TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 1

Venus: Scalable Real-time Spatial Queries on
Microblogs with Adaptive Load Shedding

Amr Magdy*, Mohamed F. Mokbel*, Sameh Elnikety?, Suman Nath’ and Yuxiong He®
*Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
$Microsoft Research, Redmond, WA 98052-6399

Abstract—Microblogging services have become among the most popular services on the web in the last few years. This led to
significant increase in data size, speed, and applications. This paper presents Venus; a system that supports real-time spatial queries
on microblogs. Venus supports its queries on a spatial boundary R and a temporal boundary 7', from which only the top-k microblogs
are returned in the query answer based on a spatio-temporal ranking function. Supporting such queries requires Venus to digest
hundreds of millions of real-time microblogs in main-memory with high rates, yet, it provides low query responses and efficient memory
utilization. To this end, Venus employs: (1) an efficient in-memory spatio-temporal index that digests high rates of incoming microblogs
in real time, (2) a scalable query processor that prune the search space, R and T, effectively to provide low query latency on millions of
items in real time, and (3) a group of memory optimization techniques that provide system administrators with different options to save
significant memory resources while keeping the query accuracy almost perfect. Venus memory optimization techniques make use of
the local arrival rates of microblogs to smartly shed microblogs that are old enough not to contribute to any query answer. In addition,
Venus can adaptively, in real time, adjust its load shedding based on both the spatial distribution and the parameters of incoming query
loads. All Venus components can accommodate different spatial and temporal ranking functions that are able to capture the importance
of each dimension differently depending on the applications requirements. Extensive experimental results based on real Twitter data
and actual locations of Bing search queries show that Venus supports high arrival rates of up to 64K microblogs/second and average
query latency of 4 msec.

Index Terms—Microblogs, Spatial, Location, Temporal, Performance, Efficiency, Scalability, Memory Optimization, Social.

O

1 INTRODUCTION 2013, Los Angeles Times reported [4] how people rush to ®witt
for real-time breaking news about Boston Marathon explasion
Social media websites have grabbed big attention in theléastde Such users may not know the appropriate keyword or hash tag
due to its growing popularity and unprecedentedly large bhase. to search for. Instead, they want to know the recently posted
The new wave of user-interactive microblogging serviceg,, € microblogs in a certain particular area. Thus, our goal here i
tweets, comments on Facebook or news websites, or Fouesqugit to replace the traditional keyword search in microb)dgst
check-in’s, has become the clear frontrunner in the socedian rather to provide another important search option for iaeal
race with the largest number of users ever and highest usgigroblogs. The answer of our spatio-temporal queries eafeth
activity in consistent rates. For example, Twitter has 2B8Hon to other modules for further processing, which may includene
active users who generate 500+ Million daily tweets [1],, [2]detection, keyword search, entity resolution, sentimeratiysis,
while Facebook has 1.35+ Billion users who post 3.2+ Billiowr visualization.
daily comments [3]. Motivated by the advances in wirelessico In this paper, we preseienus a system for real-time support
munication and the popularity of GPS-equipped mobile dssjic of spatio-temporal queries on microblogs. Due to large rensibf
microblogs service providers have enabled users to attaettibn microblogs,Venuslimits its query answer to onl{t most relevant
information with their posts. Thus, Facebook added theoogti microblogs so that it can be easily navigated by human users.
of location check-ins andiear where users can state a nearbylicroblog relevance is assessed based on a ranking funétion
location of their status messages, Twitter automaticadigtares that combines the time recency and the spatial proximityheo t
the GPS coordinates from mobile devices, per user permissiguerying user. In additiorVenusexploits the fact that the more
and Foursquare features are all around the location infiloma recent microblogs data, the more important for real-timerigs
and the whereabouts of its users. Consequently, a plethorai®bound its search space to include only those microblogs th
location information is currently available in microblogs have arrived during the lagf time units within a spatial query
We exploit of the availability of location information in mi rangeR. Thus,Venususers can post queries ¢et a set of top-k
croblogs to support spatio-temporal search queries wheeesu relevant microblogs, ranked by a spatio-temporal functiothat
are able to browse recent microblogs near their locationreah are posted within a spatial range R in the last T time units
time. Users of our proposed queries include news agencigs (e To support its queried/enusfaces two main challenges: high
CNN and Reuters) to have a first-hand knowledge on eventsarrival rates of real-time microblogs and the need for lovergu
a certain area, advertising services to serve geo-targetedo response while searching millions of data items. Both chghs
their customers based on nearby events, or individuals wdrd wcall for relying on only main-memory indexing to digest and
to know ongoing activities in a certain area. For exampldpnl query real-time microblogs. Hencéenusemploys an in-memory

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 2

partial pyramid index [5], equipped with efficient bulk im8en, recognized ranking functions in the literature that sgtrabst of

bulk deletion, speculative cell splitting, and lazy cell ngiag the practical applications requirements.

operations that make the index able to digest the high &rriva We evaluate the system experimentally using a real-time fee
rates of incoming microblogs. Incoming queries efficiemthploit of US tweets (via access to Twitter Firehose archive) andahct
the in-memory index through spatio-temporal pruning téghes locations of Bing web search queries. Our measurements show
that minimize the number of visited microblogs to returnfinal thatVenussupports arrival rates of up to 64K microblogs/second,
answer. average query latency of 4 msec, minimal memory footpramsl,

Venuscan employ different ranking functions to be able t@ very high query accuracy of 99%. The contributions of thjzgpra
serve requirements of different applications. Based on taicer are summarized as follows:
ranking function, the differe’enuscomponents are optimized for 1)
preset default values &f, R, T', anda. Queries with less values
than the default can still be satisfied with the same perfaoea 2)
Yet, queries with higher values may encounter higher cost as
they may need to visit a secondary storage. This goes alotig wi
the design choices of major web services, e.g., Bing and @oogl|)
return, by default, the top-(k=10) most relevant search results,
while Twitter gives the most receht(k=20) tweets to a user upon
logging on. If a user would like to get more thamesults, an extra 4)
query response time will be paid.

As main-memory is a scarce resource, relying on main-
memory indexing requires efficient management of the dvigla
memory resources. Although storing and indexing all inaami)
microblogs from the last defaull’ time units ensures that all
incoming queries will be satisfied from in-memory contents,
which may require very large memory resources, which can be
prohibitively expensive. Hence, we propose effective mgmo
optimization techniques: (1) We analytically developiragiex size
tuning technique that achieves significant memory savings (up to
50%) without sacrificing the query answer quality (more tBafo)
accuracy). The main idea is to exploit the diversity of atfrates
per regions. For example, city centers have higher arriatdsr
than suburban areas. Hence, the tomicroblogs would have
arrived more recently in city centers than suburban areashéh
maintain only the items that may appear in user queries aletede
items that are old enough to be dominated by others. (2) gbt ti 2 RELATED WORK
memory configurations, we provide a parametrilat shedding Due to its widespread use, recent research efforts haverexpl
technique that trades significant reduction in the memooypiont various research directions related to microblogs. This gdeng
(up to 75% less storage) for a reasonable loss in query agcuréhe way of the system stack starting from logging [7] and nvaeh
(up to 8% accuracy loss). The idea is to expel from memorylearning techniques [8] to indexing [9], [10], [11], [12]cdesign-
set of victim microblogs that are less likely to contributea ing a SQL-like query language interface [13]. In additioeveyal
query answer. (3) Building on our parametrized load sheddimgforts have focused on analyzing microblog data, whicltuihe
technique, we develop two parameter-feslaptive load shedding semantic and sentiment analysis [14], [15], [16], decigioak-
techniques that give the option to automatically tune thedloing [17], news extraction [18], event and trend detectid3][[20],
shedding in different spatial regions adaptively with theaming [21], [22], [23], understanding the characteristics of mog
query loads. These techniques catch the spatial diswibati the posts and search queries [24], [25], microblogs ranking, [26],
incoming queries as well as the spatial access patterne sfdned and recommending users to follow or news to read [28], [29].
microblogs so that they bring the storage overhead to itsmmaih Meanwhile, recent work [18], [30] exploited microblogs temts
levels (up to 80% less storage) while allow to answer quevids to extract location information that is used to visualizemblog

We provide a crisp definition for spatio-temporal search
queries over microblogs (Section 3).

We propose efficient spatio-temporal indexing/expgllin
techniques that are capable of inserting/deleting mi-
croblogs with high rates (Section 4).

We introduce an efficient spatio-temporal query processo
that minimizes the number of visited microblogs to return
the final answer (Section 5).

We introduce arindex size tuningnodule that dynam-
ically adjusts the index contents to achieve significant
memory savings without sacrificing the query answer
quality (Section 6).

We introduce doad sheddingechnique that trades signif-
icant reduction in memory footprint for a slight decrease
in query accuracy (Section 7).

6) We introduce twadaptive load sheddingechniques that
exploit the spatial distribution of incoming queries and
data to automatically tune the load shedding adaptively
(Section 8).

We provide experimental evidence, based on real system
prototype, microblogs, and queries, showing tatuss
scalable and accurate with minimal memory consumption
(Section 9).

almost perfect accuracy (more than 99% in all cases). posts on a map [31], [32] and model the relationship betwsen u
Venusis the successor oMercury [6], from which it is interests, locations, and topics [33].
distinguished by: (1) Optimizing its index, query procassnd With such rich work in microblogs, the existing work on

memory optimization techniques for different ranking ftioos, real-time indexing and querying of microblogs locationgl][3
that rank its topk answers, so that it is flexible to serve a widg¢35] mostly address variations of aggregate queries, feguent
variety of applications requirements. (2) Providing twogmaeter- keywords, that are posted on different regions. Howeverfoup
free adaptive load shedding techniques that exploit theisdpaour knowledge, there is no existing academic work that sttppo
distribution of incoming queries and data to automaticalige real-time indexing and querying to support non-aggregpégial

the load shedding adaptively so that they minimize the mgmogueries on individual microblogs locations; which is theima
footprint significantly without (almost) compromising tlygiery focus of this paper. Also, although Twitter search allowsrttbed
accuracy. (3) Providing experimental study that compates tspatial parameters in the query, they do not reveal the Idetai
performance of different system components, in terms ofinqn of how they are supporting their spatial search and hence we
time, storage overhead, and query accuracy, with the mast thave no insights about their techniques. Generally, therhast

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 3

In-memory Index i modulewith the form: (ID, location, timestamp, contenthat

Insert represents the microblog identifier, location, issuingetinand
Geotagging|Geotagged(Update 7
Module)Microblogs| Module [pqicte

] textual contents. Location is either a preclagtude and longi-
% tude coordinates (if known) or a Minimum Bounding Rectangle

Query

Module
Fig. 1. Venus system architecture.

Microblogs

Microblog
Stream

Trash (MBR). We extract the microblog locations through one or more
of the following: (1) Exact locationsif already associated with
the microblog, e.g., posted from a GPS-enabled deviceU§ey
locations extracted from the issuing user profile. (Gpntent
locations by parsing the microblog contents to extract location
information. If the microblog ends up to be associated withren
than one location, we output multiple versions of it as one pe
each location. If no location information can be extractee,

Microblog Search Queries. Real-time search on microblogsSEI the microblog MBR to the whole space. As we use existing
spans keyword search [9], [10], [11], [12] and location-gava software packages and public datasets for geocoding aatidac

search [6], [34], [35]. The difference of one technique otre extraction, this module will not be discussed further in;'mape.r.
other is mainly in the query type, accuracy, ranking funttiand Updz?lte module. The update module ensures Fhat all incoming
memory management. Other thiercury [6], the predecessor of dUeries can be answered accurately from indexed in-memory
Venus the existing location-aware search on microblogs mostﬁpmems with the minimum possible memory.consumptlon. Th's
address aggregate queries. None of these work have adtirei3gdone through two main tasks: (1) Inserting newly coming
retrieving individual microblogs in real-time based onitHeca- n_1|(_:roblogs into the In-memory index s_tructure. @) Smad_ly
tion information. On the other hand, spatial keyword se&etell C|d|n_g_ on the set of microblogs tq expire from memory _W'thOUt
studied on web documents and web spatial objects [36], [3§], Sacrificing the query answer quality. Details of index operes
[39], [40]. However, they use offline disk-based data parting and index size tuplng are dlspussed in Sections 4, 6, 7, and 8.
indexing, which cannot scale to support the dynamic natace aQuUery module. Given a location search query, theerymodule
arrival rates of microblogs [6], [9], [35], [41]. employg ;patlo-.temporal pruning techn!ques that redue@tim-
Spatio-temporal Streams. Microblogs can be considered ad?€" Of visited microblogs to return the final answer. As tjoery

a spatio-temporal stream with very high arrival rates, whef0dule just retrieves what is there in the index, it has mfho
there exist a lot of work for spatio-temporal queries ovetadad® in controlling its result accuracy, which is mainly detémed
streams [42], [43], [44], [45], [46]. However, the main facu by the_ decisions te_lken at thmdatemodule_ on what microblogs
of such work is on continuous queries over moving objects. [€XPire from the in-memory index. Details of theerymodule

such case, a query is registered first, then its answer is asedp 2 described in Section 5.
over time from the incoming data stream. Such techniques are
not applicable to spatio-temporal search queries on miegsb 3.2 Supported Queries
where we retrieve the answer from existing stored objecs t
have arrived prior to issuing the query.

