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Abstract—In this paper, we propose an efficient and scalable query processing framework for continuous spatial queries (range
and k-nearest-neighbor queries) in mobile peer-to-peer (P2P) environments, where no fixed communication infrastructure or central-
ized/distributed servers are available. Due to the limitations in mobile P2P environments, for example, user mobility, limited battery
power, limited communication range, and scarce communication bandwidth, it is costly to maintain the exact answer of continuous
spatial queries. To this end, our framework enables the user to find an approximate answer with quality guarantees. In particular, we
design two key features to adapt continuous spatial query processing to mobile P2P environments. (1) Each mobile user can specify
the desired quality of services (QoS) for query answers in a personalized QoS profile. The QoS profile consists of two parameters,
namely, coverage and accuracy. The coverage parameter indicates the desired level of completeness of the available information for
computing an approximate answer, and the accuracy parameter indicates the desired level of accuracy of the approximate answer.
(2) We design a continuous answer maintenance scheme to enable the user to collaborate with other peers to continuously maintain
her query answer. With these two features in our framework, the user can obtain a query answer from her local cache if the answer
satisfies her QoS requirements. Otherwise, the user enlists neighbors for help to share their cached information to refine the answer.
If the refined answer still cannot satisfy the QoS requirements, the user broadcasts the query to the peers residing within the required
search area of the query to find the most accurate answer. Experimental results show that our framework is efficient and scalable and
provides an effective tradeoff between the communication overhead and the quality of query answers.

Index Terms—Mobile computing, peer-to-peer computing, continuous query processing, spatio-temporal databases, and GIS
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1 INTRODUCTION
With the advance in new peer-to-peer (or P2P for short) wire-
less communication technologies, for example, IEEE 802.11
and Bluetooth, and the computational and storage capacity of
portable devices, a new information access paradigm, known
as mobile P2P information access, has rapidly taken shape.
This paradigm is important for environments, where no fixed
communication infrastructure or centralized/distributed servers
are available, such as battlefield and rescue operations. It is
also useful for other business and civilian applications, such as
traffic monitoring and resource locator. Existing spatial query
processing frameworks in mobile environments either rely on
fixed communication infrastructure and/or centralized servers
(e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]), or
only support snapshot queries [12], [13], [14]. The limitations
in these existing works motivate us to design a new continuous
spatial query processing framework that does not require any
fixed communication infrastructure or centralized/distributed
servers. In particular, we focus on the two most common
spatial queries, range queries and k-nearest-neighbor (k-NN)
queries. Examples of these spatial queries include that the
rescuers issue range queries to continuously keep track of the
ambulances within a certain range in a disaster site, and the
soldiers issue k-NN queries to continuously monitor their k-
nearest tanks in a battlefield.
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Due to the limitations in mobile P2P environments, for
example, user mobility (the query issuer and the data object are
continuously roaming), limited communication range, limited
battery power, and scarce communication resources, it is costly
to maintain the exact answer of continuous spatial queries. To
this end, we propose a continuous spatial query processing
framework to provide approximate answers for mobile users
with quality guarantees. In particular, we design two key
features to adapt continuous spatial query processing to mobile
P2P environments. (1) The user can specify the desired quality
of services (QoS) for query answers in a personalized QoS
profile. The QoS profile consists of two parameters, namely,
coverage and accuracy. The coverage parameter indicates the
desired level of completeness of the available information for
computing an approximate answer, and the accuracy parameter
indicates the desired level of accuracy of the approximate an-
swer. (2) We design a continuous answer maintenance scheme
that allows the user to collaborate with peers to continuously
maintain her answer, instead of always processing the query
from scratch, in order to reduce communication overhead.

The main idea of our framework is that a user can obtain
a query answer from her local cache if the answer satisfies
her QoS requirements, that is, the information stored in the
local cache satisfies the coverage requirement and the answer
derived from the local cache satisfies the accuracy requirement.
In case that the answer does not satisfy the QoS requirements,
the user asks neighbors to share their cached information, in
order to refine the answer. If the refined query answer still does
not satisfy the QoS requirements, the user enlists the peers
residing within the required search area of the query for help
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to find the most accurate answer, and then updates her local
cache. Since the query issuer and data objects are moving,
the query answer may become stale. Thus we propose the
continuous answer maintenance scheme that enables the user
to collaborate with other peers to continuously maintain the
query answer. When the answer derived from the local cache
no longer satisfies the user’s QoS requirements, the user needs
to enlist peers for help to refine the answer again.

We evaluate our framework through simulated experiments.
The results show that our framework is efficient and scalable
in terms of communication overhead and power consumption
and provides a tradeoff between the communication overhead
and the quality of query answers. In this paper, we focus on
continuous range and k-NN queries. However, our framework
can be extended to support other types of continuous spatial
queries, if their query answers can be abstracted into monitor-
ing regions, for example, continuous reverse-nearest-neighbor
queries [15] and continuous density queries [16].

The rest of this paper is organized as follows. Section 2
surveys previous works related to query processing in mobile
P2P environments. Our system model is presented in Section 3.
Section 4 describes our continuous spatial query processing
framework for both range and k-NN queries. We delineate
our simulation model in Section 5. Experimental results are
presented in Section 6. Finally, Section 7 concludes this paper.

2 RELATED WORK

Existing spatial query processing frameworks in mobile envi-
ronments can be categorized into four architecture approaches:
centralized [6], [9], [11], [17], semi-distributed [1], [4], semi-
distributed with client cooperation [2], [3], [5], [7], [8], [10],
[18], [19], and wireless sensor networks [20], [21], [22].
(1) The centralized approach requires fixed communication
infrastructure and centralized database servers for query pro-
cessing. (2) The semi-distributed approach is similar to the
centralized approach, as it also relies on centralized database
servers for query processing and data storage; however the
servers delegate some query monitoring tasks to the mobile
user in order to reduce communication overhead. (3) The semi-
distributed with client cooperation approach considers peer
collaboration in mobile P2P environments. In this approach,
mobile users can only share their cached information with
other peers, in which the information is previously retrieved
from centralized database servers; thus, this approach does not
consider query processing among the mobile users. (4) The
algorithms designed for wireless sensor networks rely on
stationary sensors. Since these sensors work like distributed
servers to process spatial queries, these algorithms cannot
be applied to mobile P2P environments. Due to the depen-
dency on fixed communication infrastructure and/or central-
ized/distributed servers, none of these techniques can be appli-
cable to spatial query processing in mobile P2P environments.

The closest works to ours are the systems that support
resource discovery in mobile P2P environments [12], [13],
[14]. These resource discovery algorithms enable a mobile or
stationary resource provider, e.g., a taxi and ATM machine,
to periodically broadcast its information to mobile users, in

order to look for potential customers or users. On the other
hand, a mobile user broadcasts a query to peers to express
an interest in certain types of resources, e.g., “Where is my
nearest available taxi”. Once the peer finds a match between
the query and its requested resource, the peer sends the infor-
mation about the available requested resource to the requesting
user. Our work distinguishes itself from these works, as it
(a) supports spatial constraints for queries, for example, the
user can ask for her k-nearest resources and certain types of
resources within a certain distance range, (b) enables the user
to specify the desired QoS, namely, coverage and accuracy,
for query answers, in order to achieve a tradeoff between the
communication overhead and the quality of query answers, and
(c) enables the user to collaborate with peers to continuously
maintain query answers, while the existing resource discovery
works only consider snapshot queries.

