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Abstract—This paper introduces an efficient framework for producing high and early result throughput in multi-join query plans.
While most previous research focuses on optimizing for cases involving a single join operator, this work takes a radical step by
addressing query plans with multiple join operators. The proposed framework consists of two main methods, a flush algorithm
and operator state manager. The framework assumes a symmetric hash join, a common method for producing early results,
when processing incoming data. In this way, our methods can be applied to a group of previous join operators (optimized for
single-join queries) when taking part in multi-join query plans. Specifically, our framework can be applied by (1) employing a new
flushing policy to write in-memory data to disk, once memory allotment is exhausted, in a way that helps increase the probability
of producing early result throughput in multi-join queries, and (2) employing a state manager that adaptively switches operators in
the plan between joining in-memory data and disk-resident data in order to positively affect the early result throughput. Extensive
experimental results show that the proposed methods outperform the state-of-the-art join operators optimized for both single and

multi-join query plans.
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1 INTRODUCTION

RADITIONAL join algorithms (e.g., see [1], [2], [3])
Tare designed with the implicit assumption that
all input data is available beforehand. Furthermore,
traditional join algorithms are optimized to produce
the entire query result. Unfortunately, such algorithms
are not suitable for emerging applications and en-
vironments that require results as soon as possible.
Such environments call for a new non-blocking join
algorithm design that is: (1) applicable in cases where
input data is retrieved from remote sources through
slow and bursty network connections, (2) optimized
to produce as many early results as possible (ie.,
produce a high early result throughput) in a non-
blocking fashion, while not sacrificing performance in
processing the complete query result, and (3) operates
in concert with other non-blocking operators to pro-
vide early (i.e., online) results to users or applications.
In other words, any blocking operation (e.g., sorting)
must be avoided when generating of online results.

Examples of applications requiring online results
include web-based environments, where data is gath-
ered from multiple remote sources and may exhibit
slow and bursty behavior [4]. Here, a join algorithm
should be capable of producing results without wait-
ing for the arrival of all input data. In addition,
web users prefer early query feedback, rather than
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waiting an extended time period for the complete
result. Another vital example is scientific experimental
simulation, where experiments may take up to days
to produce large-scale results. In such a setting, a join
query should be able to function while the experiment
is running, and not have to wait for the experiment
to finish. Also, scientists prefer to receive early feed-
back from long-running experiments in order to tell
if the experiment must halt and be restarted with
different settings due to unexpected results [5], [6].
Other applications that necessitate the production
of early results include streaming applications [7],
[8], workflow management [9], data integration [10],
parallel databases [11], spatial databases [12], sensor
networks [13], and moving object environments [14].

Toward the goal of producing a high early result
throughput in new and emerging online environ-
ments as those just described, several research efforts
have been dedicated to the development of non-
blocking join operators (e.g., see [15], [16], [17], [12],
[18], [19], [20], [8], [21]). However, with the exception
of [17], these algorithms focus on query plans contain-
ing a single join operator. The optimization techniques
employed by these join operators focus on producing
a high early result throughput locally, implying that
each operator is unaware of other join operators that
may exist above or below in the query pipeline.
Optimizing for local throughput does not necessarily
contribute to the goal of producing a high overall early
result throughput in multi-join query plans.

In general, the ability of join queries to produce
high early result throughput in emerging environ-
ments lies in the optimization of two main tasks:



(1) The ability to handle large input sizes by flushing
the least beneficial data from memory to disk when
memory becomes exhausted during runtime, thus al-
lowing new input tuples to produce early results, and
(2) The ability to adapt to input behavior by producing
results in a state (e.g., in-memory or on-disk) that pos-
itively affects early result throughput. In this paper,
we explore a holistic approach to optimizing these
two tasks for multi-join query plans by proposing two
methods that consider join operators in concert, rather
than as separate entities. The first method is a novel
flushing scheme, named AdaptiveGlobalFlush, that in-
telligently selects a portion of in-memory data that
is expected to contribute to result throughput the least.
This data is written to disk once memory allotment for
the query plan is exhausted, thus increasing the prob-
ability that new input data will help increase overall
result throughput. The second method is a novel state
manager module that is designed to fetch disk-resident
data that will positively affect result throughput. Thus,
the state manager directs each operator in the query
pipeline to the most beneficial state during query run-
time. These two methods assume that symmetric hash
join, a common non-blocking join operator [17], [18],
[21], is used to compute join results. This assumption
makes the AdaptiveGlobalFlush method and the state
manager module compatible with previous operators
optimized for single-join query plans. Also, while
these two methods are mainly designed to produce
high early throughput in multi-join query plans, they
also ensure the production of complete and exact query
results, making them suitable for applications that do
not tolerate approximations.

To the authors” knowledge, the state spilling ap-
proach [17] is the only work to have considered multi-
join query plans. However, the work presented in
this paper distinguishes itself from state-spilling and
all other previous work through two novel aspects.
First, the AdaptiveGlobalFlush algorithm attempts to
maximize overall early result throughput by building
its decisions over time based on a set of simple
collected statistics that take into account both the data
input and result output. Second, the state manager is
a novel module that does not exist in previous work,
and is designed specifically for multi-join query plans.
The state manager has the ability to switch any join
operator back and forth between joining in-memory
data and disk-resident data during runtime based on
the operation most beneficial for the set of pipelined
join operators to produce early result throughput.
When making its decision, the state manager module
maintains a set of accurate, lightweight statistics that
help in predicting the contribution of each join operator
state. In general the contributions of this paper can be
summarized as follows:

1) We propose a novel flushing scheme , Adap-
tiveGlobalFlush , applicable to any hash-based

join algorithm in a multi-join query plan. Adap-
tiveGlobalFlush helps produce high early result
throughput in multi-join query plans while be-
ing adaptive to the data arrival patterns.

2) We propose a novel state manager module that di-
rects each join operator in the query pipeline to
join either in-memory data or disk-resident data
in order to produce high early result throughput.

3) We provide experimental evidence that our
methods outperform the state-of-the-art join al-
gorithms optimized for early results in terms of
efficiency and throughput.

The rest of this paper is organized as follows: Sec-
tion 2 highlights related work. Section 3 presents an
overview of the methods proposed in this paper. The
AdaptiveGlobalFlush method is described in Section 4.
Section 5 presents the state manager module. Correct-
ness of AdaptiveGlobalFlush and the state manager is
covered in Section 6. Experimental evidence that our
methods outperform other optimization techniques is
presented in Section 7. Section 8 concludes the paper.

2 RELATED WORK

The symmetric hash join [21] is the most widely used
non-blocking join algorithm for producing early join
results. However, it was designed for cases where
all input data fits in memory. With the massive ex-
plosion of data sizes, several research attempts have
aimed to extend the symmetric hash join to support
disk-resident data. Such algorithms can be classified
into three categories: (1) hash-based algorithms [10],
[18], [19], [20] that flush in-memory hash buckets to
disk either individually or in groups, (2) sort-based
algorithms [15], [22] in which in-memory data is
sorted before being flushed to disk, and (3) nested-
loop-based algorithms [16] in which a variant of the
traditional nested-loop algorithm is employed. Also,
several methods have been proposed to extend these
algorithms for other operators, e.g., MJoin [8] extends
XJoin [20] for multi-way join operators while hash-
based joins have been extended for spatial join op-
erators [12]. However, these join algorithms employ
optimization techniques that focus only on the case
of a single join operator, with no applicable extension
for multi-join query plans.

