
Classical Mechanics: Class Notes

Below you will find the notes I took while auditing Leonard Susskind’s Stanford University Lectures on
Classical Mechanics (via YouTube). I make no guarantee as to the accuracy of these notes. Since I
wrote them (while auditing the class), I have not edited them. And, they no doubt need editing! So,
reader beware. I also only began taking notes halfway through lecture 3. Relatedly, you’ll probably
notice is that I became a much better notetaker as the class went on. Please give me feedback on my
website (http://curiouschimp.com/wp/index.php/2015/06/07/classical-mechanics-class-notes/) regarding
errors or edits I can make to the document. This will not only help anyone else who might use my
notes, but will help my memory to stay fresh regarding this topic. Thanks!

Leonard Susskind’s Modern Physics course concentrating on Classical Mechanics.

Recorded 2007 at Stanford University.

This Stanford Continuing Studies course is the first of a six-quarter sequence of classes exploring the
essential theoretical foundations of modern physics. The topics covered in this course focus on
classical mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete playlist for the course: https://goo.gl/DiwCv2

—-

Associated with…PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small
oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle
variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical
systems, attractors, chaotic motion.

Lecture 3, (about halfway through)
Definition of the Lagrangian: The kinetic energy minus the potential energy.

T − U = _
∂_
∂

⋅
xi

= mi

⋅
x i = pi, momentum of a particular particle with respect to a particular direction.

d

dt
mi

⋅
x i= − ∂U

∂xi
= mi

⋅⋅
x i, is the force (F = ma) where x i specifies the particle and a particular direction.

Two particles on a line, interacting with a force governed by a potential energy.

Particle 1 (x1) has mass m1, and particle 2 (x2) has mass m2.

The potential energy (U) depends upon the position of the two particles. We are going to assume
translational invariants, in other words, it doesn’t matter where the particles are, but rather, only the
distance between them (translation symmetry).

Velocity is also often symmetric. It doesn’t matter where you choose to locate the origin in your system,
the velocities are constant. For example, if your location function is xt, adding a constant c, doesn’t
change the derivative. v = xt + c = x ′t.

For our original problem, the kinetic energies are 1

2
m1

⋅
x1

2
+ 1

2
m2

⋅
x2

2
.

And since the potential energy only depends upon the distance between the two particles…

_ = T − U = 1

2
m1

⋅
x1

2
+ 1

2
m2

⋅
x2

2
− Ux1 − x2.

Particle 1:
d

dt

∂_
∂

⋅
x1

+ ∂_
∂x1

= 0,

d

dt

∂_
∂

⋅
x1

= − ∂_
∂x1

,
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dp1

dt
= − ∂U

∂x1
(since the only term that depends upon x1 is U)

Particle 2:
dp2

dt
= − ∂U

∂x2
(since the only term that depends upon x1 is U)

What is the difference between ∂U

∂x1
and ∂U

∂x2
(the forces of the two particles)? They are equal and

opposite.

What we find is that momentum conservation is a result of translation invariance in a simple system like
this, and that the equations used are derived from the concept of least action.

● Symmetries says that the potential energy (U) only depends on x1 and x2.

● From that, it follows that the force on particle 1 is equal to an opposite the force on particle 2.

● And from that follows the conservation of linear momentum

A symmetry is defined by an active operation that you can do on the system (for example, translating
it), which does not change the value of the action (or the Lagrangian).

2D: The surface of the earth

Kinetic energy: T = 1

2
m

⋅
x

2
+ 1

2
m

⋅
y

2

Potential energy: U = height mass gravity = y ⋅ m ⋅ g

− ∂U

∂y
= −mg, (the minus sign is to indicate the force is downward)

_ = T − U = 1

2
m

⋅
x

2
+ 1

2
m

⋅
y

2
− ymg

∂_
∂x

= m
⋅
x, d

dt

∂_
∂x

= d

dt
m

⋅
x = 0

∂_
∂y

= m
⋅
y, d

dt

∂_
∂y

= d

dt
m

⋅
y = −mg = − ∂U

∂y
, (the vertical acceleration changes with respect to gravity)

Polar coordinate:

The trajectory of a particle is determined by two functions, rt and θt.
Kinetic energy: T = 1

2
mp2

Velocity along the r direction, we will call vr =
⋅
r. Similarly, velocity along the θ direction, we will call

v1 = r
⋅
θ.