3 SYSTEM MODEL

We present the system model of our continuous spatial query
processing framework in mobile P2P environments.

Mobile users. Each mobile user belongs to an object type,
such as taxis and police cars. A querying user issues a
continuous query asking for objects of a specific type, and the
peers who belong to the requested object type are referred to
as the objects of interest of the query. Every mobile device is
equipped with a positioning device, such as GPS, to determine
its location, which is represented by a coordinate (x, y). The
mobile user can communicate with all neighbors through
broadcast communication, a neighbor through point-to-point
communication, and a multi-hop peer through a multi-hop
routing protocol which contains a sequence of point-to-point
communications. Furthermore, each user employs a neighbor
discovery protocol (NDP) [23], [24] to maintain a list of
neighbors. The basic idea of NDP is that each user periodically
broadcasts a beacon message with her identity to neighbors. If
the user has not received the beacon message of a neighbor for
a beacon period or certain beacon periods, the user considers
that the peer no longer resides in her transmission range;
therefore the peer is removed from the neighbor list. However,
if the user receives the beacon message of a peer who is not
included in the neighbor list, the user considers the peer as
a newly discovered neighbor. The user sends a message to
request for the peer’s information (ID, Loc, TS, MaxSpeed,
and Type), where ID is the peer’s identity, Loc is the peer’s
current location at timestamp TS, MaxSpeed is the peer’s
maximum mobility speed, and Type is the peer’s object type,
through point-to-point communication, and inserts the peer
into the neighbor list. In practice, MaxSpeed can be set to
the maximum legal speed in the system area or the highest
speed that has been recorded by the user for a certain time
period, for example, one week.

User QoS profile. Each mobile user maintains a qual-
ity of services (QoS) profile that consists of two parame-
ters, namely, coverage (Cmin) and accuracy (Amin), where
0 ≤ Cmin, Amin ≤ 1. Cmin specifies the desired level of
completeness of the available information for computing an
approximate answer, and Amin specifies the desired level of



3

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

	
�������

�����������

���
������

�
� ��� ��� ��� ���

��� ��� ��� ��� ���

�
� ��� �� ��� ���

����	
�� ��	 �� �������� ����

�
�

�
�

�
�

�
�
��
�
��
�
��
�
��
�
��
�

���� ����	
���

� ����� ��	 !�"#�$��%��������������&�"
����
�##��������

��� ��� ��� ��� ��� ��� ���

��

���

Fig. 1: The structure of a local cache.

accuracy of the approximate answer. The user can specify
larger Cmin and Amin values to obtain an answer with
better QoS, but they incur higher communication overhead.
Therefore the user can tune these QoS requirements to achieve
a performance trade-off between the communication overhead
and the quality of query answers. The user can change her
QoS requirements at any time.

Spatial queries. A range query is in a form (ID, Range,
Period, Loc, TS, MaxSpeed, ObjectOfInterest), where ID is
the query issuer’s identity, Range is the distance range of the
query, Period is the valid time frame of the query, Loc is the
query issuer’s current location, TS is the current timestamp,
MaxSpeed is the query issuer’s maximum mobility speed, and
ObjectOfInterest is the object type requested by the query.
Given a range query, its answer includes the objects of interest
residing in a rectangular query region whose left-bottom
and right-top vertices are (Loc.X−Range, Loc.Y−Range) and
(Loc.X+Range, Loc.Y+Range), respectively. A k-NN query is
in a form (ID, k, Period, Loc, TS, MaxSpeed, ObjectOfInterest),
where k is the required number of objects of interest of
the query and other attributes are the same as in the range
query. Given a k-NN query, its answer includes the k-nearest
objects of interest to Loc. Although we only focus on range
and k-NN queries in this work, our framework is applicable
to other continuous spatial query types if their query an-
swers can be abstracted into monitoring regions. For example,
our framework can be extended to support reverse-nearest-
neighbor queries [15] and density queries [16] because recent
research efforts have shown that the answer of these query
types can be maintained by monitoring a region.

Local cache. A local cache is a user’s storage space dedi-
cated to our framework. The local cache stores three tables,
area table, object table, and query table. The area table and
object table maintain the received object information, while
the query table maintains the received continuous queries for
the continuous query answer maintenance scheme. The details
of the query table will be described in Section 4.4. Each
user maintains two types of object information, neighbors
and query answers. For the information of neighbors, it is
modeled by a circular area as the user’s transmission range,
which is stored in the area table, and the object table stores
the information of each neighbor, where a peer’s information
is in a form (ID, Loc, TS, MaxSpeed, Type), where Loc is
the peer’s latest location information sent by the peer at
timestamp TS. For the information of a range (or k-NN)
query answer, it is modeled by a rectangular (or circular)
area as the query’s required search area, which is stored in
the area table, and the object table stores the information of
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Fig. 2: The four control flows in our framework.

the objects of interest that could reside in the required search
area. If an object is included in multiple areas in the area
table, the object table only keeps one entry for the object with
the latest location information received by the user through
the neighbor discovery protocol, the information sharing with
neighbors control flow (Section 4.2), the query broadcasting
control flow (Section 4.3), or the continuous query answer
maintenance control flow (Section 4.4). Whenever the user
receives the more recent location information of an object
stored in the object table, the user updates the Loc and TS
of the object’s entry accordingly. If an object is no longer
referred by any entry in the area table, the object is removed
from the object table. Figure 1 depicts the local cache of a
mobile user u, where u’s location is represented by a square
and the peers are represented by circles with unique labels. The
area table contains two areas, where the user’s transmission
range A1 is represented by a dotted circle with one object o4,
and the required search area of a continuous range query A2

is represented by a dotted rectangle with six objects o1 to o6.
Thus the object table contains one entry for each of the objects
of A1 and A2, o1 to o6.

4 QUERY PROCESSING FRAMEWORK

Figure 2 depicts the four main control flows in our framework:
(1) QoS measurements for a local cache, (2) information shar-
ing with neighbors, (3) query broadcasting, and (4) continuous
query answer maintenance. Algorithm 1 outlines the first three
control flows and Algorithm 2 outlines the fourth control flow.
We will describe each control flow in detail.

4.1 QoS Measurements for a Local Cache
This is the first control flow in our framework, which is
indicated by thin lines in Figure 2 (Lines 2 to 7 in Algo-
rithm 1). This control flow is completely executed on the
mobile user side without enlisting peers for help. Due to
user mobility, the cached peer location information could
become stale. To capture location uncertainty, we employ a
conservative approach that models an uncertain location as
an adjusted location region. The adjusted location region of
a peer’s location is a circular region centered at the peer’s
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(a) Range query (b) Coverage measurement

Fig. 3: Coverage measurement for a range query.

location with a radius of (tcurrent − TS) × MaxSpeed, where
tcurrent is the current time and TS is the timestamp of the
latest location update. In other words, the peer can move in
any direction at the maximum mobility speed MaxSpeed. We
will present how to determine the coverage and accuracy for
a query with respect to the information stored in a local cache
for both range queries and k-nearest-neighbor (k-NN) queries.

