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1. INTRODUCTION

Location-based services (LBS) combine the functionality of location-aware devices
(e.g., GPS-like devices), wireless and cellular phone technologies, and information
management to provide personalized services to users based on their current loca-
tions. Examples of LBS include location-aware emergency services (“Dispatch the
nearest ambulance”), location-based advertisement (“Send e-coupons to all cars that
are within two miles of my gas station”), live traffic reports (“Let me know if there
is congestion within ten minutes of my route”), and location-based store finders
(“Where is my nearest restaurant”). Users registered with LBS continuously send
their locations to a location-based database server. Upon requesting a service, a
registered user issues a location-based query that is executed at the server based on
the knowledge of the user’s location [Jensen 2004; Mokbel and Aref 2005; Moura-
tidis et al. 2005; Wolfson et al. 2002]. Location-based queries are either snapshot
or continuous queries. Examples of snapshot queries include “Where is my nearest
gas station” and “What are the restaurants within one mile of my location”, while
examples of continuous queries include “Continuously report my nearest police car”
and “Continuously report the gas stations within one mile of my car”.

Although LBS promise safety and convenience, they threaten the privacy and
security of their users. The privacy threat comes from the fact that LBS providers
rely mainly on an implicit assumption that users agree to reveal their private loca-
tions to get services. In other words, a user trades her privacy with the service. If a
user wants to keep her private location information, she has to turn off her location-
aware device and (temporarily) unsubscribe from the service. With untrustworthy
servers, such a model poses several privacy threats. For example, an employer may
check on her employee’s behavior by knowing the places where she visits and the
time of each visit, the personal medical records can be inferred by knowing which
clinic a person visits, or someone can track the locations of his ex-friends. In fact,
in many cases, GPS devices have been used in stalking personal locations [FoxNews
2004; USAToday 2002]. Unfortunately, the traditional approach of pseudonymity
(i.e., using a fake identity) [Pfitzmann and Kohntopp 2000] is not applicable to LBS
where the location information of a person can directly lead to the true identity.
For example, asking about the nearest Pizza restaurant to my house using a fake
identity will reveal my true identity, as a resident of the house.

In an attempt to preserve the privacy of LBS users, several research groups have
presented the concept of a location anonymizer that is responsible for blurring actual
users’ locations into cloaked areas (e.g., see [Bamba et al. 2008; Mokbel et al. 2006;
Chow et al. 2006; Chow and Mokbel 2007; Gruteser and Grunwald 2003; Ghinita
et al. 2007a; Gedik and Liu 2005; 2008; Kalnis et al. 2007; Xu and Cai 2008]). Upon
registration with the location anonymizer, mobile users specify their own desired
level of privacy through a user-specified privacy profile that may contain one or more
of the following parameters: k-anonymity, minimum area Amin, and maximum
area Amax. k-anonymity indicates that the user wants to be k-anonymous, i.e.,
not distinguishable among k users, while Amin and Amax indicate that the user
wants to hide her location information within an area of at least Amin and at most
Amax, respectively. The location anonymizer is basically a trusted third party that
acts as a middle layer between mobile users and the location-based database server
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in order to: (1) receive the exact location information from mobile users along
with a privacy profile of each user, (2) employ an existing location anonymization
technique to blur users’ exact locations into cloaked areas that satisfy each user’s
privacy profile, (3) send the cloaked areas to the database server, and (4) compute
the exact answer from a candidate list of answers returned by the database server
and send the exact answer to the user.

In this paper, we go beyond the location anonymization problem as we address the
challenging problem of providing snapshot and continuous LBS even when receiving
the user’s blurred location information from the location anonymizer rather than
the exact locations from system users. Basically, we propose a snapshot/continuous
privacy-aware query processor that is embedded inside the location-based database
server to tune its functionalities to deal with anonymous location-based queries
with cloaked areas received from the location anonymizer rather than the exact
location information. Our privacy-aware query processor is completely independent
of the underlying location anonymization algorithm. Thus, any existing location
anonymization technique that cloaks users’ locations into rectilinear areas can be
employed. The proposed query processor supports three privacy-aware query types:
(1) Private queries over public data, e.g., “Where is my nearest gas station”, in
which the person who issues the query is a private entity while the data (i.e., gas
stations) is public, (2) Public queries over private data, e.g., “How many cars within
a certain area”, in which a public entity asks about personal private locations, and
(3) Private queries over private data, e.g., “Where is my nearest buddy” in which
both the person who issues the query and the requested data are private. With this
classification in mind, traditional location-based query processors can support only
public queries over public data. This query classification is applicable regardless of
having the underlying query as snapshot or continuous.

Due to the lack of exact location information on the server side, the proposed
privacy-aware query processor provides a candidate list of answers instead of an
exact answer. We prove that the candidate list is inclusive, i.e., contains the ex-
act answer, and is minimal, i.e., given certain conditions, the candidate list is of
minimal size. In addition, our proposed query processor can be tuned through a
tuning parameter to provide a trade-off between query processing cost and answer
optimality, i.e., the candidate list size. For continuous location-based queries, we
propose a shared execution paradigm that enables the privacy-aware query processor
to scale to a large number of concurrent continuous queries. The shared execution
paradigm maintains the answer of a set of selected static continuous queries, and
the answer is shared by all outstanding continuous queries. The proposed shared
execution paradigm provides two other tuning parameters to achieve a trade-off be-
tween system scalability and answer optimality. In general, the contributions of
this paper can be summarized as follows:

—We introduce a system framework that allows mobile users to anonymously ob-
tain snapshot and continuous location-based services by specifying their privacy
requirements through a user privacy profile.

—We identify three new privacy-aware query types that are not supported by ex-
isting location-based database servers, namely, private queries over public data,
public queries over private data, and private queries over private data.
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—We introduce a privacy-aware query processor that provides a unified framework
to support all introduced privacy-aware query types. We prove that our query
processor provides an inclusive and minimal candidate list of answers. In addi-
tion, the performance of the query processor can be tuned through a parameter
to achieve a trade-off between query processing cost and answer optimality.

—We introduce a shared execution paradigm that shares query processing among a
large number of continuous privacy-aware queries for all introduced query types.
Such a scalable paradigm can be tuned through two other parameters to trade
off between system scalability and query answer optimality.

—We provide experimental evidence that our privacy-aware query processor is ef-
ficient in terms of query processing time, is scalable in terms of supporting large
numbers of users and snapshot/continuous queries, and is privacy-aware as it
provides high-quality answers without the need for exact location information.

The rest of the paper is organized as follows. Section 2 highlights the related
work to the proposed privacy-aware query processing framework. The underlying
architecture is outlined in Section 3. The snapshot and continuous privacy-aware
query processors are described in Sections 4 and 5, respectively. Extensive exper-
imental evaluation of our privacy-aware query processor is presented in Section 6.
Finally, Section 7 concludes the paper.

2. RELATED WORKS

In this section, we highlight the related work to the proposed privacy-aware query
processing framework in four different areas, namely, location privacy, location-
based query processing, privacy models, and privacy-aware query processing.

2.1 Location Privacy

Motivated by the privacy threats of location-detection devices [Ackerman et al.
2003; Barkhuus and Dey 2003; Beresford and Stajano 2003; Warrior et al. 2003],
recent attempts for providing location privacy in location-based services (LBS)
(e.g., [Bamba et al. 2008; Beresford and Stajano 2003; Chow et al. 2006; Chow
and Mokbel 2007; Cheng et al. 2006; Duckham and Kulik 2005; Gedik and Liu
2008; Gruteser and Grunwald 2003; Ghinita et al. 2007a; 2007b; Gruteser and
Liu 2004; Hashem and Kulik 2007; Hengartner and Steenkiste 2003; Hong and
Landay 2004; Kalnis et al. 2007; Kido et al. 2005; Li et al. 2008; Xu and Cai
2007; 2008]) and other location-aware applications (e.g., context-aware comput-
ing [Smailagic and Kogan 2002] and sensor networks [Gruteser et al. 2003]) focus
only on the location anonymizer part. Although such techniques would be valuable
for protecting users’ private locations in LBS, the practicality in real location-based
database servers is doubtful as these techniques lack privacy-aware query process-
ing capacity. By protecting users’ location information from being disclosed to the
location-based database server, processing these location privacy-preserving queries
becomes challenging where new techniques need to be presented to provide efficient
query processing while not being able to know exact users’ locations.

In general, four different approaches have been explored: (1) False dummies [Kido
et al. 2005]. For every location update, a user sends n different locations to the
server with only one of them is true while the rest are dummies. Thus, the server
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cannot know which one of these locations is the actual one. (2) Landmark ob-
jects [Hong and Landay 2004]. Rather than sending the exact location to a location-
based database server, the user refers to the location of a certain landmark or a
significant object. (3) Location perturbation [Bamba et al. 2008; Chow et al. 2006;
Chow and Mokbel 2007; Cheng et al. 2006; Duckham and Kulik 2005; Gedik and
Liu 2008; Gruteser and Grunwald 2003; Ghinita et al. 2007a; 2007b; Gruteser and
Liu 2004; Hashem and Kulik 2007; Kalnis et al. 2007; Li et al. 2008; Xu and Cai
2007; 2008]. The main idea is to blur a user’s exact location into a spatial area
using either spatial or temporal cloaking [Bamba et al. 2008; Chow et al. 2006;
Chow and Mokbel 2007; Gedik and Liu 2008; Gruteser and Grunwald 2003; Gh-
inita et al. 2007a; 2007b; Hashem and Kulik 2007; Kalnis et al. 2007; Li et al.
2008; Xu and Cai 2007; 2008] or location obfuscation [Duckham and Kulik 2005].
The blurred spatial area can be based either on the k-anonymity concept [Sama-
rati 2001; Sweeney 2002a; 2002b] (i.e., the area should contain at least k users)
or on a graph model that represents a road network [Duckham and Kulik 2005].
(4) Avoid location tracking [Beresford and Stajano 2003; Gruteser and Liu 2004].
While the previous three approaches focus only on hiding a certain instance of the
user location, this approach aims to avoid tracking the user behavior.

Among these location anonymization techniques, our proposed privacy-aware
query processor supports the location perturbation techniques that blur users’ exact
locations into rectilinear areas, i.e., cloaked areas, as this is the most commonly used
form of location anonymization in many various environment settings, e.g., [Bamba
et al. 2008; Chow et al. 2006; Gedik and Liu 2008; Gruteser and Grunwald 2003;
Ghinita et al. 2007a; 2007b; Hashem and Kulik 2007; Kalnis et al. 2007] for snapshot
locations, [Chow and Mokbel 2007; Cheng et al. 2006; Xu and Cai 2007; 2008] for
continuous locations, [Xu and Cai 2008] for spatial networks, and [Chow et al. 2008;
Gruteser et al. 2003] for wireless sensor networks.

2.2 Location-based Query Processing

There has been a plethora of techniques to deal with various snapshot location-
based queries (e.g., [Hadjieleftheriou et al. 2005; Lin and Su 2005; Papadias et al.
2004; Sun et al. 2004; Tao and Papadias 2005; Tao et al. 2003; Wolfson et al. 2000])
and continuous location-based queries (e.g., [Gedik and Liu 2004; Hu et al. 2005;
Iwerks et al. 2003; Kolahdouzan and Shahabi 2005; Lazaridis et al. 2002; Mouratidis
et al. 2005; Mokbel et al. 2004; Zhang et al. 2003]). The main idea of snapshot
queries is to provide an efficient and real-time execution of location-based queries
using spatio-temporal index structures for frequently updated data. On the other
hand, query processors for continuous location-based queries have mainly focused
on efficiency and scalability. In terms of efficiency, several techniques have been
proposed to use grid-based structures to support location-based services for moving
data and moving queries (e.g., [Hu et al. 2005; Iwerks et al. 2003; Mouratidis et al.
2005; Mouratidis et al. 2006; Mokbel et al. 2004]). In terms of scalability, several
techniques have proposed to employ a shared execution paradigm in which multiple
concurrent continuous queries can be evaluated simultaneously at the location-
based database server (e.g., [Cai et al. 2004; Gedik and Liu 2004; Mokbel et al.
2004; Prabhakar et al. 2002]). However, all these query processors for snapshot and
continuous location-based queries rely on the knowledge of the exact user locations
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as none of these techniques have considered private data and/or private queries.

