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ABSTRACT
Maps services are ubiquitous in widely used applications including
navigation systems, ride sharing, and items/food delivery. Though
there are plenty of efforts to support such services through design-
ing more efficient algorithms, we believe that efficiency is no longer
a bottleneck to these services. Instead, it is the accuracy of the under-
lying road network and query result. This paper presents QARTA;
an open-source full-fledged system for highly accurate and scalable
map services. QARTA employs machine learning techniques to
construct its own highly accurate map, not only in terms of map
topology but more importantly, in terms of edge weights. QARTA
also employs machine learning techniques to calibrate its query
answers based on contextual information, including transportation
modality, location, and time of day/week. QARTA is currently de-
ployed in all Taxis and the third largest food delivery company
in the State of Qatar, replacing the commercial map service that
was in use, and responding in real-time to hundreds of thousands
of daily API calls. Experimental evaluation of QARTA shows its
comparable or higher accuracy than commercial services.
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1 INTRODUCTION
The proliferation of GPS-enabled devices and the need for basic map
services (e.g., routing, store finding, and traffic information) result
in having a variety of commercial map services (e.g., Google Maps,
Bing Maps, HERE, and Waze) that are ubiquitously used worldwide.
On top of this, mapping services have become an integral com-
ponent of other widely used services, including ride-sharing (e.g.,
Uber and Lyft), food delivery (e.g., Uber Eats and Doordash), and
last-mile delivery (e.g., Amazon, UPS, and FedEx). All these services
rely on the basic functionality of routing, which recommends the
best route from one location to another. Hence, several research
efforts were dedicated to come up with more efficient execution of
shortest path queries [44, 46, 58, 75, 77, 81]. However, practically
speaking, the execution time is no longer the bottleneck of these
queries. The real challenge is accuracy, which heavily depends on
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the quality of the underlying map. If a company runs the most
efficient algorithm on top of an inaccurate map, the result will not
be acceptable. Another company with a more accurate map would
offer better services even if it has a less efficient algorithm, yet still
within an acceptable real-time response.

As a result, recent work has focused on building and updating
the road network map, especially for regions in the world where
maps are not easily available. Examples of such work include con-
structing the road network from drivers’ GPS traces [7, 14, 65, 69]
or satellite images [6, 15, 71]. Unfortunately, these attempts did not
solve the routing problem mentioned earlier as the focus is mainly
on having a more accurate topology of the map, while routing ser-
vices rely more on the weights of the network edges (i.e., road
segments). An accurate topological road network without accurate
edge weights will be of no use to basic map services, routing, range
queries, and others. Due to their direct dealing with customers,
commercial map services have realized this fact, and have focused
their recent efforts on building maps with accurate edge weights,
which can be seen in the traffic layer in Google, Bing, or Apple maps.
However, unfortunately, commercial map services suffer from two
main issues: (a) the map accuracy is dramatically degraded in areas
that either lack enough data or where maps are frequently updated,
and (b) beyond a certain limit of API usage, customers have to pay
a considerable cost for using map services, which is a major burden
to small and medium enterprises.

This paper presents QARTA 1 ; an open-source full-fledged sys-
tem that employs machine learning techniques to provide highly
accurate map services. QARTA is currently responding to hundreds
of thousands of daily API calls coming from its actual deployment
in: (a) all Taxis in the State of Qatar (around 4K vehicles), and
(b) a food delivery company (around 3K motorbikes). In both cases,
QARTA has successfully replaced commercial map services that
were in use for long. QARTA was triggered by a real need from the
Taxi and delivery companies that not only the commercial service is
expensive, but more importantly, it is outdated in both the topology
and traffic metadata. The main reason for having such stale maps is
that the underlying map is rapidly changing due to major country-
wide constructions [4]. QARTA goes beyond supporting the basic
routing service to accommodating other important queries such
as range and 𝑘-nearest neighbor queries. All such queries would
need to report an Estimated Time of Arrival (ETA) along with each
returned result. The ETA accuracy highly depends not only on the
accuracy of the underlying map but also on the understanding of
the contextual error margins of the query result. QARTA takes such
error margin into account before returning back the full answer.

QARTA is built with two principles in mind: (1) Map-centric.
QARTA believes that a key point to the success of all map services
1QARTA comes from both the Arabic word Kharta (map in Arabic) and the Latin word
Cartography. We then replaced the first letter by Q as a reference for the State of Qatar.
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is having an accurate map. Hence, a major part of the system is
geared towards constructing an accurate road network in terms
of both topology and edge weights. (2) Query Calibration. QARTA
believes that the answer of any map service would still need to
be calibrated based on contextual information (e.g., transportation
modality, time of the day/week). QARTA employs machine learning
techniques to calibrate its query answer. QARTA feeds its machine
learning models with real data obtained from the running vehicles
and motorbikes that use it.

QARTA completely separates map construction from query pro-
cessing, where updating or constructing the map is a background
process that does not affect the query response time. Map con-
struction digests input live GPS traces through a light process that
continuously and accurately updates the map. Meanwhile, query
calibration relies on models built offline. Hence, it does not put
any overhead on the underlying query processing, making QARTA
response time as real time and scalable as the underlying query
processor. A resilient feature of QARTA is that it does not come up
with new query processing or indexing techniques. Instead, it sig-
nificantly boosts the accuracy of these techniques by feeding them
with an accurate map, and calibrating their answers. Experimental
evaluation of QARTA, based on real data and actual deployment,
shows that QARTA has significantly higher accuracy than currently
available open-source solutions, and has a comparable to slightly
better performance than commercial map services. All comes with
a real-time response time.