Kinetic energy: T = 1

2
m

⋅
r

2
+ r2

⋅
θ

2

.

Potential energy: Central force

We are going to have the potential energy depend only upon r. This means it will only depend upon its
distance from the origin. This means it will be invariant if we rotate the axis. Therefore, it will have a
rotational symmetry.

_ = T − U = m
2

⋅
r

2
+ r2

⋅
θ

2

− Ur

∂_
∂
⋅
r

= m
⋅
r, (the momentum conjugate to r)

d

dt

∂_
∂
⋅
r

= m
⋅⋅
r = − ∂U

∂r
, (the radial component of acceleration)

mr2
⋅
θ, (angular momentum, or the conical momentum conjugate of θ)

mr2
⋅
θ = ∂_

∂
⋅
θ

d

dt

∂_

∂
⋅
θ

= d

dt
mr2

⋅
θ = 0, (conservation of angular momentum)

So, solving for
⋅
θ,

⋅
θ= k

mr2
, for some constant k. So, as the radius decreases, the angular momentum
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increases (think about how a spinning ice skater speeds up as they bring their arms closer to their
body).

To determine the action of a system, we first start out by

Canonical momentum conjugate of the coordinate, for each coordinate (i = r, rθ, x, y, z, etc.).

This is the derivative of the Lagrangian with respect to the time derivative of the coordinate (
⋅

qi)
∂_
∂

⋅
q i

= Π i.

The Euler/Lagrange equation is the derivative of the canonical momentum conjugates ( d

dt
Π i =

∂_
∂q i

= ∂_
∂

⋅
q i

)

Lecture 4

So, in our previous example, Πr = m
⋅
r.

The Euler/Lagrange equation: d

dt
Πr = m

⋅⋅
r = ∂_

∂r
.But, ∂_

∂r
where _ = m

2

⋅
r

2
+ r2

⋅
θ

2

− Ur is

mr
⋅
θ

2

− ∂U

∂r
.

So, m
⋅⋅
r = mr

⋅
θ

2

− ∂U

∂r
. However, mr

⋅
θ

2

depends upon the particle moving in the θ direction, and

because it is squared, it is always a positive (pushing outward radially) force (centrifugal force).
Remember that we are still working with the partial to the radial force, and are therefore only calculating
forces in the radial direction.

Now let us calculate the forces in the θ direction. Πθ = mr2
⋅
θ. d

dt
Πθ = d

dt
mr2

⋅
θ = ∂_

∂θ . But, ∂_
∂θ where

_ = m
2

⋅
r

2
+ r2

⋅
θ

2

− Ur is 0. So, the system is rotationally invariant,and it has rotational

symmetry.The derivative with respect to time of the angular momentum (mr2
⋅
θ, which is usually notated

as L) is 0, which means that the angular momentum must be a constant. This must mean that there is

a conservation law (because it only depends upon initial conditions r,θ,
⋅
θ,

⋅
r, unlike the forces in the

radial direction. This allows us to solve for
⋅
θ,

⋅
θ = L

mr2
.

This allows us to revisit the equation for d

dt
Πr = m

⋅⋅
r = mr

⋅
θ

2

− ∂U

∂r
= mr L

mr2

2

− ∂U

∂r
= L2

mr3
− ∂U

∂r
. Or

m
⋅⋅
r = L2

mr3
− ∂U

∂r
. So, we now have an equation which includes the term for centrifugal force in terms of

angular momentum. The equation also tells us that the force is smaller when the radius is large.

