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Abstract—Monitoring personal locations with a potentially untrusted server poses privacy threats to the monitored individuals. To
this end, we propose a privacy-preserving location monitoring system for wireless sensor networks. In our system, we design two in-
network location anonymization algorithms, namely, resource- and quality-aware algorithms, that aim to enable the system to provide
high quality location monitoring services for system users, while preserving personal location privacy. Both algorithms rely on the well
established k-anonymity privacy concept, that is, a person is indistinguishable among k persons, to enable trusted sensor nodes to
provide the aggregate location information of monitored persons for our system. Each aggregate location is in a form of a monitored
area A along with the number of monitored persons residing in A, where A contains at least k persons. The resource-aware algorithm
aims to minimize communication and computational cost, while the quality-aware algorithm aims to maximize the accuracy of the
aggregate locations by minimizing their monitored areas. To utilize the aggregate location information to provide location monitoring
services, we use a spatial histogram approach that estimates the distribution of the monitored persons based on the gathered aggregate
location information. Then the estimated distribution is used to provide location monitoring services through answering range queries.
We evaluate our system through simulated experiments. The results show that our system provides high quality location monitoring
services for system users and guarantees the location privacy of the monitored persons.

Index Terms—Location privacy, wireless sensor networks, location monitoring system, aggregate query processing, spatial histogram
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1 INTRODUCTION

The advance in wireless sensor technologies has resulted
in many new applications for military and/or civilian
purposes. Many cases of these applications rely on the
information of personal locations, for example, surveil-
lance and location systems. These location-dependent
systems are realized by using either identity sensors
or counting sensors. For identity sensors, for example,
Bat [1] and Cricket [2], each individual has to carry
a signal sender/receiver unit with a globally unique
identifier. With identity sensors, the system can pinpoint
the exact location of each monitored person. On the
other hand, counting sensors, for example, photoelectric
sensors [3], [4], and thermal sensors [5], are deployed
to report the number of persons located in their sensing
areas to a server.

Unfortunately, monitoring personal locations with a
potentially untrusted system poses privacy threats to
the monitored individuals, because an adversary could
abuse the location information gathered by the system to
infer personal sensitive information [2], [6], [7], [8]. For
the location monitoring system using identity sensors,
the sensor nodes report the exact location information of
the monitored persons to the server; thus using identity
sensors immediately poses a major privacy breach. To
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tackle such a privacy breach, the concept of aggregate
location information, that is, a collection of location data
relating to a group or category of persons from which
individual identities have been removed [8], [9], has been
suggested as an effective approach to preserve location
privacy [6], [8], [9]. Although the counting sensors by na-
ture provide aggregate location information, they would
also pose privacy breaches.

Figure 1 gives an example of a privacy breach in a
location monitoring system with counting sensors. There
are 11 counting sensor nodes installed in nine rooms R1

to R9, and two hallways C1 and C2 (Figure 1a). The non-
zero number of persons detected by each sensor node is
depicted as a number in parentheses. Figures 1b and 1c
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(a) At time ti
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(b) At time ti+1
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(c) At time ti+2

Fig. 1: A location monitoring system using counting
sensors.
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give the numbers reported by the same set of sensor
nodes at two consecutive time instances ti+1 and ti+2,
respectively. If R3 is Alice’s office room, an adversary
knows that Alice is in room R3 at time ti. Then the
adversary knows that Alice left R3 at time ti+1 and went
to C2 by knowing the number of persons detected by
the sensor nodes in R3 and C2. Likewise, the adversary
can infer that Alice left C2 at time ti+2 and went to R7.
Such knowledge leakage may lead to several privacy
threats. For example, knowing that a person has visited
certain clinical rooms may lead to knowing the her
health records. Also, knowing that a person has visited
a certain bar or restaurant in a mall building may reveal
confidential personal information.

This paper proposes a privacy-preserving location
monitoring system for wireless sensor networks to pro-
vide monitoring services. Our system relies on the well
established k-anonymity privacy concept, which requires
each person is indistinguishable among k persons. In our
system, each sensor node blurs its sensing area into a
cloaked area, in which at least k persons are residing. Each
sensor node reports only aggregate location information,
which is in a form of a cloaked area, A, along with the
number of persons, N , located in A, where N ≥ k, to the
server. It is important to note that the value of k achieves
a trade-off between the strictness of privacy protection
and the quality of monitoring services. A smaller k indi-
cates less privacy protection, because a smaller cloaked
area will be reported from the sensor node; hence better
monitoring services. However, a larger k results in a
larger cloaked area, which will reduce the quality of
monitoring services, but it provides better privacy pro-
tection. Our system can avoid the privacy leakage in
the example given in Figure 1 by providing low quality
location monitoring services for small areas that the
adversary could use to track users, while providing high
quality services for larger areas. The definition of a small
area is relative to the required anonymity level, because
our system provides better quality services for the same
area if we relax the required anonymity level. Thus the
adversary cannot infer the number of persons currently
residing in a small area from our system output with
any fidelity; therefore the adversary cannot know that
Alice is in room R3.

To preserve personal location privacy, we propose
two in-network aggregate location anonymization algo-
rithms, namely, resource- and quality-aware algorithms.
Both algorithms require the sensor nodes to collaborate
with each other to blur their sensing areas into cloaked
areas, such that each cloaked area contains at least k
persons to constitute a k-anonymous cloaked area. The
resource-aware algorithm aims to minimize communi-
cation and computational cost, while the quality-aware
algorithm aims to minimize the size of the cloaked areas,
in order to maximize the accuracy of the aggregate
locations reported to the server. In the resource-aware
algorithm, each sensor node finds an adequate number
of persons, and then it uses a greedy approach to find a

cloaked area. On the other hand, the quality-aware algo-
rithm starts from a cloaked area A, which is computed by
the resource-aware algorithm. Then A will be iteratively
refined based on extra communication among the sensor
nodes until its area reaches the minimal possible size. For
both algorithms, the sensor node reports its cloaked area
with the number of monitored persons in the area as an
aggregate location to the server.

Although our system only knows the aggregate lo-
cation information about the monitored persons, it can
still provide monitoring services through answering ag-
gregate queries, for example, “What is the number of
persons in a certain area?” To support these monitoring
services, we propose a spatial histogram that analyzes the
gathered aggregate locations to estimate the distribution
of the monitored persons in the system. The estimated
distribution is used to answer aggregate queries.

We evaluate our system through simulated experi-
ments. The results show that the communication and
computational cost of the resource-aware algorithm
is lower than the quality-aware algorithm, while the
quality-aware algorithm provides more accurate moni-
toring services (the average accuracy is about 90%) than
the resource-aware algorithm (the average accuracy is
about 75%). Both algorithms only reveal k-anonymous
aggregate location information to the server, but they are
suitable for different system settings. The resource-aware
algorithm is suitable for the system, where the sensor
nodes have scarce communication and computational
resources, while the quality-aware algorithm is favorable
for the system, where accuracy is the most important
factor in monitoring services.