Section 2 describes QARTA system architecture. The three lay-
ers of QARTA, data layer, map making, and query calibration, are
described in Sections 3-5. Experimental evaluation is in Section 6.
Related work and conclusion are in Sections 7 and 8.

2 QARTA ARCHITECTURE
Figure 1 depicts the map-centric QARTA system architecture, where
the map lies in the center of the architecture, indicating that map
construction is: (a) a major part of QARTA, and (b) isolated from the
query processing. QARTA is composed of three layers, namely Data
layer, Map Making layer, and Query Calibration layer, described
briefly below. The gray modules in Figure 1 represent the new
components designed only by QARTA, while other modules employ
off-the-shelf solutions. QARTA visualization interface is described
in details in its demo paper [3].
Data Layer. This layer is responsible for all data collection and
preparation procedures as well as the infrastructure storage for all
such data. The layer takes various forms of input data, including
maps, Points of Interest (PoI), trips, trajectories, and the QARTA
map itself. The input goes through data cleaning and sampling
procedures, where cleaned and sampled data are all internally stored
and indexed in typical spatial data warehouses. The data layer feeds
the map making and query calibration layers by the data needed to
construct the map and build the calibration models, respectively.
Details are in Section 3.
MapMaking Layer. This layer is responsible for building QARTA
map, which is the main asset that QARTA has, and is the main
reason behind its accuracy. To QARTA, building a map goes beyond
finding the map topology, as it also includes finding the road edge



  

 



























  

 













Figure 1: QARTA Architecture
weights and metadata. In addition, this layer makes a clear distinc-
tion between whether the trajectory data should be matched to the
map or used to correct the map. Details are in Section 4.
Query Calibration Layer. This layer supports user queries, in-
cluding shortest-path, range, and 𝑘-nearest-neighbor queries. It sig-
nificantly boosts the accuracy of existing spatial query algorithms
by: (a) feeding the algorithms with a highly accurate map, and
(b) calibrating answers by understanding the error margin of the
deployed algorithms under various contexts, including transporta-
tion modality and time of the day/week. Details are in Section 5.

3 DATA LAYER
The data layer is responsible for data digestion and collection efforts
while laying out the storage infrastructure. Some of QARTA input
data are already rich and clean (e.g., official maps or sanitized list
of Points of Interest (PoI)), hence we just store it in off-the-shelf
spatial data warehouses. Meanwhile, a major part of QARTA input is
noisy (e.g., inaccurate GPS readings, missing data, or misinterpreted
data), hence QARTA develops its own Data Cleaning module that
produces a cleaned version. For parts of the map that is short in
data, QARTA employs its own Data Crawling module.

3.1 Data Cleaning
Though trajectory data is crucial for inferring road and traffic in-
formation, collecting them in the wild results in corrupted data
that would harm the machine learning models. Although there is a
plethora of systems and techniques for general data cleaning [38],
they all fall short when dealing with spatial and trajectory data,
mainly due to the spatial data distinguishing characteristics [29].
Recent attempts to trajectory data cleaning [22, 45] mainly focus
on map matching trajectory data, which is another spectrum of
problems that will be addressed in the Map Making layer. Hence,
QARTA employs its own rule-based data cleaning module that ad-
dresses specific trajectory problems that came out from its actual
deployment. Examples of such problems and rules include:
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(d) QARTA Match or Make
Figure 2: Match or Make

Rule 1: Trajectories with a stop. If a trajectory 𝑇 encounters sig-
nificant speed reduction, while other trajectories on the same time
and road reported normal speed, split 𝑇 into 𝑇1 and 𝑇2 by removing
the segment(s) form𝑇 that include the speed reduction. If the number
of points in 𝑇𝑖 is under a certain threshold, remove 𝑇𝑖 . The rationale
is that we have observed a nontrivial fraction of raw trajectories
collected by our fleet contain traffic-unrelated stops, e.g., a pas-
senger asks the driver for a quick stop by a store. Including such
trajectories in our dataset would give wrong traffic information,
hence we had to either completely remove it, or just remove the
erroneous segments. We go with the latter.
Rule 2: Unrealistic points. For a point 𝑃𝑖 in trajectory 𝑇 , if the
speed from the previous point 𝑃𝑖−1 is above a certain threshold, remove
𝑃𝑖 from 𝑇 , and connect 𝑃𝑖−1 to 𝑃𝑖+1 directly. The rational is that an
unrealistically high speed between two consecutive points is an
indication of a wrong GPS reading. So, we simply remove this point.
Rule 3: Missing points. If there is a significant time difference
(above a certain threshold) between two consecutive points 𝑃𝑖 and
𝑃𝑖+1 in the same trajectory 𝑇 , split 𝑇 into 𝑇1 and 𝑇2 by removing the
segment (𝑃𝑖 ,𝑃𝑖+1). If the number of points in 𝑇𝑖 is under a certain
threshold, remove 𝑇𝑖 . The rationale is that a significant time differ-
ence between points is an indication of a missing point in between.
Ignoring this would result in an inaccurate trajectory.

All rules rely on setting various threshold parameters. Higher
thresholds get higher data quality but would miss real non-ideal
scenarios. We currently set these thresholds manually. Finding the
best tuning parameters is in the plan for next release of QARTA,
and beyond the scope of this paper.