So this was both an example of how to use the Lagrange equations, and to give you an example of the
symmetry and how it acts to create a conserved quantity (angular momentum).

Let’s say you have a function with a lot of variables, and your job is to minimize it.

Fαi where δF = 0, which means if you change αi by a small degree, the output of the function does
not change to first order. To calculate this, you sum up all of the differentials of the function with
respect to the different variables…

∑
i

∂F

∂α i
δαi = 0 ⇔ δF = 0.

With the Lagrangian, this might equate to the small change of trajectory of the system. In this case, we
are looking for a Lagrangian in which the above summation is zero for small changes in the trajectory.
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Relationship between symmetries and conservation laws…
Examples given up until now include rotational and translational symmetry.

Symmetry means that you can change the coordinate system in some way, and the action is
unchanged. This means that the action does not depend upon the location of individual particles of the
system, but rather the relative locations of these particles for translational symmetry for example. In
particular, let us look at infinitesimal symmetry, which we can build up into a large symmetry. So, as a
result we can assume that a large symmetry exists when we have shown an infinitesimal symmetry (in
other words, working to first order in small quantities). Let us change the coordinate qi by a small
amount f iq, qi → qi + f iq. In the situation, f i depends upon all of the qs. For example, if this is a
rotational change, a particle’s change in location under this change in coordinate depends upon its
location (qs). If it’s location along the X axis decreases in quadrant I (for a counterclockwise change), its
location would increase in quadrant IV. Saying we have a symmetry, though, says that the action is
invariant under this change.

For example, if we look at rotation with Cartesian coordinates, and we imagine a particle that is located
on the x-axis, we find that a small rotational change causes the following change in the x-coordinate:
δx = −y, and the change in the y-coordinate is: δy = x. In our equation above, this would equate to
fx = −y and fy = x.

Our goal is to prove that there is a conserved quantity when there is a symmetry. Let us imagine a point
moving through time and also through dimensions of space. We have a beginning and end point,
timewise. And, let us assume that for all infinitesimal changes (except changing the starting and ending
point), the action does not change δA = 0.

Now, let us imagine that you did change the starting and endpoint as a result of altering the system as
a result of a translation, a rotation, or some other coordinate change in space. This type of change
results in no change in the action. This is not due to the principle of least action, however, but rather
due to the fact that we have defined there being a symmetry.

Let’s compute

it: A = ∫_ dt δA = ∑
i
∫ ∂_

∂q i
δqi +

∂L

∂
⋅

q i

δ
⋅

qi = ∑
i
∫ ∂_

∂q i
δqi − d

dt

∂L

∂
⋅

q i

δqi = ∑
i
∫ ∂_

∂q i
− d

dt

∂L

∂
⋅

q i

δqi.

However, this is not necessarily the right answer because we have also displaced the endpoints. There
is an endpoint contribution coming from the integration by parts. It happens because δqi is not zero at
the endpoints. So it is not a "legal" alteration from the standpoint of the principle of least action. So, in
order to solve the equation correctly, we have to add back in the missing term ∂_

∂
⋅

q i

δq|t1

t2 , the difference of

the quantity at the two endpoints.

δA = ∑
i
∫ ∂_

∂q i
− d

dt

∂L

∂
⋅

q i

δqi +∑ i

∂_
∂

⋅
q i

δq|t1

t2 . Because we assumed that the original equation was a

solution, we know that the part of the equation within the parentheses is equal to zero, and therefore
can be ignored. Also, because we know we have a symmetry, we know that δA = 0. So,
∑

i

∂_
∂

⋅
q i

δq|t1

t2 = 0. Saying that the difference between this quantity at the beginning and the end is zero, is

the same as saying that the quantity is conserved. Therefore, if we start with a symmetry, we end up
with a conservation law.