The rest of this paper is organized as follows. Our
system model is outlined in Section 2. Section 3 presents
the resource- and quality-aware location anonymization
algorithms. Section 4 describes the aggregate query pro-
cessing. We describe an attacker model and the experi-
ment setting of our system in Section 5. The experimental
results are given in Section 6. Section 7 highlights the
related work. Finally, Section 8 concludes the paper.

2 SYSTEM MODEL

Figure 2 depicts the architecture of our system, where
there are three major entities, sensor nodes, server, and
system users. We will define the problem addressed by
our system, and then describe the detail of each entity
and the privacy model of our system.

Problem definition. Given a set of sensor nodes s1, s2,
. . . , sn with sensing areas a1, a2, . . . , an, respectively,
a set of moving objects o1, o2, . . . , om, and a required
anonymity level k, (1) we find an aggregate location
for each sensor node si in a form of Ri = (Areai, Ni),
where Areai is a rectangular area containing the sensing
area of a set of sensor nodes Si and Ni is the number
of objects residing in the sensing areas of the sensor
nodes in Si, such that Ni ≥ k, Ni = | ∪sj∈Si

Oj | ≥ k,
Oj = {ol|ol ∈ aj}, 1 ≤ i ≤ n, and 1 ≤ l ≤ m; and (2) we
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Fig. 2: System architecture.

build a spatial histogram to answer an aggregate query
Q that asks about the number of objects in a certain area
Q.Area based on the aggregate locations reported from
the sensor nodes.

Sensor nodes. Each sensor node is responsible for deter-
mining the number of objects in its sensing area, blurring
its sensing area into a cloaked area A, which includes
at least k objects, and reporting A with the number of
objects located in A as aggregate location information
to the server. We do not have any assumption about
the network topology, as our system only requires a
communication path from each sensor node to the server
through a distributed tree [10]. Each sensor node is also
aware of its location and sensing area.

Server. The server is responsible for collecting the ag-
gregate locations reported from the sensor nodes, using
a spatial histogram to estimate the distribution of the
monitored objects, and answering range queries based
on the estimated object distribution. Furthermore, the
administrator can change the anonymized level k of the
system at anytime by disseminating a message with a
new value of k to all the sensor nodes.

System users. Authenticated administrators and users
can issue range queries to our system through either the
server or the sensor nodes, as depicted in Figure 2. The
server uses the spatial histogram to answer their queries.

Privacy model. In our system, the sensor nodes con-
stitute a trusted zone, where they behave as defined in
our algorithm and communicate with each other through
a secure network channel to avoid internal network
attacks, for example, eavesdropping, traffic analysis, and
malicious nodes [6], [11]. Since establishing such a secure
network channel has been studied in the literature [6],
[11], the discussion of how to get this network channel is
beyond the scope of this paper. However, the solutions
that have been used in previous works can be applied
to our system. Our system also provides anonymous
communication between the sensor nodes and the server
by employing existing anonymous communication tech-
niques [12], [13]. Thus given an aggregate location R,
the server only knows that the sender of R is one of the
sensor nodes within R. Furthermore, only authenticated
administrators can change the k-anonymity level and the
spatial histogram size. In emergency cases, the admin-
istrators can set the k-anonymity level to a small value

to get more accurate aggregate locations from the sensor
nodes, or even set it to zero to disable our algorithm to
get the original readings from the sensor nodes, in order
to get the best services from the system. Since the server
and the system user are outside the trusted zone, they
are untrusted.

We now discuss the privacy threat in existing location
monitoring systems. In an identity-sensor location mon-
itoring system, since each sensor node reports the exact
location information of each monitored object to the
server, the adversary can pinpoint each object’s exact lo-
cation. On the other hand, in a counting-sensor location
monitoring system, each sensor node reports the number
of objects in its sensing area to the server. The adversary
can map the monitored areas of the sensor nodes to the
system layout. If the object count of a monitored area is
very small or equal to one, the adversary can infer the
identity of the monitored objects based on the mapped
monitored area, for example, Alice is in her office room
at time instance ti in Figure 1.

Since our system only allows each sensor node to
report a k-anonymous aggregate location to the server,
the adversary cannot infer an object’s exact location with
any fidelity. The larger the anonymity level, k, the more
difficult for the adversary to infer the object’s exact
location. With the k-anonymized aggregate locations
reported from the sensor nodes, the underlying spatial
histogram at the server provides low quality location
monitoring services for a small area, and better quality
services for larger areas. This is a nice privacy-preserving
feature, because the object count of a small area is
more likely to reveal personal location information. The
definition of a small area is relative to the required
anonymity level, because our system provides lower
quality services for the same area if the anonymized
level gets stricter. We will also describe an attack model,
where we stimulate an attacker that could be a system
user or the server attempting to infer the object count of
a particular sensor node in Section 5.1. We evaluate our
system’s resilience to the attack model and its privacy
protection in Section 6.

3 LOCATION ANONYMIZATION ALGORITHMS

In this section, we present our in-network resource- and
quality-aware location anonymization algorithms that is
periodically executed by the sensor nodes to report their
k-anonymous aggregate locations to the server for every
reporting period.

3.1 The Resource-Aware Algorithm
Algorithm 1 outlines the resource-aware location
anonymization algorithm. Figure 3 gives an example to
illustrate the resource-aware algorithm, where there are
seven sensor nodes, A to G, and the required anonymity
level is five, k = 5. The dotted circles represent the
sensing area of the sensor nodes, and a line between
two sensor nodes indicates that these two sensor nodes
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(a) PeerLists after the first broadcast
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(b) Rebroadcast from sensor node F
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(c) Resource-aware cloaked area of sensor node A

Fig. 3: The resource-aware location anonymization algorithm (k = 5).

can communicate directly with each other. In general,
the algorithm has three steps.

Step 1: The broadcast step. The objective of this step is
to guarantee that each sensor node knows an adequate
number of objects to compute a cloaked area. To reduce
communication cost, this step relies on a heuristic that
a sensor node only forwards its received messages to
its neighbors when some of them have not yet found
an adequate number of objects. In this step, after each
sensor node m initializes an empty list PeerList (Line 2
in Algorithm 1), m sends a message with its identity
m.ID, sensing area m.Area, and the number of objects
located in its sensing area m.Count, to its neighbors
(Line 3). When m receives a message from a peer p,
i.e., (p.ID, p.Area, p.Count), m stores the message in its
PeerList (Line 5). Whenever m finds an adequate number
of objects, m sends a notification message to its neighbors
(Line 7). If m has not received the notification message
from all its neighbors, some neighbor has not found an
adequate number of objects; therefore m forwards the
received message to its neighbors (Line 10).

Figures 3a and 3b illustrate the broadcast step. When
a reporting period starts, each sensor node sends a
message with its identity, sensing area, and the number
of objects located in its sensing area to its neighbors.
After the first broadcast, sensor nodes A to F have found
an adequate number of objects (represented by black
circles), as depicted in Figure 3a. Thus sensor nodes A to
F send a notification message to their neighbors. Since
sensor node F has not received a notification message
from its neighbor G, F forwards its received messages,
which include the information about sensor nodes D and
E, to G (Figures 3b). Finally, sensor node G has found
an adequate number of objects, so it sends a notification
message to its neighbor, F . As all the sensor nodes have
found an adequate number of objects, they proceed to
the next step.