3.2 Data Crawling
QARTA crawls several governmental and open-access sites to en-
rich its repository of maps and PoIs, which is a straightforward
development process. For trajectories and trip information, QARTA
collects it continuously through its real deployment. In cases where
QARTA is newly deployed or there is shortage of trip information,
we may acquire traffic information either from UBER-movement-
like platforms [73] that provide access to limited datasets or ex-
plicitly from commercial services [68] by sending API routing calls
with (origin, destination, timestamp). In case of commercial map
services, it is crucial to optimize the number of API calls to ac-
commodate low-budget enterprises. Hence, QARTA employs its
own smart crawler that utilizes the limited API budget as follows:
(1) Weekday/Weekend future days. To ensure that crawled data is
not affected by any transient congestion of road closures, we issue
all our API calls for someday a few weeks ahead in the future. To
ensure good coverage throughout the week, we assign a ratio of
our calls to be during the weekend. (2) Different times of the day. To

get good temporal coverage, we split API calls over different times
of the day based on missing data. (3) Short trips. A large majority of
our API calls are for short trips because long trips usually involve
main roads, in which we usually have enough coverage. Short trips
give more information about secondary and tertiary roads, which
are most needed. (4) POI trips. A fraction of our API calls starts or
ends at a PoI, as these are more likely to be trip destinations.

4 MAP MAKING LAYER
The Map Making layer is responsible for building QARTA map,
including road network, edge weights, road metadata, and PoIs. The
layer is also equipped with a map fusion module that merges map
updates to an existing map [70]. Since there is already a plethora of
techniques for building the road network and map matching (see
Section 7), QARTA just employs state-of-the-art of these techniques.
Meanwhile, QARTA identifies and addresses three main bottlenecks
that have the most impact on accuracy, though largely overlooked
by current research efforts,. These modules are Match or Make
(Section 4.1), which smartly decides whether we need to deploy
map-making or map-matching, Edge Weight Inference (Section 4.2),
which finds road segments edge weights, and Metadata inference
(Section 4.3), which finds road segments metadata .

4.1 Match or Make
Map making techniques [1] have an implicit assumption that GPS
traces is ground truth, and use it to create/update the road net-
work. Meanwhile, map matching techniques [12] have an implicit
assumption that the underlying road network is ground truth, and
match GPS traces over it. Both approaches may produce inaccurate
results as both GPS traces and road network may suffer a high
degree of uncertainty [11, 40]. Figure 2a gives a real example of a
roundabout in Doha, Qatar, that was recently converted to a bridge,
yet the map is still not updated, along with vehicle GPS traces.
Figure 2b gives the result of applying a map matching technique,
where point groups A and C are mistakenly classified as wrong
points as they do not match the stale underlying map. Figure 2c
gives the result of applying a map making technique, where point
group Bmistakenly produces non-existed road exits. QARTA avoids
such problems through its Match or Make module. Given a road
network 𝑅 and GPS points 𝑃 , this module decides on the part(s) of
the map where 𝑅 is more accurate than 𝑃 and vice versa. For parts
where 𝑅 is more accurate, we call map matching to match 𝑃 on 𝑅,
otherwise, we call map making to update 𝑅 based on 𝑃 . Figure 2d
gives the result of applying QARTA Match or Make module. It iden-
tifies that: (a) Points A and C are accurate and uses them to update
the map, (b) Points B are inaccurate and matches them to the map.
The module is composed of the following four steps:
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Step 1: Finding accurate points and roads.Wefind 𝑃𝐴𝑐𝑐 ∈ 𝑃 and
𝑅𝐴𝑐𝑐 ∈ 𝑅 in three iterations: (1) Map match 𝑃 and 𝑅 and initialize
𝑃𝐴𝑐𝑐 and 𝑅𝐴𝑐𝑐 to points and roads that (almost) match perfectly.
(2) Remove from 𝑅𝐴𝑐𝑐 those roads with low number of matching
points. (3) Remove from 𝑃𝐴𝑐𝑐 those points that were matched on
any of the removed roads. The final 𝑃𝐴𝑐𝑐 and 𝑅𝐴𝑐𝑐 present points
and road segments that we are highly confident of their accuracy.
Step 2: Error injection. We aim to understand how does it look
to have good points on bad roads and bad points on good roads.
We select a representative set (with various road types and length)
from 𝑅𝐴𝑐𝑐 and inject various sorts of errors, including removing
a road segment, shifting road coordinates, and reducing the road
resolution, which will impact the accuracy of U-turns, highway
exits, and sharp turn roads. We extract the set of good points on
bad roads 𝑃𝐺𝑜𝑜𝑑 from 𝑃𝐴𝑐𝑐 as the points that are in proximity of
the roads with injected errors. Among the remaining 𝑃𝐴𝑐𝑐 points,
we extract 𝑃𝐵𝑎𝑑 ; a representative subset based on various factors
(e.g., trajectory start/middle/end point, different matching scores,
and type of matching road). We then introduce various kinds of
inaccuracies (e.g., shifting point coordinates with a Gaussian error)
into all points in 𝑃𝐵𝑎𝑑 , making it a list of bad points.
Step 3: Feature extraction & model building. We match all
points in 𝑃𝐴𝑐𝑐 , 𝑃𝐺𝑜𝑜𝑑 , and 𝑃𝐵𝑎𝑑 on 𝑅 and record several kinds
of features for each point, including number of good/bad points
within a certain distance, distance from (and type of) previous and
next points in the same trajectory, matching roads of the few previ-
ous/next points on the same trajectory, and matching scores with
other road segments. We then run Random Forest Classifier [31]
using the scikit-learn Python library [61] to build and train a model
that maps the set of features for any point 𝑃 to how good/bad it is.
Step 4:Match orMake. For each point 𝑃 not in 𝑃𝐴𝑐𝑐 , we know that
𝑃 did not match well with any road segment, but we are not sure if
this is because 𝑃 is inaccurate or because the road it should match
to is either missing or inaccurate. We go through two iterations:
(1) we run all such points against the model built earlier to classify
𝑃 as either bad or tentatively good point, (2) For tentatively good
points, we check if they form some clusters, where we consider
them definitely correct and use them to update the underlying map.
For all other points, we add them to the list of bad points, for which
we run a map matching algorithm.