The conserved quantity is ∑
i

∂_
∂

⋅
q i

f iq. And since it is conserved, and therefore the derivative is 0, we

do not need the , as it is still equal to zero without it. Therefore, ∑
i

∂_
∂

⋅
q i

f iq is conserved and
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d

dt
∑

i

∂_
∂

⋅
q i

f iq = 0.

However, just because a system is invariant under a transformation, does not mean there is a
conservation associated with it. This is only true when this invariance comes about by way of the least
action principle. Symmetry, plus the assumption of least action leads to a conservation law.

Written another way, ∑
i

∂_
∂

⋅
q i

f iq = ∑
i
Π iδqi = ∑

i
Π if iq is conserved (Noether’s Charge). Physicists

tend to refer to anything that is conserved as a charge (momentum is a charge, and energy is
considered a charge, etc.).

Let’s do an example…
Let’s assume we have a whole bunch of particles. The system is invariant in regards to translation.
There are several symmetries (one for each set of directions), but we are going to choose to look at the
symmetry along the x-axis. Let us use the index i to label the particular particle where referencing.

δx i is therefore the change in the x-coordinate of the ith particle. δx i = . δy i = δzi = 0 (for this
x-coordinate symmetry). f = 1 (for all of the fs associated with the x-coordinate of the ith particle).

Now let us calculate the Noether’s Charge:

∑
i
Πxf = ∑

i
Πx1 = ∑

i
Πx = ∑

i
mi

⋅
x i.

Notice that we did not need to know anything about the forces, only that the potential energy does not
change when you translate the whole system.

Now let us work out this for angular momentum in Cartesian coordinates…

Imagine a particle moving through time in a plane (x-coordinate and y-coordinate). in this system, we
will examine one particle, and examine it when we alter the system by rotating it by an amount 
(measured in radians).

Change in the y-coordinate is: δx = −y = fx, and the change in the y-coordinate is: δy = x = fy.

So, fx = −y and fy = x.

Now let us calculate the Noether’s Charge:

Let’s rewrite Πx = Px

∑
i
Πxfx + Πyfy  = ∑

i
Px−y + Pyx = ∑

i
xPy − yPx  = L (angular momentum).

To come upon this conclusion, we did not need to know many things about the system. Only that the
action did not change under rotation.

Typically, a system that is not under the influence of an external factor (a close to system) will be
invariant under time translation (time translation invariants). In other words, you can alter the starting
and ending time by the same amount, and the trajectories will be conserved. This is not true if there is
an external factor which is exhibiting a change in the forces between the particles in the system as a
function of time.

Let us again imagine a particle moving through one-dimensional space (the blackboard) and through
time. Imagine we already have a solution for the trajectory. Now, imagine shifting each point along the
trajectory upward (forward in the time direction) by an equal amount. qt → qt − .

While we can think of the shift as being upward in the time direction, let us instead think about it in
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terms of shifts in the x-coordinate. δq = − dq

dt
 = −

⋅
q . Visually, this will appear as a trajectory which

has been shifted upward on the blackboard, or alternatively shifted to the left of the blackboard. We’re
making the assumption that the given trajectory is a solution to the equation, and therefore that the
shifted trajectory is also a solution (because of symmetry under time translation). That tells us that the
action of the new trajectory is the same as the action of the old trajectory.

Let us calculate the change in the action from the old trajectory to the new trajectory (it should be zero).

Let us also cut up the trajectories into three parts. The first part B = t0 → ta this from the beginning of
the initial trajectory, to the beginning of the new trajectory (these are separated in time due to the
translation). The second part ta → tb is from the beginning of the new trajectory, to the end of the old
trajectory. And the last part A = tb → t f is from the end of the old trajectory, to the end of the new
trajectory.