4.1.1 Coverage Measurement
The coverage measurement indicates the level of completeness
of the available information in a local cache for computing a
query answer. Given the required search area of a query and a
local cache, the coverage of the information in the local cache
is measured by the ratio of the intersection of the required
search area and the union of the areas stored in the area table
to the required search area. Formally, given a required search
area S and a set of n areas A1, A2, . . . , An in the area table in
a local cache L intersecting S, the coverage of L with respect
to S is calculated as:

Cov(S,L) = Area(S ∩ (A1 ∪ . . . ∪ An))/Area(S), (1)

where Area(R) is the area of a region R.
Since calculating the exact coverage of a large number of

overlapping areas is costly, we use a histogram approach to
get approximate coverage measurement. The basic idea is that
we model the required search area by a uniform grid structure
and maintain a bitmap, in which each bit corresponds to a
unique gird cell. Initially, all bits in the bitmap are set to
zero. For each grid cell, if it is totally covered by some
area stored in the area table, the corresponding bit is set
to one. The coverage is the number of one in the bitmap
divided by the total number of bits in the bitmap. Since the
bit of a grid cell is set to one if its area is totally covered
by some monitored area, a larger grid cell area results in a
larger underestimation of the coverage measurement. Although
a smaller grid cell area gives higher computation precision, it
incurs higher computational overhead. In Section 6.3, we study
this performance tradeoff between the computational overhead
and the coverage measurement precision. We will discuss the
coverage measurement for range and k-NN queries.

Range queries. Figure 3a shows a user’s local cache, which
stores the information about the user’s neighbors (the area of
the user’s transmission range is represented by a dotted circle)
and the adjusted required search area of the user’s continuous
range query is represented by a dotted rectangle. The detail of
how to adjust the required search area of a continuous range
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(a) 3-NN query (b) Coverage measurement

Fig. 4: Coverage measurement for a 3-NN query.

query will be discussed in Section 4.4. In this example, the
user wants to measure the coverage of the information stored
in the local cache with respect to the same continuous range
query, where the user’s location is represented by a filled
square, the query region1 of the range query is represented
by a rectangle, and the adjusted location region of each object
stored in the object table is represented by a circle with a
unique label. Since the required search area of a range query
is the same as its query region, the user can calculate the
coverage without enlisting any peers for help. In Figure 3b, we
assume that the required search area is modeled by a uniform
grid structure of 10× 10 cells. Since all grid cells, which are
represented by shaded cells, are totally covered by the areas
stored in the area table, A1 and/or A2, all bits in the bitmap
are set to one; hence the coverage is 100/100 = 1.

k-NN queries. Figure 4a shows the same local cache as in
Figure 3, where the local cache stores the information about
the user’s neighbors (the area of the user’s transmission range
is represented by a dotted circle) and the adjusted required
search area of the user’s outstanding continuous range query
is represented by a dotted rectangle. In this example, a user
wants to measure the coverage of the information stored in the
local cache with respect to a new k-NN query. The required
search area of a k-NN query is a minimal circle that totally
covers the exact location or the adjusted location region of k
objects of interest. These k objects are not necessary to be the
k-nearest objects to the user. However, if the user cannot find at
least k objects of interest in the local cache, the user is unable
to determine the required search area of the query, S = null.
Thus the user cannot perform the coverage measurement, and
the user proceeds to the next control flow: information sharing
with neighbors. In this example, we assume that all objects o1

to o6 are the objects of interest of the query; therefore the
required search area of the query is a circle (represented by a
bold circle) that totally covers the adjusted location regions
of 3-nearest objects, o2, o4, and o6. Then we construct a
minimum bounding rectangle of the required search area and
model the rectangle by a uniform grid structure of 10 × 10
grid cells, as depicted in Figure 4b. Since 72 grid cells, which
are represented by shaded cells, are totally covered by the
areas, there are 72 bits in the bitmap are set to one; hence the
coverage is 72/100 = 0.72.

1. The query region of a range query is a rectangular area whose left-bottom
and right-top vertices are (Loc.X−Range, Loc.Y−Range) and (Loc.X+Range,
Loc.Y+Range), respectively, as defined in Section 3.
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4.1.2 Accuracy Measurement
The accuracy measurement indicates the level of accuracy of
an approximate answer, which is derived from a local cache.
It is important to note that we only determine an approximate
query answer if the coverage requirement is satisfied. Since it
is very costly to determine an exact probabilistic answer for a
k-NN query, even an approximate approach is computationally
expensive [25], these approaches are not suitable for mobile
devices with limited computational resources. To this end, we
use a heuristic approach to measure the accuracy of a range
or k-NN query answer. The accuracy measurement is defined
as follows: Given a query with a required search area S, a set
of m objects of interest of the query whose exact locations or
adjusted location regions intersect S, O = {o1, o2, . . . , om},
the probability pi of each object oi ∈ O being part of the
query answer, where pi ≥ 0, and an approximate answer A =
{o1, o2, . . . , on}, where A ⊆ O, the accuracy, Acc(O,A), is
computed as the average of (a) the probability pi of correctly
making a decision of including an object oi in A, and (b) the
probability 1−pi of correctly making a decision of excluding
an object oi from A; hence the accuracy of A is computed as:

Acc(O,A) =
1

m

[
∑

oi∈A

pi +
∑

oi∈O−A

(1 − pi)

]
. (2)

We assume a uniform distribution for the actual location of
an object oi in its adjusted location region when computing
pi for both range and k-NN queries; however our algorithm is
completely independent of how we compute pi. The following
theorem shows the correctness of Equation 2.

Theorem 1: Given a query with a required search area S, a
set of m objects of interest of the query whose exact locations
or adjusted location regions intersect S, O = {o1, o2, . . . , om},
the probability pi of each object oi ∈ O being part of the
query answer, where pi ≥ 0, and an approximate answer
A = {o1, o2, . . . , on}, where A ⊆ O, the accuracy of A is
Acc(O,A) = 1

m
[
∑

oi∈A pi +
∑

oi∈O−A(1 − pi)].
Proof: If all objects in O are included in A, Acc(O,A) =

1

m

∑
oi∈O pi = 1

n

∑
oi∈A pi. However, if k objects from O

are excluded from A, A = {oj1 , oj2 , . . . , ojk
}, the average

accuracy of making correct decisions of including objects
in A is 1

|A| |
∑

oi∈A pi = 1

n

∑
oi∈A pi, while the average

accuracy of making correct decisions of excluding objects
from A is 1

|A|
[(1 − pj1) + (1 − pj2) + . . . + (1 − pjk

)] =
1

k

∑
oj∈O−A(1 − pj). Thus the overall average accuracy

Acc(O,A) = 1

m
[
∑

oi∈A pi +
∑

oi∈O−A(1 − pi)].
Range queries. Figure 5a shows a range query, where its

query region is represented by a rectangle and the adjusted
location region of each object of interest of the query that
intersects the query region is represented by a circle. Since the
required search area of a range query is the same as its query
region, O contains the objects of interest of the query whose
exact locations or adjusted location regions intersect the query
region; thus O = {o1, o2, o3, o4, o6} in this example. For each
object oi ∈ O with an exact location, pi is set to one because
pi must reside in the query region. On the other hand, for
each object oi ∈ O with an adjusted location region, since we
consider a uniform distribution, pi is computed as the ratio of

�
�

�
�

�
�

�
�

�
�

(a) Range query

�
��
��
�
��
	�


	�
�
�	
�

��
�
��
�
	
��
�

�
�

�
�

�
�

�
�

�
���

�
���

�
�
�
�
�

(b) 3-NN query

Fig. 5: Accuracy measurement.

the area of the intersection of the adjusted location region and
the query region to the area of the adjusted location region.
We can maximize the accuracy of an approximate range query
answer by maximizing pi in each term in Acc(O,A). Thus if
pi ≥ 0.5, oi should be included in A; however if pi < 0.5, oi

should be excluded from A. The correctness of this selection
threshold is proved in Theorem 2. In this example, since o2

and o4 are inside the query region, p2 = p4 = 1. For the other
objects, o1, o3, and o6, p1 = 0.4, p3 = 0.7, and p6 = 0.5.
For the objects with pi ≥ 0.5, they are selected to A; hence
A = {o2, o3, o4, o6} and Acc(O,A) = 1

5
[(1−p1)+p2 +p3 +

p4 + p6] = 1

5
[(1 − 0.4) + 1 + 0.7 + 1 + 0.5] = 0.76.