Venusshares with microblogs keyword search its environme
(i.e., queries look for existing data, in-memory indexiagd the
need for efficient utilization of the scarce memory resoyrget,
it is different from keyword search in terms of the functibtya
it supports, i.e., spatio-temporal queries. In the meastvenus
shares similar functionality with spatio-temporal qusriwer data
streams, yet it is different in terms of the environment pzorts,
i.e., query answer is retrieved from existing data rathantfiom
new incoming data that arrives later. Finallfgenusshares with

Answer

related topics to our work areicroblog search querieandspatio-
temporal streams

h\/enususers (or applications) issue queries on the forRettieve
ﬁtset of recent microblogs near this locatioimternally, four pa-
rameters are added to this query: ¥1the number of microblogs

to be returned, (2) a range around the user location, where any
microblog located outsid& is considered too far to be relevant,
(3) a time spari’, where any microblog that is issued more than
T time units ago is considered too old to be relevant, and (4) a
spatio-temporal ranking functiof,, that employs a parameter

to combine the temporal recency and spatial proximity ofheac
microblog to the querying user. Then, the query answer ctnsis

both keyword search and spatio-temporal queries the needOI microblogs posted withiit andT, and top ranked according

support incoming data with high arrival rates and the need g% f_a_.t_For.méIIy, o}:r‘gu;ry 'S(;j;med as fO[l)IIOWS: fio-t |
support real-time search query results. efinition: Givenk, R, T, and F,, a microblog spatio-tempora

search query from usen, located atu.loc, finds k microblogs
such that: (1) Theé: microblogs are posted in the lagttime units,
3 SYSTEM OVERVIEW (2) The (center) locations of themicroblogs are within range?
aroundu.loc, and (3) Thek microblogs are the top ranked ones
according to the ranking functiof,.

Our query definition is a natural extension to traditionaltggd
) range andk-nearest-neighbor queries, used extensively in spatial
3.1 System Architecture and spatio-temporal databases [47], [48]. A range quenys faid
Figure 1 gives/enussystem architecture with three main modulegems within certain spatial and temporal boundaries. Wité
around an in-memory index, namelgeotagging update and large number of microblogs that can make it to the result, it
guerymodules, described briefly below: becomes natural to limit the result sizekpand hence a ranking
Geotagging module This module receives the incoming stream ofunction F, is provided. Similarly, ak-nearest-neighbor query
microblogs, extracts the location of each microblog, amd/éods finds theclosestk items to the user location. As the relevance
each microblog along with its extracted location to tngdate of a microblog is determined by both its time and location, we

This section gives an overview ofenussystem architecture,
supported queries, and ranking functions.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 4

have the same effect on the final relevance score. In thisrpape
we employ the most two recognized scoring functions in the
literature: the linear function (see [6]) and the exporadritinction
(see [11]) to show the adaptivity of differeMenuscomponents
with the different functions. However, other scoring fuoos,
that satisfy the above conditions, can be adapted usinglexhe
same procedure that are explained in each component trootigh
the paper. The scores are defined by the following equations:

Leaf Cells

microblog <~
list

The linear scoring functions
TemporalScore(Dy(M.time, NOW)) =

DeMtime. NOW) D, (M.time, NOW) < T
N/A Dy(M.time, NOW) > T

Fig. 2. Main memory pyramid index structure in Venus.
SpatialScore(Ds(M.loc,u.loc)) =
change the terntlosestto be most relevanthence we define a D.(M.loc,u.loc)
ranking functionF,, to score each microblog within our spatial { =% Ds(Mloc,uloc) <R
and temporal boundaries. N/A Ds(M.loc,u.loc) > R
Upon initialization, a system administrator sets defaaltes Both functions are bounded in the rangel].
for parametersk, R, T, and «. Users may still change the . . .
The exponential scoring functions
values of the default parameters, yet a query may have worse
performance if the new parameters present larger searate spaemporalScore(Dy(M.time, NOW)) =
than the default ones. Setting default parameter valuedopted { . Dy (M time.NOW)

Dy(M.time, NOW) < T,w > 0

by major services, like Bing and Twitter, which return the-fop
N/A Dy(M.time, NOW) > T

most related search results for a preset valukg.dflowever, user

can get more results upon request. Our system also can adapt f
dynamically changing the preset values in the middle ofapens SpatialScore(Ds(M.loc,u.loc)) =
as elaborated in Section 6. {

Dgs(M.loc,u.loc)
ewxX =R

Dg(M.loc,u.loc) < R,w >0
3.3 Ranking Function N/A Dy(M-loc,u.loc) > R

Given a usern, located atu.loc, a microblog), issued at ime Both functions must have the same valueuoto be bounded in
M time and associated with locatid.loc, and a parametér < he same rangd, e].

a < 1, Venusemploys the following ranking functiof, (u, M)

that combines generic spatial and temporal scores in a vesigh

summation to give the relevance scoreldf to u, where lower 4 SPATIO-TEMPORAL INDEXING

scores are favored: We have two main objectives to satisfy Wfenusindexing. First,

Fu(u, M) = o x SpatialScore(Ds(M.loc, u.loc))+ the employed index has to digest high arrival rates of inogmi

. microblogs. Second, the employed index should expel (ggelet
(1-a) xTemporalScore(Dy(M.time, NOW)) microblogs from its contents with similar rates as the airiate.

D, and D; are the spatial and temporal distances, respectiveRhis will ensure that the index size is fixed in a steady state,
In Venus we use Euclidean distance and absolute timestamgrsd hence all available memory is fully utilized. The need to
difference, though, any othenonotonicdistance functions can support high arrival rates immediately favors space-fianing
be used without changing the presented techniques. Thestargndex structures (e.g., quad-tree [49] and pyramid [5])r aleta-
possible value takes place whéf is posted exactl{f’ time units partitioning index structures (e.g., R-tree). This is beeatie
ago and on the boundary of regidh «=1 indicates that the user shape of data-partitioning index structures is highlyc#d by the
cares only about the spatial proximity of microblogs, iguery rate and order of incoming data, which may trigger a largelem
result includes thé closest microblogs issued in the Ia8ttime of cell splitting and merging with a sub performance comgdce
units. a=0 gives thek most recent microblogs within rang®. space-partitioning index structures that are more regilie the
A compromise between the two extreme values gives a weightrate and order of insertions and deletions.
importance for the spatial proximity over the temporal rene To this end,Venusemploys a partial pyramid structure [5]
TemporalScoreand SpatialScorecan be any functions that (Figure 2) that consists df levels. For a given levd), the whole
are: (1) monotonic, (2) have an inverse function with respespace is partitioned intd’ equal area grid cells. At the root, one
to the spatial and temporal distance, and (3) normalizedhén tgrid cell represents the entire geographic area, leveltitipas the
same range of values where smaller values indicate moneargle space into four equi-area cells, and so forth. Dark celldguife 2
microblogs. The inverse function is used in pruning seapats present leaf cells, which could lie in any pyramid levelhligray
and optimizing memory footprint as we discuss in the follogvi cells indicate non-leaf cells that are already decompasedfour
sections. The normalization within the same range is notra cahildren, while white cells are not actually maintainedd gast
rectness condition. However, as the scoring functionsraeéte presented for illustration. The main reason to use a pyrafate
the decay pattern of the microblog relevance over time aadesp structure is to handle the skewed spatial distribution afrobilogs
normalization ensures that both spatial and temporal dsines efficiently, so that dense areas are split into deeper levhie

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 5

sparse areas span only few levels. To elaborate, in a pyram&hrchable. A microblog is searchable (i.e., can appeas@aich
index, a large leaf cell represents large space, when thsitdenresult), only if it is inserted in the pyramid structure. $we larger
is low. When the density is high, the depth increases so thatre value oft the more efficient is the insertion, yet, an incoming
cell covers a much smaller area. If we use a simple spatid| grimicroblog may be held in the buffer for a while before being
for example, it is not clear what should be the grid size, anddearchable. A typical value af is a couple of seconds, which
will never be right, too small for some regions and too large fis enough to have few thousands microblogs insi8le Since
others. Each maintained pyramid céll has a list of microblog the average arrival rate in Twitter is 5.5K+ microblogs(zed,
M _List that have arrived within the cell boundary in the 1d5t settingt = 2 means that each two seconds, we will insert 11,000
time units, ordered by their timestamps. A microblog wittdtion microblogs in the pyramid structure, instead of insertimgnt one
coordinates is stored in the leaf cell containing its lamatiwhile by one as they arrive. Yet, a microblog may stay for up to two
a microblog with MBR is stored in the lowest level enclosing,ce seconds after its arrival to be searchable, which is a redden
which could be non-leaf. The pyramid index is spatio-terahor time.
where the whole space $patiallyindexed (partitioned) into cells, Bulk insertion significantly reduces insertion time as iaste
and within each cell, microblogs atemporallyindexed (sorted) of traversing the pyramid for each single microblog, we grou
based on timestamp. thousands of microblogs into MBRs and use them as our traggrsin
Though it is most suitable t¥enus existing pyramid index unit. Also, instead of inserting each single microblog is it
structures [5] are not equipped to accommodate the needs destination cell, we insert a batch of microblogs by attagha
high-arrival insertion/deletion rates of microblogs. Topport buffer list to the head of the microblog list.
high-rate insertions, we furnish the pyramid structure biyuik) o
insertion module that efficiently digests incoming microblogg-2 Speculative Cell Splitting
with their high arrival rates (Section 4.1) andspeculative cell Each pyramid index cell has a maximum capacity; set as axinde
splitting module that avoids skewed cell splitting (Section 4.2). Tparameter. If a leaf cell’ has exceeded its capacity, a traditional
support high-rate deletions, we providbulk deletiormodule that cell splitting module would spli' into four equi-area quadrants
efficiently expels from the pyramid structure a set of midogls and distributeC' contents to the new quadrants according to their
that will not contribute to any query answer (Section 4.3) an locations. Unfortunately, such traditional splitting pealure may
lazy cell mergingnodule that decides on when to merge a set oot be suitable to microblogs. The main reason is that miogpbl
cells together to minimize the system overhead (Section 4.4 locations are highly skewed, where several microblogs nzsae h
] the same exact location, e.g., microblogs tagged with a hot-
4.1 Bulk Insertion spot location like a stadium. Hence, when a cell splits, @il i
Inserting a microblogl/ (with a point location) in the pyramid contents may end up going to the same quadrant and anothel
structure can be done traditionally [5] by traversing theapyid split is triggered. The split may continue forever unlesshva
from the root to find the leaf cell that include® location. If limit on the maximum pyramid height, allowing cells with higr
M has an MBR location instead of a point location, we doapacity at the lowest level. This gives a very poor insartad
the same except that we may end up insertidgin a non-leaf retrieval performance due to highly skewed pyramid braaetith
node. Unfortunately, such insertion procedure is not apple to overloaded cells at the lowest level.
microblogs due to its high arrival rates. While insertingirgte To avoid long skewed tree branches, we empl®peculative
item, new arriving items may get lost as the rate of arrivalldo cell splitting module, where a cell’ is split into four quadrants
be higher than the time to insert a single microblog. This @sakonly if two conditions are satisfied: (X)' exceeds its maximum
it almost infeasible to insert incoming microblogs, as thegve, capacity, and (2) if split, microblogs i6' will span at least two
one by one. To overcome this issue, we empldyukk insertion quadrants. While it is easy to check the first condition, &iveg
module as described below. the second condition is more expensive. To this end, we @aint
The main idea is to buffer incoming microblogs in a memin each cell a set of split bitsSplitBitg as a four-bits variable; one
ory buffer B, while maintaining a minimum bounding rectanglebit per cell quarter (initialized to zero). We use t8plitBitsas a
B sr that encloses the locations of all microblogsin Then, proxy for non-expensive checking on the second condition.
the bulk insertion module is triggered everyime units to insert After each bulk insertion operation in a céll, we first check
all microblogs of B in the pyramid index. This is done byif C is over capacity. If this is the case, we check for the second
traversing the pyramid structure from the root to the loveeditC' condition, where there could be only two cases 8plitBits
that enclose8B),pr. If C is a leaf node, we append the contentél) Case 1: The fouBplitBitsare zeros. In this case, we know that
of B to the top of the list of microblogs ifC' (C.M_List). C has just exceeded its capacity during this insertion ojmerat
This still ensures that\/_List is sorted by timestamp as theSo, for each microblog i@, we check which quadrant it belongs
oldest microblog inB is more recent than the most recent entrjo, and set its corresponding bit 8plitBitsto one. Once we set
in M_List. On the other hand, if”' is a non-leaf node, we: two different bits, we stop scanning the microblogs andt spé
(a) extract fromB those microblogs that are presented by MBRsell as we now know that the cell contents will span more than
and cannot be enclosed by any ©@fs children, (b) append the one quadrant. If we end up scanning all microblogsCinwith
extracted MBRs to the list of microblogs i@’ (C.M_List), only one set bit, we decide not to splitas we are sure that a split
(c) distribute the rest of microblogs i, based on their locations, will end up having all entries in one quadrant. (2) Case 2: One
to four quadrant buffers that correspond @s children, and of the SplitBitsis one. In this case, we know thét was already
(d) execute bulk insertion recursively for each child cell@ over capacity before this insertion operation, yetwas not split
using its corresponding buffer. as all its microblogs belong to the same quadrant (the ondéthas
The parametet is a tuning parameter that trades-off insertiomit set inSplitBity. So, we only need to scan the new microblogs
overhead with the time that an incoming microblog becomkat will be inserted inC' and set their correspondirgplitBits

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 6

Then, as in Case 1, we split only if two different bits are set. arrival rates of microblogs, we may end up in spending moief
In both cases, when splitting, we reset itsSplitBits create four insertion and deletion overhead in splitting and mergincapyd
new cells with zeroSplitBits and distribute microblogs if' to cells, as the children of a newly split cell may soon mergeéraga
their corresponding quadrants. This shows that we woul@mewafter deleting few items. To avoid such overhead, we employ a
face a case where two (or more) of t8plitBitsare zeros, as once lazy mergingstrategy, where we merge four sibling cells into their
two bits are set, we immediately split the cell, and resebidl. parent only if three out of the four quadrant siblings are gmp

Using SplitBits significantly reduces insertion and query pro- The idea is that once a cell' becomes empty, we check its
cessing time as: (a) we avoid dangling skewed tree branahes, siblings. If two of them are also empty, we move the contefits o
(b) we avoid frequent expensive checking for whether caiteots the third sibling to its parent, mark the parent as a leaf nadd
belong to the same quadrant or not, as the check is now dameoveC' and its siblings from the pyramid index. This is lazy
infrequently on a set of bits. In the meantime, maintainihg t merging, where in many cases it may happen that four siblings
integrity of SplitBitscomes with very little overhead. First, wheninclude few items that can all fit into their parent. Howewee
cell is under capacity, we do not read or set the valuBmitBits avoid merging in this case to provide more stability for oighity
Second, deleting entries from the cell has no effect o8il&Bits dynamic index. Hence, once a cé€llis created, it is guaranteed
unless it becomes empty, where we reset all bits. to survive for at least’ time units before it can be merged again.