4.2 Edge Weight Inference
Unlike edge length and maximum speed, that are static road edges
attributes, and can be publicly available, accurate edge weights are
usually inferred either through loop detectors [17], plate recog-
nition [41], private GPS traces [36], or cell phone data [18], and
are considered proprietary information. In addition, edge weights
are usually presented as multiple values per edge (a.k.a time-
dependent [20] or time-aggregated [24] graphs), where each value
corresponds to a certain time interval. As existing research efforts
for edge weight inference suffer from lack of scalability and overfit-
ting (see Section 7), QARTA develops its own scalable and accurate
Edge Weight Inference module. Given a road network topology, we
find 168 weights for each edge, as one value for each hour of the
week. Our module only needs very basic trip information, location
and timestamp of origin and destination points of each trip 𝜏 , which

is the ‘lowest common denominator’ of publicly available trajectory
datasets. Then, we find the trip path 𝑃𝜏 = [𝑒0, . . . , 𝑒𝑙 ] as a sequence
of edges 𝑒𝑖 by issuing a routing query to the off-the-shelf routing
engine deployed in QARTA. For each edge 𝑒 , with given length 𝑙𝑒
(in meters) and unknown edge weight𝑊𝑒 (in sec/meter), the time
to travel through 𝑒 is𝑊𝑒 × 𝑙𝑒 . Hence, the time to travel through 𝑃𝜏
is
∑
𝑒∈𝑃𝜏 𝑊𝑒 × 𝑙𝑒 .

Main idea. The main idea of our Edge Weight Inference module
is to find the edge weights𝑊 per unit length that would make
the time to go through each trip path 𝑃𝜏 as close as possible to
the time difference between the origin and destination timestamps
𝛿𝜏 [67]. Formally, given a set of trips Γ for a road network 𝑅, find
the weights𝑊𝑒 of all edges in 𝑅 that would minimize:∑

𝜏 ∈Γ

( ∑
𝑒∈𝑃𝜏

𝑊𝑒𝑙𝑒 − 𝛿𝜏
)2
, (1)

A direct solution to optimize this equation may result in zero or
negative weights and/or suffer from over-fitting. Additionally, given
hundreds of thousands of edges with unknown𝑊 ’s that need to be
optimized for millions of trajectories, scalability is a major issue.
Hence, we go through the following three tuning steps to come up
with an alternative equation that we can solve using Constrained
Ridge Regression analysis [32].
Tuning Step 1: Heavy edges inference. The main problem in
equation 1 is that it allows each edge in the graph, regardless of
its popularity, to act as a regression feature, which may lead to
over-fitting as well as unnecessarily expensive computations. To
avoid this, we distinguish between heavy (popular) edges, covered
by a large number of trajectories and for which it is important
to get highly accurate weights, and light edges covered by fewer
trajectories, where we can afford having less accurate weights. We
define the set of heavy edges𝐻 as the top 𝑘 edges (default is 10K) in
terms of the number of trips covering them. Our objective becomes
finding the weights𝑊 of all edges in𝐻 . All other edges would have
the same weight𝑊0 per unit length 𝑙 . Hence, Equation 1 becomes:∑

𝜏 ∈Γ

( ∑
𝑒∈𝑃𝜏∩𝐻

𝑊𝑒𝑙𝑒 +𝑊0
∑

𝑒∈𝑃𝜏 \𝐻
𝑙𝑒 − 𝛿𝜏

)2
. (2)

In addition to fixing the over fitting problem, this new formula-
tion reduces the number of regression features by up to two orders
of magnitude, which enables higher scalability.
Tuning Step 2: Heavy road detection.Many simplified map for-
mats represent long (few hundred meters) roads by only their nodes
that involve intersections with other roads. Then, one set of weights
is needed for each edge between two intersection nodes. This is
pretty inaccurate and does not fit our applications, where: (a) dif-
ferent parts of the same road could have different set of weights
based on road curvature and width, (b) it is a common practice
that passengers are dropped off in the middle of the road as many
stores and houses lie on the road. Hence, QARTA uses very detailed
map formats with large number of edges, which is also available
in OpenStreetMap [55], where long roads are represented by a se-
quence of edges and nodes without intersections. Starting from
that fine granularity, we find those subsequent edges that share
road properties. To scale up Equation 2, we group each of such
edges together as one heavy road with one weight𝑊𝑔 . Formally, we
split the set of heavy edges 𝐻 into 𝑟 disjoint sets 𝐻1, . . . 𝐻𝑟 , where
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each 𝐻𝑔 includes a set of connected edges with the same weight
𝑊𝑔 . Hence, Equation 2 becomes:∑