Theorem 2: For a range query, we can maximize the accu-
racy of its approximate answer A, Acc(O,A), by including
an object oi with a probability of being part of its answer
pi ≥ 0.5 in A and excluding oi with pi < 0.5 from A.

Proof: To maximum Acc(O,A) = 1

|O| [
∑

oi∈A pi +∑
oi∈O−A(1−pi)], we need to select max(pi, 1−pi) in each

term in the summation. Thus the maximal value of Acc(O,A)
is 1

|O|

∑
oi∈O max(pi, 1−pi). If pi ≥ 0.5, we include oi in A

to yield a term pi (since pi ≥ 1−pi). However, if pi < 0.5, we
exclude oi from A to yield a term 1−pi (since 1−pi > pi).

k-NN queries. The accuracy measurement for k-NN queries
has two steps.

Step 1: Distance threshold step. We already find the re-
quired search area of a k-NN query during the coverage
measurement. We consider the objects of interest of the query
O = {o1, o2, . . . , om} whose exact locations or adjusted
location regions intersect the required search area. For each
object oi ∈ O with an adjusted location region, we determine
a distance range [dmini

, dmaxi
], where dmini

and dmaxi
are

the smallest and largest possible distances between oi and the
querying user u, respectively. On the other hand, for each
object oi ∈ O with an exact location, both dmini

and dmaxi

are set to the distance between oi and u. Then the objects in
O are sorted by their smallest possible distances in increasing
order. We find the smallest possible distance of the (k + 1)-st
object in the sorted O as a minimum threshold distance, Tmin,
and the largest possible distance of the k-th object in the sorted
O as a maximum threshold distance, Tmax. Figure 5b shows
the sorted O = {o4, o2, o6, o1, o3, o5}, where the smallest and
largest possible distances of the adjusted location region of
each object to u are represented by t and u, respectively.
Since o1 is the (k + 1)-st object, Tmin = dmin1

that is
represented by a dotted line. Since o6 is the k-th object,
Tmax = dmax6

that is represented by a line.
Step 2: Answer selection step. We select the k objects with

the smallest minimum possible distance to an answer set A.
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Algorithm 1 Continuous spatial query processing
1: function PROCESSING(Query Q, LocalCache L, Float Cmin, Amin)

// Control Flow 1: QoS measurements for a local cache
2: S ← the required search area of Q
3: if S 6= null and cov(S,L) ≥ Cmin then
4: O ← the objects of interest of Q in L intersecting S
5: A ← an answer derived from O
6: if Acc(O,A) ≥ Amin then return A
7: end if

// Control Flow 2: Information sharing with neighbors
8: Lp ← the neighbor’s transmission range and the monitored area of the

query whose requested object type is the same as Q, and their objects
9: S ← the required search area of Q

10: if S 6= null and cov(S,L ∪ Lp) ≥ Cmin then
11: O ← the objects of interest of Q in L ∪ Lp intersecting S
12: A ← an answer derived from O
13: if Acc(O,A) ≥ Amin then return A
14: end if

// Control Flow 3: Query broadcasting
15: S ← the required search area of Q
16: Find the objects of interest residing in S
17: Update the area table and object table accordingly
18: Compute a query answer A
19: return A

These selected objects are the first k objects in the sorted
O and their minimum possible distances are less than Tmax.
For each object oi ∈ A, pi = min(Tmin − dmini

, dmaxi
−

dmini
)/(dmaxi

−dmini
) because if the actual distance between

oi and u is equal to or less than Tmin, oi must be one of the k-
NN to u. Thus the probability of correctly making a decision
of including oi in A is pi. For each object oj /∈ A, pj =
(Tmax−dminj

)/(dmaxj
−dminj

) because if the actual distance
between oj and u is equal to or less than Tmax, oj could be
one of the k-NN to u. Thus the probability of correctly making
a decision of excluding oj from A is 1 − pj .

Figure 5b shows the sorted O = {o4, o2, o6, o1, o3, o5} of a
3-NN query. The first three objects, o4, o2, and o6, are selected
to an answer set A. Each object oi ∈ A must be one of the
k-NN to u if the actual distance between oi and the querying
user u is within a distance range min(Tmin − dmini

, dmaxi
−

dmini
), which is represented by a gray bold line. We assume

p4 = 1, p2 = 0.3, and p6 = 0.2. For each object oj /∈ A,
o1, o3, and o5, oj could be one of the k-NN to u, if the
actual distance between oj and u is within a distance range
Tmax − dminj

, which is also represented by a gray bold line.
We assume p1 = 0.7, p3 = 0.65, and p5 = 0.5. Therefore
Acc(O,A) = 1

6
[p4+p2+p6+(1−p1)+(1−p3)+(1−p5)] =

1

6
[1 + 0.3 + 0.2 + (1− 0.7) + (1− 0.65) + (1− 0.5)] = 0.44.
After the user submits a query and QoS profile to the

continuous query processor, which is indicated by the flow
labeled by 1a in Figure 2, if the continuous query processor
finds an approximate answer that satisfies the user’s coverage
and accuracy requirements, it returns the answer to the user
(this flow is labeled by 1b). Otherwise, the continuous query
processor proceeds to the next control flow, that is, information
sharing with neighbors (this flow is labeled by 2a).

4.2 Information Sharing with Neighbors
This is the second control flow in our framework, which
is indicated by thick lines in Figure 2 (Lines 8 to 14 in
Algorithm 1). When a querying user u fails to get an answer

from the local cache, the continuous query processor initiates
this control flow. Since this control flow is very simple, we
only present its main idea for both range and k-NN queries,
which can be summarized into two steps.

Step 1: Information sharing step. In this step, u sends
the query to the neighbors through broadcast communica-
tion. Each neighbor p replies to u with (1) the area of p’s
transmission range along with its objects that belong to the
requested object type of u’s query; and/or (2) the monitored
required search area of each p’s continuous query along with
its monitored objects if its requested object type is the same
as u’s query, through point-to-point communication.

Step 2: Answer refinement step. After u receives the infor-
mation from her neighbors, u updates the location information
of the objects stored in the object table accordingly (this
flow is labeled by 2b in Figure 2). If the coverage of the
information stored in u’s local cache and the information
returned by the neighbors with respect to the query satisfies u’s
coverage requirement, u derives a new answer from the local
cache. If the answer also satisfies u’s accuracy requirement,
the continuous query processor returns the answer to u (this
flow is labeled by 2c). If the answer still cannot satisfy u’s
QoS requirements, the query processor proceeds to the query
broadcasting control flow (this flow is labeled by 3a).