In terms of memory flushing algorithms, previ-
ous techniques can be classified to two categories:
(1) Flushing a single hash bucket. Examples of this
category include XJoin [20] that aims to flush the
largest memory hash bucket regardless of its input
source and RPJ [19] that evicts a hash bucket based
on an extensive probabilistic analysis of input rates.
(2) Flushing a pair of corresponding buckets from
both data sources. Examples of this category include
hash-merge join [18] that keeps the memory balanced
between the input sources and state spilling [17]
that attempts to maximize the overall early result
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throughput of the query plan. Our proposed Adaptive-
GlobalFlush method belongs to the latter category, as
flushing a pair of buckets eliminates the need for exten-
sive timestamp collection. Timestamps are necessary
when flushing a single bucket to avoid duplicate join
results [19], [20].

A family of previous work can be applied to stream-
ing environments where input data is potentially
infinite (e.g., [23], [24], [25]). Such algorithms aim to
produce an approximate join result based on either
load shedding [26], [27] or the definition of a sliding
window over incoming streams [28]. Since our meth-
ods are concerned with finite input and exact query
results, discussion of infinite data streams is outside
the scope of this paper.

To the authors’ knowledge the closest work to ours
is PermJoin [29] and the state-spilling method [17].
PermJoin does not discuss specific methods for pro-
ducing early results in multi-join query plans, only
a generic framework. The basic idea behind state
spilling is to score each hash partition group (i.e.,
symmetric hash buckets) in the query plan based on
its current contribution to the query result. When
memory is full, the partition group with the lowest
score is flushed to disk. Once all inputs have fin-
ished transmission, the state-spill approach joins disk-
resident data using a traditional sort-merge join. Our
proposed AdaptiveGlobalFlush method differs from the
state-spilling flush approach in that it is predictive,
taking into account both input and output character-
istics to make an optimal flush decision. Furthermore,
our proposed state manager is not found previous
work, as it continuously operates during query runtime
to place operators in an optimal state with regard
to overall throughput. State-spill and other previous
work consider changing operator state only when
sources block or data transmission has terminated.

3 OVERVIEW

This section gives an overview of the two novel
methods we propose for producing a high early result
throughput in multi-join query plans. These methods
are: (1) A new memory flushing algorithm, designed
with the goal of evicting data from memory that
will contribute to the result throughput the least, and

optimized for overall (rather than local) early result
throughput. (2) A state manager module designed with
the goal of placing each operator in a state that will
positively affect result throughput. Each operator can
function in an in-memory, on-disk, or blocking state.
An overview of how our memory flushing algo-
rithm and state manager can be added to existing
non-blocking hash-based join algorithms is given in
the state diagram in Figure 1(a). As depicted in the
diagram, whenever a new tuple Rg is received by the
input buffer from source S of operator O, the state
manager determines how the tuple is processed. If O
is currently not in memory, the tuple Rgs will be tem-
porarily stored in the buffer until O is brought back
to memory. Otherwise, Rg will be immediately used
to produce early results by joining it with in-memory
data. Initially, all join operators function in memory.
Once memory becomes full, the memory flushing al-
gorithm frees memory space by flushing a portion of
in-memory data to disk. During query runtime, each
join operator may switch between processing results
using either memory-resident or disk-resident data.
Memory Flushing. Most hash-based join algorithms
optimized for early results employ a flushing policy
to write data to disk once memory is full. In a
multi-join query plan, policies that optimize for local
throughput will likely perform poorly compared to
policies that consider all operators together to opti-
mize for overall throughput. For example, given the
plan in Figure 1(b), if a local policy constantly flushes
data from O;, then downstream operators (O2 and
Os3) will be starved of data, degrading overall result
throughput. We introduce a flushing policy, Adap-
tiveGlobalFlush, that can be added to existing hash-
based join algorithms when part of a multi-join query
plan. AdaptiveGlobalFlush opts to flush pairs of hash
buckets, where flushing a bucket from an input source
implies flushing the corresponding hash bucket from
the opposite input at the same time. AdaptiveGlob-
alFlush evicts pairs of hash buckets that have the lowest
contribution to the overall query output, using an
accurately collected set of statistics that reflect both
the data input and query output patterns. Details of
AdaptiveGlobalFlush are covered in Section 4.
State Manager. The main responsibility of the state
manager is to place each join operator in the most
beneficial state in terms of producing high early result
throughput. These states, as depicted in Figure 1(a) by
rectangles, are: (1) Joining in-memory data, (2) Joining
disk-resident data, or (3) Temporary blocking, i.e.,
not performing a join operation. As a motivating
example, consider the query pipeline given in Fig-
ure 1(b). During query runtime, sources A and B
may be transmitting data, while sources C' and D
are blocked. In this case, query results can only be
generated from the base operator O;. The overall
query results produced by O; rely on the selectivity
of the two operators above in the pipeline (i.e. O,
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and Oz). If the selectivity of these operators is low,
merging disk-resident data at either O; or O3 may
be more beneficial in maximizing the overall result
throughput than performing an in-memory join at the
base operator O;. Thus, the state manager may decide
to place O3 in the in-memory (i.e., default) state, O in
the on-disk merge state, while O, is placed in a low-
priority state. Section 5 covers state manager details.
Architecture assumptions. We assume the in-memory
join employs the symmetric hash join algorithm to
produce join results [21]. Figure 2(a) gives the main
idea of the symmetric hash join. Each input source (4
and B) maintains a hash table with hash function A
and n buckets. Once a tuple r arrives from input A4,
its hash value h(r) is used to probe the hash table
of B and produce join results. Then, r is stored in
the hash bucket h(r4) of source A. A similar scenario
occurs when a tuple arrives at source B. Symmetric
hash join is typical in many join algorithms optimized
for early results [18], [20], [21]. We also assume a
join operator in the disk merge state employs a disk-
based sort-merge join to produce results (e.g., see [17],
[18]). Figure 2(b) gives an example of the sort-merge
join in which partition group h; has been flushed
twice. The first flush resulted in writing partitions
ai,1 and by ; to disk while the second flush resulted
in writing a1 and by 2. Results from joining disk-
resident data are produced by joining (and merging)
1,1 with b172 and ay 2 with b171. Partitions (al,l,blﬁl)
and (aq 2,b1,2) do not need to be merged, as they were
already joined while residing in memory; the results
produced from in-memory and on-disk operations are
labeled in Figure 2(b). Flushing partition groups and
using a disk-based sort-merge has the major advantage
of not requiring timestamps for removal of duplicate
results [17], [18]; once a partition group is flushed to
disk it is not used again for in-memory joins.

In this work, we consider left-deep query plans
with m binary join operators (m > 1) where the base
operator joins two streaming input sources while all
other operators join one streaming input with the
output of the operator below. An example query plan
is given in Figure 1(b). We choose to study left-deep
plans as they are common in databases. Our methods
can apply to bushy trees, where our flush algorithm
and state manager can be applied to leaf nodes of the
plan. Future work will involve adapting our methods

to non-leaf nodes in bushy multijoin query plans.
Further, an extension of our framework to the case
of query plans consisting of more than one m-way
join operator is straightforward.

