints Y ;1 z7 =1, > '—'x; = 0,
respectively. Proving that these constraints are equivalent is trivial.

Theorem 2. [15]: The solution of the optimization problem in Theorem 1 is
the second smallest eigenvalue Ao and its corresponding eigenvector X,.

Proof. Given the first constraint, the objective function can be rewritten as
XTLX = XTXf=XTfX = LX = fX. Thus, X must be an eigenvector of
L, with the corresponding eigenvalue f. Then, the solution of the optimization
problem in Theorem 1 is the least non-trivial eigenvalue f, and its correspond-
ing eigenvector X. Note that the eigenvector X is guaranteed to satisfy both
constraints of the optimization problem with the transformation and normal-
ization procedure discussed in Theorem 1. According to the Perron-Frobenius
Theorem [17] , there is only one maximum eigenvalue for any non-negative
irreducible! matrix M, which is p(M) and is called the spectral radius of M.
p(M) is bounded by the minimum and maximum sum of all the rows in M. Ap-
plying this theorem on the non-negative irreducible matrix M = (n—1)I — L(G),
yields that p(M) = n — 1. Since, p((n — 1)I) = n — 1, so p(—L(G)) = 0. This
means that the matrix L(G) has only one minimum eigenvalue with value 0,
and therefore there is only one trivial eigenvalue for L(G) [1]. This means that
the first non-trivial eigenvalue for L(G) is the second one. Thus, the minimiza-
tion of XTLX is Ay, the second smallest eigenvalue of L and its corresponding
eigenvector Xs.

From Theorem 2, the eigenvector X, of the second smallest eigenvalue A,
(Step 3 in Spectral LPM) is the optimal solution of the optimization problems
for Definition 1 and Theorem 1. Since the optimization problem in Definition 1
is modeled in the first step in Spectral LPM, then Spectral LPM guarantees the
optimal result.

L' A matrix M is irreducible iff it represents a connected graph.

5 Extensibility of the Spectral Mapping

Additional requirements cannot be integrated in the fractal locality-preserving
mapping algorithms. For example, assume that we need to map points in the
multi-dimensional space into disk pages, and we know (from experience) that
whenever point z in page P, is accessed, there is a very high probability that
point y in page P, will be accessed soon afterwards. Assume that = and y lie very
far from each other in the multi-dimensional space. A consistent mapping would
result in pages P, and P, being far away from each other on disk. However, it is
clear that we need to map x and y into nearby locations in the one-dimensional
storage (disk), fractals cannot help with such an additional requirement (i.e.,
the requirement of taking the probability of access into consideration). Fractals
deal only with the location of the multi-dimensional points in the space. In
contrast, Spectral LPM provides an extensible environment that can incorporate
any number of additional requirements. The flexibility of Spectral LPM comes
from the degree of freedom it has in Step 1 of the Spectral LPM Algorithm,
given in Figure 3. Step 1 is the graph modeling, where any requirement can
be modeled as an edge in the graph G in Step 1 of Spectral LPM. Returning
to the example of two disk pages P, and P,. To force mapping = and y into
nearby locations in the one-dimensional space using Spectral LPM, we add an
edge (z,y) to the graph G. By adding this edge, Spectral LPM learns that x
and y need to be treated as if they have Manhattan distance M = 1 in the
multi-dimensional space.

Another extensibility feature in Spectral LPM is that we can change the way
we construct the graph G. For example, we can model the multi-dimensional
points in a graph G such that there is an edge between any two points P; and
P; if and only if the maximum distance over any dimension is one. In case of the
two-dimensional space, this results in an eight-connectivity graph where each
point P; is connected to its eight neighbors (compare with the four-connectivity
graph in Figure 4b). Figure 5 gives the modeling of two-dimensional points in
a 4 x 4 grid with the resulting spectral order after applying Spectral LPM for
four-connectivity (Figures 5a, 5b) and eight-connectivity graphs (Figures 5¢, 5d).

More generally, points in the multi-dimensional space can be modeled as a
weighted graph, where the weight w of an edge e(v1, v2) represents the priority of
mapping v; and v to nearby locations in the one-dimensional space. In this case,
the definition of L(G) will be changed slightly to have L(G)i = >_(; jep Wij»
and L(GQ)i; = —wy; if (4,j) € E, o.w., L(G);; = 0. Also, the objective function
of Definition 1 will be f =37, cpwi;(@i — z;)?. However, Theorems 1 and 2
will be the same.