4.3 Query Broadcasting
This is the third control flow in our framework, which is
indicated by very thick lines in Figure 2 (Lines 15 to 19
in Algorithm 1). The key functions of this control flow are
to (1) search the objects of interest of a query residing in its
required search area in order to find the most accurate answer;
and (2) have an opportunity for a peer to update an object’s
location stored in the local cache when the peer is involved
in routing messages for query processing, which contains the
more updated location of the object. The latter function is
useful to reduce the location uncertainty of the objects stored
in the local cache. Figures 6a and 6b illustrate this control flow
for range and k-NN queries, respectively. In both examples,
there are 20 mobile users, m1 to m20, where m15 is a querying
user (represented by a square), the objects of interest of the
query are m6, m7, m16, m18, and m20, which are represented
by triangles, and other users are represented by circles. A
user’s transmission range is represented by a dotted circle.
Since this control flow will provide the most accurate answer
for a query, the relevant information of this query is removed
from the query table and the object table before initiating this
control flow. In general, the query broadcasting control flow
has two main steps.

4.3.1 Required search area step
We will discuss how to find the required search area of a range
or k-NN query.

Range queries. Since the required search area of a range
query is the same as its query region, the querying user u can
determine the required search area without enlisting peers for
help. In Figure 6a, the required search area of the range query
is represented by a rectangle.
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(a) Range query
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(b) 3-NN query

Fig. 6: Query broadcasting for range and NN queries.

k-NN queries. For a k-NN query, the querying user u needs
to broadcast the query to peers to find at least k objects. Then
the required search area of the query is a circular area centered
at u with a radius of the required search range of the query,
which is the distance from u to the k-th nearest object. To find
at least k objects, u broadcasts the query with a hop distance
h = 1 to the neighbors. If u cannot find at least k objects
within one hop, u increases h by one and rebroadcasts the
query with the updated h to the neighbors. When a peer p
receives the query, p sends its information to u through point-
to-point communication. If the received h is larger than one, p
decreases h by one and forwards the query with the updated h
to the neighbors through broadcast communication. p simply
drops duplicate messages without processing or forwarding
them. It is important to note that when a peer participates in
routing a reply to u, the peer has an opportunity to update the
location information of the objects stored in the local cache. u
keeps performing this broadcast process until u finds at least
k objects of interest. It is expected that u receives replies from
more peers as h increases. Receiving the replies from the same
set of peers with two consecutive hop distances, h and h + 1,
implies that the total number of objects of interest of u’s query
in u’s network partition or the system is less than k. When
this case takes place, u can postpone this step for a while
or proceed to the next step by reducing k to the number of
objects of interest that are already found by this step.

In Figure 6b, the querying user u = m15 issues a 3-NN
query. After u broadcasts the query with a hop distance h = 1
to the neighbors, u receives replies from three peers, m12,
m16, and m18, which are located in u’s transmission range
(represented by a black dotted circle). Among these three
peers, u finds two objects of interest, m16 and m18. Since
u requires three objects to determine a required search area, u
rebroadcasts the query with an increased hop distance h = 2.
Then u receives replies from five more peers, m2, m6, m11,
m13, and m17, which are located in the transmission ranges
of m12, m16, and m18 (represented by gray dotted circles).
Since u finds three objects of interest, m6, m16, and m18, u
terminates the broadcast process and determines the required
search area. The required search area is a circle centered
at u with a radius of the required search range, which is
the distance from u to the 3-th nearest object, m6, which
is represented by a black circle. Although u already finds
three objects of interest, they do not constitute a correct query

Algorithm 2 Continuous query answer maintenance
1: function MAINTENANCE(Query Q, LocalCache L, Float Cmin, Amin)

// Control Flow 4: Continuous query answer maintenance
2: if Q is a k-NN query then
3: Send Q and AggregateMaxSpeed to the peers residing in S
4: end if
5: Update the object table when receiving a notification message
6: Periodically evaluate the query answer A
7: if A becomes uncertain and Acc(A) < Amin then
8: Go to Line 2 in Algorithm 1 to start the Control Flow 1
9: else return A

answer. This is because the correct answer is m16, m18 and,
m7. This missing of m7, which is outside the searched area
with h = 2, will be resolved in the next step.

4.3.2 Query dissemination step
Once we finish the required search area step, both range and
k-NN queries are boiled down to range queries with their
required search areas as the range query region. The main
idea of this step to retrieve the objects of interest within the
range query region. u broadcasts the query along with the
range query region to the neighbors. When a peer p receives
the query, if p belongs to the requested object type, p sends
its information to u through point-to-point communication. In
addition, if p’s transmission range intersects the range query
region, p rebroadcasts the query to the neighbors. Similar to
the required search area step, the peer participating in routing
messages has an opportunity to update the peer location
information stored in the local cache. After u receives the
replies from the objects of interest within the range query
region, u computes the answer.

Range queries. The answer of a range query simply includes
the objects of interest located in the required search area.
Figure 6a shows that u receives replies from four objects of
interest, m6, m7, m16, and m18, and these objects constitute
the query answer.

k-NN queries. Among the objects of interest located in
the required search area of the query, u selects the k-nearest
objects as the answer. Figure 6b shows that u receives replies
from four objects of interest, m6, m7, m16, and m18, u realizes
that m7 is closer to herself than m6. Thus u can find a correct
answer, which includes m7, m16, and m18.

After the continuous query processor finds the query answer,
it updates the local cache accordingly (this flow is labeled by
3b). The required search space of the query along with the ID
list of its objects of interest residing in the required search area
is inserted into the area table. Then the information of these
objects is inserted into the object table. Finally the answer
is returned to the user (this flow is labeled by 3c). We will
describe how to monitor the answer in the continuous query
answer maintenance control flow.

4.4 Continuous Query Answer Maintenance

This is the fourth control flow in our framework, which
is indicated by a very thick white line in Figure 2 and
outlined by Algorithm 2. The main tasks of this control flow
are (1) collaborative query maintenance: the querying user
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collaborates with peers to forward the query to other peers
who could become part of the answer (Section 4.4.1); and
(2) query evaluation: the querying user computes the answer
locally as long as the answer derived from the local cache
satisfies her QoS requirements (Section 4.4.2).

4.4.1 Collaborative query maintenance
Each user maintains a query table. In the query table, a
range query is stored in a form (ID, Loc, TS, Range, Period,
MaxSpeed, ObjectOfInterest), where ID is the query issuer’s
identity, Loc is the query location point, TS records the time
when the query is issued, Range is the required search range
of the query, Period is the valid time period of the query,
MaxSpeed is the maximum mobility speed of the query issuer,
and ObjectOfInterest is the requested object type of the query.
Likewise, a k-NN query is stored in a similar form (ID,
Loc, TS, Range, Period, MaxSpeed, ObjectOfInterest, Aggre-
gateMaxSpeed), where AggregateMaxSpeed is the maximum
mobility speed of the objects of interest that could reside in the
required search area of the query. In general, the collaborative
query maintenance task has three main steps.

Step 1: Query dissemination step. This step mainly dis-
seminates a query to the peer located in the required search
area. For a range query, since its required search area is the
same as its query region, the peer can store the query in the
query table during the query dissemination step in the query
broadcasting control flow, as discussed in Section 4.3. On
the other hand, for a k-NN query, it needs to disseminate an
extra parameter for the query, AggregateMaxSpeed, to the peer
located in its required search area. Thus after the querying
user u gets a query answer, u broadcasts the query and its
AggregateMaxSpeed to the peer residing in the required search
area. Then the peer stores the query in the query table.