∫
a

b ∂_
∂q

−
⋅
q  + ∂_

∂
⋅
q
δ

⋅
q dt + A − B

∫
a

b ∂_
∂q

δq − d

dt

∂_
∂
⋅
q
δq dt + δq ∂_

∂q
|ta

tb + A − B = ∫
a

b ∂_
∂q

− d

dt

∂_
∂
⋅
q

δq dt + δq ∂_
∂q

|ta

tb + A − B, where δq ∂_
∂q

|ta

tb

represents the difference in the action which is contributed to by way of the new initial and final
endpoint. The need for this term is a result of our having integrated by parts (it is because δq ≠ 0 at
these points, and so their contributions to the overall action must be calculated).

Because we know the initial equation satisfied the equation of motion, we know that the part of the
equation above which relates to the new motion that is identical to the motion of the original system
(but now shifted timewise), still satisfies the equations of motion, and that therefore this part of the

equation must equal zero ∫
a

b ∂_
∂q

− d

dt

∂_
∂
⋅
q

δq dt = 0.

So, because we know the total action is also zero, 0 = δq ∂_
∂q

|ta

tb + A − B = −
⋅
q ∂_

∂q
|ta

tb + A − B.

Now we have to figure out how to calculate A and B. This means working out the Lagrangian for that
initial piece of trajectory (B), and the final piece (A). For the final piece, the time involved is , and since
this is assumed to be a very small period of time, the Lagrangian can be estimated as _tb = A.
Similarly, _ta = B.

So, 0 = −
⋅
q ∂_

∂q
|ta

tb +_tb −_ta

_ = _tb −_ta.
So, 0 = _ −

⋅
q ∂_

∂q
|ta

tb , and _ −
⋅
q ∂_

∂q
|ta

tb = _ −
⋅
q Π is conserved. If we assume this to be calculated over all

particles, it can also be written as _ −∑
i

⋅
qi Π i. If a quantity is conserved, so is its negative, so

−_ +∑
i

⋅
qi Π i is conserved, and is the form normally used in such equations, and is usually notated

with the shorthand H (the Hamiltonian, or the energy of the system). Let’s work it out for an example,
and show that it actually is the energy of the system…
1

2
m

⋅
x

2
− Ux = _

The canonical momentum with respect to x: m
⋅
x = Π

So,
⋅
q Π =

⋅
x Π =

⋅
x m

⋅
x = m

⋅
x

2

Then, we have to subtract the Lagrangian: H = m
⋅
x

2
− 1

2
m

⋅
x

2
− Ux = 1

2
m

⋅
x

2
+ Ux.

So, the definition of energy in mechanics is the quantity which is conserved as a consequence of time
translation invariance.

As long as your system is time translation invariant, and assuming it comes from a principle of least
action, there is always a conserved energy.

Lecture 5
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Examples of how much easier it is to work with a Lagrangian than to use the traditional physics
equations. This is because, in order to work with F = ma, one has to determine accelerations which are
second derivatives. The Lagrangian only requires velocities. If you can calculate the velocities of a
system, you can calculate the kinetic energy 1

2
mv2. With the locations of the particles, you can also

work out the potential energy, and then ultimately the equations of motion.

Simple Pendulum:
The pendulum will consist of a rigid rod with a ball at the end.

The ball’s mass at the end of the pendulum we will label m.

The angle relative to the vertical we will call θ.

The potential energy is a function of θ, and the kinetic energy is the velocity of the ball.

Let us call the length of the pendulum r, which does not change.

The horizontal distance from the vertical to the ball at any moment of time can be calculated as: r sinθ.

The vertical distance can be calculated as r cosθ.

In order to calculate the velocity of the ball, we must take the derivative of the location. This means
taking the derivative of the x-coordinate, and the y-coordinate with respect to time.

r is not a function of time, but θ is, therefore when we are differentiating, we treat r as a constant and θ
as a function of t.

v = d

dt
r sinθ, d

dt
r cosθ = r cosθ

⋅
θ,−r sinθ

⋅
θ

Kinetic energy

T = m
2

sums of the squares of the components of the velocities = m
2

r cosθ
⋅
θ

2

+ −r sinθ
⋅
θ

2

= m
2

r2
⋅
θ

2

 cos2θ + sin2θ = m
2

r2
⋅
θ

2

.