Step 2: The cloaked area step. The basic idea of this
step is that each sensor node blurs its sensing area
into a cloaked area that includes at least k objects, in
order to satisfy the k-anonymity privacy requirement.
To minimize computational cost, this step uses a greedy

Algorithm 1 Resource-aware location anonymization
1: function RESOURCEAWARE (Integer k, Sensor m, List R)
2: PeerList← {∅}

// Step 1: The broadcast step
3: Send a message with m’s identity m.ID, sensing area m.Area, and object

count m.Count to m’s neighbor peers
4: if Receive a message from a peer p, i.e., (p.ID, p.Area, p.count) then
5: Add the message to PeerList
6: if m has found an adequate number of objects then
7: Send a notification message to m’s neighbors
8: end if
9: if Some m’s neighbor has not found an adequate number of objects then

10: Forward the message to m’s neighbors
11: end if
12: end if

// Step 2: The cloaked area step
13: S ← {m}
14: Compute a score for each peer in PeerList
15: Repeatedly select the peer with the highest score from PeerList to S until the

total number of objects in S is at least k
16: Area← a minimum bounding rectangle of the senor nodes in S
17: N ← the total number of objects in S

// Step 3: The validation step
18: if No containment relationship with Area and R ∈ R then
19: Send (Area, N) to the peers within Area and the server
20: else if m’s sensing area is contained by some R ∈ R then
21: Randomly select a R′ ∈ R such that R′.Area contains m’s sensing area
22: Send R′ to the peers within R′.Area and the server
23: else
24: Send Area with a cloaked N to the peers within Area and the server
25: end if

approach to find a cloaked area based on the information
stored in PeerList. For each sensor node m, m initializes
a set S = {m}, and then determines a score for each peer
in its PeerList (Lines 13 to 14 in Algorithm 1). The score
is defined as a ratio of the object count of the peer to the
Euclidean distance between the peer and m. The idea
behind the score is to select a set of peers from PeerList
to S to form a cloaked area that includes at least k objects
and has an area as small as possible. Then we repeatedly
select the peer with the highest score from the PeerList
to S until S contains at least k objects (Line 15). Finally,
m determines the cloaked area (Area) that is a minimum
bounding rectangle (MBR) that covers the sensing area of
the sensor nodes in S, and the total number of objects
in S (N ) (Lines 16 to 17).

An MBR is a rectangle with the minimum area (which
is parallel to the axes) that completely contains all
desired regions, as illustrated in Figure 3c, where the
dotted rectangle is the MBR of the sensing area of sensor
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nodes A and B. The major reasons of our algorithms
aligning with MBRs rather than other polygons are that
the concept of MBRs have been widely adopted by
existing query processing algorithms and most database
management systems have the ability to manipulate
MBRs efficiently.

Figure 3c illustrates the cloaked area step. The PeerList
of sensor node A contains the information of three peers,
B, D, and E. The object count of sensor nodes B, D, and
E is 3, 1, and 2, respectively. We assume that the distance
from sensor node A to sensor nodes B, D, and E is 17,
18, and 16, respectively. The score of B, D, and E is
3/17 = 0.18, 1/18 = 0.06, and 2/16 = 0.13, respectively.
Since B has the highest score, we select B. The sum of
the object counts of A and B is six which is larger than
the required anonymity level k = 5, so we return the
MBR of the sensing area of the sensor nodes in S, i.e., A
and B, as the resource-aware cloaked area of A, which
is represented by a dotted rectangle.

Step 3: The validation step. The objective of this step
is to avoid reporting aggregate locations with a con-
tainment relationship to the server. Let Ri and Rj be
two aggregate locations reported from sensor nodes i
and j, respectively. If Ri’s monitored area is included in
Rj ’s monitored area, Ri.Area ⊂ Rj .Area or Rj .Area ⊂
Ri.Area, they have a containment relationship. We do
not allow the sensor nodes to report their aggregate
locations with the containment relationship to the server,
because combining these aggregate locations may pose
privacy leakage. For example, if Ri.Area ⊂ Rj .Area
and Ri.Area 6= Rj .Area, an adversary can infer that
the number of objects residing in the non-overlapping
area, Rj .Area − Ri.Area, is Rj .N − Ri.N . In case that
Rj .N −Ri.N < k, the adversary knows that the number
of objects in the non-overlapping is less than k, which
violates the k-anonymity privacy requirement. As this
step ensures that no aggregate location with the contain-
ment relationship is reported to the server, the adversary
cannot obtain any deterministic information from the
aggregate locations.

In this step, each sensor node m maintains a list R to
store the aggregate locations sent by other peers. When
a reporting period starts, m nullifies R. After m finds
its aggregate location Rm, m checks the containment
relationship between Rm and the aggregate locations
stored in R. If there is no containment relationship
between Rm and the aggregate locations in R, m sends
Rm to the peers within Rm.Area and the server (Line 19
in Algorithm 1). Otherwise, m randomly selects an ag-
gregate location Rp from the set of aggregate locations in
R that contain m’s sensing area, and m sends Rp to the
peers within Rp.Area and the server (Lines 21 to 22). In
case that no aggregate location in R contains m’s sensing
area, we find a set of aggregate locations in R that are
contained by Rm, R′, and N ′ is the number of monitored
persons in Rm that is not covered by any aggregate
location in R′. If N ′ ≥ k, the containment relationship
does not violate the k-anonymity privacy requirement;

Algorithm 2 Quality-aware location anonymization
1: function QUALITYAWARE (Integer k, Sensor m, Set init solution, List R)
2: current min cloaked area← init solution

// Step 1: The search space step
3: Determine a search space S based on init solution
4: Collect the information of the peers located in S

// Step 2: The minimal cloaked area step
5: Add each peer located in S to C[1] as an item
6: Add m to each itemset in C[1] as the first item
7: for i = 1; i ≤ 4; i ++ do
8: for each itemset X = {a1, . . . , ai+1} in C[i] do
9: if Area(MBR(X)) < Area(current min cloaked area) then

10: if N(MBR(X)) ≥ k then
11: current min cloaked area← {X}
12: Remove X from C[i]
13: end if
14: else
15: Remove X from C[i]
16: end if
17: end for
18: if i < 4 then
19: for each itemset pair X={x1,. . . ,xi+1}, Y ={y1,. . . ,yi+1} in C[i]

do
20: if x1 = y1, . . . , xi = yi and xi+1 6= yi+1 then
21: Add an itemset {x1, . . . , xi+1, yi+1} to C[i + 1]
22: end if
23: end for
24: end if
25: end for
26: Area← a minimum bounding rectangle of current min cloaked area
27: N ← the total number of objects in current min cloaked area

// Step 3: The validation step
28: Lines 18 to 25 in Algorithm 1

therefore m sends Rm to the peers within Rm.Area and
the server. However, if N ′ < k, m cloaks the number of
monitored persons of Rm, Rm.N , by increasing it by an
integer uniformly selected between k and 2k, and sends
Rm to the peers within Rm.Area and the server (Line 24).
Since the server receives an aggregate location from each
sensor node for every reporting period, it cannot tell
whether any containment relationship takes place among
the actual aggregate locations of the sensor nodes.