2.3 Privacy Models

During the last decade, several paradigms of architecture have been explored to
provide secure data transformation from the client to the server machines. Secure-
multi-party communication [Du and Atallah 2001; Haas et al. 1999] organizes the
communication among m parties such that each party can have the knowledge
of only a certain function but not the actual data for other parties. However, the
computational overhead of such a scheme prevents its direct application to database
problems. Thus, the minimal information sharing [Agrawal et al. 2003] paradigm
is proposed where it uses cryptographic techniques to perform join and intersection
operations. However, the computational cost and the inability to serve other queries
make such a paradigm not suitable for real time applications. The untrustworthy
third party [Emekci et al. 2006] paradigm has been proposed in the context of peer-
to-peer systems. The main idea is to employ a third party that executes queries
by collecting secure information from multiple data sources, i.e., peers. The most
commonly used model is the trusted third party [Aggarwal et al. 2004; Jefferies
et al. 1995] paradigm. The main idea is to employ a third party that is trusted by
the users and acts as a middle layer between the user and the database server.

Among these models, our framework employs the trusted third party model as
it requires less computational overhead and is more suitable for real-time query
processing. The trusted third party model is already utilized by existing location
privacy techniques (e.g., [Beresford and Stajano 2003; Bamba et al. 2008; Chow
et al. 2006; Chow and Mokbel 2007; Gedik and Liu 2008; Gruteser and Grunwald
2003; Hashem and Kulik 2007; Kalnis et al. 2007; Li et al. 2008; Mokbel et al.
2006; Xu and Cai 2007; 2008]) and is commercially applied in other fields. For
example, the Anonymizer [Anonymizer 2008] is for anonymous web surfing while
the PayPal [Paypal 2008] system is a trusted third party where a user can buy
products without giving her credit card information to the provider.

2.4 Privacy-Aware Query Processing

Recent research efforts have been dedicated to deal with location privacy-
preserving queries, i.e., getting anonymous services from location-based applications
(e.g., [Cheng et al. 2006; Ghinita et al. 2008; Kalnis et al. 2007; Khoshgozaran and
Shahabi 2007; Hu and Lee 2006; Mokbel et al. 2006; Yiu et al. 2008]). These query
processing frameworks can be divided into three main categories. (1) Location
obstruction [Yiu et al. 2008]. The basic idea is that a querying user first sends
a query along with a false location to a database server, and the database server
keeps sending the list of nearest objects to the reported false location to her until
the list of received objects satisfies the user’s privacy and quality requirements.
(2) Space transformation [Ghinita et al. 2008; Khoshgozaran and Shahabi 2007].
This approach converts the original location of data and queries into another space
through a trusted third party. The space transformation maintains the spatial re-
lationship among the data and query, in order to provide accurate query answers.
(3) Cloaked area processing [Cheng et al. 2006; Kalnis et al. 2007; Hu and Lee
2006; Mokbel et al. 2006]. In this framework, a privacy-aware query processor is
embedded in the database server side to deal with the cloaked spatial area received
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Fig. 1. System architecture

either from a querying user [Cheng et al. 2006; Hu and Lee 2006] or from a trusted
third party [Kalnis et al. 2007; Mokbel et al. 2006].

Among the existing cloaked area processing frameworks, the works [Hu and Lee
2006; Kalnis et al. 2007] are closest to ours. These works find the exact set of ob-
jects as a query answer based on the linear nearest neighbor search algorithm [Tao
et al. 2002]. The difference between these two works is that the work [Hu and
Lee 2006] considers rectilinear cloaked areas while the other one considers circular
cloaked areas [Kalnis et al. 2007]. The key distinctions between these two works and
our proposed privacy-aware query processor are follows: (1) Our query processor
has the ability to ease the optimality of query answers by finding a superset of the
minimal answer set that contains the exact answer, in order to achieve system scala-
bility. We use a tuning parameter to trade off between system scalability and answer
optimality. (2) According to our classification of privacy-aware queries, these two
previous works consider only private queries over public data, so they cannot be ap-
plied to the case of private data. (3) We consider continuous privacy-aware queries
by proposing a shared execution paradigm that aims to improve system scalability
when dealing with a numerous number of privacy-aware continuous queries. The
shared execution paradigm also provides two other tuning parameters to trade off
between system scalability and answer optimality.

3. SYSTEM ARCHITECTURE

Figure 1 depicts the underlying system architecture which has two main compo-
nents: the location anonymizer and the privacy-aware query processor.

Location Anonymizer. Mobile users who are willing to share their private lo-
cation information can register directly with the location-based database server. On
the other hand, mobile users who want to protect their private location information
should register with the location anonymizer by specifying a certain privacy profile
that outlines their privacy requirements. The privacy profile would support the
most commonly used privacy requirements, namely, k-anonymity, minimum area
Amin, and maximum area Amax. k-anonymity indicates that the mobile user wants
to be k-anonymous, i.e., not distinguishable among k users, while Amin and Amax

(Amin ≤ Amax) are the minimum and maximum acceptable size of the cloaked area,
respectively. Amin is particularly useful in a dense area where even a large k would
not achieve high privacy protection. For example, a user in a stadium with k = 100
may result in a very small cloaked area. Similarly, a user in a shopping mall may
want to guarantee that her cloaked area is beyond the mall boundary. On the other
hand, Amax indicates the largest amount of spatial inaccuracy of the cloaked area
the user is willing to tolerate. Larger values for k, Amin and Amax indicate stricter
privacy requirements. Finally, mobile users have the ability to change their privacy
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profiles at any time to achieve their personal trade-off between privacy requirements
and the quality of services.

The location anonymizer receives location updates from mobile users, uses a
location anonymization algorithm to blur the locations into cloaked areas that
match each user’s privacy profile, and sends the cloaked areas to the location-based
database server. While cloaking the location information, the location anonymizer
also removes any user identity to ensure the pseudonymity of the location infor-
mation [Pfitzmann and Kohntopp 2000]. Similar to the exact location point, the
location anonymizer also blurs the query location information before sending a
cloaked query area to the database server. After the location anonymizer gets the
candidate list of answers from the privacy-aware query processor, it computes the
exact answer from the candidate list, and then sends the exact answer to the user.
Since location anonymization algorithms have been widely studied, we will not dis-
cuss any specific location anonymization algorithm in this paper. To this end, we
propose a privacy-aware query processor that is completely independent of the lo-
cation anonymization algorithm employed by the location anonymizer. Note that
the privacy requirements defined in a privacy profile are based on the employed
location anonymization algorithm.

Privacy-aware Query Processor. The snapshot/continuous privacy-aware
query processor is embedded inside the location-based database server to anony-
mously deal with cloaked areas from the location anonymizer rather than exact
point locations. Instead of returning an exact answer, the privacy-aware query pro-
cessor returns a candidate list of answers in which the exact query answer to the user
issuing the query through the location anonymizer must be included. Then, the lo-
cation anonymizer filters out the false objects from the candidate list, and sends the
exact answer to the mobile user. The size of the candidate list heavily depends on
the user privacy profile. A stricter privacy profile would result in a larger candidate
list of answers. Using their privacy profiles, mobile users have the ability to adjust
a personal trade-off between the amount of information they would like to reveal
about their locations and the quality of services that they obtain from our frame-
work. Location-based queries processed at the privacy-aware query processor may
be received either from the mobile users or from public administrators. Queries that
come from mobile users are considered as private queries. Private queries should
be passed by the location anonymizer to hide the user identity, and the location of
the user who issues the query should be blurred. Location-based queries that are
issued from public administrators are considered as public queries and do not need
to pass through the location anonymizer. Instead, they are directly submitted to
the database server. The database server will answer such public queries based on
the stored blurred location information of all mobile users.

Two types of data are stored in the privacy-aware location-based database server,
public data and private data. Public data includes stationary objects such as hospi-
tals, restaurants, and gas stations or moving objects such as police cars and on-site
workers. These persons and facilities do not want to hide their location informa-
tion. Thus, they are stored directly in the location-based database server without
interference from the location anonymizer. Private data mainly contains personal
information of mobile or stationary users who are not willing to reveal their loca-
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tion information, e.g., they specify a privacy profile with non-zero k or non-zero
Amin. Private data is received at the privacy-aware location-based database server
as cloaked areas from the location anonymizer. Based on the stored data, we identify
three new query types that are supported by our privacy-aware query processor:

—Private queries over public data. In this query type, the query location is
hidden while the exact location information of stored data is known. For example,
a person (private query) asks about her nearest gas station (public data). In this
case, the privacy-aware query processor does not know the exact location of the
person who issues the query while the exact locations of gas stations are known.

—Public queries over private data. In this query type, the query location is
exactly known while the exact locations of the data of interest are not available.
Instead, only blurred information is available for the data of interest. For ex-
ample, an administrator (public query) asks about the number of mobile users
(private data) within a certain area. In this case, the privacy-aware query proces-
sor knows the exact query location information, but it does not know the exact
locations of mobile users.

—Private queries over private data. In this query type, neither the query
location nor data locations are known. For example, a person (private query)
asks about her nearest buddy (private data). The exact locations of both the
person who issues the query and her buddies are not available at the privacy-
aware query processor.

With this classification, traditional location-based database servers (e.g., [Güting
et al. 2005; Mokbel et al. 2004; Wolfson et al. 2002]) can support only public queries
over public data where the exact location information of both data and queries is
available.

4. SNAPSHOT PRIVACY-AWARE QUERY PROCESSING

In this section, we present the privacy-aware query processing for snapshot queries.
Although previous approaches can be used to compute a minimal candidate list of
answers for private queries over public data [Hu and Lee 2006; Tao et al. 2002], the
minimal candidate list would be expensive to compute in many cases, e.g., private
queries with large cloaked areas and the number of data is very large. On the
other hand, our proposed algorithms for privacy-aware query processing provide a
distinct feature to compute a superset of the minimal candidate list that contains
the exact answer to the user with lower computational cost. We can adjust between
computational cost and candidate list size through a tuning parameter refine. A
larger value of refine gives a smaller candidate list, but incurs higher computational
cost. When refine = ∞, our algorithm provides the same minimal candidate list
as the previous approaches. Furthermore, although these previous approaches give
conditions for pruning internal nodes with rectangular regions in an R-tree to obtain
a set of candidate objects for query processing [Hu and Lee 2006; Tao et al. 2002],
the given conditions are not sufficient for computing a minimal candidate list for
private queries over private data, and simply returning all such candidate objects
would result in a large candidate list that incurs high transmission time. Similar
to private queries over public data, our algorithm for private queries over private
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Fig. 2. Two trivial approaches for processing private queries over public data

data also supports the tuning parameter refine. When refine = ∞, our algorithm
provides a minimal candidate list for private data.

The rest of this section is organized as follows. First, we consider private queries
over public data. Then, we extend the query processing algorithm to deal with
public queries over private data and private queries over private data.

4.1 Private Queries over Public Data

In this section, we will consider a nearest-neighbor query issued by a user in a
form “What is my nearest gas station”. In this case, the privacy-aware query
processor does not know the exact location information of the user. Instead, the
query processor knows only a cloaked area in which the user resides. On the other
hand, the exact location of the gas stations is known. Figure 2a depicts such a
scenario by showing the data stored on the server side. There are 32 target objects,
i.e., gas stations, T1 to T32 represented by circles. The shaded area represents the
cloaked area of the user who issued the query. For clarity, the actual user location
is plotted as a square inside the cloaked area, but this information is not revealed
to the database server.

Figures 2b and 2c give two trivial approaches that represent two different ex-
tremes for evaluating private nearest-neighbor queries over public data. In the first
approach (Figure 2b), the server computes the nearest object to the center of the
cloaked area, i.e., T16, as the query answer. Although this approach minimizes the
data transmitted from the server to the client, it gives an inaccurate answer where
the actual nearest object to the client is T13. In the second approach (Figure 2c),
the server sends all target objects to the client. Then, the client evaluates her query
locally to get T13 as the query answer. Although this approach provides the exact
answer, it is not practical due to the overhead of transmitting large numbers of
target objects and the limited processing and storage capabilities on the client side.