Notice that the proof of optimality of Spectral LPM in Section 4 is valid
regardless of the graph type. The idea of Spectral LPM is that it is optimal for
the chosen graph type. For the rest of the paper, we choose to work with the
four-connectivity graph in Figure 4b where it has a very sparse and symmetric
matrix that results in efficient computation time.

HH 72

Fig. 5. Variation of the Spectral LPM algorithm. (a) Four-connectivity graph, (b)
Its corresponding spectral order, (c) Eight-connectivity graph, (d) Its corresponding
spectral order

6 Experimental Results

In this section, we give experimental evidence that Spectral LPM is superior to
any of the fractal locality-preserving mapping algorithms. In the experiments,
we focus on the effect of Spectral LPM on similarity search queries (e.g., nearest-
neighbor queries) and range queries. However, due to its optimality, we believe
that Spectral LPM will give similar superior performance when applied to other
applications that require a locality-preserving mapping (e.g., the set of applica-
tions mentioned in Section 1).

We use the Linear Span for a given query selection (difference between the
maximum and minimum linear coordinates in the selected region) as our mea-
sure of performance. The Linear Span measure is used in [26, 37, 38] to compare
different fractal locality-preserving mappings. The lower the Linear Span of a
given query, the better the locality-preserving mapping. The idea of the lower
Linear Span is to have the ability to develop a single numeric index on a one-
dimensional space for each point in a multi-dimensional space such that for any
given object, the range of indices, from the smallest index to the largest, includes
few points not in the object itself.

We evaluate Spectral LPM w.r.t. Linear Span by comparing Spectral LPM
with three different fractal locality-preserving mapping algorithms based on the
Peano, Gray, and Hilbert space-filling curves. In addition, we consider a row-
major method as a simple and straightforward solution for mapping the multi-
dimensional space into the one-dimensional space. In the experiments, we refer
to the row-major mapping by the Sweep space-filling curve (SFC) [35]. The
motivation for choosing the Sweep SFC is that it provides another way of multi-
dimensional mapping that is not based on fractals. A popular example that uses
the Sweep SFC is storing the multi-dimensional matrices in memory.

For the implementation of Spectral LPM, we use the conjugate gradient
method [30] to compute the Fiedler vector of L(G). The conjugate gradient
method is proved to have less iterations and efficient time processing over other
algorithms. In addition, the conjugate gradient method directly gives the eigen-
vector associated with the second smallest eigenvalue (the Fiedler vector) with-
out the need to compute any other eigenvectors. For the Hilbert SFC, we use
the methodology in [4] to generate the Hilbert SFC for an arbitrary number of

dimensions. The Peano and Gray SFCs can be easily implemented for the D-
dimensional space as in [14]. The implementation of the Sweep SFC is straight-
forward.

We perform two sets of experiments; mesh-data and real-data experiments.
In the mesh-data experiments, we assume that there exist a data point at every
grid cell in the multi-dimensional space, and we exhaustively test all possible
range and nearest-neighbor queries. In the real-data experiments, we use a real
data set and generate a batch of range queries and nearest-neighbor queries.
Both the mesh-data and real-data experiments show the superior performance
of the Spectral LPM over any other locality-preserving mappings.

6.1 Range Query Performance using Mesh-data

In the first set of experiments, we run all possible four-dimensional range queries
with sizes ranging from 2% to 64% of the multi-dimensional space. Figure 6a
gives the maximum possible Linear Span of range queries. Spectral LPM outper-
forms all other locality-preserving mappings, while the Gray and Hilbert SFCs
give the worst performance. For example, for a query that retrieves only 2%
of the multi-dimensional space, in the worst case, the Gray and Hilbert SFCs
can map this query to span 100% of the one-dimensional space. Although, the
boundary effect in fractals is the main reason behind this bad performance, it
does not have the same bad effect on the Peano SFC. The main reason is that
the Gray and Hilbert SFCs visit the space fragments in the order imposed by the
gray code while the Peano SFC visits the space fragments in the order imposed
by the binary code. Spectral LPM has the smallest Linear Span. This demon-
strates the notion of global optimality that Spectral LPM has. In other words,
Spectral LPM optimizes over the entire space and treats the multi-dimensional
space uniformly, and hence its worst-case Linear Span is much smaller than the
other SFCs.