3.2 The Quality-Aware Algorithm

Algorithm 2 outlines the quality-aware algorithm that
takes the cloaked area computed by the resource-aware
algorithm as an initial solution, and then refines it until
the cloaked area reaches the minimal possible area,
which still satisfies the k-anonymity privacy require-
ment, based on extra communication between other
peers. The quality-aware algorithm initializes a variable
current minimal cloaked area by the input initial solution
(Line 2 in Algorithm 2). When the algorithm terminates,
the current minimal cloaked area contains the set of sen-
sor nodes that constitutes the minimal cloaked area. In
general, the algorithm has three steps.

Step 1: The search space step. Since a typical sensor
network has a large number of sensor nodes, it is too
costly for a sensor node m to gather the information
of all the sensor nodes to compute its minimal cloaked
area. To reduce communication and computational cost,
m determines a search space, S, based on the input
initial solution, which is the cloaked area computed
by the resource-aware algorithm, such that the sensor
nodes outside S cannot be part of the minimal cloaked
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(c) The extended MBRi (1 ≤ i ≤ 4)
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(d) The search space S

Fig. 4: The search space S of sensor node A.

area (Line 3 in Algorithm 2). We will describe how to
determine S based on the example given in Figure 4.
Thus gathering the information of the peers residing in
S is enough for m to compute the minimal cloaked area
for m (Line 4).

Figure 4 illustrates the search space step, in which we
compute S for sensor node A. Let Area be the area of
the input initial solution. We assume that Area = 1000.
We determine S for A by two steps. (1) We find the
minimum bounding rectangle (MBR) of the sensing area
of A. It is important to note that the sensing area can
be in any polygon or irregular shape. In Figure 4a, the
MBR of the sensing area of A is represented by a dotted
rectangle, where the edges of the MBR are labeled by
e1 to e4. (2) For each edge ei of the MBR, we compute
an MBRi by extending the opposite edge such that the
area of the extended MBRi is equal to Area. S is the
MBR of the four extended MBRi. Figure 4b depicts
the extended MBR1 of the edge e1 by extending the
opposite edge e3, where MBR1.x is the length of MBR1,
MBR1.y = Area/MBR1.x and Area = 1000. Figure 4c
shows the four extended MBRs, MBR1 to MBR4, which
are represented by dotted rectangles. The MBR of the
four extended MBRs constitutes S, which is represented
by a rectangle (Figure 4d). Finally, the sensor node only
needs the information of the peers within S.

Step 2: The minimal cloaked area step. This step takes a
set of peers residing in the search space, S, as an input
and computes the minimal cloaked area for the sensor
node m. Although the search space step already prunes
the entire system space into S, exhaustively searching
the minimal cloaked area among the peers residing in
S, which needs to search all the possible combinations
of these peers, could still be costly. Thus we propose two
optimization techniques to reduce computational cost.

The basic idea of the first optimization technique is
that we do not need to examine all the combinations
of the peers in S; instead, we only need to consider
the combinations of at most four peers. The rationale
behind this optimization is that an MBR is defined by
at most four sensor nodes because at most two sensor
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Fig. 5: The lattice structure of a set of four items.

nodes define the width of the MBR (parallel to the
x-axis) while at most two other sensor nodes define
the height of the MBR (parallel to the y-axis). Thus
this optimization mainly reduces computational cost by
reducing the number of MBR computations among the
peers in S. The correctness of this optimization technique
will be discussed in Section 3.2.2.

The second optimization technique has two properties,
lattice structure and monotonicity property. We first de-
scribe these two properties, and then present a progressive
refinement approach for finding a minimal cloaked area.

A. Lattice structure. In a lattice structure, a data set that
contains n items can generate 2n−1 itemsets excluding a
null set. In the sequel, since the null set is meaningless
to our problem, it will be neglected. Figure 5 shows the
lattice structure of a set of four items S = {s1, s2, s3, s4},
where each black line between two itemsets indicates
that an itemset at a lower level is a subset of an itemset
at a higher level. For our problem, given a set of sensor
nodes S = {s1, s2, . . . , sn}, all the possible combinations
of these sensor nodes are the non-empty subsets of
S; thus we can use a lattice structure to generate the
combinations of the sensor nodes in S. In the lattice
structure, since each itemset at level i has i items in S,
each combination at the lowest level, level 1, contains a
distinct item in S; therefore there are n itemsets at the
lowest level. We generate the lattice structure from the
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Fig. 6: The quality-aware cloaked area of sensor node A.

lowest level based on a simple generation rule: given two
sorted itemsets X = {x1, . . . , xi} and Y = {y1, . . . , yi} in
increasing order, where each itemset has i items (1 ≤ i <
n), if all item pairs but the last one in X and Y are the
same, x1 = y1, x2 = y2, . . ., xi−1 = yi−1, and xi 6= yi, we
generate a new itemset with i + 1 items, {x1, . . . , xi, yi}.
In the example, we use bold lines to illustrate the con-
struction of the lattice structure based on the generation
rule. For example, the itemset {s1, s2, s3, s4} at level 4
is combined by the itemsets {s1, s2, s3} and {s1, s2, s4}
at level 3, so there is a bold line from {s1, s2, s3, s4} to
{s1, s2, s3} and another one to {s1, s2, s4}.

B. Monotonicity property. Let S be a set of items, and P
be the power set of S, 2S . The monotonicity property of
a function f indicates that if X is a subset of Y , then
f(X) must not exceed f(Y ), i.e., ∀X, Y ∈ P : (X ⊆
Y ) → f(X) ≤ f(Y ). For our problem, the MBR of a
set of sensor nodes S has the monotonicity property,
because adding sensor nodes to S must not decrease the
area of the MBR of S or the number of objects within
the MBR of S. Let Area(MBR(X)) and N(MBR(X))
be two functions that return the area of the MBR of an
itemset X and the number of monitored objects located
in the MBR, respectively. Thus, given two itemsets X and
Y , if X ⊆ Y , then Area(MBR(X)) ≤ Area(MBR(Y ))
and N(MBR(X)) ≤ N(MBR(Y )). By this property, we
propose two pruning conditions in the lattice structure.
(1) If a combination C gives the current minimal cloaked
area, other combinations that contain C at the higher
levels of the lattice structure should be pruned. This
is because the monotonicity property indicates that the
pruned combinations cannot constitute a cloaked area
smaller than the current minimal cloaked area. (2) Similarly,
if a combination C constitutes a cloaked area that is the
same or larger than the current minimal cloaked area, other
combinations that contain C at the higher levels of the
lattice structure should be pruned.