Our approach is to design a privacy-aware query processor that achieves a com-
promise between these two extremes. The main idea is to compute a candidate
list of answers that includes the exact answer, i.e., the nearest object to the user
who issues the query. To guarantee efficiency and enhance utility, the computed
candidate list should be of minimal size. In the rest of this section, we will describe
our proposed privacy-aware query processor for the case of nearest-neighbor queries
along with a detailed example. Then, we will prove that the candidate list produced
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Algorithm 1 Private NN Queries over Public Data
1: function PrivateNNPublicData(CloakedArea A, Int refine)
2: for each vertex vi of A

3: ti ← the nearest object to vi

4: candidate list ← {∅}; R ← {A}
5: for each edge eij = vivj of region A do

6: if ti = tj then

7: candidate list ← candidate list ∪ {ti}
8: else

9: R = R ∪ RecursiveRefinement(vivj , ti, tj , refine, candidate list)
10: end if

11: end for

12: for each range search area R ∈ R
13: candidate list ← candidate list ∪ {all target objects within R}
14: return candidate list

by our algorithm does include the exact answer and of minimal size.

4.1.1 Algorithm for Nearest-Neighbor Queries. Algorithm 1 gives the pseudo
code for private nearest-neighbor queries over public data. The inputs to Algo-
rithm 1 are: (a) the cloaked area A that is received from the location anonymizer
and (b) a tuning parameter, termed refine. A larger value of refine requires higher
computational cost, yet it gives a smaller candidate list that reduces both the trans-
mission time of sending the candidate list from the database server to the location
anonymizer and the processing time of computing an exact answer from the candi-
date list at the location anonymizer. Setting refine to zero would result in a similar,
yet better, algorithm to [Mokbel et al. 2006] that returns a candidate list with a
size equal to or larger than our algorithm. On the other hand, setting refine to
∞ would result in a minimal candidate list with the highest computational cost.
The output of Algorithm 1 is a candidate list of answers to be sent to the location
anonymizer. In this section, we consider refine as a system specified parameter,
and we will describe how to adaptively adjust refine to minimize overall response
time which includes processing and transmission time. For the ease of description,
Figure 3 gives a running example for a private nearest-neighbor query over public
data where it presents a zoom view of the shaded area of Figure 2a along with
its neighbor cells and the tuning parameter refine is set to one. In general, our
algorithm has the following three steps:

STEP 1: Filter Selection Step. The main objective of this step is to choose a
set of filters that prunes the set of all target objects to a smaller set of objects that
includes the exact answer. Basically, for each vertex vi of the cloaked area A, we
choose the nearest object of vi as its filter ti (Lines 2 to 3 in Algorithm 1). Thus, at
most four filters can be chosen. In our example, Figure 3a depicts that the nearest
objects for vertices v1, v2, v3, and v4 are T16, T16, T13, and T12, respectively, i.e.,
we end up selecting only three objects {T16, T13, T12}.

STEP 2: Range Selection Step. The input to this step is the set of filter
objects chosen from the previous step. The output of this step has two components:
(a) a set of areas, R, encloses target objects that should be considered in the
candidate list, and (b) a set of target objects should be included in the candidate
list. Initially, we add the cloaked area A to the set of areas R, and the candidate list
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Algorithm 2 Private NN Queries over Public Data: Recursive Refinement
1: function RecursiveRefinement(Edge eij = vivj , Obj ti, Obj tj , Int refine, Set candi-

date list)
2: sij ← the intersection point of eij and the perpendicular bisector (⊥) of ti and tj
3: if refine > 0 then

4: ts ← the nearest object to sij

5: if ts = ti or ts = tj then

6: candidate list ← candidate list ∪ {ti, tj}
7: return {∅}
8: else

9: refine← refine− 1
10: search area ← search area ∪ RecursiveRefinement(visij , ti, ts, refine, candidate list)
11: search area ← search area ∪ RecursiveRefinement(sijvj , ts, tj , refine, candidate list)
12: end if

13: else

14: search area ← a circle centered at sij of a radius dist(sij , ti)
15: return search area

16: end if

is set to be empty (Line 4 in Algorithm 1). The initialization of R to A indicates
that the object within A should be considered in the candidate list as the actual
user object could be anywhere in A.

In this step, we deal with each edge eij = vivj of the cloaked area A separately.
Based on the two filters ti and tj of the edge vivj and the tuning parameter refine,
we have one of following four possibilities:

(1) The trivial edge condition (ti = tj). We first check for the case that ti = tj , i.e.,
one object serves as the nearest object for both vertices vi and vj . If this is the
case, we just add ti to the candidate list (Lines 6 to 7 in Algorithm 1). Since
we guarantee that ti is the nearest object to any point on vivj , we do not need
to perform any additional search on vivj , i.e., we do not need to consider any
further steps for this edge. In our example (Figure 3a), this case is applied to
edge v1v2 where t1 = t2 = T16. In this case, we just add T16 to the candidate
list as we guarantee that T16 is the nearest object to the user if the user location
is anywhere on edge v1v2.

(2) The trivial split-point condition (ti 6= tj , refine > 0, ts = ti). In the case
that ti 6= tj , (i.e., the two vertices vi and vj have different filters), we will use
Algorithm 2 to process the edge. Basically, we compute the split point sij of
the edge vivj as the intersection point of vivj and the perpendicular bisector
of ti and tj where dist(sij , ti) = dist(sij , tj) (Line 2 in Algorithm 2). Since
the refine parameter is greater than zero, we go ahead and find the nearest
object ts to the split point sij . If it ends up that ts = ti, we add both ti
and tj to the candidate list and return an empty range search area (Lines 6
to 7 in Algorithm 2). It is important to note that if ts = ti, then ts = tj as
dist(sij , ti) = dist(sij , tj). The idea behind returning the empty range search
area is that if ts = ti, then we guarantee that ti is the nearest object of any
point on line segment visij , while tj is the nearest object of any point on line
segment sijvj . This means that there is no need to have more search on the
edge vivj . In our example, this case takes place for two edges, v2v3 and v1v4.
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(a) The filter step and the triv-

ial edge condition on v1v2
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(b) The trivial split-point con-

dition on v2v3
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(c) The recursive refinement

condition on v3v4
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(d) The stopping criterion

condition on v3s34 and s34v4

�
�

�
�

�
��

�
�

�
�

�
�

�
	

�



�
��

�
��

�
��

�
��

�
��

�
��

�
�� �

��

�
�� �

�	

�
�	

�
��

�
�

�
�

�
�

�
�

�
��

(e) The trivial split-point con-

dition on v1v4
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(f) Range search step

Fig. 3. Example of a private nearest-neighbor query over public data (refine = 1)

For edge v2v3, since t2 = T16 6= t3 = T13, we compute the split point s23

(Figure 3b). Since the nearest object of s23 could be either T13 or T16, i.e.,
both T13 and T16 are of the same distance from s23, we just add T13 and T16

to the candidate list. Similarly, for edge v1v4, we figure out that both T12 and
T16 could be the nearest object to the split point s14 (Figure 3e). Thus, we just
add T12 to the candidate list because T16 is already there.

(3) The recursive refinement condition (ti 6= tj , refine > 0, ts 6= ti). In the case
that the nearest object ts to the split point sij is different from ti and tj ,
we split the edge vivj into two separate line segments visij and sijvj . Then,
we decrease the tuning parameter refine by one while recursively splitting each
edge separately until we either: (a) the tuning parameter refine reaches zero, or
(b) we end up at the trivial split-point condition (Lines 9 to 11 in Algorithm 2).
In our example, edge v3v4 depicts this case where t3 = T13 6= t4 = T12. The
nearest object to the split point s34 is T8 (Figure 3c). Since T8 is different
from T12 and T13 and the refine parameter is one, we decrease refine by one to
zero while dividing the edge v3v4 into two separate segments v3s34 and s34v4

(Figure 3d). Since refine reaches zero for the two separate line segments, we
end up with the next case of the stopping criterion condition.

(4) The stopping criterion condition (ti 6= tj , refine = 0). Once the tuning pa-
rameter refine reaches zero, we terminate our algorithm by returning a range
search area as a circle centered at the split point sij with a radius of dist(sij , ti),
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i.e., dist(sij , ti) = dist(sij , tj) (Line 14 in Algorithm 2). The idea behind this
circular range search area is that all target objects within that area could be
the answer of some point on vivj , so these objects should be added to the can-
didate list. It is important to note two main issues in this step: (a) We may
not reach to this step as repetitive recursive splitting of the edges may always
result in either the trivial edge condition or the trivial split-point condition; and
(b) Based on the number of recursive calls and the tuning parameter refine,
we may end up with a large number of circular range search areas that include
target objects to be added to the candidate list. In our running example, we
end up having the two separate line segments v3s34 and s34v4 with refine set
to zero. Thus, we conclude these segments by returning two circular range
search areas of their split points. The range search area of line segment v3s34

is represented by a circle, while the range search area of s34v4 is represented by
a dotted circle, as depicted in Figure 3d.

STEP 3: The Range Search Step. In this step, we can have one of two
options that either provide a candidate list with the minimal size (minimality will
be proved later) or provide a larger candidate list with less computation. In both
cases, the candidate list is guaranteed to include the exact answer (inclusion will
be proved later). The two options are:

(1) To get the candidate list of the minimal size, we issue a range query for each
range search area R in the range query set R. All the results of these range
queries are added to the candidate list (Lines 12 to 13 in Algorithm 1), and
the candidate list is sent to the location anonymizer. In our example, we will
execute three range queries as one range query for the shaded cloaked area A
and two range queries for the two circles depicted in Figure 3f.

(2) To reduce computational cost while getting a larger candidate list, we execute
only one range query that corresponds to the minimum boundary rectangle of
all range search areas in R. In our example, we will execute only one range
query with the minimum bounding rectangle (represented by a bold dotted
rectangle) as the query region that covers the circles and the cloaked area A
(Figure 3f).

In our example, both options give the same candidate list (i.e., four target objects
T8, T12, T13, and T16) that contains the actual query answer T13.

Finally, it is important to know that our privacy-aware query processor is inde-
pendent of the underlying nearest-neighbor and range query algorithms used in the
nearest-neighbor search for filters or the nearest object of each split point in STEP 1
and STEP 2 and the range search in STEP 3, respectively. These algorithms are as-
sumed to be implemented in traditional location-based database servers. We do not
have any assumptions about these algorithms as they can be employed using an R-
tree or any other methods. In fact, our approach can be seamlessly integrated with
any traditional location-based database servers to turn them to be privacy-aware.

4.1.2 Adaptive Parameter Tuning. As we have discussed earlier, we can use the
tuning parameter refine to trade off between system scalability (i.e., computation
time) and the query answer optimality (i.e., candidate list size), from a database
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(c) As refine>O, TQ>TX+TF

Fig. 4. The optimal value of refine

server’s perspective. On the other hand, from a user’s perspective, the most im-
portant performance measure is total query response time which includes overall
processing and transmission time, as we always guarantee to provide an exact an-
swer within the candidate list. We define query response time T as the sum of three
components, (i) the query processing time of computing a candidate list of answers
at the database server TQ, (ii) the transmission time of sending the candidate list
from the database server to the location anonymizer TX , and (iii) the filtration time
of computing an exact answer from the candidate list at the location anonymizer
TF . We know that TQ is monotonically increasing with respect to the number of
refinements, while the candidate list size is monotonically decreasing with respect
to the number of refinements. Since TX and TF are monotonically decreasing with
the decrease of the candidate list size, they are also monotonically decreasing with
respect to the number of refinements. With these properties, we can find an optimal
value of refine which results in the shortest query response time.

Figure 4 depicts three cases for the optimal value of refine where the x and y
axes represent the value of refine and time, respectively, the thin and dotted curves
represent the query processing time, i.e., TQ, and the sum of the transmission time
and the filtration time, i.e., TX + TF , and the bold curve represents the query
response time T = TQ + TX + TF . Case 1: TQ is always higher than TX + TF ,
i.e., TQ > TX + TF . In this case, we set refine to zero, because any refinement
increases the query response time (Figure 4a). Case 2: TX + TF is always higher
than TQ, i.e., TX + TF > TQ. In this case, we set refine to a maximum limit, i.e.,
refinemax, because minimizing the transmission and filtration time results in the
minimum query response time (Figure 4b). Case 3: There is a point O in which
TQ is always higher than TX + TF when refine > O, and TQ is always less than
TX + TF when refine < O. In this case, we know that there is an optimal point for
refine, where the optimal point is between zero and ∞, in which the query response
time is minimized (Figure 4c).