Step 2: Query table synchronization step. When a peer
p discovers a new neighbor p′, this step takes place to
synchronize the query tables of p and p′ through a three-way
message exchange via point-to-point communication. Without
loss of generality, we assume that the peer with a smaller
ID initiates this step. We consider that p initiates this step.
(1) p sends a list p.L of the query IDs in the query table to
p′. (2) After p′ receives p.L, p′ generates a list p′.L of the
query IDs in the query table. Then p′ replies to p with the
information of the queries in p′.L but not in p.L, p′.L \ p.L,
and a list of query IDs in p.L but not in p′.L, p.L\p′.L. (3) p
stores the received queries in the query table and sends the
information of the queries included in the received list to p′.
p′ stores the received queries in the query table.

Step 3: Notification step. For each new query received
during the query table synchronization step, the peer, p and/or
p′, performs this step to decide whether to send its information
to the query issuer. Due to user mobility, the peer has to adjust
the required search area of a range or k-NN query to capture
the effect of location uncertainty. We will discuss how to adjust
the required search area of a range or k-NN query.

Range queries. Figure 7a shows a range query, where the
original query location point is represented by a gray square
and the original required search area is represented by a dotted
rectangle. Similar to the location adjustment of peer locations,

�

�

�

� �

(a) Range Queries

������
���

�

(b) k-NN Queries

Fig. 7: Required search area adjustment.

we use a conservative approach to adjust the required search
area of the range query, where the querying user u can move
at the maximum mobility speed MaxSpeedu in any direction.
Thus the distance from the original query location point and
the u’s current location is at most r = (tcurrent − TS) ×
MaxSpeedu. In other words, u could be anywhere within a
circular location region centered at the original query location
point with a radius of r, which is represented by a gray circle.
To ensure that an adjusted required search area contains all
the possible range query regions, regardless of the u’s actual
location within u’s adjusted location region, we extend each
edge of the original required search area by r. The adjusted
required search area is represented by a rectangle.

k-NN queries. Figure 7b shows a k-NN query, where the
original query location point is represented by a gray square
and the original required search area is represented by a dotted
circle. Similar to range queries, the adjusted location region
of a querying user u is centered at the original query location
point with a radius of r = (tcurrent−TS)×MaxSpeedu, which
is represented by a gray circle. Consider a case that all the
objects of interest residing in the required search area move at
AggregateMaxSpeed; therefore the maximum possible distance
between u and each of these objects is r+rmax+Range, where
rmax = (tcurrent − TS) × AggregateMaxSpeed, and Range
is the original required search range, which is the original
distance between u and the k-th nearest object in the answer.
Since u could be anywhere within the adjusted location region,
the adjusted required search area is a circular area centered
at the original query location point with a radius of 2 × r +
rmax+Range. Whenever u finds a larger AggregateMaxSpeed,
u broadcasts it to the objects residing in the adjusted required
search area.

After the peer, p and/or p′, determines the required search
area of a newly received query, if the peer is located in the
adjusted required search area, the peer sends her information
as a notification message to the querying user through point-
to-point communication. Otherwise, the peer will periodically
evaluate the query until the query is expired.

4.4.2 Query evaluation
The main idea of this task is that the querying user, u, checks
whether to derive a certain query answer from the local cache.
A certain query answer can be returned to u without any
QoS measurement. If u cannot get a certain answer from the
local cache, u can find an answer from the local cache as
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Fig. 8: The answer of a 3-NN query.

long as the answer satisfies her QoS requirements. In case
that u cannot find an answer from that satisfies her QoS
requirements, u restarts the query processing by executing the
second control flow: information sharing with neighbors. Once
u receives a notification message through the collaborative
query maintenance task, u updates the object table accordingly.
It is important to note that u will adjust the required search
area of the queries stored in the area table as in Section 4.4.1,
when u is requested to return the information of the local
cache to a peer in the information sharing step in the second
control flow. We will describe how to check the certainty of
a range or k-NN query answer.

Range queries. Since the required search area of a range
query is the same as its query region, the querying user u
always knows the exact required search area of the query.
Thus u simply adjusts the location of the objects of interest
stored in the local cache, and then selects the objects with
adjusted location regions intersecting the query region. If all
these objects are totally included in the required search area,
the accuracy of an answer that includes all these objects is
one; hence this answer is a certain one.

k-NN queries. In contrast to range queries, u needs to deter-
mine the required search area of a k-NN query, and calculate
the minimum and maximum possible distances between each
object of interest in the local cache to u’s current location.
Then u finds an object p with the k-th smallest maximum
possible distance. The required search area is a circle centered
as u’s current location with a radius of the maximum distance
between p and u. If there are only k objects intersecting the
required search area, their adjusted locations or exact locations
must be totally included in the required search area; therefore
these k objects constitute a certain query answer.

Figure 8 shows the answer of a 3-NN query at two time
instances, where the current location of the querying user u
is represented by a black square, and the exact location or the
adjusted location region of each object of interest of the query
is represented by a black circle or a dotted circle, respectively.
Figure 8a shows an answer, in which o5 has the third smallest
maximum possible distance to u; therefore the required search
area (represented by a circle) is a circular area with a radius
of the distance from u to the farthest point on the adjusted
location region of o5 from u. Since there are only three objects,
o2, o4, and o5, whose adjusted location regions are totally
covered by the adjusted required search area, these objects
constitute a certain answer. On the other hand, Figure 8b shows
the query answer at a later time, where the adjusted location
regions of objects, o1 to o5, are expanded, and the location
of o6 is adjusted. o5 still has the third smallest maximum

possible distance to u, so the required search area is a circle
at u with a radius of the distance from u to the farthest point on
the adjusted location region of o5. Since the adjusted location
regions of four objects, o2, o3, o4, and o5, intersect the required
search area, any three of these four objects could be the actual
query answer; hence the answer becomes uncertain, and u
needs to check the accuracy of the query answer.

5 SIMULATION MODEL

In this section, we present a simulation model that is used to
evaluate our continuous spatial query processing framework
(denoted as ContQP) in a mobile P2P environment.

5.1 Baseline Algorithms

To our best knowledge, ContQP is the first framework realizing
continuous spatial query processing in mobile P2P environ-
ments. We design two baseline algorithms that have a subset
of the control flows of ContQP to evaluate the performance
of ContQP. Since the continuous query answer maintenance
scheme (the fourth control flow) is the one of the key features
of our framework, the baseline algorithms do not have this
control flow. (1) In the first baseline algorithm (denoted as
LocalQP), the user only monitors the transmission range. If the
user cannot find an answer that satisfies her QoS requirements
from the local cache, that is, the first control flow: QoS
measurements for the local cache, the user executes the query
broadcasting control flow (the third control flow) to find the
answer. (2) In the second baseline algorithm (denoted as
PeerQP), if the user fails to find an answer from a local cache,
the user proceeds to the information sharing with neighbors
(the second control flow) to find the answer. If the answer still
cannot satisfy the user’s QoS requirements, the user executes
the query broadcasting control flow to find the answer.

5.2 Power Consumption Model

Each mobile user is equipped a wireless network interface
card that supports two communication methods: point-to-point
and broadcast communication. The user can communicate
with all neighbors through broadcast communication, one of
the neighbors through point-to-point communication, and a
multi-hop peer through a point-to-point multi-hop routing that
contains a sequence of point-to-point communication. In this
work, we focus on the application layer and do not have
any assumption on the underlying multi-hop routing protocol;
therefore any multi-hop routing protocol can be applied to
our framework. It has shown that the power consumption of
wireless communication can be modeled by linear formulas in
terms of message sizes and communication methods [26].