We are choosing to define the potential energy as zero when the pendulum is in the vertical position.
The choice can be made for the potential energy to be zero anywhere in the cycle, and it doesn’t
change our calculations.

Potential energy U = m ⋅ g ⋅ h = mg−r cosθ where g is the force of gravity.

_ = mr2

2

⋅
θ

2

− −mgr cosθ

Πθ = ∂L

∂
⋅
θ

= mr2
⋅
θ

The equation of motion: d

dt
Πθ = U

d

dt
mr2

⋅
θ = −mgr cosθ

mr2
⋅⋅
θ = −mgr cosθ

r
⋅⋅
θ = −g cosθ

Now let us calculate the Hamiltonian (the total energy of the system):

H = Πθ

⋅
θ −L = mr2

⋅
θ

2

− mr2

2

⋅
θ

2

+ mgr cosθ = mr2

2

⋅
θ

2

− mgr cosθ.

Since mgr is the maximum potential energy (when θ = 0), and −mgr is the minimum potential energy
(when θ = 180), it takes a kinetic energy of 2mgr (by pushing the ball), to move the ball from it stationary
position all the way to the top of its cycle. Any more than this amount will cause it to make a full cycle,
and any less will cause it to oscillate back-and-forth.

And the point of all this was to show that this calculation is much easier with the Lagrangian than it
would be with the traditional Newtonian equation F = ma.
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Example: Double pendulum
Like the previous example, there is a pivot point to which a ball is connected with a rigid rod (with mass
m, and length r, respectively). However, connected to the first ball is another rigid rod with a second ball
on its end (and for simplicity, the second rod and ball have the same mass and length as the first).

Much more complicated.

In appearance, it is chaotic. It would take hours to work out the traditional formulas for the system,
while the Lagrangian is much easier.

The first thing you should do with a problem like this is choose coordinates. With experience, you will
get better at using the most useful set of coordinates. Let us call the angle of the first Rod from the
vertical θ. For the angle of the second Rod, one could easily choose either the angle relative to the first
Rod, or the angle relative to the vertical. For this example, let’s choose the angle relative to the vertical
and call it φ.

Let’s calculate the kinetic and potential energy…

Kinetic energy for the first ball: v1 = mr2

2

⋅
θ

2

(see the previous example)

Kinetic energy for the second ball: This depends upon the movement of the first ball. Even if the angle
of the second ball were not moving, the second ball WOULD still be moving due to the motion provided
by the movement of the first ball (which serves as the second ball’s pivot point). So, our calculation for
the kinetic energy of the second ball requires we add to velocities, the velocity of the second ball and
the velocity of the first…

The X component of the second ball’s velocity includes the X component of the first ball’s velocity plus
the X component of the second ball’s velocity.

v2 = r cosθ
⋅
θ +r cosφ

⋅
φ,−r sinθ

⋅
θ −r sinφ

⋅
φ

1

2
m r cosθ

⋅
θ +r cosφ

⋅
φ

2

+ −r sinθ
⋅
θ −r sinφ

⋅
φ

2

= 1

2
m r 2

⋅
θ

2

+ 2r2 cosθ cosφ
⋅
θ
⋅
φ +r2

⋅
φ

2

+ 2r2 sinθ sinφ
⋅
θ
⋅
φ

= 1

2
mr 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ cosφ + sinθ sinφ

T = v1 + v2 = mr2

2

⋅
θ

2

+ 1

2
mr 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ cosφ + sinθ sinφ = 1

2
mr 2 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ

= 1

2
mr 2 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ − φ .

And now the potential energy…

U = −2mg cosθ − mg cosφ.

So the Lagrangian is…

_ = T − U = 1

2
mr 2 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ − φ − −2mgr cosθ − mgr cosφ

= 1

2
mr 2 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ − φ + mgr2 cosθ + cosφ.