We will describe an analysis model to find the optimal value of refine so that
the query response time is minimized. To determine the optimal refine, we need to
estimate the query response time for the current iteration of refinement T̂i and the
next iteration of refinement, T̂i+1. Whenever T̂i+1 > T̂i, we predict that further
refinements will increase the query response time. Thus, we stop the query process-
ing and return the current candidate list as the query answer. We first estimate
the query response time for the current i-th iteration of refinement, T̂i, which is the
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sum of the following three components:

(1) Query processing time (TQi
). This is the actual time incurred in the computa-

tion of the current candidate list at the database server.

(2) Transmission time (TXi
). The database server will estimate the transmission

time of sending the current candidate list to the location anonymizer as follows:
TXi

= Na × S/B, where Na is the number of objects in the current candidate
list, S is the average object size, and B is the bandwidth of the communication
link between the database server and the location anonymizer.

(3) Filtration time (TFi
). The database server will also estimate the filtration

time of computing an exact answer from the current candidate list at the lo-
cation anonymizer as follows: TFi

= Na × Tf , where Tf is the average time of
computing an exact answer per object from the candidate list at the location
anonymizer.

Then, the database server estimates the query response time for the next iteration
of refinement, T̂i+1, which is the sum of the following three components:

(1) Query processing time (TQi+1
). The database server will estimate the query

processing time of the next iteration of refinement based on the current one as
follows: TQi+1

= TQi
+ No × Tp, where No is the number of line segments of A

that do not meet the trivial edge condition or trivial split-point condition, and Tp

is the average time of computing a bisector and performing a nearest-neighbor
search for a split point.

(2) Transmission time (TXi+1
). The database server will estimate the candidate list

size for the next iteration of refinement and the transmission time of sending
the estimated candidate list to the location anonymizer as follows: TXi+1

=
(Na ×Ri ×Aa)×S/B, where Ri is the average reduction ratio of Na from i- to
(i + 1)-th iteration per unit square of a cloaked area A and Aa is the area of A.

(3) Filtration time (TFi+1
). The database server will also estimate the filtration

time of computing an exact answer from the estimated candidate list at the
location anonymizer as follows: TFi+1

= (Na × Ri × Aa) × Tf .

To estimate Tp and Ri at the database server, and Tf at the location anonymizer,
we have a learning period with a set of privacy-aware queries, and then update
their values during processing newly received queries. Since the tuning parameter
refine is applicable to both the private queries over public data and private queries
over private data, the proposed adaptive parameter tuning model can be applied
to both of these query types.

4.1.3 Proof of Correctness. In this section, we show the correctness of the algo-
rithm of private nearest-neighbor queries over public data (Algorithm 1) by proving
that: (1) Minimality - the algorithm is optimal, i.e., it returns the minimal can-
didate list, when the tuning parameter refine is set to ∞, and (2) Inclusion - the
algorithm is inclusive, i.e., it returns the exact answer within the candidate list.

Theorem 1. Minimality. Given a cloaked area A, a user U who issues a query
within A, and a tuning parameter refine which is set to ∞, the algorithm computes
a minimal candidate list of answers for A.
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(b) Trivial split-point condition (ti 6= tj , ts = ti)

Fig. 5. Two termination cases for the query processing of private queries over public data

Proof. The algorithm results in a candidate list of objects which reside in A
and/or the nearest object of some point on the edge of A. We will show that
a minimal candidate list of answers contains all such objects. First, U could be
located anywhere within A. An object within A is the nearest object to U , when
the object and U are at the same location. Thus, the object within A could be
the exact answer to U . Second, U could be located at any point on the edge of
A. For each line segment vivj with objects ti and tj as the nearest object of its
endpoints vi and vj , respectively, the algorithm ends up having the line segment
with either the trivial edge condition (i.e., ti = tj) or the trivial split-point condition
(i.e., ti 6= tj , ts = ti). This is because the stopping criterion condition will not take
place as refine = ∞. We will show that the algorithm finds the nearest object to
any point on the line segment where either the trivial edge condition or the trivial
split-point condition takes place.

(1) The trivial edge condition. Figure 5a depicts this case where t is the nearest
object to any point p on vivj , the dotted, shaded and solid circles are the
required nearest-neighbor search space of vi, p, and vj , respectively. The shaded
circle touches the intersection points of the dotted and solid circles, and it is
totally covered by the dotted and solid circles. Suppose that there is another
object t′ that is closer to p than t; and hence, t′ is within the shaded circle (i.e.,
t′ is within the dotted and/or solid circles). However, if t′ is within the dotted
circle (or solid circle), it contradicts to the minimality, i.e., t is the nearest
object to vi (or vj). Therefore, t is the nearest object to any point on vivj .

(2) The trivial split-point condition. Figure 5b depicts this case where sij is the
split point of the edge vivj and the nearest object of sij could be either ti or
tj . For the line segment visij , vi and sij have the same nearest object ti. The
proof of the trivial edge condition shows that ti is the nearest object to any
point on visij . Similarly, for the line segment sijvj , tj is the nearest object to
any point on sijvj .

Since we guarantee that only the objects within A and the nearest objects to
some point on the edge of A are added to the candidate list, the candidate list
contains the minimal set of objects that could be the exact answer to U .

Theorem 2. Inclusion. Given a cloaked area A, a user U who issues a query
within A, and a tuning parameter refine ≥ 0, the algorithm computes a candidate
list of answers for A that contains the exact answer to U .
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Proof. When refine is set to ∞, the proof of Theorem 1 shows that the target
objects which could be the nearest object to U are added to the candidate list,
so the exact answer to U is included in the candidate list. On the other hand,
when refine is finite, the stopping criterion condition could take place for some line
segments. We will show that the exact answer of any point on such line segments
is included in the candidate list. When the stopping criterion condition is applied
to a line segment vivj , we do not find the nearest object to the split point sij of
vivj . Thus, we distinguish two cases.

Case 1: If ti and tj are the nearest objects of sij , the proof of the trivial split-point
condition in Theorem 1 can be applied to this case. Thus, ti is the nearest object
to any point on the line segment visij , while tj is the nearest object to any point
on the line segment sijvj . In this case, the algorithm adds the objects within the
range search area of sij to the candidate list. Since ti and tj are the only objects
within the range search area, these two objects are added to the candidate list.

Case 2: If neither ti nor tj is the nearest object of sij . There is an object t that
is closer to some point on vivj than ti and/or tj . For the line segment visij , if t
is closer to some point on visij than ti, the proof of the trivial edge condition in
Theorem 1 gives that t must be within the dotted and/or bold circles (Figure 5b).
This is because if t is outside the dotted and bold circles, ti is closer to any point
on visij than t. Similarly, for the line segment sijvj , if t is closer to some point on
sijvj than tj , t is within the thin and/or bold circles. Since ti and tj are the nearest
objects to vi and vj , respectively, there is no other objects within the dotted and/or
thin circles. Therefore, t must be within the bold circle, i.e., the range search area
of sij . In this case, the algorithm adds the objects within the range search area of
sij to the candidate list.

For both cases, the nearest object to any point on a line segment where the
stopping criterion condition takes place is included in the candidate list. Therefore,
the exact answer to U is included in the candidate list whenever refine ≥ 0.

4.2 Public Queries over Private Data

In this section, we will consider a public nearest-neighbor query over private data
issued by a user in a form “What is the nearest customer to my taxi”. In this case,
the privacy-aware query processor is aware of the exact location of the query issuer,
i.e., the taxi. However, the query processor does not know the exact location of the
data, i.e., customers’ locations. Instead, the query processor knows only a cloaked
area in which each customer resides. The query processor returns a candidate list
of answers that includes the exact query answer. The query processing of public
queries over private data is a very simple one as we are describing it here just as a
basis for processing private queries over private data in Section 4.3.

4.2.1 Algorithm for Nearest-Neighbor Queries. As the idea of the algorithm is
very simple, we just show the modifications that we need to have in Algorithm 1 to
deal with public queries over private data. The input to the algorithm is a point-size
area A where the four vertices are the same as the query location point. Since the
query location point has no edges, the tuning parameter refine takes no effect on the
algorithm; and thus, the range selection step (STEP 2) in Algorithm 1 is neglected.
The other two steps will be slightly modified as follows. Figure 6 acts as a running
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Fig. 6. Example of a public nearest-neighbor query over private data

example where the location of the user who issues the query is represented by a
square while four private target objects, i.e., T1 to T4, are represented by rectangles.

STEP 1: The Filter Selection Step. This step is similar to the filter selection
step in Algorithm 1. The only modification is in the nearest object search where
we consider that the location of a private object T is its furthest corner from the
user’s location. In other words, the distance between a user’s location U and a
private object t with a cloaked area At, distmax(U, At), is the distance from U to the
furthest corner of At from U . Figure 6a depicts that T1 is a filter object and the
distance between the user and T1, i.e., distmax(U, AT1

), is represented by a line.
STEP 2: The Range Search Step. In this step, we compute only one circular

range search area centered at the user’s location U with a radius of the maximum
distance between U and the filter object t, i.e., distmax(U, At). All objects which
intersect the range search area could be the exact query answer, so they are added
to the candidate list of answers. Figure 6b depicts the range search area represented
by a circle. The objects which intersect the range search area, i.e., T1 and T4, are
added to the candidate list.

After the location anonymizer gets the candidate list of answers from the privacy-
aware query processor, the exact location of a private object in the candidate list
can be disclosed to the user who issues the query, if (1) the user has the required
privilege, e.g., police, to access these objects’ exact location information; and/or
(2) the private object has granted the user the required privilege, e.g., the user is
on the object’s friend list. However, if the user does not have the required privilege
to access the exact location of an object, the user can only get a cloaked area as
the object’s location, in order to preserve the object’s location privacy.

4.2.2 Proof of Correctness. In this section, we show the correctness of the algo-
rithm of public nearest-neighbor queries over private data by proving that: (1) Min-

imality - the algorithm returns the minimal candidate list, and (2) Inclusion -
the algorithm returns the exact answer within the candidate list.

Theorem 3. Minimality. Given a user U who issues a query, a filter object
t with a cloaked area At, and a range search area R centered at U with a radius
of the distance between U and the furthest corner of At from U , the set of objects
which intersects R constitutes a minimal candidate list of answers.
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Proof. If t is the only object in R, t is the exact answer to U . However, if
there is another object t′ and its cloaked area At′ intersects R, t′ could be the exact
answer to U . Since t′ intersects R, t′ is added to the candidate list. Since only the
objects which could be the exact answer are added to the candidate list, the result
candidate list is the minimal set of objects that contains the exact answer.

Theorem 4. Inclusion. Given a user U who issues a query, a filter object t
with a cloaked area At, and a range search area R centered at U with a radius of
the distance between U and the furthest corner of At from U , the exact answer
intersects R.

Proof. We know that the distance between the exact answer and U is not larger
than distmax(U, At), and all objects intersecting R are added to the candidate list.
Suppose that t′ is the exact answer to U and t′ is not included in the candidate list.
Thus, we know that the distance between U and t′ is larger than distmax(U, At),
i.e., t must be closer to U than t′, that contradicts to the assumption that t′ is the
exact answer. Thus, the candidate list includes the exact answer.

4.3 Private Queries over Private Data

In this section, we will consider the case of private nearest-neighbor queries over
private data in which the query issued by the user is in a form “What is my nearest
buddy”. In this case, the privacy-aware query processor does not know the exact
location information of both the user who issued the query and the data, i.e.,
her buddies. Instead, the query processor knows only a cloaked area in which
the user or each of her buddies resides. The query processor returns a candidate
list of answers that includes the exact query answer to the query issuer. The query
processing of private queries over private data is similar to Algorithm 1, as described
in Section 4.1, while using the query processing of public queries over private data,
as presented in Section 4.2, for nearest neighbor searches.