C. Progressive refinement. Since the monotonicity prop-
erty shows that we would not need to generate a com-
plete lattice structure to compute a minimal cloaked area,
we generate the lattice structure of the peers in the search
space, S, progressively from the lowest level of the lattice
structure to its higher levels, in order to minimize the

computational and storage overhead. To compute the
minimal cloaked area for the sensor node m, we first
generate an itemset for each peer in S at the lowest level
of the lattice structure, C[1] (Line 5 in Algorithm 2). To
accommodate with our problem, we add m to each item-
set in C[1] as the first item (Line 6). Such accommodation
does not affect the generation of the lattice structure, but
each itemset has an extra item, m. For each itemset X
in C[1], we determine the MBR of X , MBR(X). If the
area of MBR(X) is less than the current minimal cloaked
area and the total number of objects in MBR(X) is at
least k, we set X to the current minimal cloaked area, and
remove X from C[1] based on the first pruning condition
of the monotonicity property (Lines 11 to 12). However,
if the area of MBR(X) is equal to or larger than the
area of the current minimal cloaked area, we also remove X
from C[1] based on the second pruning condition of the
monotonicity property (Line 15). Then we generate the
itemsets, where each itemset contains two items, at the
second lowest level of the lattice structure, C[2], based on
the remaining itemsets in C[1] based on the generation
rule of the lattice structure. We repeat this procedure
until we produce the itemsets at the highest level of the
lattice structure, C[4], or all the itemsets at the current
level are pruned (Lines 19 to 23). After we examine all
non-pruned itemsets in the lattice structure, the current
minimal cloaked area stores the combination giving the
minimal cloaked area (Lines 26 to 27).

Figure 6 illustrates the minimal cloaked area step that
computes the minimal cloaked area for sensor node A.
The set of peers residing in the search space is S =
{B, D, E}. We assume that the area of the MBR of {A, B},
{A, D}, and {A, E} is 1000, 1200, and 900, respectively.
The number of objects residing in the MBR of {A, B},
{A, D}, and {A, E} is six, four, and five, respectively, as
depicted in Figure 3. Figure 6a depicts the full lattice
structure of S where A is added to each itemset as
the first item. Initially, the current minimal cloaked area
is set to the initial solution, which is the MBR of {A, B}
’computed by the resource-aware algorithm. The area of
the MBR of {A, B}, Area(MBR({A, B})), is 1000 and
the total number of monitored objects in MBR({A, B}),
N(MBR({A, B})), is six. It is important to note that



8

the progressive refinement approach may not require
our algorithm to compute the full lattice structure. As
depicted in Figure 6b, we construct the lowest level
of the lattice structure, where each itemset contains a
peer in S. Since the area of MBR({A, B}) is the current
minimal cloaked area, we remove {A, B} from the lattice
structure; hence the itemsets at the higher levels that
contain {A, B}, {A, B, D}, {A, B, E}, and {A, B, D, E}
(enclosed by a dotted oval), will not be considered by the
algorithm. Then, we consider the next itemset {A, D}.
Since the area of MBR({A, D}) is larger than the current
minimal cloaked area, this itemset is removed from the
lattice structure. After pruning {A, D}, the itemsets at
the higher levels that contain {A, D}, {A, D, E} (enclosed
by a dotted oval), will not be considered (Figure 6c).
We can see that all itemsets beyond the lowest level of
the lattice structure will not be considered by the algo-
rithm. Finally, we consider the last itemset {A, E}. Since
the area of MBR({A, E}) is less than current minimal
cloaked area and the total number of monitored objects
in MBR({A, E}) is k = 5, we set {A, E} to the current
minimal cloaked area (Figure 6d). As the algorithm cannot
generate any itemsets at the higher level of the lattice
structure, it terminates. Thus the minimal cloaked area
is the MBR of sensor nodes A and E, and the number
of monitored objects in this area is five.

Step 3: The validation step. This step is exactly the same
as in the resource-aware algorithm (Section 3.1).

3.2.1 Analysis
A brute-force approach of finding the minimal cloaked
area of a sensor node has to examine all the combinations
of its peers. Let N be the number of sensor nodes in
the system. Since each sensor node has N − 1 peers,
we have to consider

∑N−1
i=1 CN−1

i = 2N−1 − 1 MBRs
to find the minimal cloaked area. In our algorithm, the
search space step determines a search space, S, and
prunes the peers outside S. Let M be the number of
peers in S, where M ≤ N − 1. Thus the computational
cost is reduced to

∑M
i=1 CM

i = 2M − 1. In the minimal
cloaked area step, the first optimization technique in-
dicates that an MBR can be defined by at most four
peers. As we need to consider the combinations of at
most four peers, the computational cost is reduced to∑4

i=1 CM
i = (M4 − 2M3 + 11M2 + 14M)/24 = O(M4).

Furthermore, the second optimization technique uses the
monotonicity property to prune the combinations, which
cannot give the minimal cloaked area. In our example,
the brute-force approach considers all the combinations
of six peers; hence this approach computes 26 − 1 = 63
MBRs to find the minimal cloaked area of sensor node
A. In our algorithm, the search space step reduces the
entire space into S, which contains only three peers;
hence this step needs to compute 23 − 1 = 7 MBRs.
After examining the three itemsets at the lowest level
of the lattice structure, all other itemsets at the higher
levels are pruned. Thus the progressive refinement ap-
proach considers only three combinations. Therefore our

algorithm reduces over 95% computational cost of the
brute-force approach, as it reduces the number of MBR
computations from 63 to 3.

3.2.2 Proof of Correctness
In this section, we show the correctness of the quality-
aware location anonymization algorithm.

Theorem 1: Given a resource-aware cloaked area of
size Area of a sensor node s, a search space, S, computed
by the quality-aware algorithm contains the minimal
cloaked area.

Proof: Let X be the minimal cloaked area of size
equal to or less than Area. We know that X must totally
cover the sensing area of s. Suppose X is not totally
covered by S, X must contain at least one extended
MBR, MBRi, where 1 ≤ i ≤ 4 (Figure 4c). This means
that the area of X is larger than the area of an extended
MBR, Area. This contradicts to the assumption that X is
the minimal cloaked area; thus X is included in S.

Theorem 2: A minimum bounding rectangle (MBR) can
be defined by at most four sensor nodes.

Proof: By definition, given an MBR, each edge of the
MBR touches the sensing area of some sensor node. In
an extreme case, there is a distinct sensor node touching
each edge of the MBR but not other edges. The MBR
is defined by four sensor nodes, which touch different
edges of the MBR. For any edge e of the MBR, if multiple
sensor nodes touch e but not other edges, we can simply
pick one of these sensor nodes, because any one of these
sensor nodes gives the same e. Thus an MBR is defined
by at most four sensor nodes.