4 MEMORY FLUSHING

In online environments, most join operators opti-
mized for early throughput produce results using
symmetric hash join [18], [20], [21]. If memory allot-
ment for the query plan is exhausted, data is flushed
to disk to make room for new input, thus continuing
the production of early results. In this section, we
present the AdaptiveGlobalFlush algorithm that aims to
produce a high early overall throughput for multi-
join query plans. As discussed in Section 3, the Adap-
tiveGlobalFlush policy flushes partition groups simul-
taneously (i.e., corresponding hash partitions from
both hash tables). The main idea behind AdaptiveGlob-
alFlush is to consider partition groups across all join
operators in concert, by iterating through all possible
groups, scoring them based on their expected contri-
bution to the overall result throughput, and finally
flushing the partition group with the lowest score, i.e.,
the partition group that is expected to contribute to the
overall result throughput the least.

In general, a key success to any flushing policy
lies in its ability to produce a high result throughput. In
other words, the ability to flush hash table data that
contributes the least to the result throughput. To avoid
the drawbacks of previous flushing techniques [17],
[18], [19], we identify the following three important
characteristics that should be taken into consideration
by any underlying flushing policy in order to accu-
rately determine in-memory data to flush:

o Global contribution of each partition group.
Global contribution refers to the number of overall
results that have been produced by each partition
group. In multi-join query plans, the global contri-
bution of each partition is continuously changing.
For instance, any non-root join in the plan is af-
fected by the selectivity of join operators residing
above in the operator chain. These selectivities
may change over time due to new data arriving
and possibly being evicted due to flushing. The
ability to successfully predict the global contribution
of each partition group is a key to the success of
a flushing policy in producing result throughput.

o Data arrival patterns at each join operation.
Since data is transmitted through unreliable net-
work connections, input patterns (i.e., arrival
rates or delays) can significantly change the over-
all throughput during the query runtime. For
example, higher data arrival rates imply that a
join operator (and its partition groups) will con-
tribute more to the overall throughput. Likewise,
a lower data arrival rate implies less contribution
to the overall throughput. Thus, a flushing policy



[ Class | Statistic | Definition ]
Size prtSizes; Size of hash partition j for input S
grpSize; Size of partition group j
tupSizeg Tuple size for input S
Input inputiot Total input count
UNIqUE; No. unique values in part. group j
prtInputs; | Input count at partition j of input S
Output | obsLoc; Local output of partition group j
obsGlo; Global output of partition group j
TABLE 1
Statistics

should consider the fluctuations of input patterns
in order to accurately predict the overall through-
put contribution of a partition group.

o Data Properties. Considering data properties is
important as they directly affect the population,
and hence the result production, for each par-
tition group in a join operator. Such properties
could be join attribute distribution or whether
the data is sorted. For instance, if input data is
sorted in a many-to-many or one-to-many join, a
partition group j may contribute a large amount
to the overall result throughput within a time
period T as data in a sorted group (i.e., all tuples
have join attribute V) may all hash to j. However,
after time 7', j may not contribute to the result
throughput for a while, as tuples from a new
sorted group (i.e., with join attribute N + 1) now
hash to different partition K. Therefore, the flush-
ing policy should be able to adapt during query
runtime to data properties in order to accurately
predict the population of a partition group.

4.1 Adaptive Global Flush Algorithm
AdaptiveGlobalFlush is a novel algorithm that aims
to flush in-memory hash partition groups that con-
tribute the least to the overall result throughput. The
decisions made by the AdaptiveGlobalFlush algorithm
mainly depend on the three characteristics just dis-
cussed; namely, global contribution, data arrival patterns,
and data properties. The main idea of the AdaptiveG-
lobalFlush algorithm is to collect and observe statis-
tics during a query runtime to help the algorithm
choose the least useful partition groups to flush to
disk. Flushing the least useful groups increases the
probability that new input data will continue to help
produce results at a high rate. We begin by discussing
the statistical model that forms the “brains” behind
the decision made by AdaptiveGlobalFlush to evict data
from memory to disk. We then discuss the steps taken
by AdaptiveGlobalFlush, and how it uses its statistical
model, when flushing must occur. Throughout this
section, we refer to the running example given in
Figure 3 depicting a pipeline query plan with two join
operators, JoinAB and JoinABC.

4.1.1 Statistics

The AdaptiveGlobalFlush algorithm is centered around
a group of statistics observed and collected during
the query runtime (summarized in Table 1). These
statistics help the algorithm achieve its ultimate goal
of determining, and flushing, the partition groups
with the least potential of contributing to the overall
result throughput. The collected statistics serve three
distinct purposes, grouped into the following classes:
Size statistics. The size statistics summarize the data
residing inside a particular operator at any par-
ticular time. For each operator O, we keep track
of the size of each hash partition j at each in-
put S, denoted prtSizeg;. In Figure 3, the opera-
tor JoinAB has four partitions (i.e.,, two partition
groups) with sizes prtSizea; = 150, prtSizep; = 30,
prtSizeas = 100, prtSizegs = 15. We also track
the size of each pair of partitions grpSize;, this
value is simply the sum of the symmetric parti-
tions grpSize; = prtSizea; + prtSizep;. For ex-
ample, in Figure 3, the size of partition groups
at JoinAB are grpSize; = 150 + 30 = 180 and
grpSizes = 100 + 15 = 115. Finally, we keep track of
the tuple size for the input data at each source S,
assuming the tuple size is constant at each join input.
In Figure 3, we observe a tuple size of tupSize =10
and tupSizep=8.

Input statistics. The input statistics summarize the
properties of incoming data at each operator. Due
to the dynamic nature of data in an online environ-
ment, the input statistics are collected over a time
interval [¢;,¢;] (¢ < j) and updated directly after the
interval expiration (we cover these maintenance in
Section 4.2). Specifically, for each operator O we track
the total number of input tuples received from all
inputs, input.:. Also, for each partition group j in op-
erator O, we track the statistic unique; that indicates
the number of unique join attribute values observed
in j throughout the query runtime. Finally, for each
input S and hash partition j, we track the number
of tuples received at each partition j, prtInputs;. For
the example in Figure 3, we assume the following
values have been collected over a certain period of
time: input;,; = 100, uniques = 5, prtInput o = 6,
and prtinputpgs = 4.

Output statistics. Opposite of the input statistics, the
output statistics summarize the results produced by
the join operator(s). Like the input statistics, the output
statistics are collected and updated over a predefined
time interval. Specifically, for each partition group j
in each join operator, we track two output statistics,
namely, the local output (obsLoc;) and the global output
(0bsGloj). In a pipeline query plan, the local output
of a join operator O is the number of tuples sent
from O to the join above it in the operator tree.
In Figure 3, all tuples that flow from JoinAB to
JoinABC are considered local output of JoinAB. The
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collected statistic obsLoc; in operator O is the number
of tuples in the local output of O produced by partition
group j. The collected statistic obsGlo; is the number
of tuples in the global output (i.e., the local output of the
root join operator, JoinABC in Figure 3), produced by
partition group j. To track this information, an identi-
fier for the partition group(s) is stored on each tuple.
Thus, each tuple stores a compact list of identifiers
of the partition groups where it “lived” during query
runtime. We note that storing identifiers versus re-
computing the join to find the original hash group (as
done in [17]) is a trade-off between storage overhead
and computation costs. We choose the former method,
which is more suitable for larger tuples, whereas a
hash group re-computation algorithm can be imple-
mented for smaller tuples. Once a tuple is output from
the root join operator, it is considered to contribute
to the global output, and hence the observed global
output values for all the partition group identifier(s)
stored on that tuple are incremented by one.