4.3.1 Algorithm for Nearest-Neighbor Queries. As the basic idea of the algo-
rithm is to employ the algorithm of public queries over private data for nearest
neighbor searches in Algorithm 1. Thus, we show only the modifications that we
need to have in Algorithm 1 to deal with private queries over private data. The
input to the algorithm is exactly the same as Algorithm 1, i.e., the cloaked area A
received from the location anonymizer and a tuning parameter refine, where a larger
value of refine gives a candidate list with a smaller size, but incurs higher query
processing time. The output of the algorithm is a candidate list of answers to be
sent to the location anonymizer. Figure 7 depicts a running example for a private
nearest-neighbor query over private data where the cloaked area A is represented
by a shaded area and the private data is represented by rectangles. For clarity, the
actual location of the user who issued the query is represented by a square within
A, but this information is not revealed to the database server. Also, we show only
the private data that is involved in the query processing for the sake of simplicity.
In this example, the tuning parameter refine is set to one. The algorithm has the
same three steps as in Algorithm 1 with following modifications:

STEP 1: The Filter Selection Step. The only modification in this step is
that we use the algorithm of public queries over private data to find a filter ti for
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Fig. 7. Example of a private nearest-neighbor query over private data (refine = 1)

each vertex vi of the cloaked area A. This means that ti with a cloaked area Ati
has

the smallest distance distmax(vi, Ati
), i.e., the distance between vi and the furthest

corner of Ati
from vi, among all objects. In our example, Figure 7a depicts that the

nearest objects for vertices v1, v2, v3, and v4 are T1, T1, T2, and T4, respectively.
The distance between each vertex and its filter is represented by a dotted line.

STEP 2: The Range Selection Step. The basic idea of this step is similar to
the range selection step in Algorithm 1, but we have some modifications for each
possible condition.

(1) The trivial edge condition (ti = tj). The only modification of this condition is
that we add two range search areas to the range query set R. One range search
area is a circular region centered at vi with a radius of distmax(vi, Ati

) and
the other range search area is a circular region centered at vj with a radius of
distmax(vj , Atj

). The idea of adding these two range search areas to R instead of
adding ti and tj to the candidate list is that all objects intersecting these range
search areas could be the answer of some point on the edge vivj . Thus, these
objects should be added to the candidate list. In our example, this condition
takes place for edge v1v2 where t1 = t2 = T1, so we add the range search areas
of v1 and v2 to R.

(2) The trivial split-pint condition (ti 6= tj , refine > 0, ts = ti). We have two
modifications for this case. The first modification is in the computation of the
split point sij of the edge vivj . sij is computed as an intersection point of vivj
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and the perpendicular bisector of ti and tj in which we consider the furthest
corners of ti and tj from the opposite vertices vj and vi, respectively. Since the
tuning parameter refine is greater than zero, we find the nearest object ts to
the split point sij . The second modification is that if it results in a case ts = ti,
we add the range search areas of ti, ts, and tj , i.e., these areas are the circles
centered at vi, sij , and vj with a radius of distmax(vi, Ati

), distmax(sij , Ati
) =

distmax(sij , Atj
), and distmax(vj , Atj

), respectively, to the range query set R.
The reason of returning these three range search areas is that the set of objects
intersecting the range search areas of vi and sij constitutes the minimal set
of objects that could be the answer of some point on visij . On the other
hand, the set of objects intersecting the range search areas of sij and vj is the
minimal set of objects that could be the answer of some point on sijvj . In our
example, this case is applied to two edges v2v3 and v1v4. For edge v2v3, since
t2 = T1 6= t3 = T2, and the tuning parameter refine is larger than zero, we
compute the split point s23 (Figure 7b). Since the nearest object of s23 is T1

or T2, i.e., distmax(s23, AT1
) = distmax(s23, AT2

), we add the range search areas
of v2, s23, and v3 to the range query set R. Likewise, for edge v1v4, we know
that the nearest object to the split point s14 is T1 or T4 (Figure 7f). Since the
range search area of v1 is already added to R, we merely add the range search
areas of s14 and v4 to R.

(3) The recursive refinement condition (ti 6= tj , refine > 0, ts 6= ti). This step
is exactly the same as the recursive refinement condition in Algorithm 1. In
our example, this case is applied to edge v3v4 where v3, s34, and v4 have
different nearest objects, i.e., t3 = T2, ts34

= T3, and t4 = T4, and refine is
larger than zero. We split v3v4 into two separate line segments v3s34 and s34v4,
and then recursively execute this step on these two separate line segments while
decreasing refine by one to zero, as illustrated in Figures 7d and 7e, respectively.
In this example, refine reaches zero after the first recursive refinement for both
line segments, we end up with the next case of the stopping criterion condition.

(4) The stopping criterion condition (ti 6= tj , refine = 0). The only modification
of this step is the same as the second modification of the trivial split-point
condition. When the tuning parameter refine reaches zero, we add the range
search areas of the endpoints vi and vj , and the split point sij of the edge vivj

to the range query set R.

STEP 3: The Range Search Step. The basic idea of this step is the same as
in Algorithm 1. The only modification for each option is follows:

(1) To get the candidate list of the minimal size, we issue a range query for each
range search area R in the range query set R. For each range query, all objects
intersecting R are returned as the answer. The answers of these range queries
are added to the candidate list.

(2) To reduce computational cost while getting a larger candidate list, we execute
only one range query with a query region that corresponds to the minimum
boundary rectangle of all range search areas in R. Then, all objects intersecting
the query region are added to the candidate list.
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Fig. 8. Some termination cases for private queries over private data

4.3.2 Proof of Correctness. In this section, we show the correctness of the pri-
vate nearest-neighbor queries over private data algorithm by proving that: (1) Min-

imality - the algorithm is optimal, i.e., it returns the minimal candidate list, when
the tuning parameter refine is set to ∞, and (2) Inclusion - the algorithm is
inclusive, i.e., it returns the exact answer within the candidate list.

Theorem 5. Minimality. Given a cloaked area A, a user U who issues a query
within A, and a tuning parameter refine which is set to ∞, the algorithm computes
a minimal candidate list of answers for A.

Proof. The algorithm results in a candidate list of objects which intersect with
A or could be the nearest object to some point on the edge of A. We will show that
the minimal candidate list contains all such objects. First, U could be anywhere
within A. The object intersecting A could be the exact answer because the object
and U could be at the same location. Second, U could be located at any point
on the edge of A. For each line segment vivj with objects ti and tj as the nearest
object of its endpoints vi and vj , respectively, the algorithm ends up having the line
segment with either the trivial edge condition (i.e., ti = tj) or the trivial split-point
condition (i.e., ti 6= tj , ts = ti). This is because the stopping criterion condition will
not take place when refine = ∞. We will show that the algorithm finds all objects
that could be the exact answer of some point on a line segment where either the
trivial edge condition or the trivial split-point condition takes place.

(1) The trivial edge condition. We distinguish two cases.
Case 1: The furthest corner of the cloaked area of the same filter t of vi and vj ,
At, from vi and vj is the same (Figure 8a). The search range area of any point
p on vivj is a circle with a radius of a distance from p to the furthest corner of
At from p (represented by a dotted circle). By Theorems 3 and 4, the nearest
object to p intersects the range search area of p. All possible range search areas
of p are within the range search areas of vi and vj , so the objects intersecting
the range search area of vi and vj constitute the minimal set of objects that
could be the exact answer to p.
Case 2: The furthest corners of At from vi and vj are different (Figure 8b). Let
li be the line from vi to the furthest corner of At from vi (represented by a thin
line) and lj be the line from vj to the furthest corner of At from vj (represented
by a bold line). m is a point on vivj projected from the intersection point of
li and lj . The point p on the line segment vim has the same furthest corner,
while p on the line segment mvj also has the same furthest corner. Thus, the
first case can be applied to both line segments vim and mvj .
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(2) The trivial split-point condition. We split vivj into two separate line segments
visij and sijvj . Since both the line segments have the same nearest object, as
depicted in Figure 8c, the proof of the trivial edge condition can be applied to
this case.

Since we guarantee that only the objects within A and the objects that could be
the exact answer of some point on the edge of A are added to the candidate list,
the candidate list is minimal.

Theorem 6. Inclusion. Given a cloaked area A, a user U who issues a query
within A, and a tuning parameter refine ≥ 0, the algorithm computes a candidate
list of answers that contains the exact answer to U .

Proof. When refine is set to ∞, the proof of Theorem 5 shows that target
objects that could be the nearest object to U are added to the candidate list, so
the exact answer to U is included in the candidate list. When refine is finite, the
stopping criterion condition could take place for some line segments. The proof of
the trivial split-point condition in Theorem 5 shows that the nearest object to any
point on the line segment vivj interests the range search areas of vi, vj , and/or the
split point sij of vivj . Since the stopping criterion condition adds these three range
search areas to the range query set R, the algorithm adds all objects intersecting
these range search areas to the candidate list. This means that the nearest object
to any point on a line segment where the stopping criterion condition takes place
is included in the candidate list. Therefore, the exact answer to U is included in
the candidate list whenever the tuning parameter refine ≥ 0.

5. CONTINUOUS PRIVACY-AWARE QUERY PROCESSING

In this section, we propose a shared execution paradigm that turns the snapshot
privacy-aware query processor proposed in Section 4 into a scalable and efficient
query processor for continuous privacy-aware queries. Examples of continuous
queries include “Continuously send e-coupons to the car that is within one mile
of my restaurant” and “Continuously report my nearest police car”. The user issues
a continuous query by registering the query with a database server for a specified
period of time. After the user gets an initial query answer from the database server,
she is notified with the changes in the query answer. Since a numerous number of
continuous privacy-aware queries could be lasted for a long time at the database
server, the most important challenges for processing such continuous queries are
system scalability and computational efficiency. However, a basic paradigm that
simply extends the snapshot privacy-aware query processing algorithm to deal with
continuous queries individually is not scalable and efficient. To this end, we propose
a shared execution paradigm that aims to share computational resources among con-
tinuous privacy-aware queries, in order to improve system scalability and efficiency.

The rest of this section is organized as follows. First, we use a basic paradigm that
extends the snapshot privacy-aware query processor to deal with continuous privacy-
aware queries and analyze the computational cost of maintaining their query an-
swers. Then, we give the detail of our proposed shared execution paradigm, analyze
the computational cost of employing the shared execution paradigm to process con-
tinuous privacy-aware queries, and describe how to modify the snapshot privacy-
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aware query processing algorithm to incorporate the shared execution paradigm for
all introduced privacy-aware query types.

5.1 Basic Continuous Privacy-aware Query Processing

This section describes a basic paradigm that extends the snapshot privacy-aware
query processing algorithm proposed in Section 4 to deal with continuous privacy-
aware queries. The main idea of the basic paradigm is that the snapshot privacy-
aware query processor computes an initial query answer. Due to mobility, the
query answer would become stale at any time. Thus, the query processor has
to continuously detect the change in the query answer and notify the user with
the change immediately. Continuously maintaining the answer of a privacy-aware
query needs to detect two cases of changes: (1) The nearest object of the vertex of
a cloaked area A or the split point of the edge of A changes its location or there
is a new nearest object for the vertex or split point, and (2) Some objects move
to or out from a range search area in the range query set R. For the first case
of changes, we issue a continuous nearest-neighbor (NN) query for each vertex or
split point to monitor its nearest object. For the second case of changes, we issue
a continuous range query for each range search area in R to detect the change
of the target objects within the area. We will describe how the query processor
maintains the answer of continuous privacy-aware queries. Whenever the query
processor is notified with some changes in the continuous NN query, the query
processor re-evaluates the query answer. Then, we only send the changes in the
query answer to the location anonymizer, i.e., an incremental query answer update,
in order to reduce communication overhead. On the other hand, when we detect
changes only in the continuous range queries, we simply send the changes in the
query answer to the location anonymizer without re-evaluating the query answer.
If we re-evaluate a query answer due to the change in a continuous NN queries, any
change in continue range queries can be neglected. This is because all range search
areas will be removed from R before the re-evaluation.