4 SPATIAL HISTOGRAM
In this section, we present a spatial histogram that is
embedded inside the server to estimate the distribution
of the monitored objects based on the aggregate locations
reported from the sensor nodes. Our spatial histogram
is represented by a two-dimensional array that models
a grid structure G of NR rows and NC columns; hence,
the system space is divided into NR×NC disjoint equal-
sized grid cells. In each grid cell G(i, j), we maintain a
float value that acts as an estimator H[i, j] (1 ≤ i ≤ NC ,
1 ≤ j ≤ NR) of the number of objects within its area.
We assume that the system has the ability to know
the total number of moving objects M in the system.
The value of M will be used to initialize the spatial
histogram. In practice, M can be computed online for
both indoor and outdoor dynamic environments. For the
indoor environment, the sensor nodes can be deployed
at each entrance and exit to count the number of users
entering or leaving the system [4], [5]. For the outdoor
environment, the sensor nodes have been already used
to count the number of people in a predefined area [3].
We use the spatial histogram to provide approximate
location monitoring services. The accuracy of the spa-
tial histogram that indicates the utility of our privacy-
preserving location monitoring system will be evaluated
in Section 6.
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Algorithm 3 Spatial histogram maintenance
1: function HISTOGRAMMAINTENANCE (AggregateLocationSet R)
2: for each aggregate location R ∈ R do
3: if there is an existing partition P = {R1, . . . , R|P |} such that R.Area∩

Rk.Area = ∅ for every Rk ∈ P then
4: Add R to P
5: else
6: Create a new partition for R
7: end if
8: end for
9: for each partition P do

10: for each aggregate location Rk ∈ P do
11: Rk.N̂ ←

∑
G[i,j]∈Rk.Area

H[i, j]

12: For every cell G(i, j) ∈ Rk .Area, H[i, j] ←
Rk.N

No. of cells within Rk.Area

13: end for
14: P.Area← R1.Area ∪ . . . ∪ R|P |.Area
15: For every cell G(i, j) /∈ P.Area,

H[i, j] = H[i, j] +

∑
Rk∈P

Rk.N̂−Rk.N

No. of cells outside P.Area
16: end for

Algorithm 3 outlines our spatial histogram approach.
Initially, we assume that the objects are evenly dis-
tributed in the system, so the estimated number of
objects within each grid cell is H[i, j] = M/(NR × NC).
The input of the histogram is a set of aggregate loca-
tions R reported from the sensor nodes. Each aggregate
location R in R contains a cloaked area, R.Area, and
the number of monitored objects within R.Area, R.N .
First, the aggregate locations in R are grouped into the
same partition P = {R1, R2, . . . , R|P |} if their cloaked
areas are not overlapping with each other, which means
that for every pair of aggregate locations Ri and Rj

in P , Ri.Area ∩ Rj .Area = ∅ (Lines 2 to 8. Then, for
each partition P , we update its entire set of aggregate
locations to the spatial histogram at the same time. For
each aggregate location R in P , we record the estimation
error, which is the difference between the sum of the
estimators within R.Area, R.N̂ , and R.N , and then R.N
is uniformly distributed among the estimators within
R.Area; hence, each estimator within R.Area is set to
R.N divided by the total number of grid cells within
R.Area (Lines 10 to 13). After processing all the aggre-
gate locations in P , we sum up the estimation error of
each aggregate location in P ,

∑|P |
k=1 Rk.N̂ − Rk.N , that

is uniformly distributed among the estimators outside
P.Area, where P.Area is the area covered by some ag-
gregate location in P , P.Area = ∪Rk∈P Rk.Area (Line 15).
Formally, for each partition P that contains |P | aggregate
locations Rk (1 ≤ k ≤ |P |), every estimator in the
histogram is updated as follows:

H[i, j] =





Rk.N
No. of cells within Rk .Area , for G(i, j) ∈ Rk .Area

H[i, j] +

∑|P |

k=1
Rk .N̂−Rk .N

No. of cells outside P.Area , for G(i, j) /∈ P.Area

5 SYSTEM EVALUATION

In this section, we discuss an attacker model, the exper-
iment setting of our privacy-preserving location mon-
itoring system in a wireless sensor network, and the
performance metrics.

5.1 Attacker Model

To evaluate the privacy protection of our system, we
simulate an attacker attempting to infer the number of
objects residing in a sensor node’s sensing area. We will
analyze the evaluation result in Section 6.1. The key
idea of the attacker model is that if the attacker cannot
infer the exact object count of the sensor node from
our system output, the attacker cannot infer the location
information corresponding to an individual object. We
consider the worst-case scenario where the attacker has
the background knowledge about the system, i.e., the
map layout of the system, the location of each sensor
node, the sensing area of each sensor node, the total
number of objects currently residing in the system, and
the aggregate locations reported from the sensor nodes.
In general, the attacker model is defined as: Given an area
A (that corresponds to the monitored area of a sensor node)
and a set of aggregate locations R = {R1, R2, . . . , R|R|}
overlapping with A, the attacker estimates the number of
persons within A. Since the validation step in our location
anonymization algorithms does not allow the aggregate
locations with the containment relationship to be re-
ported to the server, no aggregate location is included
in other aggregate locations in R.

Without loss of generality, we use the Poisson distribu-
tion as a concrete exemplary distribution for the attacker
model [14]. Under the Poisson distribution, objects are
uniformly distributed in an area within intensity of λ.
The probability of n distinct objects in a region S of size
s is: P (N(S) = n) = e−λs(λs)n

n! , where λ is computed as
the number of objects in the system divided by the area
of the system.

Suppose that the object count of each aggregate lo-
cation Ri is ni, where 1 ≤ i ≤ |R|, and the aggregate
locations in R and A constitute m non-overlapping
subregions Sj , where 1 ≤ j ≤ m; hence, N(Ri) =∑

Sj∈Ri
N(Sj) = ni. Each subregion must either intersect

or not intersect A, and it intersects one or more aggregate
locations. If a subregion Sk intersects A, but none of the
aggregate locations in R, then N(Sk) = 0. The probabil-
ity mass function of the number of distinct objects in A
being equal to na, N = na, given the aggregate locations
in R can be expressed as follows:

P (N = na|N(R1) = n1, . . . , N(R|R|) = n|R|)

=
P (N = na, N(R1) = n1, . . . , N(R|R|) = n|R|)

P (N(R1) = n1, . . . , N(R|R|) = n|R|)

=

∑
Vi∈(VS∩VA) < vi

1, v
i
2, . . . , v

i
m >

∑
Vj∈VS

< vj
1, v

j
2, . . . , v

j
m >

, (1)

where the notation V =< v1, v2, . . . , vm > represents the
joint probability that there are vi objects in a subregion
Si (1 ≤ i ≤ m); the joint probability is computed as∏

1≤i≤m P (N(Si) = vi). The lower and upper bounds of
vi (denoted as LB(vi) and UB(vi), respectively) are zero
and the minimum nj of the aggregate locations inter-
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TABLE 1: Parameter settings

Description Default Value Range
Histogram size (NR × NC) 200 × 200 502 to 2502

Query region size ratio [0.001, 0.032] 0.001 to 0.256
Number of moving objects 5,000 2,000 to 10,000

k-anonymity level 20 10 to 30
Object mobility speed [0,5] [0,5] to [0,30]

secting Si, respectively. Thus, the possible value of vi is
within a range of [0, minRj∩Si 6=∅∧1≤i≤m∧1≤j≤|R|(nj)]. VS

is the set of < v1, v2, . . . , vm > that is a solution to the
following equations: VS :

∑
Si∈R1

vi = n1,
∑

Si∈R2
vi =

n2, . . . ,
∑

Si∈R|R|
vi = n|R|, where vi ≥ 0 for 1 ≤ i ≤ m.