) This is becaus&’ will not be empty, i.e., eligible for merging,

4.3 Bulk Deletion unless there are no insertions@hwithin T time units. Although
As we have finite memoryenusneeds to delete older microblogsthe lazy merging causes underutilized cells, this has atsiffect
to give room for newly incoming ones. Deleting an itévfi from on storage and query processing, compared to saving redunda
the pyramid structure can be done in a traditional way [5] bsplit/merge operations (which is measured practically e®b%
traversing the pyramid from its root till cell’ that encloses of the whole split/merge operations) that leads to a siganific
M, and then removingV/ from C's list. Unfortunately, such reduction in index update overhead.
traditional deletion procedure cannot scale up ¥enusneeds.
Since we need to keep index contents to only objects fromette I5) QUE_RY EROCESSlNG . .
T time units, we may need to keep pointers to all microblogd, aﬂ—h_'s section discusses thg query processing module, wiich r
chase them one by one as they become out of the temporal wind&iVes & query from user with spatial and temporal boundaries,
T, which is a prohibitively expensive operation. To overcaiie 1* andT’, and returns the top-microblogs according to a spatio-
issue, we employ &ulk deletionmodule where all deletions aret€mporal ranking function’, that weights the importance of
done in bulk. We exploit two strategies for bulk deletionedy, SPatial proximity and time recency of each microbloguoA
piggybackingandperiodic bulk deletions, described below. simple approach is to exploit the p_yramid ind(_ax structure to
Piggybacking Bulk Deletion. The idea is to piggyback the compute the ranking score for all microblogs withih and T’ '
deletion operation on insertion. Once a microblog is iregkin and return only the tog- ones. Unfortunately, such approach is
a cellC, we check ifC has any items older thaf time units in Prohibitively expensive due to the large number of micrgslo
its microblog list (_List). As M _List is ordered by timestamp, Within 1z and7'. Instead Venususes the ranking function to prune
we use binary search to find its most recent it¢fnthat is older the search space and minimize the number of visited miogsblo
thanT. If M exists, we timM_List by removing everything through a two-phase query processor. Tihiialization phase
from it starting from). Piggybacking deletion on insertion save$Section 5.2) finds an initial set df microblogs that form a basis
significant time as we share the pyramid traversal and ceissc ©f the final answer. Theruning phase (Section 5.3) keeps on
with the insertion operation. tightening the initial boqndarleR andT' to enhance the initial
Periodic Bulk Deletion. With piggybacking bulk deletion, a cell fesult and reach to the final answer.
C may still have some useless microblogs that have not been
deleted, yet, due to lack of recent insertiongInTo avoid such ©-1 Query Data Structure
cases, we trigger a light-weight periodic bulk deletiongess The query processor employs two main data structures; &tgrio
everyT’ time units (we us€” = 0.57). In this process, we go queue of cells and a sorted list of microblogs:
through each cell’, and only check for the first (i.e., most recentPriority queue of cells H: A priority queue of all index cells that
item M € C.M_List. If M has arrived more thaii time units overlap with query spatial boundaty. An entry in H has the
ago, we wipeC.M_List. If M has arrived within the lasf time form (C, index BestScorg whereC is a pointer to the celindex
units, we do nothing and skif. It may be the case thét still has is the position of the first non-visited microblog @ (initialized
some expired items, yet we intentionally overlook them idemito to one), andBestScorés the best (i.e., lowest) possible score, with
make the deletion light-weight. Such items will be deletélex respect to uset, that any non-visited microblog i@’ may have.
in the next insertion or in the next periodic cleanup. Cells are inserted ifif ordered byBestScorecomputed as:

Deleted microblogs are moved from our in-memory index
g y BestScore(u,C) = a x Spatial Score(Dg(u.loc, C))

structure to another index structure, stored in a lowerag@tier. VT .
Deleted microblogs will be retrieved only if an issued qubas +(1 — @) x TemporalScore(C.M_List[index].time, NOW)

a time boundary larger thal', which is an uncommon case, asihere D (u.loc, C') is the minimum distance betweenand C
most of our incoming queries use the defélllvalue. and C. M _List[index] is the most recent non-visited microblog
in C.

Sorted list of microblogs AnswerSetA sorted list of £k mi-
After deletion, if the total size of” and its siblings is less than thecroblogs of the formNIID, Scorg, as the microblog id and score,
maximum cell capacity, a traditional cell merging algomitivould sorted on score. Upon completion of query processhmgwerSet
mergeC' with its siblings into one cell. However, with the highcontains the final answer.

4.4 Lazy Cell Merging

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 7

Algorithm 1 Query Processor

The initialization phase gets an initial set df microblogs that L' Function Query Processor (u, k, T, R, o)
P 9 9 2: H + ¢; AnswerSet < ¢; MIN < oo, R + R, T' < T

form the basis of pruni_ng in the next phase. On_e approach is ! for each leaf cell C' overlaps withR do

get the most recent microblogs from the pyramid cetl’ that 4. gestScore - a SpatialScore(Ds (u.loc, C))
includes the user location. Yet, this is inefficient as: (1)may TemporalScore(D;(C.M_List[1].time, NOW))
contain less thak microblogs withinT’, and (2) other microblogs 5: Insert (C, 1, BestScorginto H
outsideC may provide tighter bounds for the initialitems, which ~ 6: end for

leads to faster pruning later. 7: TopH < Get (and remove) first entry iff

Main Idea. The main idea is to consider all cells within the spatialsz while TopH is not NULL andT'opH score < MIN do

5.2 The Initialization Phase

+ (1)

boundary R in constructing the initial set ok microblogs. We .
initialize the heapH by one entry for each cell’ within R. 11
Entries are ordered based on best scores computed as didcuss:
in Section 5.1. Then, we take the top entry’s céllin H as 13:

our strongest candidate to contribute to the initial topst. We
removeC from H and check on its microblogs one by one in
their temporal order. For each microbldgd, we compare its score

against the best score of the current top &llin H. If M has ;5.
a smaller (better) score, we inséf in our initial top+ list, and 1g:
check on the next microblog ii. Otherwise, (a) we conclude that 19:
the next entry’s cell’” in H has a stronger chance to contribute20:
to top+#, so we repeat the same procedure@y and (b) if M is Zlf

still within the temporal boundary’, we insert a new entry of’

22

. 3:
into H with a new best score. We continue doing so till we collecil:
25

k items in the topk list.

Algorithm. Algorithm 1 starts by populating the hedp with an 26:
entry for each cellC' that overlaps with the query boundafy. 27:

Each entry has its cell pointer, the index of the first noriteis 28 .
29: end while

microblog as one, and the best score that any entfy aan have

©

14:

Score« TopH.score M <+ TopH.C.M List{ TopH.indek
NextScore— score of current top entry i
while Score< NextScoreand M is not NULL do
if M.loc inside R’ then
Score <+ «a SpatialScore(Ds(u.loc, M.loc)) + (1-)
TemporalScore(D(M.time, NOW))
if Score< MIN then
Insert (M ,Scorg in AnswerSet
if |AnswerSet| > k then
Trim AnswerSet size tok
MIN «+ AnswerSet[k].score;
R’ + Min(R/, PruneRatios x R')
T’ < Min(T’, PruneRatio; x T")
end if
end if
end if
M < Next microblog inTopH.C.M _List
if M.time outsideT” then M < NULL
end while
if M # NULL then Insert (C, index(M), BestScorgin H
TopH <+ Get (and remove) first entry iff

(Lines 2 to 6). Then, we remove the top erffgp H from H, and

keep on retrieving microblogs from the c8llopH.C' and insert
them into our initial answer set till any of these three stogp
conditions take place: (1) We collektitems, where we conclude 5,7y

the initialization phase at Line 16, (2) The next microblog ("
is either outsidél’ or does not exist, where we s&f to NULL
(Line 25) and retrieve a new top entiyopH from H (Line 28),

or (3) The next microblogV/ in C'is within T', yet it has a higher
score than the current top entry Hh. So, we insert a new entry of
C' with a new score and current index &f in H, and retrieve a
new top entryl'opH from H (Lines 27 to 28). The conditions at

Lines 8 and 14 are always true in this phasd/@i is set toco.

5.3 The Pruning Phase

The pruning phase takes thénswerSefrom the initialization
phase and enhances its contents to reach theffinal

Main Idea. The pruning phase keeps on tightening the originali xIn

search boundarie® and 7' to new boundariesR’ < R and

30: Return AnswerSet

qDelwlocMlod) — pfIN, ie., M has to be within distance
IN R from the user. We call the valu&ZX the spatial pruning
ratio, for short PruneRatios. Hence, we tighten our spatial
boundary toR’ = Min(R, PruneRatios x R). (2) Temporal
boundary tighteningAssume that\/ has the best possible spatial
score, i.e.,.Ds(u.loc, M.loc) = 0. In order forM to make it to
AnswerSetwe should have(l — o) YOWM.time - yr7N,
i.e., M has to be issued within the las{“2 T time units.
We call the value2 X the temporal pruning ratio, for short
PruneRatio;. Hence, we tighten our temporal boundary to
T = Min(T, PruneRatio; x T). Following the same steps,
we can derive the value®runeRatio, and PruneRatio;
for the exponential scoring functions to b&runeRatios =
(W) and PruneRatio, = + x In(MN=a),

Algorithm. Line 16 in Algorithm 1 is the entry point for the

T’ < T, till all microblogs within the tightened boundaries ardPruningphase, where we already havenicroblogs inAnswerSet

exhausted. Microblogs outside the tightened boundariegarly

We first setMIN to the kth score inAnswerSetThen, we check

pruned without looking at their scores. The idea is to mainga if we can apply spatial and/or temporal pruning based on the
thresholdMIN as the minimum acceptable score for a microbloyalues of MIN and « as described above. Pruning and bound

to be included imMnswerSetwhich corresponds to the currekth

tightening are continuously applied with every time we finoesv

score inAnswerSetAssume the linear scoring functions (as irmicroblog M with a lower score thaMIN, where we insert\/

Section 3.3), for a microblod/ to be included irAnswerSet)M
has to have a lower score th&tiN, i.e.,:
Dg(u.loc, M.loc) NOW — M .time
a# +(1-a) T

< MIN

into AnswerSetaind updateMIN (Lines 14 to 22). The algorithm
then continues exactly as in tivétialization phase by checking if
there are more entries in the current cell or we need to gehano
entry from the heap. The algorithm concludes and returnfiriaé
answer list if any of two conditions takes place (Line 8): iteap

This formula is used for spatial and temporal boundary tighf{ is empty, which means that we have exhausted all microblogs
ening as follows: (1)Spatial boundary tighteningAssume that in the boundaries, or (b) The best score of top entr¥/at larger

M has the best possible temporal score, iMtime = NOW

thanMIN, which means all microblogs i cannot make it to the

In order for M to make it to AnswerSet we should have: final answer.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 8