Analysis. We will study the computational cost of the basic paradigm for each
privacy-aware query type. In our analytical model, we consider the second option
of the range search step in Algorithm 1, i.e., only one continuous range query is
issued to monitor the minimum bounding rectangle of all range search areas in the
range query set R and let NQ be the number of continuous privacy-aware queries
in the system. Hence, the total number of continuous range queries is NQ. The
computational cost of each privacy-aware query type in terms of the number of
continuous NN queries is analyzed as follows:

—Private queries over public data. For each query, we issue one continuous NN
query to monitor the nearest object of each vertex of the cloaked area A, i.e., four
continuous NN queries for each query. For each edge of A, we have to monitor
the nearest object of at most 2refine − 1 split points of the edge; and hence, we
issue at most 4× (2refine − 1) continuous NN queries for all the split points of A.
Thus, the computational cost is O(NQ×[4+4×(2refine−1)]) = O(NQ×2refine+2).

—Public queries over private data. For each query, we issue only one continuous
NN query to monitor its filter object, Thus, the computational cost is NQ.

ACM Transactions on Database Systems, Vol. X, No. X, X 20X.



26 · Chi-Yin Chow et al.

—Private queries over private data. The computational cost of this query type is
exactly the same as that of the private queries over public data, i.e., O(NQ ×
2refine+2).

5.2 Shared Execution Paradigm for Continuous Privacy-aware Query Processing

Although the basic paradigm is simple, the computational cost is dependent on the
number of continuous privacy-aware queries and the tuning parameter refine. The
basic paradigm would suffer from a scalability issue when a location-based database
server processes a numerous number of continuous privacy-aware queries with a
strict requirement on the answer optimality, i.e., a large value of refine. To this
end, we propose a shared execution paradigm for continuous privacy-aware queries
to improve system scalability and computational efficiency. The basic idea is that
we maintain a set of static query points whose nearest objects would be utilized as
part of the query processing for all continuous privacy-aware queries.

Static Query Points. In the shared execution paradigm, we maintain a set of
static query points that is uniformly distributed in the system. A static query point
is either in an on or off state. Initially, all static query points are in the off state.
When the query processor needs to find the nearest object of the vertex of a cloaked
area A or the split point of the edge of A, it finds the nearest static query point
of the vertex or split point, and then turns the static query point on and finds the
nearest object to the static query point as an approximate answer for the vertex or
split point. We maintain the answer of this static query point until it is no longer
needed by any continuous privacy-aware queries, i.e., we turn the static query point
off. Since the answer of a static query point may not be the actual nearest object
of the vertex of a cloaked area A or the split point of the edge of A, using the
static query point would result in a larger candidate list of answers. Although the
number of static query points can be served as a system-wide performance tuning
parameter, it would not satisfy the need of individual queries. Thus, we introduce
another tuning parameter δ for individual continuous privacy-aware queries. The
idea is to use the answer of a static query point as the nearest object of the vertex
or split point of A if the distance between the vertex or split point and its nearest
static query point is less than δ. When we set δ = δmax, where δmax is the maximum
value of δ, we always use the static query points for query processing. At the other
extreme case δ = 0, we will not use any static query points for query processing.

The privacy-aware query processor benefits from the shared execution paradigm
in three aspects. (1) The number of static query points can be served as a perfor-
mance tuning parameter to trade off between system scalability and query answer
optimality. In other words, a larger number of static query points gives better qual-
ity of query answers, i.e., a smaller candidate list of answers, but it incurs higher
computational cost. It is important to note that the shared execution paradigm
guarantees that the exact query answer is included in the candidate list, regardless
of the number of static query points. (2) The shared execution paradigm provides
a fashion to bound the total number of continuous NN queries maintained at the
database server by the number of static query points when δ = δmax. (3) When
we use the answer of a static query point as the nearest object of the vertex of
a cloaked area A or the split point of the edge of A, the answer is immediately
available for the query processor without performing any nearest-neighbor search,
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Fig. 9. The effect of δ

and thus reducing computational overhead.
Analysis. Table I summarizes the computational cost of the basic paradigm

and the shared execution paradigm with different values of δ for each privacy-aware
query type. Similar to the analysis of the basic paradigm, we let NQ be the number
of continuous privacy-aware queries and maintain a continuous range query for all
range search areas in the range query set R of each continuous privacy-aware query.
Furthermore, we assume that there are NS static query points that are uniformly
distributed in the system. Figure 9a depicts a cell (represented by a rectangle)
enclosed by four static query points (represented by triangles) where the length and
width of the cell are l and w, respectively, and the coverage area of each static query
point is represented by a shaded circle. A coverage area of a static query point is
a circular area centered at the query point with a radius of δ. We first develop a
function to determine the probability of using the answer of a static query point for
the vertex of a cloaked area A or the split point of the edge of A with respect to δ,
PA(δ), and then analyze the computational cost of each privacy-aware query type
for different values of δ.

Figure 9b gives the case of the maximum value of δ, δmax, i.e., the distance from

a static query point to the center of the cell. Thus, δmax = |bc| =
√
|ab|2 + |ac|2 =√

(l2 + w2)/4, where c is the center of the cell and |bc| represents the distance of
line segment bc. For simplicity, we assume that PA(δ) of the vertices and split
points of a cloaked area A is independent; and thus, PA(δ) can be computed as a
ratio of the area of the union of the coverage area of the four static query points of
a cell to the cell area. To determine PA(δ) for different values of δ, we distinguish
three cases:

Case 1: 0 ≤ δ ≤ min(w, l). In this case, there is no intersection among the
coverage area of the four static query points of a cell (e.g., see Figure 9a); and
hence, PA(δ) = [4 × (δ2π × 90/360)]/(w × l) = δ2π/(w × l).

Case 2: min(w, l) < δ < δmax. Figure 9c illustrates this case where |de| =
|dg| = δ, |fg| = (2δ − l)/2 = δ − l/2, |df | = |dg| − |fg| = δ − (δ − l/2) = l/2,

|ef | =
√
|de|2 − |df |2 =

√
δ2 − (l/2)2, and θ = cos−1(|df |/|de|) = cos−1[(l/2)/δ].

The area of the shaded area is equals to the area of the triangle EDF subtracted
from the area of the sector EDG. The area of the sector EDG is δ2π(θ/360)
and the area of the triangle EDF is (|df | × |ef |)/2; and hence, the shaded area is
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Table I. The computational cost of each privacy-aware query type

Privacy-aware
Query Types

Basic Paradigm
Shared Execution

Paradigm (δ = δmax)
Shared Execution

Paradigm (δ < δmax)

Private Queries
over Public Data

O(NQ×2refine+2) O(min(NQ×2refine+2,

NS))

O((1−PA(δ))×NQ×2refine+2

+min(PA(δ)×NQ×2refine+2,

NS))
Public Queries

over Private Data
NQ O(min(NQ,NS))

O((1−PA(δ))×NQ+
min(PA(δ)×NQ , NS))

Private Queries
over Private Data

O(NQ×2refine+2) O(min(NQ×2refine+2,

NS))

O((1−PA(δ))×NQ×2refine+2

+min(PA(δ)×NQ×2refine+2,

NS))

δ2π(θ/360)− (|df | × |ef |)/2 = δ2π(cos−1[(l/2)/δ]/360)− [(l/2)
√

δ2 − (l/2)2]/2. In
general, the intersection area of the coverage area of the two static query points on
the vertical or horizontal edge of a cell is AInt(s) = 2×{δ2π(cos−1[(s/2)/δ]/360)−
[(s/2)

√
δ2 − (s/2)2]/2}, where s = l and s = w for the vertical and horizontal edge

of a cell, respectively. Thus, PA(δ) = [δ2π − 2(AInt(w) + AInt(l))]/(w × l).
Case 3: δ ≥ δmax. In this case, the cell area is totally covered by the coverage area

of the four static query points that enclose the cell; and hence, the query processor
always uses the answer of static query points for query processing, PA(δ) = 1.

Therefore, the probability of using the answer of a static query point as the nearest
object for the vertex or split point of a cloaked area A, PA(δ), can be summarized
as the following equations:

PA(δ) =





δ2π/(w × l), 0 ≤ δ ≤ min(w, l);[
δ2π − 2(AInt(w) + AInt(l))

]
/(w × l), min(w, l) < δ < δmax;

1, δmax ≤ δ < ∞.

The computational cost of each privacy-aware query type with different values of δ
is analyzed as follows:

—Private queries over public data. For a set of NQ queries, we use a total of at
most min(PA(δ) × NQ × 2refine+2, NS) static query points for query processing
and maintain at most (1−PA(δ))×NQ ×2refine+2 continuous NN queries. Thus,
the computational cost is O((1 − PA(δ)) × NQ × 2refine+2 + min(PA(δ) × NQ ×
2refine+2, NS)).

—Public queries over private data. For a set of NQ queries, we use a total of at
most min(PA(δ)×NQ, NS) static query points for query processing and maintain
at most (1−PA(δ))×NQ continuous NN queries. Thus, the computational cost
is O((1 − PA(δ)) × NQ + min(PA(δ) × NQ, NS)).

—Private queries over private data. The computational cost of this query type is
exactly the same as that of the private queries over public data.

5.2.1 Algorithm for Private Nearest-Neighbor Queries over Public Data. In this
section, we extend Algorithm 1 to employ the shared execution paradigm to compute
the query answer of a private continuous nearest-neighbor query over public data.
Figure 10 depicts a running example of the shared execution paradigm for a private

ACM Transactions on Database Systems, Vol. X, No. X, X 20X.



Casper∗: Query Processing for Location Services without Compromising Privacy · 29

�
�

�
��

�
�

�
��

�
��

�
�

�
�

�
�

�
�

(a) The filter step and the triv-

ial edge condition on v1v2

�
�

�
��

�
��

�
��

�
�

�
�

�
�

�
�

�
��

�
�

(b) The trivial split-point con-

dition on v2v3

�
�

�
��

�
�

�
��

�
��

�
�

�
�

�
�

�
�

�
��

(c) We find a better filter for
v4

�
��

�
�

�
��

�
��

�
�

�
�

�
�

�
�

�
��

�
�

(d) The recursive refinement

condition on v3v4

�
�

�
��

�
�

�
���

��

�
�

�
�

�
�

�
�

�
��

(e) The stopping criterion con-

dition on v3s34 and s34v4

�
�

�
��

�
�

�
��

�
��

�
�

�
�

�
�

�
�

(f) The trivial split-point con-

dition on v1v4

Fig. 10. Example of the shared execution paradigm for a private continuous nearest-neighbor
query over public data (refine = 1)

continuous nearest-neighbor query over public data where the cloaked area A is
represented by a shaded area, the four static query points of the cell intersecting
A are represented by triangles, and the tuning parameter refine is set to one. If a
static query point has been turned on by the query processor, the static query point
is represented by a black triangle; otherwise, the static query point is represented
by a gray triangle. For simplicity, we show only the objects that will be used by the
algorithm. The actual location of the user who issued the query is represented by
a square for illustration only, but this actual location information is not revealed
to the database server. Initially, the candidate list of answers is set to be empty
and the range query set R is set to the cloaked area A. Then, the same idea of
Algorithm 1 can be applied to the shared execution paradigm with the following
modifications:

STEP 1: The Filter Selection Step. The only modification is that for each
vertex vi of A, if the distance between vi and the nearest static query point is
less than δ, we use the answer of the nearest static query point as the filter ti of vi.
Although the filter may not be the actual nearest object to the vertex, we guarantee
that the exact answer to the user is included in the candidate list (inclusion will
be proved later). Otherwise, we find the actual nearest object of vi as the filter
ti as in Algorithm 1. Note that if the static query point has been turned on, its
answer is immediately available for the query processor without performing any
nearest-neighbor search. In our example, Figure 10a depicts that only the vertices
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v3 and v4 with a distance to their nearest static query point is less than δ. Thus,
the query processor needs to find the actual nearest object to the other vertices v1

and v2 as their filters, i.e., t1 = t2 = T16. Since the distance between v3 and the
top right static query point is less than δ, the filter of v3 is the answer of the top
right static query point, i.e., t3 = T13. Likewise, the filter of v4 is the answer of the
top left static query point, i.e., t4 = T3.

STEP 2: The Range Selection Step. We will present the minor modification
for each possible condition.