VA is the set of < v1, v2, . . . , vm > that satisfies the
following equation: VA :

∑
1≤i≤m vi = na.

The attacker uses an exhaustive approach to find
all possible solutions to VS , in order to compute the
expected value E(N ) of Equation 1 as the estimated
value of na. The complexity of computing E(N ) is
O(

∏
1≤i≤m UB(vi)). Since the complexity of the attacker

model is an exponential function of m and m would
be much larger than |R|, such exponential complexity
makes it prohibitive for the attacker model to be used to
provide online location monitoring services; and there-
fore, we use our spatial histogram to provide online ser-
vices in the experiments. We will evaluate the resilience
of our system to the attacker model in Section 6.1.

5.2 Simulation Settings

In all experiments, we simulate 30 × 30 sensor nodes
that are uniformly distributed in a 600 × 600 system
space. Each sensor node is responsible for monitoring
a 20 × 20 space. We generate a set of moving objects
that freely roam around the system space. Unless men-
tioned otherwise, the experiments consider 5,000 moving
objects that move at a random speed within a range
of [0, 5] space unit(s) per time unit, and the required
anonymity level is k = 20. The spatial histogram contains
NR×NC = 200×200 grid cells, and we issue 1,000 range
queries whose query region size is specified by a ratio of
the query region area to the system area, that is, a query
region size ratio. The default query region size ratio
is uniformly selected within a range of [0.001, 0.032].
Table 1 gives a summary of the parameter settings.

5.3 Performance Metrics

We evaluate our system in terms of five performance
metrics. (1) Attack model error. This metric measures the
resilience of our system to the attacker model by the
relative error between the estimated number of objects N̂
in a sensor node’s sensing area and the actual one N . The
error is measured as |N̂−N |

N . When N = 0, we consider
N̂ as the error. (2) Communication cost. We measure the
communication cost of our location anonymization algo-
rithms in terms of the average number of bytes sent by
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Fig. 7: Attacker model error.

each sensor node per reporting period. This metric also
indicates the network traffic and the power consumption
of the sensor nodes. (3) Cloaked area size. This metric
measures the quality of the aggregate locations reported
by the sensor nodes. The smaller the cloaked area, the
better the accuracy of the aggregate location is. (4) Com-
putational cost. We measure the computational cost of
our location anonymization algorithms in terms of the
average number of minimum bounding rectangle (MBR)
computations that are needed to determine a resource- or
quality-aware cloaked area. We compare our algorithms
with a basic approach that computes the MBR for each
combination of the peers in the required search space
to find the minimal cloaked area. The basic approach
does not employ any optimization techniques proposed
for our quality-aware algorithm. (5) Query error. This
metric measures the utility of our system, in terms of
the relative error between the query answer M̂ , which is
the estimated number of objects within the query region
based on a spatial histogram, and the actual answer

M , respectively. The error is measured as |M̂−M |
M . When

M = 0, we consider M̂ as the error.

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show and analyze the experimental
results with respect to the privacy protection and the
quality of location monitoring services of our system.

6.1 Anonymization Strength

Figure 7 depicts the resilience of our system to the at-
tacker model with respect to the anonymity level and the
number of objects. In the figure, the performance of the
resource- and quality-aware algorithms is represented by
black and gray bars, respectively. Figure 7a depicts that
the stricter the anonymity level, the larger the attacker
model error will be encountered by an adversary. When
the anonymity level gets stricter, our algorithms generate
larger cloaked areas, which reduce the accuracy of the
aggregate locations reported to the server. Figure 7b
shows that the attacker model error reduces, as the
number of objects gets larger. This is because when
there are more objects, our algorithms generate smaller
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Fig. 8: Query region size.

cloaked areas, which increase the accuracy of the aggre-
gate locations reported to the server. It is difficult to set a
hard quantitative threshold for the attacker model error.
However, it is evident that the adversary cannot infer
the number of objects in the sensor node’s sensing area
with any fidelity.

6.2 Effect of Query Region Size

Figure 8 depicts the privacy protection and the quality
of our location monitoring system with respect to in-
creasing the query region size ratio from 0.001 to 0.256,
where the query region size ratio is the ratio of the query
region area to the system area and the query region size
ratio 0.001 corresponds to the size of a sensor node’s
sensing area. The results give evidence that our system
provides low quality location monitoring services for the
range query with a small query region, and better quality
services for larger query regions. This is an important
feature to protect personal location privacy, because
providing the accurate number of objects in a small area
could reveal individual location information; therefore
an adversary cannot use our system output to track the
monitored objects with any fidelity. The definition of a
small query region is relative to the required anonymity
level k. For example, we want to provide low quality
services, such that the query error is at least 0.2, for
small query regions. For the resource-aware algorithm,
Figure 8a shows that when k = 10, a query region is said
to be small if its query region size is not larger than 0.002
(it is about two sensor nodes’ sensing area). However,
when k = 30, a query region is only considered as small

if its query region size is not larger than 0.016 (it is
about 16 sensor nodes’ sensing area). For the quality-
aware algorithm, Figure 8b shows that when k = 10,
a query region is said to be small if its query region
size is not larger than 0.002, while when k = 30, a query
region is only considered as small if its query region size
is not larger than 0.004. The results also show that the
quality-aware algorithm always performs better than the
resource-aware algorithm.

6.3 Effect of the Number of Objects
Figure 9 depicts the performance of our system with
respect to increasing the number of objects from 2,000 to
10,000. Figure 9a shows that when the number of objects
increases, the communication cost of the resource-aware
algorithm is only slightly affected, but the quality-aware
algorithm significantly reduces the communication cost.
The broadcast step of the resource-aware algorithm ef-
fectively allows each sensor node to find an adequate
number of objects to blur its sensing area. When there
are more objects, the sensor node finds smaller cloaked
areas that satisfy the k-anonymity privacy requirement,
as given in Figure 9b. Thus the required search space of
a minimal cloaked area computed by the quality-aware
algorithm becomes smaller; hence the communication
cost of gathering the information of the peers in such
a smaller required search space reduces. Likewise, since
there are less peers in the smaller required search space
as the number of objects increases, finding the minimal
cloaked area incurs less minimum bounding rectangle
(MBR) computation (Figure 9c). Since our algorithms
generate smaller cloaked areas when there are more
users, the spatial histogram can gather more accurate
aggregate locations to estimate the object distribution;
therefore the query answer error reduces (Figure 9d). The
result also shows that the quality-aware algorithm al-
ways provides better quality services than the resource-
aware algorithm.