𝜏 ∈Γ

( ∑
𝑔:𝑃𝜏∩𝐻𝑔≠∅

𝑊𝑔𝐿𝑔 +𝑊0
∑

𝑒∈𝑃𝜏 \𝐻
𝑙𝑒 − 𝛿𝜏

)2
. (3)

where 𝐿𝑔 =
∑
𝑒∈𝐻𝑔

𝑙𝑒 is the length of the heavy road 𝐻𝑔 :
This reduces the number of unknowns to 𝑟 + 1 (one weight for

each of 𝑟 heavy roads and one weight for all other light edges) and
the number of model features by 75%, allowing higher scalability.
Tuning Step 3: Enforcing physical constraints. To avoid hav-
ing zero or negative weights, we add a physical constraint that, for
any heavy road 𝑔,𝑤𝑔 ≥ 1/𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑𝑔 , where𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑𝑔 is the pub-
licly available maximum speed of 𝑔. To ensure that this constraint
holds for all edges, we use Ridge regression regularization, where
we tune Equation 3 by adding a regularization term that penalizes
weights deviating from average speed:∑
𝜏 ∈Γ

( ∑
𝑔:𝑃𝜏∩𝐻𝑔≠∅

𝑊𝑔𝐿𝑔 +𝑊0
∑

𝑒∈𝑃𝜏 \𝐻
𝑙𝑒 − 𝛿𝜏

)2 + 𝛼∑
𝑔

(𝑊𝑔 − 𝜎)2 . (4)

𝜎 is the inverse of average speed of all trips. 𝛼 is the regularization
strength. A small 𝛼 allows large weight variability and physical
constraints violations. A very large 𝛼 may put too much emphasis
on the regularization term neglecting errors we strive to minimize.
Inferring edge weights. We divide all our trips based on their
starting timestamp into a specified time granularity (default 168
hours/week). For each time granularity, we use scikit-learn Python
library [61] for constrained ridge regression to find𝑊 that mini-
mizes Equation 4. From our experiments, more than 99% of edge
weights satisfy physical constraints. For the rest, we set edge
weights to the minimum possible value 1/𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 .

4.3 Metadata Inference
Several real-life applications, e.g., traffic modeling, driver behavior
analysis, road safety, and telematics, heavily rely on map meta-
data such as the number of lanes, maximum speed, directions, and
road types (e.g., highway, service road, bridge). Unfortunately, the
availability of such metadata is very poor in most cities around the
world [83]. One way to fill in missing data is to model the metadata
inference as a Graph Convolutional Network [16, 34, 42], or any
other ML technique. However, there are three challenges to address
here: (1) feature engineering of metadata is crucial, regardless of
the underlying ML model, (2) The variety of metadata types calls
for going beyond a one-size-fits-all model, as each metadata type
may need a different model/ML techniques, and (3) scalability is a
major issue and may hinder the applicability of some models.

QARTA addresses these issues by framing metadata inference as
a supervised learning problem, in which the task is to first find the
bestmodels that map road features to each metadata, then use these
models to predict the metadata values for each road segment. To
build such models, we go through two steps: (a) Feature engineering.
For each road segment, we compute two sets of features: structural
features that include road length, numbers of in/out junctions, and
road curvatures, and functional features that include speed average
and standard deviation, GPS points density, and distance to center-
line. While structural features are computed as one value per edge,
functional features are computed as one value per time granularity

(e.g., hour) per edge. According to our comprehensive validation
and testing, all these features affect metadata inference. (b) Learning
Kernel. Given a target metadata 𝐿, for all road segments with known
𝐿, we form a set of annotated examples {(𝑣1, 𝑙1) . . . (𝑣𝑚, 𝑙𝑚)} where
𝑣𝑖 and 𝑙𝑖 represent the feature vector and metadata value of road
segment 𝑖 . The annotated data is then partitioned into three sepa-
rate datasets: training, validation, and testing. We experiment with
different machine learning techniques, including logistic regres-
sion, support vector machines, random forests, boosting gradients,
and deep neural networks, which are fine-tuned using training
and validation datasets, to find the best performing model for each
algorithm. The testing dataset is used to compare the inference
accuracy of each algorithm and select the best one with its best
parameters. Once we set on the best machine learning model (al-
gorithm and parameters) to use for a given metadata, the model
is stored in a database of models along with its key performance
indicators, which can be used later for refinement or retraining
purposes. The models can be deployed in batch or streaming modes.
In the streaming mode, the machine learning model is wrapped in
a RESTFUL API that users can query via different endpoints.

5 QUERY CALIBRATION LAYER
The query calibration layer is responsible for responding to query
APIs from QARTA users. Our earlier version of QARTA only had
the query part of this layer, which included off-the-shelf algorithms
for shortest path, range, and 𝑘-NN queries. Yet, we had numerous
users’ complaints for inaccurate Estimated Time of Arrival (ETA),
which is crucial for several applications, e.g., deciding on trip fares,
schedulingmultiple trips, dispatching a driver to a customer, finding
𝑘-NN or within a range PoIs. Hence, we equipped QARTA with the
calibration process to fix the ETA issue, which is what sets QARTA
apart from other map services.

The main idea is to continuously monitor, understand, and model
the error margins of all deployed algorithms, and then use themodel
to calibrate the results [2]. Given a set of historical trips Γ, where
each trip 𝜏 is (origin, destination, start time, end time), we send the
first three attributes of each trip to our spatial query processor to
estimate the arrival time (ETA). We then record the offset time 𝜖 ,
as the difference between ETA and ground truth end time. Then,
we build a modelM that maps each trip features to its 𝜖 . For a new
trip𝑇 , we get its ETA from an off-the-shelf shortest path algorithm,
then applyM to𝑇 features to predict 𝜖 and add it to ETA to produce
a more accurate result.