Figure 6b tests the stability of the locality-preserving mapping. A good
locality-preserving mapping should provide the same performance for each query
size, regardless of its location in the space. The standard deviation of the Lin-
ear Span is used as a measure of the stability of the locality-preserving map-
ping. Lower standard deviation indicates more stability. As expected (due to
the boundary effect), the Gray and Hilbert SFCs gives the worst performance.
Spectral LPM outperforms all other mappings for all range query sizes. The
Peano and Sweep SFCs give an intermediate performance. Notice that although
the Sweep SFC is not a fractal, it gives the same performance as the Peano
fractal mapping. The main reason is that the Sweep SFC discriminates between
the dimensions. For example, in the two-dimensional Sweep SFC, a range query
that asks for all points with y=1 would result in an excellent performance, while
the query that asks for all points with £ = 1 would result in a very bad per-
formance. For all cases, the Spectral LPM does not suffer from discriminating
between dimensions, or boundary effect.

The same results are obtained when we perform the same experiments in
the five-dimensional space. In general, the relative performance of the Spectral

StDev. of Linear Span

50

Spectral —=— 10 Hi 1 bert

Spectral —=—

Maxi num Li near Span (Percent)

40 £ 0
2 4 8 16 32 64 2 4 8 16 32 64
Range Query Size (Percent) Range Query Size (Percent)
(a) 4D Maximum (b) 4D St. Dev.

~ 100

€

£ 80 2

c @

3

g 60r Sweep —o— 5

< Peano —x—

3 50 Gay —¥— =

£ H | bert —&— &

£ 40 Spectral —=— 3

= Spectral —a—

£ 30t 0 P

2 4 8 16 32 64 2 4 8 16 32 64

Range Query Size (Percent) Range Query Size (Percent)
(c) 5D Maximum (d) 5D St. Dev.

Fig. 6. The performance of range queries in 4D, 5D spaces.

LPM over other mappings increases with the space dimensionality. Figures 6c¢,
and 6d give the maximum and standard deviation of the Linear Span in the five-
dimensional space, respectively. Notice that the standard deviation of the Linear
Span decreases with large query sizes for all locality-preserving mappings. This
can be clarified if we consider the extreme case of a range query that covers 100%
of the space. Clearly, there is only one range query with 100% space coverages.
This results in zero standard deviation.

6.2 k-Nearest-Neighbor Using Mesh-data

Figure 7 gives the performance of k-nearest-neighbor (k-NN) queries. In the case
of mesh data, we have data points in all space points. As a result, in the two-
dimensional space, when setting k = 4, k-NN retrieves the four neighbors with
Manhattan distance 1. Figures 7a gives the maximum Linear Span of all possible
k-nearest-neighbor queries with query size up to 50% of the four-dimensional
space. The spectral mapping gives much better performance than fractals with
respect to the maximum linear span.

100

€
2 9F -
I 200
& sof &
§ 70t 8 150 g
? 60 = o
3 - *
3 50l £ 100 | e
< Sweep —e— g o
4 Peano —x— = .
40 b = LK . x
g Hibert o 2 sor T §$§S$ *
= 0 Spectral —m— K Spectral - X —8—
é 20 ¥ Spectral - Y —6—
0
10 20 30 40 50 10 20 30 40 50
k-NN Query size (Percent) Manhat t an di stance (Percent)
(a) 4D Maximum (b) 2D Maximum
120 - 250 .
X Sweep —+—
100 o g Peano —»—
< r - s Gay —k—
g : . %ﬁ @ 200 Hibert o
@ 80 8 = Spectral —m—
t :]
g - = 1504
S 60t o 7
x Sweep- X -
:-jv 40 - o Sweep- Y - § 100
s x Spectral - X —8&— o
e - Spectral - Y —e— @
S = 50t
20 * -
pas
0 £ —a
0 : =
10 20 30 40 50 10 20 30 40 50
Manhat t an di stance (Percent) Manhat t an di stance (Percent)
(c) 2D Average (d) 2D Difference

Fig. 7. The performance of k-NN queries in 2D and 4D spaces using mesh data.