4.1.2 AdaptiveGlobalFlush Algorithm

The AdaptiveGlobalFlush algorithm takes as input a
single parameter N, representing the amount of mem-
ory that must be freed (i.e., flushed to disk). The
idea behind AdaptiveGlobalFlush is to evaluate each
hash partition group at each join operator and score
each group based on its expected contribution to the
global output. The algorithm then flushes the partition
group(s) with the lowest score until at least the amount
of memory N is freed and its data written to disk.
We classify this process into four steps. In the rest of
this section, we provide the ideas and intuition behind
each step, and finish by providing a detailed look at
the AdaptiveGlobalFlush algorithm.

Step 1: Input estimation. The input estimation step
uses the input statistics (covered in Section 4.1.1) in
order to estimate the number of tuples that will arrive
at each operator input hash partition group S; until
the next memory flush. Since each flushing instance
aims to flush enough tuples to free an amount NV of
memory, we know the next flush instance will occur
after tuples with a combined size of N enter the
entire query plan. Thus, the goal of input estimation
is to predict where (i.e., which partition group) each
of these new tuples will arrive. We note that the
size N encompasses both new tuples streaming into
the query plan, and intermediate results generated
by joins lower in the operator tree. Estimating the

number of tuples that will arrive at each partition
group is the first step in gaining an idea of how
“productive” a each group will be.

Step 2: Local output estimation. The local output es-
timation step uses the size statistics and input estimation
from Step 1 in order estimate the contribution of each
partition group to the local output of its join operator
until the next flushing instance. The intuition behind
this step is as follows. By tracking size statistics, we
know, for each binary join operator, the size of each
partition j for each input A and B. Further, through
input estimation, we have an idea of how many new
tuples will arrive at partition A; and A;. Thus, to
calculate local output, this step estimates a partitions
contribution to the local output as the combination
of three calculations: (1) The output expected from
the newly arrived tuples at partition A; joining with
tuples already residing in partition B;. (2) The output
expected from the newly arrived tuples at partition
B; joining with tuples already residing in partition
A;. (3) The output expected from the newly arrived
tuples at partition A; joining with the newly arrived
tuples at partition B;.

Step 3: Partition group scoring. The partition group
scoring step uses the observed output statistics and
the local output estimation from step 2 in order to
score each partition group j across all operators O,
where the lowerst score implies that j is the least
likely to contribute to the overall global result output.
The rationale for this score is to maximize the global
output per number of tuples in the partition group. For
example, consider two partition groups, P with size
20 and @ with size 10, each having an expected global
output of 25. In this case, Q) would be assigned a better
score as it has a higher global output count per number
of tuples. The intuition behind this approach is that
using local output estimation, we know how many local
results will be produced by each partition group j.
Through our observed output statistics, we can form
a ratio Zzzé(l’sj that allows us to estimate how many
of these local results will become global results. We
normalize the estimated global contribution by the
partition size to derive a final score giving us the
global output per partition size.

Step 4: Partition group flushing. The final partition
group flushing step uses the scores from the partition
group scoring in step 3 to flush partition groups to disk.
This step simply chooses the lowest scoring partition
group across all operators, and flushes it to disk. It
iterates until tuples totaling the size N have been
flushed to disk.

Detailed Algorithm. We now turn to the details
behind AdaptiveGlobalFlush. Algorithm 1 gives the
pseudo-code for the algorithm, where each step pre-
viously outlined is denoted by a comment. The al-
gorithm starts by iterating over all partition groups
within all operators (Lines 2 to 4 in Algorithm 1).

Step 1 calculates an estimate for the number of new




Algorithm 1 AdaptiveGlobalFlush Algorithm

1: Function AdaptiveGlobalFlush(N)
2: for all Operators O do
3: A <+ O.sideA; B <+ O.sideB; SizeFlushed < 0

4 for all Partition Groups j € O do
5 /* Step 1: Input estimation */t —
. priInput 4 .
6: expPrtInputa; < (N - W}/tupSzzeA
7 expPrtInputp; < (N - W)/tupSizeB
; tro
8 /* Step 2: Local output estimation */
(prtSize g ;- expPrilnputp;)
9 expLocPrtRslt o5 <+ ':miqucj 4
tSizepg;-expPrtInput 4;
10: expLocPrtRsltp; < (pr 72?31;:;;: nputaj)
expPrtInput 4 cxpPritInput
11: expLocRsltnypw; + ( ui’ique BJ)
12: expLocRslt; < (expLocPrtRslt aj + expLocPrtRsltaj +
expLocRsltNEwW ;)
13: /* Step 3: Partition group scoring */
Glos
14: expGloRslt; ea:pLocRsltj(%D:;)
expGloRslt;
15: grpScore; < Wme]]
16: end for
17: end for

18: /* Step 4: Partition group flushing */

19: while SizeFlushed < N do

20: Psj « partition group from input S with lowest grpScore;
21: Flush P to disk

22: SizeFlushed+ = sizeof(Psj) X tupSizeg

23: end while

input tuples for each side S of the partition group
j, denoted as expPrtInputs;. This value is calculated
by first multiplying the expected input size of all tuples
in the query plan N by the observed ratio that have
hashed to side S of j, formally prtInputs;/inputie.
Second, this value is divided by the tuple size
tupSizeg for input S to arrive at the number of tuples.
As an example, in Figure 3, assuming that N=2,000 the
expected input for each partition in group 2 of JoinAB
is: expPrtInputss = [2000 x (6/100)]/10 = 12 and
expPrtInput s = [2000 x (4/100)]/8 = 10, assuming a
tuple size of 10 and 8 at input A and B, respectively.

Step 2 (Lines 9 to 12 in Algorithm 1) estimates
a partition group’s local output as follows. (1) The
output from new tuples arriving at side B hashing
with existing data in partition side A is computed
by multiplying the two values expPrtInputp; (from
step 1) and prtSizea; (a size statistic). However, to
accommodate for the fact that a hash bucket j may
contain up to unique; different values, we divide
the computed value by unique;. As an example, in
Figure 3, this value for partition A2 at JoinAB is
expLocPriRsltao = (10 x 100)/5 = 200. (2) The
output from new tuples arriving at side A hashing
with existing data in partition side B is computed
in a symmetric manner by exchanging the roles of
A and B. For example, in Figure 3, this value for
partition B2 at JoinAB is expLocPrtRsltps = (12 x
15)/5 = 36. (3) The output estimate from newly
arrived tuples from both A and B is computed by
multiplying expPrtinputa; by expPrtinputp; and
dividing by unique;. For example, in Figure 3, this
value for partition group 2 at JoinAB is (12x10)/5 =
24. Finally, the local output estimation for partition
group j, expLocRslt; is the sum of the previously

three computed values. In the example given in Fig-
ure 3, this value for partition group 2 at JoinAB is
expLocRslty = 200 + 36 + 24 = 260

Step 3 (Lines 14 to 15 in Algorithm 1) proceeds by
first estimating the global output of partition group j
(denoted e:z:pGloRslt ) by multiplying expLocRslt; by
the ratio OZS Clo % For example, assume that in Figure 3,
the global/ local ratio for partition group 2 in JoinAB
is 0.5 (i.e. half of its local output contributes to the
global output). Then the expected global output for this
partition group is expGloRslts = 260/2 = 130. Finally,
the algorithm assigns a score (grpScore;) to partition
group j by dividing the expected global output by the
size of the partition group (Line 15 in Algorithm 1).