6 INDEX SIZE TUNING updates ofl,, such gap will be filled up soon, and hence would
Our discussion so far assumed that all microblogs postetién f12Ve Very little impact on query answer. On the other sidketide

last T' time units are stored in the in-memory pyramid structur&nodule deletes microblogs from each c€libased on the value
Hence, a query with any temporal boundatyT guarantees to O 7 rather than based on one global valliéor all cells.
find its answer entirely in memory. In this section, we introe Index Maintenance.When a cellC splits into four quadrant cells,

the index size tuningnodule that takes advantage of the naturd!® value ofA. in each new child cell; is set based on the ratio
skewness of data arrival rates over different pyramid cails Of microblogs from cell”’ that goes to cell’;. As Venusemploys
achieve its storage savings§0% less storage) without sacrificing® 122y merging policy, i.e., four cells are merged into a pacell
the answer quality (accuracy99%). Ourindex size tunings only if three of them are empty, the value bf at the parent

motivated by two main observations: (1) The tbpnicroblogs cell C is set to the arrival rate of its only non-empty chilq.
in areas with high microblog arrival rates can be obtainednfr QUErY Processor.The query processor module is left intact as

a much shorter time than areas of low arrival rates, e.g-jktoplt 'elMeVes its answer from the in-memory data regardiésb®

microblogs in downtown Chicago may be obtained from the la§mpPoral domain of the contents. .
30 minutes, while it may need couple of hours to get them in It also worth mentioning that optimizing the index for prese

suburb area. (2)¢ plays a major role on how far we need to g efault parameters values does not lirknusfrom adapting
back in time to look for microblogs. I — 1, top+ microblogs changes to these values in the middle of operations. In case a
are the closest ones to the user locations, regardlessiotithe system administrator change the default values in the @iodl

arrival within T. If o — 0, top+ microblogs are the most recentoPerations, the index contents will be adapted for the neuesa

ones posted withi®, so, we look back only for the time needed td.n the following data insertion cycles (based on the new aaegp

issuek microblogs. Then, for each cefl, we find the minimum values ofT.). So, all what is needed is to plan changing the values
search time horizofl, < T such that an incoming query 6 ahead if the new queries require more data to fulfill theimaars,
c =

finds its answer in memory. Assume the microblog arrival fate I.e., if they lead into increasing, values.
acellC is A, and we use the linear scoring functions. Th€njs 7 LOAD SHEDDING

given by the following equation: Even with theindex size tuningnodule, there could be cases
For linear scoring functions where there is ho enough memory to hold all microblogs from
the lastT, time units in each cell, e.g., very scarce memory or
o time intervals with very high arrival rates. Also, some apgtions
T.= Min | T, T+ (1) are willing to trade slight decrease in query accuracy witarge
L=a " Min (ﬁ:ZZEgJ) X A saving in memory consumption. In such casésnustriggers a
. o] o load sheddingmodule that smartly selects and expires a set of
The detalk_ad derlvatlo_n fof. value can be revised in elth(_er [G]microblogs from memory such that the effect on query acgurac
or Appendix A. Following the same steps, we can defiveising i minimal. The main idea of thépad sheddingmodule is to
the exponential scoring function to be given by: use less conservative analysis than that ofititex size tuning
For exponential scoring functions module that. In particular, Equations 1 and 2 consider thg ve
conservative case thaverystored microblogl/ may have a query
Areatty Jrer) that comes exactly at/.loc, i.e., Ds(M.loc, u.loc) = 0. Theload

k

(¥ =1)+e (Gt sheddingnodule relaxes this assumption and assumes that queries
are poste@d R miles away fromM, i.e., Ds(M.loc, u.loc) = R,
where(< 8 < 1. Using this relaxed assumption, we can revise
me value of time horizon per cell to be:

T. = Min (T, Zln[
w —
We discuss next the impact of thiedex size tuningnodule
on variousVenuscomponents. Equations 1 and 2 means that
order for a microblogV/ in cell C' to make it to the toge answer, For linear scoring functions
M has to arrive within the last, time units, wherel, < T,
and so any older microblog can be safely shed without affgcti a(l - B) k

the query accuracy. Therefore, we save memory space bygtori Tep = Min (T, 1—a T+ — Area(R)

fewer microblogs. We next discuss the impact of employirgy th ' Min (Area(c)’ 1) X Ac

T, values orVenuscomponents. For exponential scoring functions 3)
Index Structure. Each pyramid cellC' will keep track of two T o —
additional variables: (1)\.; the arrival rate of microblogs i@, 7.3 = Min (T, —lIn| (e¥ — WPy + e Min(Treaccy '1)*6T]>
which is continuously updated on arrival of new microblogs, w l-a

(4)
We use the terni; g instead of7. to indicate the search time
horizon for each cellC' when theload sheddingmodule is
employed. The detailed derivation @f g can be revised either
. in [6] or Appendix B.1. Per Equations 3 and 4[, 5 gives a
process, we update the values)ofandT,, (2) If T, is updated l}iz,ghter temporal coverage for each cell Bs; < T.. 3 acts as

with a new value, we will have one of two cases: (a) The val € 1nina parameter that trades-off significant savinas of
of T, is decreased. In this case, microblogs that were poste 9p 9 gs ofagfe

in the time interval between the old and new valuesipfare \éV;\Zns“g?gt :gzzltos fiﬁfclgﬁgé ﬁzséﬁ)::i%ﬁﬁg?sgg\r,v;(:mﬂl% rage
immediately deleted. (b) The value 6§ is increased. In this case 9 y ’ pie,

if B = 0.3, a 30% saving of storage is traded with maximum
we have a temporal gap between the new and old valuds.,of . :
. . of 2.7% of accuracy loss. However, the experimental evaloat
where there are no microblogs there. However, with the réte

Shows even much better performance.

and (2) T,; the temporal boundary in cell’ computed from
Equations 1 or 2, and updated with every update of

Index Operations. Insertion in the pyramid index will have the
following two changes: (1) For all visited cells in the insen

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 9

8 ADAPTIVE LOAD SHEDDING so thatg values are estimated only based on the recent queries

As we show in Section 7, load shedding\lenususes a global f© adapt with the dynamic changes in query loads over time. By
parameter3 that represents the minimum spatial distance, asdgfinition,0 < C.Q. < Qorar, for all ', thenf3 value is bounded
ratio from R, between queries locations and microblogs location the rang€{0, 1].
Choosing the right value fof is challenging as it should change ~ Impact on Venus components -LS implementation impacts
across space and time: Microblogs queries change dyndynicaindex contents and query processing. For the index, eatiCcel
over time [24] and a single value limits the cost-benefit érad Maintains an additional integ€r.q).., which ends up with a little
off of load Shedding_ More importanﬂy’ the Spatia] distitibn of impaCt on the overall index Storage (leSS than 0.5MB extrihvh
both microblogs data and queries changes substantialhgmce- does not exceeti*% of the overall storage) compared to the big
gions [6], and therefore using a global parameter may pdoet Storage saving that comes from shedding more microblogsn@u
sparse regions for which few queries are issued and aggesssi the query processing);.t.: is maintained for the whole index and
treat dense regions where most queries are issued. C.Q. is maintained for each cell. Although being concurrently
In this section, we introduce two methods;load shedding accessed from multiple query threads, the concurrent tperan
and~-load shedding, which tune the load shedding process. Bdifth of them is only a single atomic increment which causétie |
methods extend thg-parameterized load shedding module i®verhead in query latency as our experiments show in Se@tion
three aspects: (a) they tune the load shedding automastisall
that it is not needed to preset a fixed value foby the system 82 ~-Load Shedding
administrator, (b) they keep one load shedding parameteeva .
per each spatial index cell, instead of using one globalevégn " 7-Load Shedding methoth{LS for short), we go one step
all regions, to adapt with the localized distributions ofaming Peyond using only the query spatial distribution (agii.S) and
data and queries , and (c) they update the load shedding peEam|Se the access pattern of microblogs data inside the @dl5
values dynamically over time to reflect the changes in bota dd"creases the importance measure of a €ells long asone

and queries. In the rest of this section, we develop the twihoas ©F More of its microblogs is processed by the query regardless
and discuss their impact on the system components. of the actual number of processed microblogs frét/_List.

On the contrary;y-LS considers which microblogs are actually

8.1 p-Load Shedding processed from the cell so that each cell stores only theuusef
In 5-Load Shedding £-LS for short), each index cell stores adata. To illustrate, we recall one dflercury [6] findings that
parameter$ to use in determining its temporal horizdf. s the analytical values off, and T 53 do not comply with the
(Equations 3 and 4)3 has exactly the same meaning as describdldeoretical expectations. Specificallj, achieves< 100% query
in Section 7, however, it is distinct per index cell instead caccuracy while itis expected to provide accurate resulitevlfy s
being a global parameter for the whole index. In additi®n, achieves query accuracy much higher than the theoretiecaido
LS automatically tunes? values based on the incoming query(1 — 33) x 100)%. This means that each cell stores either
loads. Then, each cell' uses its own auto-tuned value to keep less or more data than it is needed. Motivated by this finding,
only microblogs from the lasf, s time units and shed older LS aims to adjust cell storage so that only microblogs that ar
microblogs. In the rest of the section we describe the auiomasufficient to answer all incoming queries accurately areesto
tuning of 5 along with 3-LS impact onVenuscomponents. Main idea. The main idea is to estimate for each d€llthe

Main idea. The main idea is to distinguish the spatial regionsiinimum search time horizof, , < 7" such thatC' keeps only
based on the percentage of queries they receive. Regions thatuseful data to answer incoming queries from main-memory
receive a big percentage of the incoming queries are camsidecontents. UnlikeT,, that is calculated analytically based only
important spatial regions and so a small portion of data é&sh on the default query parameters as discussed in Secti@h 6,
i.e., small3 value is assigned, to reduce the likelihood to misis calculated adaptively with the incoming query load. As
answer microblogs for a lot of queries. On the contrarysciibt and T, 3 are shown to be close to the optimal time horizon, to
receive small percentage of queries are considered lesgtamp, calculatel, -, we make use df. andT, s equations. Particularly,
so that shedding more data will not significantly affect theery we replace the parametgt in T, s (Equation 3) with another
accuracy, and so a large value is assigned. Thus, we use onlyparametery. Unlike 3, v can take any value rather than being
the spatial distribution of incoming queries to estimatedivalue, bounded in the rang, 1]. Thus,y is a tuning parameter where
per cell, that is bounded in the ranffe 1]. its values have three possible cases:(H [0, 1]: in this casey

Implementation. For each index celC, we keep the per- has the same effect a5 (see Section 7) and controls the amount
centage of queries that proceSsmicroblogs out of all queries of shed data through controlling the value Bf , < 7. < T.
that are posted to the index. Specifically, for the wholexpdee (2) v > 1: in this case, the valug. g at 8 = 1 is too large for
keep a single long intege&p;;,; that counts the total number ofthe incoming queries to this cell, then the tefin—) gives a
posted queries to the index so far. In addition, for each €ell negative value and decreases the cell temporal coverageetb s
we maintain an intege€’.(). that counts the number of queriesthe useless data that increases the storage overhead e d
that processne or moremicroblog(s) fromC.M_List. Then, not contribute to the query answers. () < 0: in this case,
whenevelC.T; g value is updated, on insertionsd the value of the valueT, s at 3 = 0, i.e. T, is too small to answer all the
B is estimated by = 1 — Qc{f;' Consequently, cells that did notincoming queries to this cell, then the tefth—) gives a value
receive any queries, i.6.Q0. = 0, are assigned value of1 and larger thanl and increases the cell temporal coverage to answer
then a large amount of data is shed. On the other hand, calls tall the incoming queries accurately. Although Case 3 wouddl le
receive a big percentage of queries are assigned a gmallue to a slight increase in the storage overhead for some pagamet
and hence shed much less data. B@th;,; andC.(Q). are reset setup, e.g., atv =~ 0, it would consequently fill the gap between
every T time units, measured from the system start timestamie theoretical assumptions @i value and the practical data

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 10

distribution which lead to loss in query accuracy, as shown i 10
Mercury [6] experiments.

Implementation. To implement~-LS, Venusmaintains ay
value in each index cell, that is changing adaptively wite t

OVerhead (%
o
o

Query Accuracy (%)

incoming queries. To this end; value is calculated as follows. § 20

For an incoming query, we measure the time horizgn, that 3 18

spans all the processed microblogs, i.e., the useful daté;.i 0 02 04 06 08 1

Obviously, T, , equals the difference betweediOW and the .

oldest processed microblog. Based on the measured vallie,of (8) Storage Overhead (b) Query Accuracy

we calculate a value using the following equations: Fig. 3. Effect of o on storage vs. accuracy

For linear scoring functions

- > 100
k 11—« % £ o
=1—- Y — 3 3
T G o) e B f.
For exponential scoring functions o 172 ° 95
whk T (hn) T (hr)
v = lln <ew + l-a (e Min(GEEdEL 1)AeT e"’ij‘”)) (a) Storage Overhead (b) Query Accuracy
w a Fig. 4. Effect of T' on storage vs. accuracy

(6)
Equations 5 and 6 are derived from Equations 3 and 4 by reglaciaccessed from multiple query threads, only a single coratirr
8 with v and separating in the left hand side. If thén parameter gperation is needed to set the new value which is a little e
has a negative value, the negative sign is omitted and rettip compared to the expensive computationjof/alues. Section 9
by the final result. Using a series gf values, from subsequentshows the query latency overheachef.S compared to its storage
queries, one estimated value 9fis calculated for each cell'. saving and accuracy enhancement.

Then, the estimateg value is used in Equations 3 and 4, replacing |n both 3-LS and~-LS, the search time horizon is calculated
B, to calculate the actual cell temporal coverdge,. based on Equations 3 and 4. To prevent the cancellation of the
To estimatey value per cell, we use a sample of the incomingnajor term whena: = 0, which totally discards the automatic

queries to the cell. This sample is chosen randomly and indgning of the adaptive load shedding module, we replacia
pendently per cell. For each query in the sampley ®alue is the numerator of these equations fay+ ¢) so that the values of
calculated, during the query processing, as describeceait"en, 3 and v work for adjusting the amount of load shedding. We
the estimatedy is calculated by one of two methodmin or sete = 0.0001. In Section 9, our experiments show that this
averagewhere the minimum or the average value, respectiveljeuristic increases the query accuracypat 0, from ~ 95%,

so far is used. In both cases, value is reset everyl’ time as inMercury[6], to over99% in Venus
units, measured from the system start timestamp, so that it i

estimated only based on the recent queries to adapt with fie EXPERIMENTAL EVALUATION

dynamic changes in query loads over time. The query sampleTisis section provides experimental evaluationvehusbased on
chosen randomly per cell for two reasons: (a) A& calculated an actual system implementation. As a successdiatury [6],
during the query processing, then using all the incomingigee and with lack of other direct competitors (see Section\@nus
may be overwhelming to the query latency with a heavy quegvaluation shows the effectiveness of its new components co
load in real time, so only a sample of queries are being usedgared toMercury components. This includes: (1) The adaptive
reduce this overhead. (b) The query sample is chosen ragdotolad shedding module, with its two variatiofsLS andv-LS, as
and independently for each cell to eliminate any bias forrtate described in Section 8. (2) The flexible tép-anking that employs
subset of the queries. As calculating value in each cell is both linear and exponential ranking functions. The expentale
independent from all other cells contents, choosing a miffe study in this section evaluates the effect of the differemking
query sample for each cell is valid and leads to highly rédiabfunctions on both effectiveness of spatio-temporal prgnin
load shedding as almost all incoming queries have a chanceqteery processing and index storage overhead and its effect o
contribute to tuning the load shedding in some cells. query accuracy.