Since Spectral LPM and the Sweep SFC have the best performance, in Fig-
ures 7b and 7c we compare the performance of the Spectral LPM and the Sweep
SFC with respect to different space dimensions. For simplicity in presenting the
results, the experiment is performed only for the two-dimensional space. The x
axis represents the Manhattan distance over only one dimension. The y axis rep-
resents the maximum possible Linear Span in the one-dimensional space for every
two points with a certain Manhattan distance up to 50% of the two-dimensional
space. By the curves Sweep-X and Sweep-Y, we mean that we compute the Man-
hattan distance over the X and Y dimensions, respectively. The same argument
is valid for Spectral-X and Spectral-Y. The performance of the Sweep mapping
have much variation when measuring the distance over the X (Sweep-X) and Y
(Sweep-Y) dimensions. However, for the Spectral mapping, the performance is
very similar for the two dimensions. For example, a query that asks for a point @
that have similar y value as point P (M = 0) would guarantee to have an answer
that have one-dimensional distance at most 15 (Figure 7b) with average 6 (Fig-
ure 7c). However, if the same query asks for a point @ that has similar z value,
instead of y, then the answer would have one-dimensional distance that is up to

240 with average 91. On the other side, Spectral LPM answers the first query in
one-dimensional distance up to 146 with average 54 and the second query in a
one-dimensional distance that is up to 173 with average 71. The high variation of
the Sweep mapping makes it non-deterministic and favors some queries over the
others. Such high variation is not desirable by any locality-preserving mapping.

Figure 7d performs the same experiment for all locality-preserving mappings.
The plotted curves represent the difference in the maximum one-dimensional
distance that corresponds to Manhattan distance M for X and Y dimensions.
The Sweep and Spectral curves can be derived by getting the absolute difference
|SweepY — SweepX| and |SpectralY — Spectral X| from Figure 7b, respectively.
The Sweep mapping gives very bad performance. Spectral LPM almost gives
an optimal result, where the difference is almost 0. Fractals, have a moderate
performance that is not as good as Spectral LPM nor as bad as the Sweep
mapping.

6.3 Performance Using Real-data Sets

In this section, we use the North East data set that contains 123,593 postal
addresses, which represent three metropolitan areas (New York, Philadelphia
and Boston) [25]. The two-dimensional space is represented by a 128 x 128 grid.
Each grid cell corresponds to a disk page. Data points are aligned to the nearest
grid cell. Disk pages are stored in the order imposed by the underlying locality-
preserving mapping. It is required that the locality-preserving mapping clusters
the disk pages required to answer a specific query in a minimum Linear Span.

In the first experiment (refer to Figures 8a and 8b), we run 10,000 random
range queries with sizes from 1% to 10% of the space. Figure 8a gives the av-
erage size of the Linear Span for each query size. Clearly, the Spectral LPM
outperforms all other mappings. As the query size increases, the relative perfor-
mance of the Spectral LPM over other mappings increases. Figure 8b measures
the stability of the locality-preserving mappings with regard to the location of
the range query. The standard deviation of the Linear Span of range queries is
used as an indication for the stability. The Spectral LPM outperforms all other
mappings.

In the next experiment, (refer to Figures 8c and 8d), we run 10,000 random
k-nearest-neighbor queries with k ranges from 100 to 1000. Figures 8c and 8d
give the average and standard deviation of the Linear Span, respectively. Again,
the results from the real data set agrees with the analytical results that the
Spectral LPM outperforms all other locality-preserving mappings.

7 Conclusion

In this paper, we argue against the use of fractals as a basis for locality-preserving
mapping algorithms by providing some examples and experimental evidence
to show how fractal mapping algorithms produce a poor mapping. Then, we
introduce the Spectral LPM; a provably optimal algorithm for mapping the

11000 T T T T T T T T 12000

10000 < 11000 -
c g
S 9000 @ 10000 |
@ -
<1
§ 8000 2 9000 -
c 3
5 7000 - 8000 -
& 6000 7000 f,
& =
$ 5000 8 Go00
Ed
4000 @ 5000 -
2000 Spectral —@ 2000 Spectral —&—
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Range Query size (Percent) Range Query size (Percent)
(a) Average (b) St. Dev.
4500 T T T T T T T T 7000 T T T
Sweep —+— Sweep —+—
4000 Peano —%— H 6000 Peano —x—
Gay —%— Gay —%—

ay
3500 Hilbert —8—
Spectral —a— -Spectral —#&—

3000

N
a
=}
5]

2000

v. of Linear Span

B
o o a
S © o
S & o
St. De
[R
o o o
S o o
S & o

Average Linear Span

o
o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k-NN Query size * 100 k-NN Query size * 100
(c) Average (d) St. Dev.