In Step 4 (Lines 19 to 23 in Algorithm 1), the
algorithm flushes partition groups with lowest score
(grpScore;) until the desired data size N is reached.

4.2 Scoring Accuracy

The quality of the AdaptiveGlobalFlush algorithm de-
pends on the accuracy of the collected statistics. The
size statistics (i.e., grpSize; and prtSizeg;) are exact as
they reflect the current cardinality that changes only
when new tuples are received or memory flushing
takes place. The input statistic unique; is exact as it
reflects a running total of the unique join attributes
that arrive to partition group j. Also, we assume the
statistics tupSizeg is static, i.e., that tuple size will not
change during runtime. However, other input statistics
(i.e., prtInputs; and input.,:) and output statistics (i.e.,
obsLoc;, and obsGlo;) are observed between a time
interval [t;,¢;] (i < j). In this section, we present three
methods, namely, Recent, Average, and EWMA for
maintaining such input and output statistics. Figure 4
gives an example of each method for the statistic
obsLoc; over four observations made from t, to 4.
Recent. This method stores the most recent observa-
tion. In Figure 4, the Recent method stores only the
value 60 observed between time period t3 to t4. The
main advantage of this method is ease of use as no
extra calculations are necessary. This method is not
well suited for slow and bursty behavior.

Average. In this method, the average of the last
N observations is stored, where N is a predefined
constant. In Figure 4, the Average method stores the
average of the last N = 3 observations from time
period t; to ¢4, which is 77. The average method is
straightforward as it considers the last N time periods
to model the average behavior of the environment. It
does not adhere to the fact that the recent behavior
should weigh more than an old behavior.
Exponential Weighted Moving Average (EWMA).
Using the EWMA method, each past observation is
aged as follows: If the statistic at time period ¢; has
value stat, while at the time period [t;,t;+1], we
observe a new value ObsVal, then the value of the
collected statistic is updated to be: stat;y1 = a *
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stat; + (1 —a) * ObsVal where « is a decay constant
(0 < o < 1). By choosing a smaller «, this method
forgets past observations quickly and gives a greater
weight to recent observations. The opposite is true
for a larger a. In Figure 4, the EWMA method (with
a=0.2) tracks all previous observations, but weights
each new observation by a factor of 0.8 while weight-
ing old observed values by 0.2. The EWMA method
gives more accurate model for statistic maintenance.

4.3 Discussion

The statistics collected and calculated by AdaptiveG-
lobalFlush are designed to be lightweight due to its
application in join processing. For instance, instead of
calculating the exact intermediate input for all non-
base join operations coming from operator output
lower in the query plan, we track the input indepen-
dently at each input using prtInputs;. By simplifying
this statistical tracking, the flushing algorithm does
not have to derive correlation between partition groups
at each operator to calculate input to intermediate
operators. As an example, consider a query plan with
three joins as given in Figure 5(b). In order calculate
the intermediate input to JoinABCD, we would need
to derive the correlation between each partition group
in JoinAB to the partition groups in JoinABC (i.e.,
where tuples in partition group n of JoinAB will
hash in JoinABC). Similarly, the correlation between
groups in JoinABC and JoinABCD is needed. While
calculating intermediate input this way would be
more accurate than our approach, we feel the trade
off between accuracy and algorithmic complexity is
important in this case.

Comparison to State-of-the-Art Algorithms. Other
flushing algorithms used by the state-of-the-art non-
blocking join algorithms lack at least two of the three
important aspects achieved by the Perm]Join. For exam-
ple, state-spilling flushing [17] only considers global
contribution which is calculated based on the previous
observed output, however, it does not adapt to data
arrival patterns or data properties that affect the global
throughput during the query runtime. The hash-
merge join flushing algorithm [18] only considers data
arrival patterns when attempting to keep hash tables
balanced between inputs, however, global contribution
and data properties are not taken into consideration.
Finally, the RP] flushing policy [19] adapts only to
data arrival patterns and data properties by using a
probability model to predict data arrival rates at each
hash partition. However, global contribution is not con-
sidered by RPJ flushing. Furthermore, the RPJ policy

Result
Result

In-Memory
Join

On-Disk
Merge

(a) State Example (b) Memory and Disk State
Fig. 5. Multi-doin Plan Examples

is designed only for single-join query plans with no
straightforward extension for multi-join plans.

5 THE STATE MANAGER

While the goal of the AdaptiveGlobalFlush algorithm
is to evict data from memory that will contribute
to the result throughput the least, the goal of the
state manager is to fetch disk-resident data that will
positively affect result throughput. The basic idea
behind the state manager is, at any time during query
execution, to place each operator in one of the fol-
lowing states: (1) In-memory join, (2) On-disk merge,
or (3) Temporarily blocking (i.e., waiting for a join
operator above in the pipeline to finish its merge
phase). The state manager constantly monitors the
overall throughput potential of the in-memory and on-
disk states for each join operator. Overall throughput
of intermediate operators (i.e., non-root operators)
refers to the number of intermediate results produced
that propagate up the pipeline to form an overall
query result, whereas results at the root operator
always contribute to the overall query result.

The state manager accomplishes its task by invoking
a daemon process that traverses the query pipeline
from top to bottom. During traversal, it determines
the operator O closest to the root that will produce
a higher overall throughput in the on-disk state com-
pared to its in-memory state. If this operator O exists,
it is immediately directed to its on-disk merge state to
process results. Meanwhile, all operators below O in
the pipeline are directed to temporary block while all
operators above O in the pipeline continue processing
tuples in memory. Figure 5(a) gives an example of a
pipeline where the state manger finds that join operator
X3 is the closest operator to the root capable of max-
imizing the query global throughput when joining
disk-resident data rather than in-memory data. Thus,
the state manger directs X3 to the on-disk state while
all the operators above X (i.e., ,) are directed to join
in-memory data and all operators below X3 (i.e., X
and X,) are temporarily blocked.

The main rationale behind the state-manager ap-
proach is threefold. (1) Top-down traversal serves as
an efficiency measure by shortcutting the search for



operators where disk-resident operations are more
beneficial to overall throughput than in-memory oper-
ations. (2) Each operator in a query pipeline produces
an overall throughput greater than or equal to the
lower operators in the query plan. Thus, increasing
the overall throughput of an operator higher in the
pipeline implies an increase in the overall throughput
of the multijoin query. For example, in Figure 5(a)
the state manager places X3 in the on-disk merge
state without traversing the pipeline further, as the
overall result throughput contributions of X; and
Xy are bounded by s, ie., all intermediate results
produced by X; and X, must be processed by X
before propagating further. Thus, the overall result
throughput produced by in-memory operations at X
and My cannot be greater than the overall in-memory
throughput produced by Xs. (3) While performing
on-disk merge operations multiple operators in the
query plan (e.g., M3 and Xy) could also benefit result
throughput, we feel placing a single operator in its
on-disk state is sufficient due to the rationale just
discussed. Furthermore, a single operator performing
an on-disk join limits context switches, random 1/0,
and seeks that can result when multiple requests for
disk operations are present.