Impact on Venus components v-LS implementation mainly All experiments are based on a real prototypevehusand
impacts the query processing and slightly impacts indexesdgs. using a real-time feed of US tweets (via access to Twitteztise
For each index cell’, a single estimated valug.~ is maintained archive) and actual locations of web search queries from .Bing
incrementally. In addition, an additional integer is mained per We have stored real 340+ million tweets and one million Bing
cell in caseC.vy is estimated using the incremental average. Bosearch queries in files. Then, we have read and timestamped
end up with maximum of 1MB extra storage on the average whithem to simulate an incoming stream of real microblogs and
is much less than storage saving of the shed microblogs amqeeries. Unless mentioned otherwise, the default valué of
presents a negligible percentage of*% out of the overall storage 100, microblog arrival raté\ is 1000 microblogs/second, range
consumption.C.~y is incrementally maintained when incomingis 30 miles,T" is 6 hours,« is 0.2,3 is 0.3,w is 1, cell capacity
queries access some microblogs fréf/_List. For each query, is 150 microblogs, the spatial and temporal scoring fumstiare
a new- value is calculated as described above and its estimatatbar, andy-LS usesmin estimation. The default values of cell
value C.7y is updated accordingly. Although'. is concurrently capacity,c,, andj are selected experimentally and show to work

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 11

Linear Scoring Exponential Scoring
i Dgs(M.loc,u.loc) « Ds(M.loc,u.loc)
Spatial Score Zelooouno0) oW =
Temporal Score Dy(M.time,NOW) gwx DtULtne NOW)
Spatial Pruning Boundary Min (R, MIN R Min (R, L x in(MN—0-2))p
[e3 w [e3
Temporal Pruning Boundary Min (T, MINT Min (T, 2 x In(MIN=a)p
l1-—a w l—a
Area (1D
Index Size Tuning TimeX.) Min (T, 2T + W Min [T, Zin[r2 (v — 1) + ef\/f'in(m‘l)x)\uT]
1in(Frea(o) ’I)XAC
wk
T ArealR) Vy o
i i ; a(l-pB) k . T Min(4Ee8 1)A.T
Load Shedding Timel(, 5) | Min <T, Q=B 4 Mm(gzzzgg‘;’l)xh> Min | T, Tinfro(ew — ew8) 4 ¢ " (areatcr 1)]>
wk
Areal(R) Ny wTe
i i k 11—« 1 1—a Min rea X T _ c,y
Adaptivey-Load Shedding) 1- <TC,W - W) La Lin (ew + 1= (e (i) e))

TABLE 1
Summary of different system components equations using linear and exponential scoring.

accuracy of 95-99+%, where the lowest accuracy, i.e, 95%, is
achieved atx = 0 due to the cancellation of the major term

and so the index barely stores olynicroblogs in each regioR.
AlthoughMST is theoretically expected to achieve 100% accuracy
consistently, the small accuracy loss comes from the gapdwet

the theoretical assumption of uniformly distributed midogs
locations within the cell and the actual distribution whishnot

Query Latency (ms)

R (miles) strictly uniform. On the other hand/LS is shown to achieve 60-
(a) k vs. Query Latency (b) R vs. Query Latency 90% storage saving with 99-73% corresponding query acg@aac
Fig. 5. Effect of adaptive load shedding on query latency o= 02 T_he IoweSt_aCh'eved accuracy 'S_ 52%fat 1 anda =
0.9 which is much higher than the theoretical bound.
best for query performance and result significance, reisjdygt Query Evaluation: Mercury shows that its spatial and tem-

while default) is the effective rate of US geotagged tweets. Agoral pruning are both very effective and significantly doate
microblogs are so timely that Twitter gives only the mosteretc the naive approaches. Also, the temporal pruning is moeefe
tweets (i.e.2=0), we seta to 0.2 as the temporal dimension isthan spatial pruning even for large valuescof(up to 0.8). The
more important than spatial dimension. All results areem#dd average query latency, when using both spatial and temporal
in the steady state, i.e., after running the system for ait& pruning, for most parameters setup is 4 msec.

time units. We use an Intel Core i7 machine with CPU 3.40GHZ

and 64GB RAM. Our measures of performance include inserti®? Adaptive Load Shedding

time, storage overhead, query accuracy, and query laténmsry In this section, we evaluate the effectivenessafusadaptive load
accuracy is calculated as the percentage of correct mamsehh shedding module. We compare the two variation¥erfiusindex

the obtained answer compared to the true answer. True answiéh adaptive load shedding employed: (&)LS (Section 8.1),

is calculated when all microblogs of the lat time units are denoted a¥LS{3, and (b)y-LS (Section 8.2), denoted 84 S+,
stored in the index. The rest of this section recdpercury with three alternatives dflercury[6] index (as in Section 9.1).
results [6] (Section 9.1) and evaluates the adaptive loaddihg

(Section 9.2) and top-ranking (Section 9.3). 9.2.1 Effect on Querying and Storage

Figure 3 shows the effect dfenusadaptive load shedding on
both storage overhead and query accuracy with varyindror
a wide range of varyingy, Figure 3 shows the superiority of
In this section, we recaplercury [6] results, the predecessor ofVLS{ andVLS+, for o > 0, in saving a significant amount of
Venus as a context for evaluating the new componentsénus storage (up to 80%) while keeping almost perfect accuragrém
Mercury has evaluated three alternatives of its index: (a) storingan 99%). This is applicable even for large valuesxofup to
all microblogs of lastI’ time units (denoted aMT), (b) using 0.9) which is a significant enhancement oWrcury alternatives
the index size tuningnodule (Section 6), denoted &4ST, and (MST and MLS). With increasinga;, MST and MLS keep more
(c) usingMercury load sheddingnodule (Section 7), denoted asdata as the spatial dimension is getting increasing weiglhe
MLS. relevance score and hence older data are kept to accourgifg b

Index Scalability: Mercury shows thatMT digests 32K mi- spatially close to incoming queries. However\dsS{3 andVLS-
croblog/sec whileMST and MLS digest 64K in~ 0.5 sec. This ~ take the query spatial distribution into account and maritie
shows an efficient digestion for arrival rates an order of mitage actual useful data localized per region instead of usingoaail
higher than Twitter rate. Also, it shows more digestion abidity parameter, they can smartly figure out almost all data trehat
for indexes that store less data. contributing to query answers and hence shed up to 80% withou

Memory Optimization : Mercuryshows thaMST can achieve affecting the query accuraciIST and MLS cannot sustain such
storage savings of 90-25% far < 0.5. This corresponds to query large savings forx > 0.4.

9.1 Mercury Results Recap

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 12

On the contrary to largex values, fora = 0, VLS# and is affecting: (1) Index size tuning, as the valués and 1. g
VLS< come with a bit extra storage overhedd%, and17%, depend on the employed ranking function, and (2) the spatio-
respectively, compared tbl % in bothMSTandMLS to increase temporal pruning during the query processing. In this sective
the accuracy from- 95% to more thar§9%. This is a result of the study the effect of employing the linear and exponentiatfioms
heuristic discussed in Section 8.2 which prevents cartmgllaf (defined in Section 3.3), namely-Lin and F-Exp, respectively,
VLS{ andVLS+y effect and hence they can automatically discoveand their curves are denoted throughout the section by ffiresu
which data are useful for the incoming queries to keep thems T -Lin and-Exp, respectively.
specific point, atv = 0, shows tha¥/LS# andVLS-y are adaptive
so that they keep more data when needed as well as sheddryl Ranking Effect on Index Size and Query Accuracy
useless data if exists. Table 1 summarizes the equations of different system cosergsn

Figure 4 shows the effect of varying on storage and ac- using both linear and exponential scoring. Mathematicahg
curacy. For small values df’, VLS<y encounters slightly more valuesT, and T, s of F-Lin (Equations 1 and 3) give tighter
storage overhead thaviLS However, with increasing’, VLS« temporal coverage thafExp (Equations 2 and 4). Consequently,
storage overhead becomes comparabeit& while consistently Figures 7-9 show thaE-Exp encounters more storage overhead
maintains more than 99% accura®LS3 dominates all other than F-Lin for varying 7', « and . In Figure 7(a),F-Exp
alternative for all values df’ with almost perfect accuracy. encounters larger storage overhead for smaller valugds while

As VLS andVLS< come with an overhead during the quenapproachF-Lin storage with increasing’. However, for all'T
processing, Figure 5 shows the query latency with varying values,F-Exp achieves perfect accuracy that is almost 100% for
and R. Both figures show higher query latency for bathS3 bothMSTandMLS The same observations hold for varyingnd
andVLS+<y over MST and MLS It is also noticeable thafLS<y 3 in Figures 8 and 9, respectively. Fbt « and 3, the increase in
encounters higher latency thafLS{# due to the computational F-Exp storage overhead between 7-15% more thdrin.
cost of calculatingy. However, the latency increase is acceptable Two interesting points to discuss arecat 0 and at3 = 1 in
and does not exceed 3 ms for large valuesibf 256 miles, Figures 8 and 9, respectively. At these points, bbthand T g
where many index cells are involved thandy computations. For almost vanish and the index barely stores only the most tecen
average values of and R, the increase in the order of 1 ms onk microblogs in each region, which makes the query accuracy
the average. In nutsheNLS andVLS+ incur 12-14% increase of F-Lin drops significantly, as shown in Figures 8(b) and 9(b),
in query latency to save up to 80% of storage, for wide randes especially a3 = 1 for large values ofx where the spatial score is
parameters values, without compromising the accuracy.9he more important than the temporal score and so old microblogs
95, and 99 percentiles of query latencies for all alterestiare matter. However, in all these cases;Exp accuracy remains
under 15, 30, and 50 ms, respectively. More detailed arsafgsi almost perfect. This shows th&Exp accuracy improvement is
query latency percentiles can be revised in Appendix C. not a result for only storing more data in the index. Instehd,

For VLS+y, the presented results shomin estimation method, exponential scoring quickly demotes further microblogsegither
which is more conservative thaaveragemethod and leads to space, time or both, and hence less microblogs are neede to g
higher storage overhead. Generally, for all parameteregadver- the accurate answer. This is shown clearly while analyzpagis-
agemethod behave pretty similar ninmethod and thus the sametemporal pruning in Section 9.3.2.
analysis of results would be applicable. For space linuiteg; Finally, it worth mentioning that employingLS{3 andVLS+y
results foraverageestimation method are moved to Appendix C.lwith F-Expgives pretty similar numbers to those in Section 9.2 in
both storage overhead and query accuracy. For space loniat

9.2.2 Effect on Index Maintenance we moved these results to Appendix C.2.

With a significant amount of data shed from the ind&%,S{
andVLS-+y significantly improve the index maintenance overhea®.3.2 Ranking Effect on Spatio-temporal Query Pruning

Figure 6 shows index insertion time with varying tweet ativ Figure 10 compares the performance \@nusquery processor
rate,k, a, and R. For all the parameter valuegL.S andVLS- employing either only spatial pruning, denotedRR temporal

7 show lower insertion time due to the lighter index contentgruning, denoted aBT, or spatio-temporal pruning, denoted as
As Figure 6(a) showsyLS+ is able to digest 64K microblog in p, for both F-Lin and F-Exp In Figure 10(a), query latency of
~ 400 ms whileVLS+3 does in less than a quarter of a second. F@j| alternatives of-Exp are bounded betwed?iT-Lin and P-Lin,
different values of tweet arrival I’até:,, and R, VLS"Y insertion except for |arge values oR (> 64) where P_Exp has a lower
time is slightly better tharMLS while VLSS is significantly |atency tharP-Lin. This behavior can be interpreted by discussing
better than both of them. However, for a wide rangexofalues, two contradicting factors: (1) The computation cost, andtt@)
both VLS and VLS« work significantly better thatMLS as pruning effectiveness of each ranking function. First, ¢ost of
Figure 6(c) shows. This shows the superiorityhfS3 andVLS- computing exponential score B+Exp is higher than the linear
7 and that the decrease in insertion time is proportional Witore byF-Lin due to the higher mathematical complexity. As
the storage savings, so the lighter the index contents the mehis operation repeats for every single microblog, its dsstot
efficient it digests more data. It worth mentioning that tffeient negligible. SecondE-Expis much more powerful in pruning the
bulk insertion techniques used Menussignificantly increase search space. For the same increase in either spatial optahp
digestion rates four times for all alternatives. Detailetnbbers gistance, the exponential score is demoted rapidly and tiheis

and evaluation are presented in Appendix C.4. search can quit much earlier than the linear score. Constiguen
_ in Figure 10(a), forR values< 64, the expensive computation
9.3 Top-k Ranking cost of F-Exp makes all its alternatives have higher latency than

In this section, we study the effect of employing differesmtking P-Lin while its pruning power make them better than bBffiLin
functions onvVenuscomponents. Specifically, the ranking functiorand PR-Lin For larger values ofR (> 64), when many cells

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014

__ 500 o8 _.30
[} [} v [2]
€ 400 Ex M —o— £
[Q
£ £ 20 VLS-p —%— 220
i 30 E VLSy —B— E 15
5 200 50 5
2 £ 12 5 210
2 100 2 8@ = g3
c o c c
- I pEBE—-u— - 4 = -
02505 1 2 4 8 16 32 64 10 50 100
Arrival Rate (K/sec) k
(a) Varying arrival rate (b) Varying k

Fig. 6. Index insertion time.