Fig. 8. The size of Linear Span of (a),(b) Range Queries, (c),(d) ~NN Queries

multi-dimensional space into the one-dimensional space such that the points
that are nearby in the multi-dimensional space would still be nearby in the
one-dimensional space. Spectral LPM uses the spectral properties of the multi-
dimensional space where the multi-dimensional points are mapped into a graph
G(V,E). Then, the linear order of the multi-dimensional points is determined
by their order within the eigenvector X, that corresponds to the second smallest
eigenvalue A5 of the Laplacian matrix L(G). In addition, we provide a mathemat-
ical proof for the optimality of Spectral LPM. Unlike fractals, Spectral LPM can
incorporate any number of additional requirements for the locality-preserving
mapping. Experimental analysis confirms the superior performance of Spectral
LPM over the long used fractal locality-preserving mapping algorithms for sim-
ilarity search queries and range queries.

References

1. W. N. Anderson and T. D. Morley. Eigenvalues of the laplacian of a graph. Tech-
nical Report TR-71-45, University of Maryland, Oct. 1971. Reprinted in Linear
and Multilinear Algebra, 18:141-145, 1985.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W. G. Aref, K. El-Bassyouni, I. Kamel, and M. F. Mokbel. Scalable qos-aware
disk-scheduling. In Intl. Database Engineering and Applications Symp., IDEAS,
Alberta, Canada, July 2002.

J. J. Bartholdi and L. K. Platzman. An o(n log n) traveling salesman heuristic
based on space filling curves. Operation Research Letters, 1(4):121-125, Sept. 1982.
T. Bially. Space-filling curves: Their generation and their application to bandwidth
reduction. IEEE Transactions on Information Theory, 15(6):658-664, Nov. 1969.
C. Bohm, G. Klump, and H.-P. Kriegel. zz-ordering: A space-filling curve for
objects with spatial extension. In Intl. Symp. on Advances in Spatial Databases,
SSD, pages 75-90, Hong Kong, July 1999.

T. F. Chan, P. Ciarlet, and W. K. Szeto. On the optimality of the median cut spec-
tral bisection graph partitioning method. SIAM Journal on Scientific Computing,
18(3):943-948, May 1997.

D. Comer. The ubiquitous b-tree. ACM Comp. Surveys, 11(2):121-137, June 1979.
E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corre-
sponding eigenvectors of large real-symmetric matrices. Journal of Computational
Physics, 17:87-94, 1975.

W. Donath and A. Hoffman. Algorithms for partitioning of graphs and computer
logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bul-
letin, 17:938-944, 1972.

C. Faloutsos. Multiattribute hashing using gray codes. In Intl. Conf. on Manage-
ment of Data, SIGMOD, pages 227-238, Washington D.C., May 1986.

C. Faloutsos. Gray codes for partial match and range queries. IEEE Transactions
on Software Engineering, TSE, 14(10):1381-1393, Oct. 1988.

C. Faloutsos and P. Bhagwat. Declustering using fractals. In Intl. Conf. on Parallel
and Distributed Information Sys., pages 18-25, San Jose, CA, Jan. 1993.

C. Faloutsos and Y. Rong. Dot: A spatial access method using fractals. In Indl.
Conf. on Data Engineering, ICDE, pages 152-159, Japan, Apr. 1991.

C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Symp. on
Principles of Database Systems, PODS, pages 247-252, Mar. 1989.

M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. Journal,
23(98):298-305, 1973.

M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Math. Journal, 25(100):619-633, 1975.
F. G. Frobenius. Uber matrizen aus nicht negativen elementen. Sitzungsberichte der
Koniglich Preusischen Akademie der Wissenschaften zu Berlin, 4:456-477, 1912.
G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th century.
Jour. of Comp. and App. Math., 123(1-2):35-65, 2000.

S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM Journal
on Matriz Analalysis and Applications, 19(3):701-719, July 1998.