In the rest of this section, we first provide the
high-level state-manager algorithm. We then discuss
the details behind the state manager’s statistics and
calculations. We finish with a discussion of the relative
advantages of the state manager.

5.1

Algorithm 2 provides the pseudo code for the state
manager module. As previously mentioned, the state
manager algorithm performs a top-down traversal of
all join operators in the pipeline. At each operator O,
it compares the potential overall throughput for the
in-memory and on-disk states. If the on-disk state is
found to have a greater potential overall throughput
at an operator O, the state manager directs O to
the on-disk merge state immediately. All operators
above O remain in the in-memory state, while all
operators below O are directed to temporarily block.
In general, the state manager executes in two main
stages (1) Evaluate states and (2) Direct operators. We
now outline the functionality of each stage.

Stage 1: Evaluate states. The evaluate states stage per-
forms a top-down traversal of the query plan, starting
at the root operator (Line 2 in Algorithm 2). For the
example given in Figure 5(b), the algorithm would tra-
verse from JoinABCD down to JoinAB. The traver-
sal ends when either an operator is found to switch
to the on-disk state, or all operators have been visited
(Line 4 in Algorithm 2). For the current operator O,
the algorithm compares the overall throughput pro-
duced by the in-memory state to the throughput for
the on-disk merge state (Lines 5 to 7 in Algorithm 2).

State Manager Algorithm

Algorithm 2 State Manager

1: Function StateManager()
2: O < root join operator , mergeGroup — ¢
3: /* Stage 1 - Evaluate states */
4: while mergeGroup = ¢ AND O # ¢ do
5: memThroughput <— memThroughput(O) {Sec 5.2.1}
6 diskThroughput < Max(dskThroughput(j)) by iterating
through all disk partition groups j € O {Sec 5.2.2}
7. if ((diskThroughput x dskConst) > memThroughput) then
8 mergeGroup < diskThroughput.j
9 else
10 O <« next operator in pipeline
11: end if
12: end while
13: /* Stage 2 - Direct operators */
14: if O = ¢ then
15 for all Operators O3 in Pipeline do O3.state=IN-MEMORY
16: else
17 O.merge = mergeGroup,0.state = ON-DISK
18 for all Operators O above O do O;.state=IN-MEMORY
19: for all Operators Oz below O do O3.state=BLOCK
20: end if

Details behind in-memory and on-disk throughput
calculations are covered shortly in Section 5.2. This
process begins by first calculating the in-memory
throughput for O (Line 5 in Algorithm 2). The on-
disk merge state can only process one disk-resident
partition group at a time. Thus, when comparing
the on-disk throughput to in-memory throughput,
the algorithm iterates over all disk-resident partition
groups j in O to find the j that will produce a maximal
overall disk throughput (Line 6 in Algorithm 2). The
algorithm then compares the overall throughput for
an on-disk merge to the overall in-memory through-
put for operator O. Since producing join results from
disk is much slower than producing join results from
memory, the state manager accounts for this fact by
multiplying the calculated disk throughput by a disk
throughput constant, dskConst. The value dskConst
is a tunable database parameter, and represents the
maximum amount of tuples per time period (e.g., 1
second) that can be read from disk (Line 7 in Algo-
rithm 2). If the on-disk throughput is maximal, the
algorithm will mark the disk partition group (Line 8
in Algorithm 2). By marking j, the algorithm ends the
traversal process and moves to the next stage. If the
algorithm does not mark a partition group, traversal
continues until all operators have been visited.

Stage 2: Direct operators This stage of the algorithm
is responsible for directing each operator in the query
pipeline to the appropriate state based on the analysis
in stage 1. Stage 2 starts by checking if the traversal
in stage 1 found an operator O to move to the on-disk
state (Line 14 in Algorithm 2). If this is not the case, all
operators in the query pipeline are directed to the in-
memory state (Line 15 in Algorithm 2). Otherwise, we
will direct O to its on-disk state where it is asked to
merge the marked disk partition group from stage 1
(Line 17 in Algorithm 2). Also, all operators above
O in the pipeline will be directed to the in-memory
state while all operators below O in the pipeline will
be directed to block (Lines 18 to 19 in Algorithm 2).



5.2 Throughput Calculation

From the high-level overview, we can see the core of
the state manager is based on an accurate estimate of
the throughput potential for the on-disk and in-memory
states of each join operator in the query plan. We
now cover the statistics and calculations necessary to
estimate these throughput values.

5.2.1 Memory Throughput

The overall result throughput produced by the in-
memory state at operator O can be estimated as the
sum of all observed global output values for its par-
tition groups. Formally, this estimation is calculated
as: memT hroughput(O) = memC’onst(ZIj(il1 obsGloj)
where |O| represents the number of partition groups
in operator O and obsGlo; is the observed global
output estimate over a predefined time interval (using
a method from Section 4.2) for a partition group j in
O (see Table 1). Much like our disk constant dskConst
presented in Stage 1 of the state manager algorithm,
the memory throughput calculation uses a tunable pa-
rameter memConst that models the maximum number
of results that can be produced in-memory over a
constant time period (e.g., 1 second).

5.2.2 Disk Throughput

The on-disk merge state allows only one disk-resident
partition group to be merged at a time, meaning the
overall disk throughput at an operator O is repre-
sented by the disk group that produces the maximal
overall throughput when merged. The overall disk
throughput estimation is done per disk-resident group.
Collected statistics. The disk throughput calculation
relies on two exact statistics (i.e., they are not main-
tained using methods from Section 4.2). First, a size
statistic that maintains, for each operator, the number
of disk-resident tuples from input S for each partition
J (dskSizeg;). As with in the in-memory size statistics,
dskSizeg; is an exact statistic as it represents the cur-
rent cardinality. The other collected statistic maintains
the current number of local results expected from an
operator O if it were to merge a disk partition group j
(dskLocRslt;). The statistic dskLocRslt; is initially set
to zero, increases with every flush of partition group
Jj, and reset to zero when the disk partition group j is
merged. Upon flushing partition group j (with sides
A and B) to disk, the statistic dskLocRslt; is increased
by the number of results expected to be produced by j
which can be computed as follows: The flushed parti-
tion from side B (partSizep;; a collected in-memory
size statistic), must eventually join with data already
residing on disk (from a previous memory-flush) from
side A (dskSizesj; a collected on-disk size statistic)
while the flushed partition from A (partSize,;) joins
with disk-resident data from B (dskSizea;). These
estimations are possible because data is flushed in
partition groups; new data being flushed from one

partition side has not yet joined with disk-resident
data from the other side. Since a partition group
may contain tuples with multiple join attributes, the
expected result must be divided by the unique num-
ber of join attributes observed in the partition group
(unique;; a collected in-memory input statistic). For-
mally, the statistic dskLocRslt; is increased by the
following value when a flush occurs: ((dskSizea; x
partSizep;) + (dskSizep; x partSizea;))/unique;. As
an example, in Figure 5(b) (assuming unique; = 5), if
partition group 1 from JoinABC D were to be flushed
to disk, the statistic dskLocRslt; would be increased
by: ((140 x 60) + (300 x 10))/5 = 2280.