MT @

SR wmE < 5
e -| g e
g 70 MST-Eng oy 3
£ 60 MLS-Exp o} £
g 500 3 g
3 207 < s
S 30 s MST-Exp —o— I
g 20 E MLS-Exp —5— 5
@ 19 &
3 6 9 12 3 6 9 12
T (hr) T (hr)
(a) Storage Overhead (b) Query Accuracy
Fig. 7. Ranking effect on storage vs. accuracy varying T' Fig.

g 9
e <
:
% < MST-Exp ——
> MLS-Exp ——
g MST-Exp —— g P
% MLS-Exp —5— ¢]
0 02 04 06 08 1 0 02 04 06 08 1
a a

(a) Storage Overhead (b) Query Accuracy

Fig. 8. Ranking effect on storage vs. accuracy varying «

are involved in the query, the pruning power BfExp makes
more difference and giveR-Exp a latency of 11 ms forR =
256 compared to 16 ms foP-Lin. Consistently, botlPR-Exp [1l
andPT-Exphave query latency as low &sLin which shows two 2]
conclusions: (a) Pruning a single dimension using the esptial
score gives the same latency as pruning both dimensiong tign [3]
linear score. (b) Unliké=-Lin, all F-Exp alternatives have query
latency within a small margin which shows that pruning &ith
spatial or temporal dimension has the same effectivenestheo
contrary toF-Lin in which the temporal pruning is much more
effective than the spatial pruning (see [6] or Appendix C 5l
analysis).

Figure 10(b) shows the query latency varyimgin this figure,
the computation cost df-Exp dominates the pruning power (as
default R value is30 miles) and so all alternatives &t Exphave []
slightly higher latency tha®-Lin but still lower thanPR-Linand (8]
PT-Lin. The figure also shows the effectiveness of both spatial and
temporal pruning using-Exp. (9]

[10]

(5]
6]

10 CONCLUSION

We have presentédenus a system for real-time support of spatio{11
temporal queries on microblogs, where users request a saterit 12]
k microblogs near their locationsenusworks under a challeng-

ing environment, where microblogs arrive with very highiat [13]
rates Venusemploys efficient in-memory indexing to support up to
64K microblogs/second and spatio-temporal pruning tephes to [14]
provide real-time query response of 4 msec. In additiorotiife

load shedding modules are employed to smartly shed thessselé5]
data while providing almost perfect query accuracy.

13

02 04 06
a

025 1 4 16 64 256

R (miles)

(c) Varying a (d) Varying R

MLS-Lin-00.4 —%—
MLS-Lin-0a0.9 —&—
MLS-Exp-00.4 —H—
MLS-Exp-00.9 —¥—

Query Accuracy (%)

MLS-Exp-00.9 ¥
0 02 04

06 08 1 0 02 04 06

B
(b) Query Accuracy

0.8 1

(a) Storage Overhead

9. Ranking effect on storage vs. accuracy varying 8

R (miles) a

(a) R vs. Query Latency (b) @ vs. Query Latency

Fig. 10. Ranking effect on query pruning

REFERENCES

“Twitter Statistics,” http://expandedramblings.comdex.php/march-
2013-by-the-numbers-a-few-amazing-twitter-stats/, 2013.

“Twitter Data Grants, 2014," https://blog.twitter.coP@14/introducing-
twitter-data-grants.
“Facebook Statistics,”
advertising, 2012.
“After Boston Explosions, People Rush to Twitter for Breakin
News,” http://www.latimes.com/business/technologyiftn-
after-boston-explosions-people-rush-to-twitter-for-breaking-news
20130415,0,3729783.story, 2013.

W. G. Aref and H. Samet, “Efficient Processing of Window Qusrile
the Pyramid Data Structure,” BRODS 1990.

A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He, “Memy: A
Memory-Constrained Spatio-temporal Real-time Search on Micrslilog
in ICDE, 2014, pp. 172-183.

G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “The Unifikdgging
Infrastructure for Data Analytics at Twittef?VLDB, vol. 5, no. 12, 2012.
J. Lin and A. Kolcz, “Large-scale machine learning at twitten
SIGMOD, 2012.

M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and Jn,Li
“Earlybird: Real-Time Search at Twitter,” ifCDE, 2012.

C. Chen, F. Li, B. C. Ooi, and S. Wu, “Tl: An Efficient Indexing
Mechanism for Real-Time Search on Tweets, SIGMOD, 2011.

L. Wu, W. Lin, X. Xiao, and Y. Xu, “LSIl: An Indexing Structure for
Exact Real-Time Search on Microblogs,” i@DE, 2013.

J. Yao, B. Cui, Z. Xue, and Q. Liu, “Provenance-based Indg8opport
in Micro-blog Platforms,” inlCDE, 2012.

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Maddermd
R. C. Miller, “Tweets as Data: Demonstration of TweeQL andtlnio,”

in SIGMOD, 2011.

A. Bermingham and A. F. Smeaton, “Classifying SentimentMi
croblogs: Is Brevity an Advantage?” iBIKM, 2010.

E. Meij, W. Weerkamp, and M. de Rijke, “Adding semanticsiizroblog
posts,” inWSDM 2012.

https://www.facebook.com/iness/power-of-

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014

[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
(25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

[35]
(36]
[37]

(38]

[39]

[40]

[41]

[42]

(43]
[44]

[45]

[46]

[47]

G. Mishne and J. Lin, “Twanchor Text: A Preliminary Studytbé Value
of Tweets as Anchor Text,” iISIGIR 2012.

C. C. Cao, J. She, Y. Tong, and L. Chen, “Whom to Ask? JurgS&kn
for Decision Making Tasks on Micro-blog Service®VLDB, 2012.

J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberraad
J. Sperling, “TwitterStand: News in Tweets,” @IS, 2009.

H. Abdelhaq, C. Sengstock, and M. Gertz, “EvenTweet: @nliocalized
Event Detection from Twitter,” in/LDB, 2013.

R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “TEDAS: Awitter-
based Event Detection and Analysis SystemJGDE, 2012.

M. Mathioudakis and N. Koudas, “TwitterMonitor: Trend Detien over
the Twitter Stream,” irSIGMOD, 2010.

T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shaletidr users:
Real-time event detection by social sensorsNWW 2010.

V. K. Singh, M. Gao, and R. Jain, “Situation Detection &whtrol using
Spatio-temporal Analysis of Microblogs,” WWW 2010.

J. Lin and G. Mishne, “A Study of "Churn” in Tweets and Reafné
Search Queries,” iIlCWSM 2012.

D. Ramage, S. T. Dumais, and D. J. Liebling, “Charactegaiicroblogs
with Topic Models,” inICWSM 2010.

A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z.efg, and
H. Zha, “Time is of the essence: Improving recency ranking usinter
data,” inWWW 2010.

I. Uysal and W. B. Croft, “User Oriented Tweet Ranking: A Hiltey
Approach to Microblogs,” irCIKM, 2011.

J. Hannon, M. Bennett, and B. Smyth, “Recommending éwittsers to
follow using content and collaborative filtering approaches,RecSys
2010.

O. Phelan, K. McCarthy, and B. Smyth, “Using twitter to recaend
real-time topical news,” ilRecSys2009.

K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: AalRe
time Local-event Detection System based on Geolocation Infioma
Propagated to Microblogs,” i€IKM, 2011.

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madaderd
R. C. Miller, “Twitinfo: Aggregating and Visualizing Microblgs for
Event Exploration,” inCHI, 2011.

——, “Processing and Visualizing the Data in Twee&GMOD Record
vol. 40, no. 4, 2012.

L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiduiklis,
“Discovering Geographical Topics In The Twitter Stream,” WWW
2012.

C. Budak, T. Georgiou, D. Agrawal, and A. E. Abbadi, “Geofe:
Online Detection of Geo-Correlated Information Trends in Sociat Ne
works,” in VLDB, 2014.

A. Skovsgaard, D. Sidlauskas, and C. S. Jensen, “Scalaplé Spatio-
temporal Term Querying,” ilCDE, 2014, pp. 148—159.

Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Progieg in
Geographic Web Search Engines,"StIGMOD, 2006.

G. Cong, C. S. Jensen, and D. Wu, “Efficient Retrieval oftbp-k Most
Relevant Spatial Web Object$?VLDB, vol. 2, no. 1, 2009.

Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang
“IR-Tree: An Efficient Index for Geographic Document SearcFKDE,
vol. 23, no. 4, 2011.

D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint Top-K $glat
Keyword Query ProcessingTKDE, vol. 24, no. 10, 2012.

D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsgeeva,

“Keyword Search in Spatial Databases: Towards Searching by -Doct

ment,” in ICDE, 2009.

L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial Keywooer§)
Processing: An Experimental Evaluation,”\#L.DB, 2013.

S. J. Kazemitabar, U. Demiryurek, M. H. Ali, A. Akdogan, a@d Sha-
habi, “Geospatial Stream Query Processing using Microsoft SQiese
Streamlinsight,PVLDB, vol. 3, no. 2, 2010.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discowvey Spatio-
temporal Causal Interactions in Traffic Data StreamsKDD, 2011.

E. Meskovic, Z. Galic, and M. Baranovic, “Managing Movi@pjects in
Spatio-temporal Data Streams,”MDM, 2011.

M. F. Mokbel and W. G. Aref, “SOLE: Scalable On-Line Executiof
Continuous Queries on Spatio-temporal Data StreaMisDB Journal
vol. 17, no. 5, 2008.

D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, “Teaipnd
Spatio-temporal Aggregations over Data Streams using Muliipiee
Granularities,"Information Systemsol. 28, no. 1-2, 2003.

M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. @tin
C. S. Jensen, and N. LorentzoSpatio-Temporal Databases: The
CHOROCHRONOS Approach Springer, 2003.

14

[48] S. Shekhar and S. Chawl8patial Databases: A Tour Prentice Hall,
20083.

[49] R. A. Finkel and J. L. Bentley, “Quad Trees: A Data Structure
Retrieval on Composite KeysACTA vol. 4, no. 1, 1974.

Amr Magdy is a Ph.D. candidate at the De-
partment of Computer Science and Engineer-
ing, University of Minnesota - Twin Cities. He
received his M.Sc. at the same department in
2013. His research interests include big data
management, social data management, and
spatial data management. His current research
focus is managing microblogs data. His research
work has been incubated by Bing GeoSpatial
team and has been selected among best papers
in ICDE 2014. He has been selected a finalist for
Microsoft Research PhD Fellowship 2014-2016.

Mohamed F. Mokbel (Ph.D., Purdue University,
USA, MS, B.Sc., Alexandria University, Egypt)
is an associate professor at University of Min-
nesota. His current research interests focus on
providing database and platform support for
spatio-temporal data, location-based services
2.0, personalization, and recommender sys-
tems. His research work has been recognized
by four best paper awards at IEEE MASS 2008,
IEEE MDM 2009, SSTD 2011, and ACM Mo-
biGIS Workshop 2012, and by the NSF CAREER
award 2010. Mohamed is/was general co-chair of SSTD 2011, program
co-chair of ACM SIGSPAITAL GIS 2008-2010, and MDM 2014, 2011.
He has served in the editorial board of ACM Transactions on Spatial Al-
gorithms and Systems, IEEE Data Engineering Bulletin, Distributed and
Parallel Databases Journal, and Journal of Spatial Information Science.
Mohamed has held various visiting positions at Microsoft Research,
USA, Hong Kong Polytechnic University, and Umm Al-Qura University,
Saudi Arabia. Mohamed is an ACM Senior and IEEE Senior member
and a founding member of ACM SIGSPATIAL. He is currently serving
as an elected chair of ACM SIGSPATIAL. For more information, please
visit: www.cs.umn.edu/~mokbel

Sameh Elnikety is a researcher at Microsoft Re-
search in Redmond, Washington. He received
his Ph.D. from the Swiss Federal Institute of
Technology (EPFL) in Lausanne, Switzerland,
and M.S. from Rice University in Houston, Texas.
His research interests include distributed server
systems, and database systems. Samehs work
on database replication received the best paper
award at Eurosys 2007.

Suman Nath is a senior researcher at Mi-
crosoft Research in Redmond, Washington. He
received his M.S. and Ph.D. from Carnegie Mel-
lon University (CMU). His research interests
include sensor/time-series data management,
data privacy and security, and flash memory. His
research work has been recognized by best pa-
per awards at BaseNets Workshop 2004, NSDI
2006, ICDE 2008, SSTD 2011, Grace Hopper
2012, and MobiSys 2012.