A. Guttman. R-trees: A dynamic index structure for spatial indexing. In Intl.
Conf. on Management of Data, SIGMOD, pages 47-57, Boston, MA, June 1984.
B. Hendrickson and R. Leland. Multidimensional spectral load balancing. In STAM
Conf. on Parallel Processing, pages 953-961, 1993.

D. Hilbert. Ueber stetige abbildung einer linie auf ein flashenstuck. Mathematishe
Annalen, pages 459-460, 1891.

D. Hilbert. Grundzuge einer allgemeinen Theorie der linearen Integralgleinhungen.
Teubner, Leipzig, 1912.

M. Holzrichter and S. Oliveira. A graph based method for generating the fiedler
vector of irregular problems. In Parallel and Distributed Processing, LNCS, volume
1586, pages 978-985. Springer Verlag, Apr. 1999.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.
39.
40.
41.

42.
43.

44.

45.

46.

47.

http://dias.cti.gr/ ytheod/research/datasets/spatial.html.

H. V. Jagadish. Linear clustering of objects with multiple attributes. In Intl. Conf.
on Management of Data, SIGMOD, pages 332-342, Atlantic City, NJ, June 1990.
M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs.
Discrete Applied Mathematics, 36:153-168, 1992.

I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In
Intl. Conf. on Very Large Databases, VLDB, pages 500-509, Chile, Sept. 1994.
R. Kannan, S. Vempala, and A. Vetta. On clusterings - good, bad and spectral.
In Symp. on Foundations of Computer Science, FOCS, pages 367-377, Redondo
Beach, CA, Nov. 2000.

N. P. Kruyt. A conjugate gradient method for the spectral partitioning of graphs.
Parallel Computing, 22(11):1493-1502, Jan. 1997.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. Journal of Research of the National Bureau of
Standards, 45(4):255-282, 1950.

J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using
the hilbert space filling curve. SIGMOD Record, 30(1), Mar. 2001.

S. Liao, M. A. Lopez, and S. Leutenegger. High dimensional similarity search with
space-filling curves. In Intl. Conf. on Data Engineering, ICDE, pages 615-622,
Heidelberg, Germany, Apr. 2001.

B. B. Mandelbrot. Fractal Geometry of Nature. W. H. Freeman, New York, 1977.
M. F. Mokbel and W. G. Aref. Irregularity in multi-dimensional space-filling curves
with applications in multimedia databases. In Intl. Conf. on Information and
Knowledge Managemen, CIKM, Atlanta, GA, Nov. 2001.

M. F. Mokbel, W. G. Aref, and A. Grama. Spectral lpm: An optimal locality-
preserving mapping using the spectral (not fractal) order. In Intl. Conf. on Data
Engineering, ICDE, pages 699-701, Bangalore, India, Mar. 2003.

B. Moon, H. Jagadish, C. Faloutsos, and J. Salz. Analysis of the clustering prop-
erties of hilbert space-filling curve. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 13(1):124-141, 2001.

J. A. Orenstein. Spatial query processing in an object-oriented database system.
In Intl. Conf. on Management of Data, SIGMOD, pages 326-336, May 1986.

G. Peano. Sur une courbe qui remplit toute une air plaine. Mathematishe Annalen,
36:157-160, 1890.

A. Pothen. Graph partitioning algorithms with applications to scientific comput-
ing. Parallel Numerical Algorithms, 4(8):888-905, Jan. 1997.

D. Powers. Graph partitioning by eigenvectors. Lin. Alg. Appl, 101:121-133, 1988.
H. Sagan. Space Filling Curves. Springer, Berlin, 1994.

K. C. Sevcik and N. Koudas. Filter trees for managing spatial data over a range
of size granularities. In Intl. Conf. on Very Large Databases, VLDB, pages 1627,
Bombay, India, Sept. 1996.

J. Shepherd, X. Zhu, and N. Megiddo. A fast indexing method for multidimen-
sional nearest neighbor search. SPIE, Storage and Retrieval for Image and Video
Databases, 3656:350-355, 1998.

H. D. Simon and S.-H. Teng. How good is recursive bisection. SIAM Journal on
Scientific Computing, 18(5):1436-1445, Sept. 1997.

L. A. Steen. Highlights in the history of spectral theory. American Math. Monthly,
80(4):359-381, Apr. 1973.

I. Witten and M. Neal. Using peano curves for bilevel display of continuous tone
images. IEEE Computer Graphics and Applications, pages 47-52, 1982.