For point-to-point communication, Ppoint, a source user S
sends a message to a destination user D. The affected users
of this communication method are the users who reside in S’s
transmission range, RS , D’s transmission range, RD, and their
transmission ranges, RSD. The power consumption of Ppoint
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TABLE 1: Parameters for point-to-point communication.
Conditions µW· s/byte µW · s

S vsend = 1.9 fsend = 454
D vrecv = 0.5 frecv = 356

Peers ∈ RSD vsd disc = 0 fsd disc = 70
Peers ∈ RS vs disc = 0 fs disc = 24
Peers ∈ RD vd disc = 0 fd disc = 56

TABLE 2: Parameters for broadcast communication.
Conditions µW· s/byte µW · s

S vbsend = 1.9 fbsend = 266
Peers ∈ RS vbrecv = 0.5 fbrecv = 56

is measured by the following equations:

Ppoint =





(vsend × |msg|) + fsend, for S

(vrecv × |msg|) + frecv, for D

(vsd disc × |msg|) + fsd disc, for peers ∈ RSD

(vs disc × |msg|) + fs disc, for peers ∈ RS

(vd disc × |msg|) + fd disc, for peers ∈ RD

,

where f is a fixed setup cost, and v is a variable cost in terms
of the size of a message msg in bytes, |msg|.

For broadcast communication, Pbc, a source user S broad-
casts a message to the peers residing in S’s transmission
range, SR. The power consumption of Pbc is measured by
the following equations:

Pbc =

{
(vbsend × |msg|) + fbsend, for S

(vbrecv × |msg|) + fbrecv, for peers ∈ RS

.

The parameter settings for Ppoint and Pbc are depicted in
Tables 1 and 2, respectively.

5.3 Performance Metrics
We evaluate the performance of our framework in terms of
four metrics. (1) Number of messages. This metric measures
the average number of messages incurred by our framework
per query evaluation. (2) Power consumption. This metric
measures the average power consumption per query evaluation
based on the power consumption models described in Sec-
tion 5.2. (3) False negative. This metric measures the average
relative number of objects missed in an approximate answer
compared to an actual one. Given an actual answer set A
and an approximate answer set Â, the relative false negative
is computed as |A \ Â|/|A|. (4) False positive. This metric
measures the average relative number of extra objects in an
approximate answer compared to an actual one. The false
positive is computed as |Â \ A|/|A|.

5.4 Simulation Settings
We implement our framework for both range queries “contin-
uously report the object(s) of a specific type within a certain
range from a query issuer”, and k-NN queries “continuously
report the k-nearest object(s) of a specific type to a query
issuer” in C++. Each experiment runs 1,000 seconds. Unless
mentioned otherwise, we generate 200 mobile users moving
at a speed distributed uniformly between 1 and 20 meter(s)
per second based on the “random waypoint” model [27] in
a 1,000m × 1,000m space. Each user belongs to one of
10 object types. 20% of the users issue continuous queries

TABLE 3: Parameter settings for experiments.
Parameters Default Values Ranges

No. of mobile users 200 100 to 500
Coverage (Cmin) 0.8 0.5 to 1.0
Accuracy (Amin) 0.8 0.5 to 1.0

Mobility speed [1, 20] m/sec [1, 5] to [1, 30] m/sec
No. of objects (k) 5 2 to 10

Range distance (Range) 200 meters 150 to 350 meters
Grid cell area 42 m2 22 to 122 m2

Beacon interval 1 sec 1 to 5 sec
Query period 1,000 sec 2 to 10 sec
No. of queries 20% of users 5% to 40% of users

Transmission range 100 meters -
No. of object types 10 -

for a time period of 1,000 seconds, and they evaluate their
query answers every second. The default coverage, Cmin, and
accuracy, Amin, requirements are set to 0.8. The grid cell
area for the approximate coverage measurement is 16 m2.
The transmission range of each user is 100 meters, and the
beacon interval is one second. We first assume that a querying
user receives the beacon her neighbors before evaluating a
query, and then we remove this assumption by increasing
the beacon interval in Section 6.6. For query parameters, the
range distance, Range, of range queries is 200 meters, and
the required number of objects, k, of k-NN queries is five.
Table 3 summarizes the parameter settings.

6 EXPERIMENTAL RESULTS

This section presents the experimental results of our frame-
work, ContQP, in comparison with the baseline algorithms,
LocalQP and PeerQP, with respect to various numbers of users,
numbers of continuous queries, QoS requirements, query pa-
rameters (the range distance of range queries and the value
of k of k-NN queries), user mobility speeds, beacon intervals,
and query period intervals.

6.1 Effect of the Number of Users

Figures 9a and 9b show that ContQP outperforms the baseline
algorithms in terms of number communication overhead. The
reason is that LocalQP executes the query broadcasting control
flow for each query evaluation and PeerQP only slightly
reduces the number of times of executing this control flow.
On the other hand, ContQP effectively avoids executing the
relatively expensive query broadcasting control flow through
the continuous query answer maintenance control flow that
efficiently maintains the user’s local cache. Increasing the
number of users results in more users residing in the required
search area of queries, thus the communication overhead
increases. Figure 9c shows that the false negative improves,
as there are more users. In a sparser environment, the user
is more likely to suffer from a network partition problem,
in which the user is unable to communicate with all objects
residing in the query’s required search area. With a higher user
density, the user has a lower probability of suffering from the
network partition problem, so the false negative reduces. When
there are more users, ContQP has a higher probability to select
more extra objects to an answer (Figure 9d). Since the false
positive of ContQP for range queries in all the experiments is
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Fig. 9: Number of mobile users (range queries).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100 200 300 400 500N
um

be
r 

of
 M

es
sa

ge
s 

(in
 th

ou
sa

nd
s)

Number of Users

ContQP
PeerQP

LocalQP

(a) Number of messages

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 200 300 400 500

P
ow

er
 C

on
su

m
pt

io
n 

(W
.s

)

Number of Users

ContQP
PeerQP

LocalQP

(b) Power consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

100 200 300 400 500

Fa
ls

e 
N

eg
at

iv
e

Number of Users

ContQP
PeerQP

LocalQP

(c) False negative

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

100 200 300 400 500

Fa
ls

e 
P

os
iti

ve

Number of Users

ContQP
PeerQP

LocalQP

(d) False positive

Fig. 10: Number of mobile users (k-NN queries).
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Fig. 11: Number of querying users (range queries).

very small, that is, always less than 0.03, we will not present
the false positive of range queries in other experiments.

Similar to range queries, ContQP outperforms the baseline
algorithms for k-NN queries in terms of communication over-
head, as the number of users increases (Figures 10a and 10b).
Due to network partitions, all the algorithms may not be able
to find the exact k-nearest objects to the user; thus the false
negative is always larger than zero (Figure 10c). In contrast
to range queries, all the algorithms compute a k-NN query
answer with at most k objects, so only presenting their false
negatives is good enough to evaluate the answer accuracy. As
Figures 9 and 10 show that the number of messages and power
consumption have the same trend, only the results of power
consumption will be presented in other experiments.

6.2 Effect of the Number of Continuous Queries
Figures 11 and 12 show the performance of all the algorithms
with respect to increasing the number of querying users from
10 (5%) to 80 (40% of the total number of mobile users).
Figure 11a shows that ContQP effectively reduces the power
consumption, as the number of querying users increases. The
main reason is that when there are more querying users, the
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Fig. 12: Number of querying users (k-NN queries).

user of ContQP has a higher probability to get an answer
from the information shared by neighbors about the adjusted
research search area of their queries and their transmission
ranges . Since PeerQP does not continuously maintain the
query answer, the user only as a higher chance to get the query
answer from the information shared by neighbors about their
transmission ranges; thus PeerQP slightly reduces the power
consumption. The number of querying users has only slight
effect on the false negative (Figure 11b). Figure 12 shows that
the results of k-NN queries are similar to that of range queries.