It is important to note that M maps a trip to its 𝜖 not to its
ETA. Having M for ETA would mean that for a network with 𝑁
nodes,M would need to consider𝑁 2 possible alternatives within its
feature vector. This is not practical nor accurate for large networks
(100+K edges), not only in terms of computations, but also in terms
of datasets that cover every pair of nodes under various features.
Hence, we opt to use spatial zoning, where the map is divided to 𝑍
zones (e.g., zip codes), where 𝑍 is usually 2-3 orders of magnitude
less than 𝑁 . Though this is manageable in terms of computations
and datasets, reporting ETA between pair of zones would not be
accurate. Hence we only report 𝜖 for the pair of zones. Finally,
QARTA builds a separate model for each transportation modality
and underlying algorithm, e.g., a modelM𝑣 for a fleet of vehicles,
used by our Taxi company partner, and model M𝑚 for a fleet of
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motorbikes, used by our food delivery partner. It is important to
have this distinction, as they encounter different error distributions.
We also build a model for each shortest path algorithm we have.
Our query calibration process is composed of the below phases:
Model Building: Feature Engineering. For each trip 𝜏𝑖 with off-
set 𝜖𝑖 , we build a feature vector 𝑣𝑖 composed of several features
including: (a) spatial zoning. The origin and destination locations
are mapped to a set of non-overlapped spatial zones. We have
observed that 𝜖 highly varies per source and destination zones.
(b) temporal zoning. The start and end times of the trip are mapped
to non-overlapped temporal zones across a whole week, as there
is a significant change in 𝜖 based on the time of the day/week.
(c) Trip characteristics. This includes the distance and duration of
trips generated by the routing algorithm we want to calibrate.
Model Building: Training. The output of feature engineering is a
feature vector 𝑣𝑖 and offset 𝜖𝑖 for each trip 𝜏𝑖 ∈ |Γ |. Our objective now
is to find a model function𝑀 that maps 𝑣𝑖 to 𝜖𝑖 while minimizing:
1
|Γ | ×

∑
𝜏𝑖 ∈Γ 𝐿(𝜖𝑖 , 𝑀 (𝑣𝑖 )), where 𝐿 is a loss function for the reported

travel time. This ends up being a classical supervised regression
framework, where we use the Gradient Boosting [23] tree-based
method to solve it. We set 𝐿 to be least-squares and fine-tune the
Gradient Boosting Regressor to find the best combination of its
hyperparameters, i.e., the number of trees and max depth of each
tree. The output is a modelM that is capable of predicting accurate
traffic congestion offsets 𝜖𝑖 for any trip feature vector 𝑣𝑖 .
Query Calibration. Whenever QARTA receives a shortest path
query, we pass it to two simultaneously working modules: (1) Query
processing, where an off-the-shelf shortest path algorithm is applied
to get the query answer with ETA. (2) Calibration, where we extract
the feature vector 𝑣 from the query parameters, pass it to the model
M that corresponds to the transportation modality and algorithm
to get a calibration offset 𝜖 that we add to the query answer to report
the final ETA. In this case, the calibration overhead is negligible.
For range and 𝐾-NN queries, the calibration process would remain
idle until the query processor computes the result items. We then
create one feature vector for each result item and pass them in-bulk
to our modelM to adjust the ETA of each result item. The adjusted
ETA may call for changing the ranking of the result items, or even
calling the query algorithm again, if needed.

6 EXPERIMENTAL EVALUATION
All experiments are done using an actual deployment of QARTA
server that daily receives 235K API calls and 977K GPS points,
supporting all Taxis in Qatar (~4K vehicles) and a food delivery
company (~3K drivers) [3]. For evaluation, we use the following
three datasets: (1) Doha. 250K trips collected by us over a one month
period through our taxi partner driving in the city of Doha (64K
nodes and 148K edges), (2) Porto. 426K Taxi trips over three months
in the city of Porto (35K nodes and 82K edges) [63], (3) NYC. 1.5M
Taxi trips for a period of 6 months in New York City (250K nodes
and 644K edges) [54]. For the three datasets, we only use the (Origin,
Destination, Start time, End time) to represent each trip, which is
the least common denominator for all publicly available datasets.
We run all datasets through our data cleaning module (Section 3),
which reduces the number of trips for Doha, Porto, NYC, to 195K,
360K, 1.2M, respectively, that we are highly confident about their
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Figure 3: QARTA Spatial and Temporal Zoning

accuracy. Since we have the ground truth travel time for each trip,
we use the absolute/relative travel time errors as our accuracy
measure. Unless mentioned otherwise, (a) we use the first 75% of
our cleaned trajectories in chronological order to train QARTA
for both edge weights and query calibration, and then test with
the last 25% of the data, (b) edge weights and temporal zoning are
built for 168 hours per week, while spatial zoning uses publicly
available administrative zoningwith 92, 79, and 2055 zones for Doha,
Porto, and NYC, respectively [56], (c) QARTA uses the Open Source
Routing Engine (OSRM) [57] for its off-the-shelf query library.