6.4 Effect of Privacy Requirements
Figure 10 depicts the performance of our system with
respect to varying the required anonymity level k from
10 to 30. When the k-anonymity privacy requirement
gets stricter, the sensor nodes have to enlist more peers
for help to blur their sensing areas; therefore the commu-
nication cost of our algorithms increases (Figure 10a). To
satisfy the stricter anonymity levels, our algorithms gen-
erate larger cloaked areas, as depicted in Figure 10b. For
the quality-aware algorithm, since there are more peers
in the required search space when the input (resource-
aware) cloaked area gets larger, the computational cost
of computing the minimal cloaked area by the quality-
aware algorithm and the basic approach gets worse (Fig-
ure 10c). However, the quality-aware algorithm reduces
the computational cost of the basic approach by at least
four orders of magnitude. Larger cloaked areas give
more inaccurate aggregate location information to the
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system, so the estimation error increases as the required
k-anonymity increases (Figure 10d). The quality-aware
algorithm provides much better quality location moni-
toring services than the resource-aware algorithm, when
the required anonymity level gets stricter.

6.5 Effect of Mobility Speeds
Figure 11 gives the performance of our system with
respect to increasing the maximum object mobility speed
from [0, 5] and [0, 30]. The results show that increas-
ing the object mobility speed only slightly affects the
communication cost and the cloaked area size of our
algorithms, as depicted in Figures 11a and 11b, respec-
tively. Since the resource-aware cloaked areas are slightly
affected by the mobility speed, the object mobility speed
has a very small effect on the required search space
computed by the quality-aware algorithm. Thus the
computational cost of the quality-aware algorithm is
also only slightly affected by the object mobility speed
(Figure 11c). Although Figure 11d shows that query
answer error gets worse when the objects are moving
faster, the query accuracy of the quality-aware algorithm
is consistently better than the resource-aware algorithm.

7 RELATED WORK

Straightforward approaches for preserving users’ loca-
tion privacy include enforcing privacy policies to re-
strict the use of collected location information [15], [16]
and anonymizing the stored data before any disclo-
sure [17]. However, these approaches fail to prevent

internal data thefts or inadvertent disclosure. Recently,
location anonymization techniques have been widely
used to anonymize personal location information before
any server gathers the location information, in order
to preserve personal location privacy in location-based
services. These techniques are based on one of the three
concepts. (1) False locations. Instead of reporting the
monitored object’s exact location, the object reports n
different locations, where only one of them is the object’s
actual location while the rest are false locations [18].
(2) Spatial cloaking. The spatial cloaking technique blurs a
user’s location into a cloaked spatial area that satisfy the
user’s specified privacy requirements [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28]. (3) Space transformation.
This technique transforms the location information of
queries and data into another space, where the spatial
relationship among the query and data are encoded [29].

Among these three privacy concepts, only the spatial
cloaking technique can be applied to our problem. The
main reasons for this are that (a) the false location tech-
niques cannot provide high quality monitoring services
due to a large amount of false location information;
(b) the space transformation techniques cannot provide
privacy-preserving monitoring services as it reveals the
monitored object’s exact location information to the
query issuer; and (c) the spatial cloaking techniques
can provide aggregate location information to the server
and balance a trade-off between privacy protection and
the quality of services by tuning the specified privacy
requirements, for example, k-anonymity and minimum
area privacy requirements [17], [27]. Thus we adopt the
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spatial cloaking technique to preserve the monitored ob-
ject’s location privacy in our location monitoring system.

In terms of system architecture, existing spatial cloak-
ing techniques can be categorized into centralized [19],
[20], [22], [25], [26], [27], [28], distributed [23], [24], and
peer-to-peer [21] approaches. In general, the centralized
approach suffers from the mentioned internal attacks,
while the distributed approach assumes that mobile
users communicate with each other through base sta-
tions is not applicable to the wireless sensor network.
Although the peer-to-peer approach can be applied to
the wireless sensor network, the previous work using
this approach only focuses on hiding a single user loca-
tion with no direct applicability to sensor-based location
monitoring. Also, the previous peer-to-peer approaches
do not consider the quality of cloaked areas and discuss
how to provide location monitoring services based on
the gathered aggregate location information.

In the wireless sensor network, Cricket [2] is the only
privacy-aware location system that provides a decen-
tralized positioning service for its users where each
user can control whether to reveal her location to the
system. However, when many users decide not to reveal
their locations, the location monitoring system cannot
provide any useful services. This is in contrast to our
system that aims to enable the sensor nodes to provide
the privacy-preserving aggregate location information
of the monitored objects. The closest work to ours is
the hierarchical location anonymization algorithm [6]
that divides the system space into hierarchical levels
based on the physical units, for example, sub-rooms,
rooms and floors. If a unit contains at least k users, the
algorithm cloaks the subject count by rounding the value
to the nearest multiple of k. Otherwise, the algorithm
cloaks the location of the physical unit by selecting a
suitable space containing at least k users at the higher
level of the hierarchy. This work is not applicable to
some landscape environments, for example, shopping
mall and stadium, and outdoor environments. Our work
distinguishes itself from this work, as (1) we do not
assume any hierarchical structures, so it can be applied
to all kinds of environments, and (2) we consider the
problem of how to utilize the anonymized location data
to provide privacy-preserving location monitoring ser-

vices while the usability of anonymized location data
was not discussed in [6].

Other privacy related works include: anonymous com-
munication that provides anonymous routing between
the sender and the receiver [12], source location privacy
that hides the sender’s location and identity [13], aggre-
gate data privacy that preserves the privacy of the sensor
node’s aggregate readings during transmission [30], data
storage privacy that hides the data storage location [31],
and query privacy that avoids disclosing the personal
interests [32]. However, none of these previous works is
applicable to our problem.

8 CONCLUSION
In this paper, we propose a privacy-preserving loca-
tion monitoring system for wireless sensor networks.
We design two in-network location anonymization al-
gorithms, namely, resource- and quality-aware algorithms,
that preserve personal location privacy, while enabling
the system to provide location monitoring services. Both
algorithms rely on the well established k-anonymity pri-
vacy concept that requires a person is indistinguishable
among k persons. In our system, sensor nodes execute
our location anonymization algorithms to provide k-
anonymous aggregate locations, in which each aggre-
gate location is a cloaked area A with the number of
monitored objects, N , located in A, where N ≥ k,
for the system. The resource-aware algorithm aims to
minimize communication and computational cost, while
the quality-aware algorithm aims to minimize the size of
cloaked areas in order to generate more accurate aggre-
gate locations. To provide location monitoring services
based on the aggregate location information, we propose
a spatial histogram approach that analyzes the aggregate
locations reported from the sensor nodes to estimate
the distribution of the monitored objects. The estimated
distribution is used to provide location monitoring ser-
vices through answering range queries. We evaluate
our system through simulated experiments. The results
show that our system provides high quality location
monitoring services (the accuracy of the resource-aware
algorithm is about 75% and the accuracy of the quality-
aware algorithm is about 90%), while preserving the
monitored object’s location privacy.
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