Yuxiong He is a researcher at Microsoft Re-
search in Redmond, Washington. She received
her Ph.D. in Computer Science from Singapore-
MIT Alliance in 2008. Her research interests in-
clude resource management, algorithms, mod-
eling and performance evaluation of parallel
and distributed systems. Her research work has
been selected among best papers in ICDE 2014.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 15

APPENDIX A

k
INDEX SIZE TUNING TIME HORIZON T. < « T4

This appendix aims to find the valug. for each cellC' such e I-a AR)

that only those microblogs that have arrivedGhin the lastT, By substituting the value ofg, and bounding’.. by the value
time units are kept in memory as discussed in Section 6. Rer fif 1, @ we cannot go further back in time thi#nthe maximum
following Lemma, T}, is computed based on the default values of2lue of 7, would be:

k, R, T, anda, and uses the microblog arrival rate for each cell

C assuming we are using the linear scoring functions. We assum 7 — vin |l T «a T4 k

that the locations of incoming microblogs are uniform witkeach c = M "1 -« Min (Area(R) 1) %\

cell boundary, yet they are diverse across various celig;deach Area(C)? ¢

cell C has its own microblog arrival rat&. [|
Lemma 1. Given query parameterg, R, T, and o, and the In case of exponential ranking function that is presented in

average arrival rate of microblogs in cell’,)., the spatio- Section 3.3, the equation @, is given as follows:
temporal query answer from cell' can be retrieved from those
microblogs that have arrived in the la%t time units, where:

wk
Arca(R)

(e — 1) 4 M (FrEy 1) e

T.= Min (T, zln[

w 11—«
g a k (8)
Te=Min | T, 1— aT+ Mi (Area(R) 1) <\ This equation can be derived using exactly the same steps
Area(C)? ¢ as in the case of linear ranking function. The proof is given as

Proof: The proof is composed of three steps: First, we compuft%”m’v_ing' ,
the value of\ ; as the expected arrival rate of microblogs to query"@0f: The proof is composed of exactly the same three steps as

area R, among the microblogs in cefl’ with arrival rate \.. e previous one. The first and second steps are indeperfdést o

This depends on the ratio of the two ardaea(R) andArea(C). "@nking function and gives:
If Area(R) < Area(C), then A\ = %:‘Eg;)\c, otherwise, all
microblogs fromC' will contribute to R, hencelr = A.. This _ g ((Area(R)
Ar = Min , 1) X A
can be put formally as: Area(C)

. Area(R — ﬁ
Ar = Min <ATWEC§,1) % Ao T =35
Then, we compute the maximum time interval that a

Second, we compute the shortest tiffieto form a set ofk microblog M/ within cell C' and areaR can make it to the list
microblogs as an initial answer. This corresponds to the tim of top-k microblogs according to the exponential ranking function
get the firstk microblogs that arrive within cell’ and areal?. F. In order for M to make it to the topk list, M has to have a
SinceAr is the rate of microblog arrival ik, i.e., we receive one petter (i.e., lower) score than the microbldgj, that has thekth
microblog eachi- time units, then we neeffl, = 5= time units (i.e., worst) score of the initial top- i.e., F (M) < F(Mj,). To be
to receive the firsk: microblogs. conservative in our analysis, we assume that:M@has the best

Finally, we compute the maximum time interval. that a possible spatial score: zero, i.84 has the same location as the
microblog M within cell C' and areal? can make it to the list of user location. In this casd; (M) will rely only on its temporal
top-k microblogs according to our ranking functién In order for gcore, i.e.F(M)=(1-a)er™ s whereT, = NOW — M time
M to make it to the topk list, M has to have a better (i.e., lower)indicates the search time horizdh that we are looking for, and
score than the microblog/}, that has thekth (i.e., worst) score (b) A/, has the worst possible spatial and temporal scores among
of the initial top%, i.e., F'(M) < F(M}). To be conservative in the initial k ones. While the worst spatial score would be one, i.e.,
our analysis, we assume that: (&) has the best possible spatialys, jies on the boundary oR, the worst temporal score would
score: zero, i.e.M has the same location as the user location. kake place if)M}, arrivesT} time units ago. So, the score 8f},
this case,l;(M) will rely only on its temporal score, i.eE' (M) .an pe set asF(My) = a + (1 — a)ewx#_ Accordingly, to
= (1—a) 7, whereT. = NOW — M.time indicates the search ity e condition thak'(M) < F(Msy), the following should
time horizonT, that we are looking for, and (k)/;, has the worst 4.
possible spatial and temporal scores among the initiaines.
While the worst spatial score would be one, i&f}, lies on the wx Le wX
boundary ofR, the worst temporal score would take placé/; (1=)e™™ 7 <a+ (1l —aje”” a7 ©)
arrives Ty, time units ago. So, the score @ff;, can be set as: By separating the two sides and substituting the valuggf
F(Mp)=a+(1- a)%. Accordingly, to satisfy the condition and boundindl. by the value ofl’, as we cannot go further back

that F' (M) < F(My), the following should hold: in time thanT’, the maximum value of . would be:
T k (T . i
(lfa)?<a+(1fa)m (1) T.= Min (T,wln[l_a(e —1)+e" (4reatcr 1) AT

This means that in order fal/ to make it to the answer list, (10)
T, should satisfy: |

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 16

APPENDIX B Radius{,) has spatial score gf while a microblog at distance
LOAD SHEDDING TIME HORIZON AND ACCURACY Radius®) has spatial score of 1, thétadius{d,;) = 5 Radius(?).
Loss Hence, the ratio of the spatial dimension is:

This appendix aims to find the valig. 5 for each cellC', such Area(A,) wRadius(Ag)? B2Radius(R)>

that only those microblogs that have arrivedGhin the lastT g Ryatio = Area(R) = 7 Radius(R)? = Radius(R)? = 52
time units are kept in memory, and analyze the accuracy fas&o

load shedding module as discussed in Section 7. We firstederiv
the value off, g in B.1 then we analyze the accuracy loss in B.2.

B.1 Storage Saving

Building on the derivation ofl}, in Appendix A, and assuming
we use the linear scoring functions, we will relax the ver
conservative assumption of having a query location exaatly
the location a microblogV/, and hence Equation 7 will be re-
formulated as:

Hence, the accuracy loss can be formulated as:

ACCUTGCyLOSSB = Tratio X Rratio < 53 (14)

This shows a cubic accuracy loss in termsgofe.g., if 5 =
9.3, we have maximum of 2.7% loss in accuracy for 30% storage
saving.

For the exponential scoring function, the arkain the spatio-
temporal space would be an area bounded by two exponential
curves and hence its area can be calculated using intagnatio
"5 der the bounded area. However, roughly, expelling expdelgnt
af + (1 — Q)T’ <a+(1- a)ﬁ (11) scored microblogs would lead to much less accuracy loss as a
K slight increase in either spatial or temporal distancesldvtead
to exponential decay in the relevance score. The experiinenta
evaluation clearly verifies this observation.

_ APPENDIX C
a(l—p) k
Lep<—— T+ byS ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we provide additional experimental resthat
do not fit in the main paper contents due to space limitations.

C.1 Adaptive Load Shedding Additional Experiments

Then, in order for a microblog/ to make it to the answer list,
T, s should satisfy:

By substituting the value oA, and boundingl; s by the
value ofT’, the maximum value of . 3 would be:

) a(l = B) k In this section, we present the results \@nhusadaptivey-load
Tep = Min | T, 1—a T+ — Arca(R) shedding withaverageestimation method (denoted ¥sS+y-Avg)
Mi (Area(C’)’) XA compared to adaptivg-load shedding (denoted a4.S{) and

(12) adaptivey-load shedding wittmin estimation method (denoted as
Following the same steps, we can defles for the exponen- VLS‘Y"V””) that are presented ih Se(.:tion_9.2.1.. Generk(ll;§:y-
tial scoring functions to be: Avgbehavior is similar t&/LS<y-Min with minor differences in ac-
tual numbers of storage overhead and query accuracy. Hartic
s Figure 11 shows the effect afenusadaptive load shedding on
(e¥ —ewPy + e Min(Areacy e })both storage overhead and query accuracy with vargingor o
ranges fron®) to 0.9, Figure 11(a) shows that alenusalternatives
of adaptive load shedding techniques are able to save 59-86%
B.2 Accuracy Loss of storage overhead, which is a significant improvement,levhi
Given the less conservative assumption in Equation 11ettser keeping almost perfect query accuracy as shown in Figure)11(
a chance to miss microblogs that could have made it to the final this range ofc, VLS<-Avg consistently behaves at least as
result. In particular, there is an areh, in the spatio-temporal good asVLS<-Min and at most as good a4.S43. For storage
space that is not covered . g. A microblog M in areaA, overhead, Figure 11(a) shows thatS<-Avg encounter slightly
satisfies two conditions: (1) The spatial scoreléfis less tharB, higher storage overhead th&hS+3 and slightly lower tharV/LS-
and (2) The temporal distance 81 is betweerll. g andT.. We ~-Min for all values of«. This is mainly becaus&LS<y-Min
measure the accuracy loss in terms of the ratio of the arezr@dv is more conservative in estimating the value of load shegdin
by A, to the whole spatio-temporal area coveredibgndT’, i.e., parametety and hence stores more microblogs and then encounter
R x T. This is measured by multiplying the ratios of tig,'s higher storage overhead. For query accuracy, Figure 1hgwys
temporal and spatial dimensions, +;, and R,4+i0, to the whole that performance of all alternatives for all changes in a very
space. The temporal ratiB.,:;, can be measured as: narrow range that is very close the perfect accuracy. Ye6-
~v-Avg and VLS+«-Min give similar accuracy forx ranges from
T.-T.p (19T + ﬁ) - (‘1(11 f)T + ﬁ) 0 to 0.4 while VLS<-Avg and VLS{ give similar accuracy for

whk
«

11—«

T
Tcg—Jme(—In|

Tratio = T. - (LT—F L) a > 0.4.
¢ lI-a AR Figure 12 shows the effect of varying on storage and
T accuracy. For small values @f, Figure 12(a) shows thafLS-
This leads to : Tratio =0 X —————— < ~v-Avg encounter storage similar ¥LS+ which is 10% less than
Tl t /\R VLS+<-Min. With enlarging?’ (at7" =12 hours),VLS+<-Avg and
This means that the temporal ratio is bounde(;Bby VLS+<-Min behave the same with 40% storage overhead (which

For the spatial ratio, consider that, and R are represented means 60% storage saving). Figure 12(b) shows that for laiésa
by circular areas around the querying user location withusad of 7', all alternatives still come with- 99% query accuracy even
Radius@,) and Radius®). Since a microblogM at distance for small 7" values (atI'=3 hours). The accuracy increases with

increasingdl” value to reach almost 100% &t=12 hours.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 17

values ofa. This basically all the analysis and conclusions drawn

g vLsoiin & S in Section 9.2 forVLS# and VLS+ with linear ranking apply
$ ViSyAg x [l g ! for the exponential ranking as well. This performance siritila
8 ;E Vs e 8 applies also for different values @f that are shown in Figure 14.
g 3 C.3 Time-based Partitioning
(2]
0 02 04 06 08 1 In this section, we show the effect of applying temporalipart-
a a ing to our index. Specifically, the idea is to partition indam
(a) Storage Overhead (b) Query Accuracy data based on their timestamprirpartitions, where each partition

indexes data ofli time units. Each temporal partition employs a
spatial index just like the one described throughout theepdp-
coming data are continuously digested in the partition ithdexes
the most recent data. Ever%i time units, the currently active
VLS\-Iyljl\s/I-iE = partition is concluded and a new empty partition is intrastlic
VLS-y-Avg —%— to digest the new data. A partition is completely wiped frdre t
memory when its most recent microblogfistime units old.

With the described temporal partitioning to our index, our
- 3 6 T 9 12 insertion techniques remain the same and would be applied to

currently active partition that digest incoming data. Heere our

Fig. 11. Effect of « on storage vs. accuracy - average estimation.

80 100
< 70 VLS-B ——
< VLS-y-Min —F—
Q60 VLS-y-Avg —¥— %9

98

Query Accuracy (%)

(2) Storage Overhead (b) Query Accuracy deletion technique would need a small adaptation. Spektyficar

Fig. 12. Effect of T on storage vs. accuracy - average estimation. deletion depends on removing useless microblogs from ainert
index cell while visiting this cell to insert new data. The éds

C.2 Top-k Ranking Additional Experiments of removed microblogs is varying from cell to another basad o

.) . . the density of microblogs in the spatial locality of the célb
This section presents the effect of employing exponertiaking 51y this technique to the temporally partitioned inde, eed

function combined withvenusadaptivey-load shedding (with 14 nerform two steps. First, we apply this deletion critadahe
min estimation method) and adaptiveload shedding, denoted y.tive partition on inserting new data. Second, checkingeeo

as VLS andVLS-, respectively. This represents an extensiog,ing cells in older partitions to check existence ofratitogs
for the results presented in Section 9.3 evaluating thecketié

employing exponential ranking function on different compots
of the system.