Overall disk throughput calculation Estimating the
overall disk throughput for merging a disk par-
tition group j involves two steps. The first step
calculates the expected global output for the merge
(dskGloRslt;). Similar to the computation made by
the AdaptiveGlobalFlush algorithm, we can derive
this value by multiplying the expected local output
(dskLocRsltj; a collected on-disk statistic) by the ob-
served global/local output ration (0bsGlo;/obsLoc;; a
collected in-memory statistic). Formally, this equation
is: dskGloRslt; = dskLocRslt; x (obsGlo;/obsLoc;).
In Figure 5(b), the global/local output ratio at
JoinABCD is 1, as it is the root join opera-
tor. Therefore, if dskLocRslt; = 2280 for parti-
tion group 1 at JoinABCD, then dskGloRslt; is
also 2280. The second step involves calculating a
value for the number of global results expected per
tuples read from disk. This calculation is similar
to the scoring step of the AdaptiveGlobalFlush algo-
rithm as we divide the expected global throughput
by the size of the expected data read from disk.
Formally, this equation for overall disk throughput
is: dskThroughput(j) = (dskGloRslt;/(dskSizea; +
dskSizepj)). For example, in Figure 5(b) (assum-
ing dskLocRslt; = 2280), the expected disk
throughput for partition group 1 at JoinABCD is
dskThroughput(ABCD1) = (2280/(300+60)) = 6.33.
Also, since producing join results from disk is much
slower than producing join results from memory, the
estimation for the throughput of an on-disk merge
must be bounded by the time needed to read data
from disk. In Section 5.1, we described how the state
manager accounts for this bound using the tunable
parameter dskConst that represents disk throughput.

5.3 Discussion

One main goal of join algorithms optimized for early
result throughput is the ability to produce results
when sources block. When an operator is optimized
for a single-join query plans, the decision to join data
previously flushed to disk is straightforward as it
is used to produce results only when both sources
block [18], [19]. For multi-join queries, the state-
spilling algorithm [17] does not consider using disk-



resident data to produce results while input is stream-
ing to the query. Disk-resident data is used by state-
spilling in its cleanup phase, producing results when
all input has terminated. Our proposed state manager
goes beyond the idea of using disk-resident data only
in the cleanup phase by invoking the disk merge
operation when it is expected to increase the overall
result throughput of the query. In this regard, the state
manager is a novel algorithm for multi-operator query
plans that uses disk-resident data to maintain a high
result throughput outside the cleanup phase.

If the state manager finds that the on-disk state can
produce a greater overall throughput than the in-
memory state at an operator O, it immediately directs
O to enter its on-disk state. While this case is certainly
true when both inputs to the operator O block, it may
be true otherwise. For instance, input rates at operator
O may slow down, decreasing its ability to produce
overall results. If the operator O is not a base operator,
then one of these input rates is directly affected by
the throughput of an operator located below in the
pipeline. Thus, merging disk-resident data at operator
O is beneficial if it is guaranteed to generate tuples
that will increase the overall result throughput.

Input Buffering. The state manager is able to place
an operator in an on-disk or blocking state even if
data is still streaming into the query plan at or be-
low the on-disk operator. One consequence of this
freedom is buffer overrun, i.e., exhausting the buffer
memory for incoming tuples. One method to avoid
buffer overrun is to ensure that switching operators
to the on-disk and blocking phase will not cause
buffer overrun. Using our collected statistics, we can
easily perform this check. Let BufSpace be the available
space in the buffer. Further, let DskTime be the time
necessary to perform an on-disk merge. DskTime can
be calculated as the time needed to read an on-disk
partition group j. Using our disk size statistics, this
value is dsmizjﬁ,ggf;ffiz%, where dskConst is our
tunable parameter modeling disk throughput. Also,
recall from Section 4.1.1 that we measure (over time
interval [¢;,t;]) the incoming count to each partition
j for each join input S as prtInputs;. Let InputSum
be the sum of all prtInputs; values for partitions
residing in join operators at or below the operator
about to be placed in an on-disk state. Then, we
can model the time until the next buffer overrun as
BufTime = %}# Then, the state manager
can reliably place the operators in the on-disk and
blocking states without the threat of a buffer overrun
if the value BufTime is greater than DskTime.

Cleanup. Because the AdaptiveGlobalFlush algorithm
and the state manager are designed for multi-join query
plans, results that are not produced during the in-
memory or on-disk phase require special consider-
ation. In this vein, we outline a cleanup process for
each operator that is compatible with our framework
to ensure that a complete result set is produced. In

this phase, each operator begins cleanup by flushing
all memory-resident data to disk after receiving an
end-of-transmission (EOT) signal from both inputs.
After this flush, all disk-resident partition groups are
merged, producing a complete result set for that oper-
ator. The order of operator cleanup is important, due
to the top-down dependency of pipeline operators. An
example of this dependency is given in Figure 5(b). In
order for JoinABC' to produce a complete result set,
it must receive all input from source C and JoinAB
before beginning the cleanup phase. Cleanup starts
at the base operator and ends at the root of the
query plan. To enforce cleanup order, we assume each
operator in the chain can send an EOT signal to the
next pipeline operator after completing its cleanup.

6 CORRECTNESS

Correctness of both AdaptiveGlobalFlush, and the state
manager can be mapped to previous work. In terms
of producing all results, we use symmetric hash join
to produce in-memory results. Further we flush parti-
tion groups and use a variance of sort-merge join to
produce disk results. Using these methods ensures
that a single operator will produce all results [17], [18].
These methods also ensure that a single operator will
produce a unique result exactly once in either the in-
memory or on-disk states [18]. If the base operator
in a query plan guarantees production of all results
exactly once, the ordered cleanup phase ensures that
all results from the base operator will propagate up
the query plan. It follows that the this cleanup phase
ensures that using our methods in a multi-join query
plan will produce all results exactly once.

7 EXPERIMENTAL RESULTS

This section provides experimental evidence for the
performance of the AdaptiveGlobalFlush algorithm and
the state manager, by implementing them along with
symmetric hash join [21]. We compare this imple-
mentation to optimizations used by the state-of-the-
art non-blocking join operators optimized for multi-
join queries (i.e., state-spill [17]) as well as single-
join queries (i.e., Hash-Merge Join (HM]J) [18] and
RPJ [19]). Unless mentioned otherwise, all experi-
ments use three join operations with four inputs A,
B, C, and D as given in Figure 5(b). All input arrival
rates exhibit slow and bursty behavior. To model
this behavior, input rates follow a Pareto distribution;
widely used to model slow and bursty network be-
havior [30]. Each data source contains 300K tuples
with join key attributes uniformly distributed in a
range of 600K values, where each join key “bucket”
is assigned to a source with equal probability. Thus,
given M total join key buckets assigned to each join
input S, there will be X (X < M) overlapping join
key buckets and (M — X) non-overlapping join key



buckets at each operator. Memory for the query plan
is set to 10% of total input size.

For our proposed methods, statistical maintenance
(see Section 4.1.1) is performed every five seconds
(t = 5) using the EWMA method with an « value
of 0.5. These parameters were determined with initial
tuning experiments (not included for space reasons).
For flushing policies, the percentage of data evicted is
constant at 5% of total memory.