6.1 Setting QARTA parameters
This section aims to study and set the query calibration parameters
in terms of the temporal and spatial zoning granularity. Figure 3
gives the effect of a finer granularity on the median relative travel
time error (Figure 3(a)) and the model training time (Figure 3(b))
for Doha dataset. We make the granularity finer by increasing the
number of temporal zones per week with values: 28, 42, 56, 84, and
168 (i.e., grouping the trips every 6, 4, 3, 2, 1 hour(s)). We also do the
experiments for the two spatial zoning: (a) our default administra-
tive zoning of 92 zones, and (b) a fine-grained transportation zoning
of 1,839 zones defined by the Ministry of Transport and Commu-
nication in Qatar. It is clear from the figures that finer spatial and
temporal zoning yield the highest accuracy, though suffer from
higher training time. Since the training time is still manageable, we
opt to use the finest temporal resolution (168 zones per week) as
QARTA default value. For spatial zoning, though transportation
zoning gives much higher accuracy, we decided to opt for using
the administrative zoning in the rest of experiments, as it is more
publicly available and accessible for other datasets.

6.2 Travel Time Accuracy
Figure 4 compares the overall accuracy of QARTA, Google
Maps [25], and OSRM [57] in terms of the median/mean of rel-
ative/absolute error in predicting the trip travel time (with respect
to the ground truth) for Doha, Porto, and NYC. For Google Maps, to
ensure a fair comparison, we project each trip on the next month
with a time that falls on the same hour/day/week as the actual trip.
This is to make sure that Google Maps utilizes the right historical
traffic information in its predictions. For OSRM, this does not mat-
ter as there is no traffic information. To test the impact of various
QARTA components, we evaluate three versions of QARTA; Q-Map,
which includes only the Map Making layer without any calibra-
tion (i.e., OSRM on QARTA map), Q-Calib, which includes only
the Query Calibration layer with a map from OpenStreetMaps [55]
(i.e., calibrating OSRM results), and the full QARTA. It is clear that
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Figure 4: QARTA vs Other Map Services
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Figure 6: Accuracy by Hour of Day and Trip Distance
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Figure 7: 𝐾-NN Accuracy

OSRM has the worst performance in all datasets, mainly due to
lack of traffic information, and hence its routing engine is based on
road maximum speed. This shows how much the community needs
open-source engines that are traffic-aware like QARTA, as routing
with no traffic information encounters high errors that are close to
50% of the trip time. Meanwhile, Google Maps has way much better
performance than OSRM with a median relative error of 17%, 17%,
24% for Doha, Porto, NYC. This is mainly due to the detailed traffic
information that Google has access to. Q-Map, which basically in-
jects QARTA traffic-aware map to OSRM engine results in a relative
accuracy of 19%, 20%, 26% for Doha, Porto, NYC, which shows the
great impact of having an accurate map in Open Source Routing
Engines. Q-Calib, which just adds the calibration layer to OSRM
engine achieves accuracy of 16%, 18%, 19% for Doha, Porto, NYC,
making it almost as good as Google Maps. This also shows the great
accuracy boost that QARTA can do to off-the-shelf routing engines.
Finally, the overall QARTA, which includes both traffic-aware map
and query calibration achieves an accuracy of 15%, 17%, 19% for
Doha, Porto, NYC, making it even better than Google Maps. This
positions QARTA as a strong candidate to replace commercial maps,
which happened to our local Taxi and food delivery partners.

Figure 5 gives the effect of training data percentage of the whole
dataset on the accuracy of QARTA for Doha, Porto, and NYC. OSRM
is plotted as a straight line as it does not have training. QARTA has
a very slight increase in accuracy, mainly because traffic is naturally
periodic. So, training on one week is very similar to training over
multiple weeks. Figure 6 gives the impact of the hour of the day
and trip distance on the accuracy of OSRM, Google, and QARTA

for our three datasets. For the hour of the day, OSRM dramatically
fails during daytime, in which traffic has the most effect on trip
duration. Meanwhile, QARTA consistently has a comparable or
better performance to Google Maps throughout the day. This shows
that QARTA was able to accurately infer traffic data in all traffic
conditions. For trip distance up to 25km, QARTA and Google Maps
have consistently comparable accuracy across all short and long
distances. The shorter the trip the worse is OSRM, as short trips
are more dependent on traffic information than long trips.

6.3 𝑘-NN Accuracy
Predicting time of arrival does not only impact shortest path queries,
but it also impacts𝐾-NN and range queries looking for PoIs that are
either 𝑘 nearest to or within a range from a certain reference point.
Figure 7(a) shows 𝑘-NN precision, i.e., number of items in the 𝑘-NN
list that overlaps with the ground truth, of OSRM, Google, and
QARTA using Doha dataset. Each point is computed as the average
precision of 200 queries with diverse geographic locations, hours
of the day/week. Unsurprisingly, they all achieve similar results.
Given the PoI sparsity, we end up with very similar lists, even if
PoI travel times are reported differently. However, the quality of
𝑘-NN answer is not only measured by what is in the list, but more
importantly by the ranking of the results in the list. Hence, Fig-
ure 7(b) uses the Normalized Discounted Cumulative Gain (NDCG),
as the quality measure of the 𝐾-NN list. NDCG [39] is a widely
used ranking quality measure that takes into account not only the
𝑘 results but also their relative positions within the list. For all
values of 𝑘 , QARTA consistently outperforms Google and OSRM.
The accuracy of all methods increases with 𝑘 , as the more PoIs we
include, the farthest they are from the reference point, hence, their
ranking is dominated by driving distance over driving duration.

6.4 Query Performance and Training time
Figure 8(a) gives the training time needed for weight inference
and query calibration for 75% of Doha, Porto, and NYC datasets. As
weight inference is mainly about solving Equation 4, which depends
on both the number of edges and number of trips, NYC needs the
most time. Overall, the time to solve Equation 4 is acceptable, given
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Figure 8: Performance of QARTA

that it is a one time process. One can think of running this procedure
once a month or so to update the model. Meanwhile the time taken
for query calibration is much less by two orders of magnitude.
Query calibration only relies on the number of trips and zones we
use to build our model. Clearly, NYC dataset suffer the most, but
again, this is one time process.