As mentioned in Section 9.3.1, employing S and VLS-
~ with both linear and exponential ranking functions givetgyre
similar performance. This is clearly shown in Figures 13 add

Figure 13 shows/LS{ and VLS« with employing both linear .o itioned index with the deletion process employs onéy first
and exponential ranking function (denoted with sulfix andExp. step, to get rid of useless microblogs only in the active fiartand
respectively) with different values of. The figure shows the samegefer deleting older microblogs to the periodic cleanupcpss

performance for both ranking functions in both storage bead ¢ wipe out a complete partition evefytime units, we call this
(in Figure 13(a)) and query accuracy (in Figure 13(b)) féfedent jeferred deletionWe next experiment the temporally partitioned

index (settingn=4) with both proactive and deferred deletion
comparing it to our current technique that use only one apati

to remove. As the second step is expected to put a significant
overhead, we experiment in this section two alternativese Th
first alternative represents the temporally partitionedieinwith

the deletion process employs the two previous steps, wdltall
proactive deletioras it proactively deletes any microblog that can
be kicked out. The second alternative represents the texiiypor

9 VLS-pLin ¢ - index (i.e., settingn =1). Throughout this section, our spatial
3 W om = | :: index is denoted aMST, while the temporally partitioned index
g VISyExp £ | g Vil % with proactive deletion and deferred deletion are denosdd 3iT-
S i VishEr 8- TBP-PDandMST-TBP-DD respectively.
g S Figure 15 shows the effect of changimgon both indexes
@ in terms of insertion time, storage overhead, and quenndgte
a 0 0z 04 a 06 08 1 Figure 15(a) shows insertion time with different valueshofThe
(a) Storage Overhead (b) Query Accuracy figure shows a significant in§ertion _overh_eadMi_BT—T_BP-P[Ihat
leads to an order of magnitude higher insertion time due ¢o th
Fig. 13. Effect of a on storage vs. accuracy - exponential ranking. expensive piggybacked deletion that accesses multipkxexito

get rid of the useless microblogs. This overhead is congistitn
all values ofa and dominates botMST and MST-TBP-DD Fig-

5 VLS-B-Lin ——
VLS-y-Lin —&—

27 <
g o VishEs —Z— é VLS BLn — ure 15(b) omits the dominating insertion timeM&T-TBP-PDand
240 g V\Klé%\-%ig = ;how; onlyMST and MST—TBP-DQ For all values ofoe > 0.2,
§gg z VLS-v-Exp —B— insertion overhead d1IST-TBP-DDis less tharMST because the
210 G insertion is performed in an index that carries only one tguar
0 3 p ° 12 of data and hence it becomes more efficient, due to less number
T (hr) T (hn) of index levels to be navigated. In addition, whMST insertion
(a) Storage Overhead (b) Query Accuracy time is increasing with increasing (as the index accumulates

more microblogs and hence encounter more levels and higher
Fig. 14. Effect of T on storage vs. accuracy - exponential ranking.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 18

450

@ 400 @ b 2
E 350 Eos 5
2 ggg MST £ 20 £
[= MST-TBP-PD [0 [7 MST -©

200 MST-TBP-DD MST 2 e
é 200 é 15 MST-TBP-DD 3 ?) MST-TBP-DD
o 100 @ 10 2
2 50 g -

0 5) ©
0 02 04 06 08 1 0 02 04 06 08 1
a a a
(a) Insertion Time (b) Insertion Time omitting proactive (c) Storage Overhead (d) Query Latency
deletion

Fig. 15. Effect of « on temporally partitioned index.

insertion overhead), the insertion timeMBT-TBP-DDdecreases 490

< 1003 = £l
for o ranges from 0-0.2 and then it saturates o> 0.2. The égggv\v_: 3 9
reason of that behavior is that for small values:pfmany recent & s0 | 7. rahSs —9— s MST-TBRBD o
microblogs are deleted and hence a lot of deletion opestoa E fgg MST-TBP-DD —H— g " MST-TBP-DD —H—
performed on the most recent partition that is accessef®y- T 100 S €0
TBP-DD. However, with increasing, more recent microblogs are £ 58r - & g igc ¥
kept and hence almost no deletions performed on insertidratn 10 50 100 10 50 100
deletions are deferred to the periodic cleanup, which redhe K K
insertion overhead. This comes with a cost in storage oaerhe (a) Insertion Time (b) Storage Overhead
as shown in Figure 15(c). The figure shows that storage oadrhe 55
of MST-TBP-PDis almost equals the storage overheadi8T, g .2
with a non-noticeable increase due to the overhead of nfeiltip 3,4 veT-TERSY o]
. . . e I¢
indexes storage. Howevdv]ST-TBP-DDcomes with significant % 02 MST-TBP-DD —8—
storage overhead increase that ranges from 10-50%, dejoeoli 2 25
value ofa. This shows a significant overhead increase that is saved 3 0 },E
through employing one index as MST. Analyzing both insertion 10 50 100
overhead (whertST-TBP-PDis dominant) and storage overhead k
(where MST-TBP-DDgives significant higher values) shows that (c) Query Latency

MSTis a smart compromise that achieve good performance in b@th. 16. Effect of k on temporally partitioned index.

insertion overhead and storage overhead. However, Figb(a) 1

shows an advantage fMST-TBP-PDand MST-TBP-DDover COmMes with a storage saving as it proactively removes alesse
MST which is a lower average query latency. This is mainijnicroblogs. Figure 16(b) shows that storage overheaW8f-
caused by searching a lighter index segments and hencesprod&P-PDis almost equals the storage overhead&T. However,
less data to retrieve the final answer. Table 2 shows the 9@rep the efficient insertion ofMST-TBP-DDcomes with significant
see that alMST-TBP-PDandMST-TBP-DDpercentiles are under confirms thatMST is a smart compromise that achieve good

30 ms while allMST percentiles are under 50 ms. performance in both insertion overhead and storage ovdrhea
Figure 16(c), yet, shows thaST-TBP-PDand MST-TBP-DD
Query Latency (ms) have lower average query latency thd8T, for searching a lighter
90% | 95% | 99% index segments. Table 3 shows the 90, 95, and 99 percentiles o
R MSTMTSBTP_PD 22 ;09 ?‘1" query latency of the three alternatives. The table showsahat
MST-TBP-DD 2:3 3:5 153 MST-TBP-PDand MST—TBP-DDpercentiIes are around 10 ms
MST 123 | 288 | 40.8 while all MST percentiles are under 40 ms for differdntalues.
a=02 [MST-TBP-PD | 33 | 42 | 10
MST-TBP-DD | 3.3 | 43 | 115 Query Latency (ms)
MST 128 | 258 | 354 90% | 95% | 99%
a=04 [MST-TBP-PD | 53 | 7.1 | 18.6 MST 45 | 129] 192
VST 94 330 47 MST-TBP-DD | 1.2 | 1.7 | 6.1
a=1 [MST-TBP-PD [9.7 | 147 | 29.6 . 50 MSTMTSBTP o5 ;; 2042 3055
_TBP- 10 145 293 = -1BF- : . .
MST-TBP-DD MST-TBP-DD | 2.6 | 3.6 | 8.4
TABLE 2. . MST 105 253 | 37.8
Query Latency Percentiles varying o k=100 TMST-TBP-PD | 35 75 11
MST-TBP-DD | 3.6 | 44 | 114
TABLE 3
Figure 16 shows the effect of changidgon both indexes Query Latency Percentiles varying k

in terms of insertion time, storage overhead, and quenndgte

Figure 16(a) shows insertion time with different valuestofThe

figure again shows a significant insertion overheadM&T-TBP- C.4 Real-time Insertion Scalability

PD confirming the previous findings. This overhead is also cotn this section, we show the scalability of index insertiech-
sistent and dominant for all values bf This insertion overhead niques that are proposed and applied in bbtarcury [6] and

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014 19

__ 1000 __ 120 . -

@ @ 100 MT-B —%— 2 40 Y 77 @ 100 MT-B —x—
E 800 E 80 MST-B —— E 00T yrg S¢ MTH =z £ w0 MST-B —e—
2 coo e MT-| —o— 2 80 [MST-B & MST e MT-| —o—
= [) MST-I —5— E 60 n = ook MST-] 85—
S 400 = B =) £ c i c 1
S S 40 S 40 S 40
T bl bl bl
g 200 3 20 3 20 8 20
s o8 = D £ 0 = D

0 10 50 100 0 02 04 06 08 1 025 1 4 16 64 256

Arrival Rate (K/sec) k a R (miles)
(a) Varying arrival rate (b) Varying k (c) Varyinga (d) Varying R
Fig. 17. Real-time Insertion Scalability.
70 30 7o) 35 .
. NoPruning —— . s P R Pt = e s A
2 120 | nitPhase —g— 260 pryneR —6 G o5 | Prunell —O— g 30 InitPhase —g—
= 100 =50 PruneT —>— > 20 | Mercury —@— =25 PruneR —6—
2 80 2 40 Mercury —@— 5 S5 PruneT —»%—
k3] k3] % 15 o Mercury —@—
T 60 g 30 g g 15 S
1
2 40 220 s 0 210
3 20 3 10 g s » 5 50
0 0 0 0
10 50 100 025 1 4 16 64 256 3 6 9 12 0 02 04 06 08 1
k R (miles) T (hr) o]
(a) Varyingk (b) VaryingR (c) VaryingT (d) Varying«

Fig. 18. Average query latency.

Venus We show that by showing the performance of applyingf varying k£ from 10 to 100 on the query latency. It is clear
our bulk insertion techniques, along with lazy split/mecgieria, that variants ofMercury give order of magnitude performance
versus employing a non-bulk insertion technique that issewover NoPruning which shows the effectiveness of the employed
microblogs one by one in the index. Figure 17 shows the iiwgert strategies. With this, we are not showing any further result
time of our bulk insertion (denoted with suff) versus inserting NoPruningas it is clearly non-competitive. AlstnitPhasegives
microblogs individually in the index (denoted with suffix for much worse performance thérercury, which shows the strong
bothMT andMST indexing alternatives that stores all microblogeffect of thepruning phase. Finally, it is important to note that
for the whole lastl" time units and emploercury index size with £ = 100, Mercurygives a query latency of only 3 msec.
tuning module, respectively.

Figure 17(a) shows insertion time for all alternatives with Figures 18(b) and 18(c) give the effect of varyidgy and
varying tweet arrival rate per second. The bulk insertiochte 7', respectively, on the query latency fbtercury, PruneR and
nigues,MT-B and MST-B show a significant performance boosPruneT Both figures show thatercury takes advantage of both
which is four times faster insertion compared to insertimg o spatial and temporal pruning to get to its query latency of up
tweet at a time througMT-I and MST-L Specifically,MT-B can to 4 msec for 12 hours and 64 miles ranges. Increadihg
digest up to 32,000 tweet/second wWhNET-I cannot sustain for and T" increases the query latency of all alternatives, however,
8,000 tweet/second and can only handle few hundreds less thercury still performs much better when using its two pruning
this number. SimilarlyMST-Bcan digest 64,000 tweet/second irtechniques. It is also clear th@tuneTachieves better performance
a half second whileMST-I can sustain up to few hundreds lesshanPruneR i.e., temporal pruning is more effective than spatial
than 16,000 tweet/second. This shows clearly the effentise pruning, which is a direct result of the default valueosf0.2 that
of Mercury bulk insertion techniques that reduce the amortizefdvors the temporal dimension.
insertion time per microblog and so can sustain for muchérigh
than arrival rates. Figure 18(d) gives the effect of varying from O to 1 on

Figures 17(b), 17(c), and 17(d) show the insertion time witthe query latency, whefgercury consistently has a query latency
varying k, « and R, respectively. In all these figures, and founder 4 msec, whilénitPhasehas an unacceptable performance
different parameters value#)T-B and MST-B show a superior that varies from 15 to 35 msec. This shows the strong effect of
performance over aniT-1 and MST-1 with three times faster the pruning phase inMercury. Meanwhile, with increasingy,
insertion time in most of the case. This supports the findinfgs the temporal boundary dPruneRincreases and hence it visits
Figure 17(a) and takes it a step further to show tatcurycan more microblogs inside each cell. For low valuescof{< 0.5),
handles much larger amount of microblogs per second whatetlee number of additional microblogs visited due to incregshe
the system parameters setting. This shows robustndgemiury temporal boundary is more than the number of microblogs that
and its successafenusfor different query workloads. are pruned based on spatial pruning. This increases thellovera
latency ofPruneR Whena > 0.5, the number of microblogs that
PruneRprunes based on the spatial pruning becomes larger than
In this section, we recall the analysisMErcuryquery processing the additional visited microblogs due to enlarging the terap
techniques from [6], where we contrddercury query processing horizon. HencePruneRlatency becomes quickly better and beats
with spatio-temporal pruning against: (&oPruning where all PruneT at o > 0.8. This means that for all values of <
microblogs withinR andT" are processed, (HhitPhase where 0.8, temporal pruning is still more effective than spatiairpng.
only theinitialization phase oMercuryis employed, (cPruneR PruneThas a stable performance with respect to varyingn
where only spatial pruning is employed, and RfuneT, where all casesMercury takes advantage of both spatial and temporal
only temporal pruning is employed. Figure 18(a) gives tieatf pruning to achieve its overall performance of around 4 msec.

C.5 Query Evaluation

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2014

APPENDIX D
CONCURRENCY CONTROL

The system is adopting Single-Writer-Multiple-Reader aonc
rency model, where always a single thread is modifying tlexn
while multiple threads can query simultaneously. In thipeamlix,
we elaborate on the multi-thread contentiorVenusfor different
index operations.

Insertion and deletion. While in the middle of insertion and
deletion operations, new queries may arrivevEnus Similarly,
while a query is processed, new microblogs may be inserted or
deleted. For such concurrent actiongnusopt not to support
transactions, but its concurrent update/insert/deleteratipns
preserve the integrity of the index. No update is lost. Havev
a query concurrent with multiple insert operations may read
some of the new microblogs and miss some of them. After the
update operations complete, any new query observes tlieatef
completely. The rational here is that there is nothing muacloge
from these concurrent operations, where the worst scenanitd
be that some microblogs may not make it promptly to the query
answer. So, the side effect is that it may take few (millijsets for
a microblogM to be available for search. For deletion operations,
it may end up that an incoming query considers microblogs tha
should be deleted during the process. The worst case is that a
microblog appears in the result while it is deleted. This i d
to a very minor milliseconds time margin, which makes it very
unlikely that a deleted microblog would score high enough to
make it worthy reporting in the query answer. In general, the
effect of having such concurrent operations is minimal aoesd
not warrant employing any special concurrency control herg,
locking.

Splitting and merging. As described in the paper, the query
processing module employs a priority queue data strudtiine
enqueue and dequeue pyramid cells in order. Insertion datiate
from enqueued cells i do not pose any problems here as
discussed above. However, splitting and merging in thedls ca
may cause severe problems. For example, if a Cels merged
while in H, we will not be able to locate it when getting it out
from H. To avoid such case¥genusprevents any cell from being
split or merged if it is in the priority queue structure of anwyrrent
query. This is done through a simple pin counting technidpae t
is incremented and decremented with every enqueue and uleque
operation fromf . The side effect here is that cells may not be split
or merged immediately once they are due. However, this does n
cause problems as cells do not stay long in any priority quletz
structure.

20