The trivial edge condition (ti = tj). This condition takes place for an edge vivj

when the same object serves the filter of vi and vj . In this condition, the only
modification is that if we use the answer of a static query point as the filter of vi,
we do not add ti to the candidate list. Instead, we add a range search area of vi

that is a circle centered at vi with a radius of the distance from vi to ti to the range
query set R. The idea behind this modification is that when we use a static query
point, its answer may not be the actual nearest object of the vertex. In fact, the
objects that could be the actual nearest object of vi are within the range search
area. Thus, all these objects should be added to the candidate list. The same
scenario is also applied to the vertex vj . In our example, this condition takes place
for edge v1v2 because the same object T16 serves the filter of both vertices v1 and
v2 (Figure 10a). Since T16 is the actual nearest object to v1 and v2, we simply add
T16 to the candidate list and no further refinement on v1v2 is needed.

The trivial split-point condition (ti 6= tj , refine > 0, ts = ti). We have two
modifications before checking for this condition, and one modification when this
condition holds for an edge vivj . The first modification is similar to the filter step.
If the distance between the split point sij of vivj and the nearest static query point
is less than δ, we use the answer of the nearest static query point as the nearest
object ts of sij . The second modification is that if ts is closer to vi than vi’s current
filter ti, ts is considered as the filter of vi. Then, we start over this step on vivj with
the new filter. The idea behind this modification is that if we find ti for vi based
on a static query point, ts could be closer to vi than ti, i.e., ts is a better filter for
vi. The same scenario is also applied to the vertex vj . We update the filter of vi

and/or vj whenever we find a better one. The third modification that is similar to
the modification of the trivial edge condition is for the case that this condition takes
place. If we use the static query point to find the nearest object of vi, we add a
range search area of vi to the range query set R. This is because the objects within
range search area could be the actual nearest object of vi. The same scenario is
also applied to the vertex vj and the split point sij of vivj . In our example, this
condition takes place for edges v2v3 and v1v4. For edge v2v3, we compute the split
point s23 of v2v3. Since the distance between s23 and the nearest static query point
is larger than δ, we find the actual nearest object to s23. Figure10b gives that the
nearest object of s23 is the same as the filter of v2 and v3. Since we use only the
answer of the top right static query point as the filter of v3, we add the range search
area of v3 to the range query set R and T13 to the candidate list. Similarly, for
edge v1v4, the actual nearest object of the split point s14 is the same as the filter
of v1 and v4, as depicted in Figure 10f. As we use the answer of the top left static
query point for v4, only the range search area of v4 and T16 are added to R and the
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candidate list, respectively.
The recursive refinement condition (ti 6= tj , refine > 0, ts 6= ti). The query

processing of this condition is exactly the same as in Algorithm 1. In our example,
this condition takes place on edge v3v4 where we compute the split point s34 of
v3v4, and then find the actual nearest object to s34, i.e., the distance between s34

and the nearest static query point is larger than δ. Figure 10c depicts that the
nearest object of s34 is T12. Since T12 is closer to v4 than v4’s current filter t4 = T3,
we set T12 as v4’s filter, i.e., t4 = T12. If the left top static query point is no longer
used by any other continuous privacy-aware queries, we turn off this static query
point. Then, we start over the range selection step on v3v4 with t3 = T13 and
t4 = T12. Since the trivial edge and stopping criterion conditions still do not take
place, we recompute the split point s34 and find the actual nearest object to s34,
i.e., T8, as depicted in Figure 10d. T8 is different from the filters of v3 and v4,
so this condition takes place for edge v3v4 again. We split v3v4 into two separate
line segments v3s34 and s34v4, and execute the range selection step on these two
separate line segments while decreasing the tuning parameter refine by one to zero.
In the recursive calls on these line segments, since refine = 0, we end up with the
next case of the stopping criterion condition for these line segments.

The stopping criterion condition (ti 6= tj , refine = 0). The only modification
for this condition is similar to the trivial edge condition. As in Algorithm 1, we
first add the range search area of the split point sij of the edge vivj to the range
query set R. However, if we use the answer of a static query point as the nearest
object of vi, we add the range search area of vi to the range query set R. The
same scenario is also applied to the other vertex vj . In our example, we end up
with this condition for edge v3v4, in which we compute the split point of each of
the two separate line segments v3s34 and s34v4 without finding the nearest object
of these two split points. For the line segment v3s34, we add the range search areas
of v3 and the split point of v3s34 that are represented by solid and dotted circles,
respectively, at the right side in Figure 10e to the range query set R and T8 to the
candidate list. The idea of not adding the search range area of s34 to R is that
T8 is the actual nearest object to s34, so s34’s range search area contains only T8.
Likewise, for the line segment s34v4, we add the range search areas of v4 and the
split point of s34v4 to R and T8 to the candidate list.

STEP 3: The Range Search Step. This step is exactly the same as in
Algorithm 1. In our example depicted in Figure 10, the examples for the two
options are:

(1) We get the minimal candidate list of answers by issuing a continuous range
query for each range search area in the range query set R, i.e., the cloaked area
A and four distinct range search areas represented by circles, and then adding
the answer to the candidate list.

(2) We issue only one continuous range query with a query region that corresponds
to a minimum bounding rectangle covering all the range search areas in R, and
then add the answer to the candidate list.

Proof of Correctness. In this section, we show the correctness of the shared exe-
cution paradigm for private queries over public data by proving that the paradigm
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is inclusive, i.e., it returns the exact answer within the candidate list.

Theorem 7. Inclusion. Given a cloaked area A, a user U who issues the query
within A, the algorithm of private queries over public data employing the shared
execution paradigm computes the candidate list of answers that contains the exact
answer to U .

Proof. We first show that the exact nearest object tp to some point p on an
edge vivj is included in the candidate list for the trivial edge, trivial split-point, or
stopping criterion condition.

The trivial edge condition. By Theorem 1, tp is within the dotted and/or solid
circles (Figure 5a). We distinguish three cases. Case 1: We use the answer of a
static query point, t, as the nearest object of vi, while t is the actual nearest object
of vj . Since t is the actual nearest object of vj , there is no other objects within the
solid circle. If the actual nearest object of vi is t, there is no other objects within
the dotted circle; and hence, t = tp. On the other hand, if the actual nearest object
of vi is not t, tp is closer to p than t, tp is within the range search area of vi, i.e., the
dotted circle. Thus, tp is included in the candidate list. Case 2: We use the answer
of a static query point, t, as the nearest object of vj while t is the actual nearest
object of vi. This case is symmetric with Case 1. Case 3: We use the answer of
static query points, t, as the nearest object of both vi and vj . The proof of Case 1

is applied to the case that t is the actual nearest object of vi and/or vj . If t is not
the actual nearest object of vi or vj , tp is closer to p than t, tp is within the range
search area of vi and/or vj . Thus, tp is included in the candidate list.

The trivial split-point condition. As depicted in Figure 5b, we consider that the
edge vivj is split into two separate line segments visij and sijvj . For both the line
segments, the endpoints have the same nearest object, so the proof of the trivial
edge condition can be applied to these two line segments.

The stopping criterion condition. In this case, the range search area R of sij is
added to the range query set R, i.e., all objects within R are added to the candidate
list. For line segment visij , the proof of the Case 1 and Case 3 of the trivial edge
condition is applied to the case that we find the actual nearest object of vi and
use the answer of a static query point as the nearest object of vi, respectively. The
proof for the line segment sijvj is symmetric with that for the line segment visij .

Then, we show that the exact answer to U is within the candidate list. When
refine is set to ∞, each line segment ends up with having either the trivial edge
condition or the trivial split-point condition. When refine is finite, the stopping
criterion condition could take place for some line segments. We already show that
the nearest object to any point on each line segment is added to the candidate list
for these three conditions. The objects within A are also added to the candidate
list. Therefore, the exact answer to U is included in the candidate list.

5.2.2 Algorithms for Public Nearest-Neighbor Queries over Private Data. The
query processing algorithm for public queries over private data presented in Sec-
tion 4.2.1 can be applied to the shared execution paradigm with only one modifi-
cation in the filter selection step. The modification is that if the distance between
the user who issues the query and the nearest static query point is less than δ, we
use the answer of the nearest static query point as the filter. Otherwise, we find the
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actual nearest object of the user as the filter. The range search step is the same as
in Section 4.2.1.

Proof of Correctness. We will show the correctness of the proposed shared exe-
cution paradigm for public queries over private data by proving that the paradigm
is inclusive, i.e., it returns the exact answer within the candidate list.

Theorem 8. Inclusion. Given a cloaked area A, a user U who issues the query
within A, the algorithm of public queries over private data employing the shared
execution paradigm computes the candidate list of answers that contains the exact
answer to U .

Proof. We use the answer of a static query point, t, as the nearest object of
U . Let t′ be the actual nearest object of U . If t = t′, the proof is the same as in
Theorem 4. However, if t 6= t′, distmax(U, At′) < distmax(U, At), i.e., t′ intersects the
range search area of U . Thus, t′ is added to the candidate list.

5.2.3 Algorithms for Private Nearest-Neighbor Queries over Private Data. The
private queries over private data algorithm presented in Section 4.3.1 only returns
range search areas, so we have only three minor modifications to apply the shared
execution paradigm to this algorithm. The modifications are as follows.

STEP 1: The Filter Selection Step. The only modification for this step
is that for each vertex vi of a cloaked area A, if the distance between vi and the
nearest static query point is less than δ, we use the answer of the static query point
as the filter ti of vi. Otherwise, we find the actual nearest object of vi as its filter
ti.

STEP 2: The Range Selection Step. We have only two modifications in the
trivial split-point condition. These modifications are exactly the same as the first
two modifications in the trivial split-point condition of the range selection step in
the private queries over public data algorithm (Section 5.2.1).

STEP 3: Range Search Step. We do not have any modification in this step.

Proof of Correctness. We will show the correctness of the proposed shared exe-
cution paradigm for private queries over private data by proving that the paradigm
is inclusive, i.e., it returns the exact answer within the candidate list.

Theorem 9. Inclusion. Given a cloaked area A, a user U who issues the query
within A, the algorithm of private queries over private data employing the shared
execution paradigm computes the candidate list of answers that contains the exact
answer to U .

Proof. We first show that the exact nearest object tp to some point p on an
edge vivj is included in the candidate list for the trivial edge, trivial split-point, or
stopping criterion condition.

The trivial edge condition. We distinguish two cases.
Case 1: The furthest corner of the cloaked area of the same filter t of vi and vj ,

At, from vi and vj is the same (Figure 8a). By Theorem 5, the cloaked area of tp

intersects the thin and/or bold circles. We distinguish three cases. Case I: We use
the answer of a static query point, t, as the nearest object of vi while the actual
nearest object of vj is t. Since the distance from the actual nearest object of vi

to vi is either the same as the distance from t to vi, i.e., t is the actual nearest
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object of vi, or smaller that the distance from t to vi, so the cloaked area of the
actual nearest object of vi is totally covered by the thin circle; and thus, the actual
range search area of vi is within the thin and/or bold circles. As the trivial edge
condition adds both the thin and bold circles to the range query set R, all objects
within the thin and/or bold circles are added to the candidate list. This means
that all objects intersecting the actual range search area of vi will be added to the
candidate list. Case II: We use the answer of a static query point, t, as the nearest
object of vj while the actual nearest object of vi is t. This case is symmetric with
Case I. Case III: We use the answer of static query points as the nearest object of
both vi and vj . The thin and bold circles are the range search areas of vi and vj ,
respectively. Since the actual range search areas of vi and vj are within the thin
and/or bold circles, all objects within these two circles are added to candidate list.

Case 2: The furthest corners of At from vi and vj are different (Figure 8b). The
proof of this case is the same as the Case 2 of the trivial edge condition in Theorem 5.

The trivial split-point condition. The proof of the trivial split-point condition in
Theorem 7 is applied to this case.

The stopping criterion condition. The proof of the stopping criterion condition
in Theorem 7 is applied to this case.