Figure 8(b) gives the average end-to-end shortest path query
latency over 25% of the trips for Doha, Porto, and NYC. Google
has less performance (100+ ms), mainly due to the fact that it is
an API call for a cloud service, which encounters network latency.
Meanwhile, both QARTA and OSRM are locally installed in our
taxis, so, calling them does not encounter any network delay, and
hence has more than an order of magnitude better performance
than Google APIs. OSRM has a slightly unnoticeable better latency
due to QARTA calibration process.

7 RELATEDWORK
This section positions QARTA contributions with respect to its
related work in various system components.
Trajectory data cleaning. Research efforts in trajectory cleaning
have focused either on trajectories map matching [22, 45, 82] or
densifying trajectory points (a.k.a trajectory interpolation [51, 86],
trajectory completion [48], trajectory restoration [43], or trajectory
imputation [13]). QARTA can employ any of these techniques in its
data layer. In addition, QARTA adds its own rule-based trajectory
cleaning module that addresses specific cases came out of real
deployment and is not addressed by existing techniques.
Map making/matching. Several research efforts have exploited
two orthogonal approaches to increase the accuracy of available
maps and GPS points: (1) Map Making [1], where the goal is
to use GPS traces to either build or update current inaccurate
maps. This implicitly assumes that GPS traces are truly accu-
rate [7, 9, 14, 21, 30, 65, 69, 74]. (2) Map Matching [12], where the
goal is to increase the accuracy of GPS points by matching them
to the underlying road network. This implicitly assumes that the
road network is truly accurate [8, 10, 33, 47, 64, 76]. Unlike map
making/matching techniques, QARTA does not have any underly-
ing implicit assumption for the accuracy of road network or GPS
points. Hence, QARTA deploys its own match or make module that
decides on which parts of the map or GPS points we should trust.
Edge weight inference. Research efforts on weight inference are
either edge-centric, where the objective is to find static [37, 53, 84],
time-dependent [79, 85], or stochastic [34] weights for each edge,
or path-centric [19, 78], where the objective is to find weights for
a set of paths, which is more accurate in modeling driving turn
costs. QARTA opts to develop its own time-dependent edge-centric

approach over a path-centric approach for three reasons: (1) path-
centric approaches mainly support shortest path queries, while
QARTA supports various sorts of map services, many of them re-
quire having edge costs (e.g., heat maps, traffic visualization, 𝑘NN
queries), (2) As query processing in QARTA is off-the-shelf, we had
to go with the more classical/common edge-based shortest path
algorithms aiming for wider adoption of QARTA. (3) QARTA needs
to be highly scalable. With detailed maps of 644K edges, the number
of paths that one would need to compute cost for is prohibitive. Cur-
rent path-centric [19, 78] approaches were evaluated on networks
that are order of magnitude less than QARTA.

All current edge-centric approaches suffer from two main draw-
backs: (1) Scalability. Existing technique were only applied to small
road networks (few thousands edges [37, 84, 85] or tens of thou-
sands edges [34, 53, 79]). Meanwhile, QARTA develops its own
tuning steps to scale up Equation 1 to support hundreds of thou-
sands edges. (2) overfitting.. Existing techniques treat all road seg-
ments similarly, which results in overfitting for very large networks.
QARTA distinguishes popular road segments from less popular
ones. Finally, while some of the existing techniques suffer from
zero/negative edges weights [53, 84], static edge weights [37, 53, 84],
and/or limited number of time-dependent weights [79, 85], QARTA
ensures positive fine-granularity 168 weights per edge.
Spatial queries. Significant efforts were dedicated to various forms
of classical shortest path-queries including static routing [44, 77],
time-dependent routing [58, 75, 81], batch routing [46, 62], per-
sonalized routing [28, 49], and eco-routing [5, 26], where the in-
put is (time-dependent) edge weights and the output is a rec-
ommended route with its total cost. Recent attempts that use
machine learning for spatial queries [66] are mainly geared to-
wards replacing existing algorithms with machine learning models
(e.g., [27, 34, 50, 52, 72, 80]). All these algorithms would fit in the
Query Processing module of the Query Calibration layer, marked
as white box in Figure 1, indicating that any existing algorithm
can be used there. This is orthogonal from our main contribution
in this layer (calibration), marked as gray boxes in Figure 1. Cali-
bration complements existing classical or ML-based algorithms by
understanding and fixing their error margins, hence significantly
boosting their accuracy. Our calibration currently supports queries
that report ETA values. Stochastic queries [35, 59, 60] that return
probabilistic result distribution is planned for next QARTA release.

8 CONCLUSION
This paper presented QARTA; an open-source full-fledged system
that employs ML techniques to provide highly accurate map ser-
vices. QARTA’s success is due to two main features: (1) QARTA
learns its own highly accurate map, with accurate edge weights
that reflect detailed traffic throughout the week, (2) QARTA cali-
brates the result of map services through its built-in ML modules
that continuously understand the error margin of various query
processors, and use it to adjust the result. State-of-the-art spatial
query and indexing techniques can be injected in QARTA, where
their performance will be significantly boosted, taking advantage of
QARTA highly accurate map and calibration process. Experimental
results based on actual deployment of QARTA show that QARTA
is significantly more accurate than open-source mapping services
and as accurate as or better than commercial ones.
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