6.3 Effect of QoS Requirements

TABLE 4: Approximate coverage computation.
Grid Size Area 2

2
4
2

6
2

8
2

10
2

12
2

Coverage 0.632 0.624 0.612 0.606 0.6 0.586
Computation time (ms) 137.963 35.094 15.77 9.173 5.932 4.228

Table 4 shows the precision of the approximate coverage
measurement with respect to increasing the grid cell area from
22 to 122 m2. Since the bit of a grid cell is set to one, if it is
totally covered by some monitored area that is either stored in
a user’s local cache or shared by a user’s neighbor, increasing
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Fig. 13: Coverage requirements (range queries).
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Fig. 14: Coverage requirements (k-NN queries).

the grid cell area leads to a larger underestimation of the
approximate coverage measurement. The results indicate that
when the grid cell area increases, the precision only degrades
slightly, while the computational time significantly decreases.
Therefore, we choose 16 m2 as the default grid cell area for
all the experiments because this area size gives the greatest
improvement ratio on the computational time.

Figures 13 and 14 show that the coverage requirement,
Cmin, only affects ContQP slightly for range and k-NN
queries, respectively. After ContQP finds a query answer,
the query’s required search area is contained by the adjusted
required search area that is monitored by the continuous query
answer maintenance control flow, the coverage of the infor-
mation stored in the local cache with respect to the query is
one. Figure 13a shows that PeerQP incurs less communication
overhead than ContQP, as Cmin is small. This is because the
user of PeerQP is more likely to find an answer from the
local cache or the information shared by neighbors; however,
the query answer accuracy is very low (Figure 13b).

Figures 15 and 16 show that when the accuracy requirement,
Amin, gets larger, the communication overhead of ContQP
increases, while its accuracy improves. This is because a larger
Amin results in a higher probability that the user needs to
execute the relatively expensive query broadcasting control
flow to find the most accurate possible query answer. However,
LocalQP executes this control flow for each query evaluation,
while PeerQP has a much higher chance to execute this
control flow than ContQP. Therefore, Amin achieves a tradeoff
between the communication overhead and the query answer
accuracy for ContQP.

6.4 Effect of Query Parameters
Figure 17 shows the results of all the algorithms with respect
to increasing the range distance, Range, of range queries from
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Fig. 15: Accuracy requirements (range queries).
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Fig. 16: Accuracy requirements (k-NN queries).

150 to 350 meters. It is expected that the communication
overhead increases, as Range gets larger (Figure 17a). ContQP
is more scalable than the baseline algorithms, because ContQP
has a higher probability to find an answer from the information
shared by neighbors, when Range increases. The increase of
Range results in larger required search areas for queries, where
the user is more likely to suffer from the network partition
problem; thus the false negative increases (Figure 13b).

Figure 18 shows the performance of all the algorithms with
respect to increasing the required number of objects of interest,
k, of k-NN queries from 2 to 10. Similar to range queries,
increasing k incurs higher power consumption and ContQP is
more scalable than the baseline algorithms (Figure 18a). When
k is larger, there is a higher probability for the user of ContQP
and PeerQP to execute the query broadcasting control flow to
find the most accurate possible answer; thus their query answer
accuracy improves (Figure 18b).

6.5 Effect of Mobility Speeds
Figures 19 and 20 show the performance evaluation with
respect to varying the user mobility speed from [1, 5] to [1, 30]
meters per second for range and k-NN queries, respectively.
Since LocalQP executes the query broadcasting control flow
for each query evaluation, it is not affected by the mobility
speed. PeerQP is only slightly affected by the mobility speed,
as it only avoids a small number of times of executing the
query broadcasting control flow. When the mobility speed
increases, ContQP incurs higher power consumption (Fig-
ures 19a and 20a). The reason is that increasing the mobility
speed results in higher uncertainty in location information,
which leads to a higher decay rate in the accuracy of an
answer derived from a local cache; thus ContQP has a higher
probability to execute the relatively expensive query broad-
casting control flow to find the answer. Since the user can get
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Fig. 17: Range distance (range queries).
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Fig. 18: Required number of objects (k-NN queries).

the most accurate possible answer through this control flow,
the query answer accuracy improves, as the mobility speed
increases (Figures 19b and 20b).

6.6 Effect of Beacon Intervals

Figure 21 shows the performance of all the algorithms for
k-NN queries, as the beacon interval varies from one to five
seconds. In ContQP, the continuous query answer maintenance
control flow requires the user to disseminate the received
queries to newly discovered neighbors. Since increasing the
beacon interval leads to a longer delay in this query dissem-
ination process, it takes a longer time for the user to get the
notification messages from the peers who could become part of
the answer. The delay of these notification messages decreases
the accuracy of the answer derived from the user’s local cache
(Figure 21b). Thus the user has a higher probability to execute
the relatively expensive query broadcasting control flow to find
the answer; hence ContQP has higher power consumption, as
the beacon interval increases (Figure 21a). Although PeerQP
does not execute the continuous query answer maintenance
control flow, its power consumption also slightly increases
with larger beacon intervals. This is because the user of
PeerQP takes a longer time to get the location of neighbors
that also decreases the accuracy of the answer derived from
the user’s local cache.

6.7 Effect of Query Period
Figure 22 shows the results of all the algorithms with respect

to increasing the time period of continuous range queries
from 2 to 10 seconds. Since LocalQP finds a query answer
from scratch for each query evaluation, its performance is
not affected by the query period. The user of PeerQP has to
execute the query broadcasting control flow to an answer in
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Fig. 19: Maximum mobility speeds (range queries).
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Fig. 20: Maximum mobility speeds (k-NN queries).

most cases, so its performance is slightly affected by the query
period. However, the communication overhead of ContQP
reduces and then stabilizes, as the query period increases
(Figure 22a). In the experiment, we maintain the same number
of querying users, decreasing the query period results in
more new querying users that execute the relatively expensive
query broadcasting control flow to find initial query answers.
Figure 22b shows that the answer accuracy reduces, as the
query period increases. This is because the uncertainty of the
location information stored in a user’s local cache increases
for a longer time period.

7 CONCLUSION

We design a continuous query processing framework for
range and k-nearest-neighbor queries in mobile peer-to-peer
(P2P) environments. Our framework has two key features.
(1) Our framework provides an approximate answer for the
user with two personalized QoS guarantees, namely, coverage
and accuracy. (2) The user is able to collaborate with peers
to maintain query answers. Our framework has four main
control flows. (i) The user derives an answer from the local
cache and measures the quality of the answer. If the answer
satisfies the user’s QoS requirements, it is returned to the user.
(ii) Otherwise, the user enlists neighbors for help to turn in
their cached information to refine the answer. (iii) If the refined
answer still cannot satisfy the user’s QoS requirements, the
user searches the required search area of the query to get the
answer. (iv) Then the user collaborates with peers to maintain
the answer. We evaluate our framework through experiments.
The results show that our framework is efficient and scalable in
terms of communication overhead, and the QoS requirements
achieve a performance tradeoff between the communication
overhead and the quality of query answers.
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Fig. 21: Beacon intervals (k-NN queries).
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