Then, we show that the exact answer to U is within the candidate list. When
refine is set to ∞, each line segment ends up with having either the trivial edge
condition or the trivial split-point condition. When refine is finite, the stopping
criterion condition could take place for some line segments. We already show that
the nearest object to any point on each line segment is added to the candidate list
for these three conditions. The objects within A are added to the candidate list.
Therefore, the exact answer to U is included in the candidate list.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the basic paradigm using the snap-
shot privacy-aware query processing algorithm and the shared execution paradigm
for all privacy-aware query types, i.e., private queries over public data, public queries
over private data, and private queries over private data, in our Casper* framework.
Since the basic paradigm uses exact nearest-neighbor queries to compute candidate
lists, this paradigm is denoted as “Exact” in this section, while the shared execu-
tion paradigm is denoted as “Shared”. We evaluate our algorithms with respect
to performance tuning parameters, system scalability, and privacy requirements.
In all experiments, the performance evaluation is in terms of (a) total processing
time, which includes the query processing time of computing an candidate list at
the database server, the transmission time of sending the candidate list from the
database server to the location anonymizer, and the filtration time of computing
an exact answer from the candidate list, and (b) candidate list size. However, the
filtration time is much less than both the query processing time and the trans-
mission time, so we do not show the filtration time in all the figures. For the
experiments of performance tuning parameters, we vary the value of refine, and the
number of static query points and the value of δ for the shared execution paradigm.
These experiments are important to evaluate the performance trade-off of the three
tuning parameters. Then, we perform experiments to show the scalability of the
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proposed algorithms with respect to large numbers of users and data, and various
data object sizes. Finally, we show the performance of the proposed algorithms
with respect to various levels of k-anonymity which is the most commonly used
privacy requirement.

We use two baseline algorithms to evaluate the performance of our algorithms.
For private queries over public data, we compare our algorithms with an existing
range nearest-neighbor algorithm that finds the minimal set of nearest objects of
a rectangular query region [Hu and Lee 2006] (denoted as “RNN”). For private
data, since none of existing approaches works for private data, we design a baseline
algorithm for private queries over private data (denoted as “Base”). The basic idea
of the Base algorithm is that we first find the nearest object t to the center of a
cloaked area A and determine the maximum distance dmax between each vertex
v of A and the furthest corner of t from v. Then, we determine a circular range
search area centered at the center of A with a radius of the sum of the distance
between the center of A and one of its vertex and dmax. The set of private data
that intersects the range search area constitutes an answer set. Thus, the Base

algorithm requires only one nearest neighbor search for t and one range search for
the extended A. Since public queries over private data is very simple, we do not
design any baseline algorithm for this query type. At the location anonymizer, we
use a nearest neighbor search to compute the exact answer from a candidate list of
answers.

In all experiments, we generate a set of moving objects on the road map of
Hennepin County in Minnesota, USA. The input road map is extracted from the
Tiger/Line files that are publicly available [Bureau 2006]. Furthermore, the location
anonymizer employs the PrivacyGrid algorithm that is the state-of-the-art location
anonymization algorithm to blur users’ locations into cloaked areas [Bamba et al.
2008]. These cloaked areas are the input of our privacy-aware query processor.
Unless mentioned otherwise, the experiment considers 200K mobile users in which
100K users issue continuous privacy-aware queries, and 20K data objects with a
size of 2 Kbytes. The continuous queries are simulated similar to the work [Mokbel
et al. 2004], but we consider a more dynamic environment. Each moving object or
query reports its new location information (if changed) every five seconds. Casper*
is adopted to refresh query results every five seconds. The communication band-
width between the database server and the location anonymizer is 1 Mbits per
second (Mbps). We generate a random k-anonymity privacy requirement for each
user where k is assigned uniformly within a range [10− 50]. For both the basic and
shared execution paradigms, refine is set to one. For the shared execution paradigm,
we consider 210×210 static query points and δ is set to 60% of δmax = 500. Table II
summarizes the parameter settings.

6.1 Effect of Performance Tuning Parameters

In this section, we study the effect of three performance tuning parameters, i.e.,
refine, the number of static query points, and δ, on our proposed basic paradigm
(Exact) and shared execution paradigm (Shared) with respect to total processing time
and candidate list size. In our framework, the tuning parameter refine is for both
the basic and shared execution paradigms, while the number of static query points
and the parameter δ are dedicated for the shared execution paradigm.
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Table II. Summary of parameter settings
Parameters Default Values Ranges

Number of users 200K 100K to 500K

Number of data 20K 10K to 50K

Data size 2 Kbytes 2 to 10 Kbytes

Number of static query points 210 × 210 26 × 26 to 210 × 210

refine 1 0 to ∞

δ 60% of δmax = 500 20% to 100% of δmax

k-anonymity privacy requirement [10-50] [10-50] to [10-250]
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Figures 11 and 12 depict the performance of the Shared and Exact algorithms with
respect to increasing the value of refine from zero to infinity. Figures 11a and 12a
give the effect of refine on total processing time which includes the processing time
of a candidate list of answers at the database server (represented by gray bars)
and the transmission time of sending the candidate list to the location anonymizer
(represented by white bars). Since the parameter refine has no effect on public
queries over private data, we show only the performance of private queries over
public and private data. The results show that the query processing time of our
Shared and Exact algorithms increases when refine gets larger. The results also
indicate that Shared effectively improves query processing time, i.e., Shared reduces
the query processing time of Exact by from 17% to 55% for private queries over
public data and by from 18% to 33% for private queries over private data, as
depicted in Figures 11a and 12a, respectively. The main reason of the improvement

ACM Transactions on Database Systems, Vol. X, No. X, X 20X.



Casper∗: Query Processing for Location Services without Compromising Privacy · 37

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

0

0.05

0.1

0.15

0.2

0.25

0.3

To
ta

l P
ro

ce
ss

in
g 

Ti
m

e 
(s

ec
)

Number of Static Query Points

Processing Transmission

218214 216 220212

(a) Total Processing Time

0

2

4

6

8

10

12

14

C
an

di
da

te
 L

is
t S

iz
e

Number of Static Query Points

SHARED EXACT RNN

218214 216 220212

(b) Candidate List Size

Fig. 13. Number of Static Query Points (Private Queries over Public Data)
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Fig. 14. Number of Static Query Points (Public Queries over Private Data)

is that Shared significantly reduces the number of nearest-neighbor searches in Exact

by sharing the answer of a set of static query points as approximate nearest-neighbor
searches among all continuous queries. It is important to note that Shared only
slightly increases the candidate list size (Figures 11b and 12b). The total processing
time of Shared and Exact is better than the baseline algorithms RNN and Base for
public and private data, respectively. The total processing time of Shared and
Exact increases and the candidate list size slightly reduces when refine is larger
than one. The main reason is that the first two iterations of refinements already
prune the object set to a small set of objects which includes the exact answer to
the user. Further refinements can only slight improve transmission time, but they
incur higher query processing time. Thus, we set refine to one as a default value
for other experiments.

Figures 13-15 depict the performance of Shared with respect to increasing the
number of static query points from 212 to 220. In general, when the number of static
query points gets larger, Shared only slightly increases the query processing time
(Figures 13a-15a) while significantly improving the candidate list size (Figures 13b-
15b). The decrease of the candidate list size is due to the fact that Shared provides
more accurate approximate nearest neighbor searches as there are more static query
points, i.e., the vertex of a cloaked area A or the split point of the edge of A is closer
to its nearest static query point. As Shared reduces the candidate list size, it also
improves the transmission time; and thus, increasing the number of static query
points results in better total processing time.
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Fig. 16. δ Values (Private Queries over Public Data)

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

S
H

A
R

E
D

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

E
X

A
C

T

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500

To
ta

l P
ro

ce
ss

in
g 

Ti
m

e 
(s

ec
)

delta Values

Processing Transmission

(a) Total Processing Time

0

2

4

6

8

10

12

14

16

100 200 300 400 500

C
an

di
da

te
 L

is
t S

iz
e

delta Values

SHARED EXACT

(b) Candidate List Size

Fig. 17. δ Values (Public Queries over Private Data)

Figures 16-18 give the performance of Shared with respect to increasing δ from
20% to 100% of δmax = 500, i.e., from 100 to 500. In general, the results show that
when δ gets larger, the query processing time of Shared decreases (Figures 16a-18a)
while the candidate list size slightly increases (Figures 16b-18b). The reason for
the improvement in query processing time is that the answer of static query points
can be shared with more queries. However, as δ gets larger, Shared provides more
inaccurate approximate nearest-neighbor searches for the query processor; and thus,
the size of the range search areas in the range query set R gets larger. Larger range
search areas would give larger candidate lists that lead to higher transmission time
and filtration time. Therefore, δ can be served as a tuning parameter for a trade-off
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Fig. 20. Number of Users (Private Queries over Private Data)

between query processing time and candidate list size.

6.2 Scalability

In this section, we evaluate the scalability of our algorithms with respect to three
dimensions, i.e., the number of users, the number of data, and data size.

Figures 19 and 20 depict the scalability of our algorithms with respect to varying
the number of mobile users from 100K to 500K. As there are more users, the total
processing time of all approaches improves (Figures 19a and 20a). The main reasons
for this are that (a) increasing the number of users results in smaller cloaked areas
that incur lower query processing time; and (2) such smaller cloaked areas lead to
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Fig. 21. Number of Data (Private Queries over Public Data)
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Fig. 22. Number of Data (Private Queries over Private Data)

smaller candidate lists that reduce transmission time (Figures 19b and 20b).
Figures 21 and 22 give the scalability of our algorithms with respect to increasing

the number of public/private data from 10K to 50K. The results show that the total
processing time and candidate list size of all approaches increase when the number of
data gets larger, as depicted in Figures 21a-22a and Figures 21b-22b, respectively.
The increase of the total processing time is due to higher transmission time of
sending larger candidate lists from the database server to the location anonymizer.
When the number of data increases, there are more objects within a cloaked area
A and each edge of A has more nearest target objects; and hence, the candidate
list size increases. Since the transmission time is higher than the query processing
time and filtration time, when there are more data, we should increase the value
refine to reduce candidate list size to improve the total processing time.

Figure 23 gives the effect of data object size on the total processing time of our
algorithms with respect to increasing the object size from 2 to 10 Kbytes. Increasing
the object size results in higher transmission time for all approaches, so the total
processing time of all approaches increases. For public data, since our algorithms
improve the query processing time by giving larger candidate lists of answers, i.e.,
refine = 1, the improvement in the total processing time becomes smaller when the
object size gets larger (Figure 23a). For private data, our algorithms always (Shared

and Exact) give smaller candidate lists than Base, so our algorithms perform much
better than Base when the data object size increases (Figure 23b).
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Fig. 25. k-Anonymity Requirements (Private Queries over Private Data)

6.3 Effect of Privacy Requirements

Figures 24 and 25 depict the performance of our algorithms with respect to increas-
ing the maximum k-anonymity level from 50 to 250 (the minimum k-anonymity
level is 10). The results show that the query processing time of all approaches
increases as k gets larger (Figures 24a and 25a). This is because increasing the
k-anonymity level results in larger cloaked areas that lead to higher query process-
ing time. Larger cloaked areas also pose larger candidate lists that lead to higher
transmission time (Figures 24b and 25b). Thus, the total processing time of all
approaches increases, as the k-anonymity level gets stricter.
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7. CONCLUSION

This paper introduces a new framework Casper* in which mobile users can obtain
location-based services without the need to disclose their private location informa-
tion. Casper* has two main components, the location anonymizer and the privacy-
aware query processor. The location anonymizer acts as a trusted third party that
blurs the exact location information of each user into a cloaked area that satis-
fies the user specified privacy requirements. Since the location anonymizer part has
been widely studied, we focus on only the privacy-aware query processing part. The
privacy-aware query processor is embedded into traditional location-based database
servers to tune their functionalities to be privacy-aware by dealing with cloaked ar-
eas rather than exact point information. Three new query types that are supported
by Casper* are identified, private queries over public data, public queries over pri-
vate data, and private queries over private data. To deal with these three privacy-
aware query types, the query processor provides a candidate list of answers rather
than an exact answer for the user. We have proved that the returned candidate
list contains the exact answer and is of minimal size. Then, we propose a shared
execution paradigm that aims to share computational resources among continuous
privacy-aware queries, in order to improve system scalability and computational
efficiency of the query processor for continuous privacy-aware queries. In addition,
the performance of the query processor can be tuned through several parameters
to achieve a trade-off between system scalability, i.e., query processing time, and
query answer optimality, i.e., candidate list size. Extensive experimental evalua-
tion studies the privacy-aware query processor of Casper* and shows its scalability
and efficiency with a large number of mobile users, continuous queries, and data,
various privacy requirements, and various performance tuning settings.
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