7.1

Figure 6 gives the performance of AdaptiveGlobalFlush
and the state manager (abbr. AGF+SM) compared to
that of state-spill, HM], and RPJ] when run in envi-
ronments with four different input behaviors. In these
tests, we focus on the first 100K results produced,
corresponding to early query feedback. Figure 6(a)
gives the results for the default behavior (all inputs
slow/bursty), and demonstrates the usefulness of
AGF+SM. AdaptiveGlobalFlush is able to keep benefi-
cial data in memory, thus allowing incoming data to
produce a better overall early throughput. Meanwhile
the state manager helps to produce results due to
the slow and bursty input behavior where sources
may block. The state-spill flush policy does not adapt
to the slow and bursty input behavior in this case,
and thus flushes beneficial data to disk early in the
query runtime. Also, state-spill does not employ a
state manager that is capable of finding on-disk data
at each operator to help produce results. State-spill
only invokes its disk phase once all inputs terminate.
HM]J and RPJ, optimized for single-join queries, base
their flushing decisions on maximizing output locally
at each operator. However, these flushing policies
are unaware of how data at each operator is being
processed by subsequent operators in the pipeline,
causing tuples to flood the pipeline that are unlikely
to produce results higher in the query plan. HM]
invokes its disk phase once both inputs to an operator
block. However, in a multi-join query, this scenario
will likely occur only at the base operator, as one
input for each intermediate operator is generated from
a join operation residing below in the pipeline. In
this case, disk results from the base operator can be
pushed upward in the pipeline that will not produce
results at subsequent operators, and cause flushing to
occur higher in the pipeline when inputs are block-
ing, also degrading performance. On the other hand,
RPJ performs better than HMJ due to its ability to
switch from memory to disk operations based on its
statistical model that predicts local throughput. For
multi-join queries, a state manager is needed to manage
processing at all operators in concert.

Figures 6(b) through 6(d) give the performance
of AGF+SM compared to state-spill HM]J, and RP]J
for three, two, and one input(s) exhibiting slow and
bursty behavior, respectively. In this left-right progres-

Input Behavior

sion, as the the inputs exhibit more of a steady behav-
ior, the disk phase is used less, allowing us to pinpoint
the relative behavior of each flushing policy only.
While the performance of each algorithm converges
from left to right, AGF+SM consistently outperform
state-spill by at least 30%, RP] by 40%, and HMJ by
45%, in producing early results. AGF+SM also exhibit
a constant steady behavior in both slow/bursty and
steady environments. Finally, we note that these ex-
periments show the benefit of optimization techniques
for multi-join query plans, due to the performance of
state-spill and AGF+5SM compared to that of RP] and
HM]J. Also, due to the similar behavior of HM] and
RPJ compared to state-spill and AGF+SM, subsequent
experiments use only HM]J to represent algorithms
optimized for single-join query plans.

7.2 Memory Size

Figure 7 gives the time needed for AGF+SM, state-
spill, and HM] to produce 100K results for query
plan memory sizes 5% above and below the default
memory size (i.e.,, 10%) for two different environ-
ments. Figures 7(a) and 7(b) give the performance
for inputs exhibiting the default behavior, while fig-
ures 7(c) and 7(d) give the performance for inputs A
and B exhibiting steady behavior while C and D are
slow and bursty. For smaller memory (Figures 7(a)
and 7(c)), flushing occurs earlier causing more flushes
during early result production. In this case, Adap-
tiveGlobalFlush is able to predict beneficial in-memory
data and keep it in memory in order to maintain a
high early overall throughput. Furthermore, when all
inputs are slow/bursty (Figure 7(a)), the state manager
helps in early result production. With larger mem-
ory (Figures 7(b) and 7(d)), more room is available
for incoming data, hence less flushing occurs early,
meaning the symmetric-hash join is able to process
most early results when memory is high. For both
input behaviors, state-spill and AGF+SM perform
relatively similar early on when more memory is
available. Meanwhile, HM] performs relatively better
for a larger memory sizes, but its flushing and disk
policy are still a drawback in multi-join query plans
when inputs are slow/bursty compared to a steady
environment.

7.3 Data Flush Size

Figure 8 give the performance for different data flush
sizes. Figure 8(a) shows the time needed to produce
the first 100K results when smaller and larger percent-
ages of total memory are evicted per flush operation,
while Figure 8(b) focuses on the specific case of 10%
data flush. When the percentage is very low (1%),
flushes occur often, causing delays in processing. In
general, writing less data to disk (in a reasonable
range) during a flush operation leads to a greater
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amount of early results as more data is available in-
memory for arriving tuples. However, more overall
flush operations are performed during query runtime
leading to a large number of buckets on disk with
low cardinality, which is less beneficial to the disk-
merge phase. Writing more data to disk during a flush
should lead to less amount of early results as less in-
memory data is present for arriving tuples, while less
flushes will be performed overall. Both state-spill and
HM]J produce less early results in this case. However,
AGF+5SM performance remains stable. The reason for
this performance is mainly due to the state manager.
When AdaptiveGlobalFlush is required to write more
tuples to disk at every flush, the state manager is able
to quickly reclaim beneficial data to produce early
results.

7.4 Scalability

Figure 9 gives the time needed for AGM+SM and
state-spill to produce the first 15K results in 5-join
(6 inputs) and 6-join (7 inputs) query plans. In these
tests, HM] was omitted as no results were produced
in the first 120 seconds. Due to the higher selectivity
from more join operations, we plot the first 15K results
as cleanup begins earlier (steep slopes in figures) than
in previous experiments. Here, AGF+SM is able to
delay the cleanup phase longer. If the AdaptiveGlob-
alFlush algorithm makes an incorrect decision and
flushes beneficial data at an intermediate operator,
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the state manager is able to propagate these beneficial
tuples by placing each operator in the in-memory
or on-disk state in order to produce more results
before cleanup. The state-spill algorithm does not
make use of disk-resident data while producing these
early results. Furthermore, state-spill relies only on
its flushing algorithm that scores partition groups
based on global vs. local contribution over size. This
scoring method generally does not perform well with
a large number of joins where selectivity is high in
slow /bursty environments. Here, the ability to predict
beneficial data in both the flush algorithm and disk
states is important. Thus, state-spill exhibits lower
relative performance in these cases.

8 CONCLUSION

This paper introduces a framework for producing
high early result throughput in multi-join query plans.
This framework can be added to existing join opera-
tors optimized for early results by implementing two
novel methods. First, a new flushing algorithm, Adap-
tiveGlobalFlush, flushes data predicted to contribute to
the overall early throughput the least by adapting
to important input and output characteristics. This
adaptation allows for considerable performance im-
provement over the methods used by other state-of-
the-art algorithms optimized for early results. Second,
a novel module, termed a state manager, adaptively



switches each operator in the multi-join query plan to
process results in two states (in-memory or on-disk)
to maximize the overall early throughput. The state
manager is a novel concept, as it is the first module
to consider the efficient use of disk-resident data
in producing early results in multi-join queries. Ex-
tensive experimental results show that the proposed
methods outperform the state-of-the-art join operators
optimized for both single and multi-join query plans
in terms of efficiency, resilience to changing input be-
havior, and scalability when producing early results.
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