Because there is a favored direction for gravity in this example (downward), there is not a rotational
symmetry. And therefore, no related conserved quantity.

However, if we were to do this experiment out in space, where there was no gravity, we would find a
rotational symmetry. This would allow us to delete the potential energy (mgr2 cosθ + cosφ) from the
equation giving us…

_ = 1

2
mr 2 2

⋅
θ

2

+
⋅
φ

2

+ 2
⋅
θ
⋅
φ cosθ − φ
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Rotational symmetry can be seen when you add a small amount of angle measure to both θ and φ.

θ → θ +  and φ = φ + . This is similar to the previous example in which q → q + fq, except fq = 1.

Let us calculate the angular momentum, or the Noether’s charge (which does not change with time).

∑
i
Π if i where Π i =

∂_
∂

⋅
q i

and where f i = 1.

∑
i
Π if i = Πθ + Πφ.

Πθ = ∂_

∂
⋅
θ

= 1

2
mr2 4

⋅
θ + 2

⋅
φ cosθ − φ

Πφ = ∂_

∂
⋅
φ

= 1

2
mr2 2

⋅
φ + 2

⋅
θ cosθ − φ

∑
i
Π if i = Πθ + Πφ = mr2 2

⋅
θ +

⋅
φ +

⋅
φ +

⋅
θ cosθ − φ = L (angular momentum, and it doesn’t

change with time)

Now let us calculate the equations of motion (for θ)…

d

dt
Πθ = d

dt

1

2
mr2 4

⋅
θ + 2

⋅
φ cosθ − φ = −mr2

⋅
φ sinθ − φ.

Harmonic Oscillator
The harmonic oscillator is similar to the previous example, especially in the case when the pendulum
has been given a small amount of kinetic energy.

We can use this knowledge to think about the new equations.

Let us take a look at the potential energy: −mgr cosθ, and if we ignore the constants, it looks like − cosθ,
which is a wave function in the Cartesian coordinate plane. Its minimum is at θ = 0 (when it is hanging
straight down). when a function is minimized at a particular point, it indicates that the derivative of that
function at that point is 0. The function is also well approximated near that point by a parabola. In other
words, something that is proportional to θ2. So, when θ is small, the potential energy can be
approximated by the minimum potential energy (−mgr, see the previous notes on the simple pendulum
regarding this) plus this parabolic term… −mgr + 1

2
mgrθ2.

This would make our Lagrangian (we can leave out the constant term as the Lagrangian is always
differentiated causing any constant term to vanish)…

_ = 1

2
mr2

⋅
θ

2

− 1

2
mgrθ2.

The Takeaway: When the potential energy is a quadratic in the coordinate, it’s a harmonic oscillator.

Let’s imagine a spring connected to a mass m (imagine the spring stretching horizontally, along an
x-axis, with the mass attached, I’ve heard this model described as being a mass which is a block of ice
sliding frictionless on a surface of ice). If you stretch it or compress it, the mass will begin to oscillate
back-and-forth around the equilibrium point (where x = 0). Similar to the previous example, any work
used to displace the mass from the equilibrium point can be expressed as being proportional to x2.

U = 1

2
kx2 where k creates the arbitrary proportionality, and is referred to as the spring constant. By

convention, the equation includes 1

2
to make the calculations work out better under differentiation.

_ = T − U = 1

2
m

⋅
x

2
− 1

2
kx2

Remember that the force is equal to F = ∂U

∂x
= −kx. The minus sign means that the force is a "restoring

force". If you stretch the spring such that x > 0, the force is negative (it pulls you back). And vice versa.
The fact that the force is proportional to x is referred to as Hooke’s law (Newton’s best friend).

Imagine attempting to use a Taylor series to try to approximate the shape of a harmonic function near
the bottom of one of the curves. Additionally, we are planning to differentiate this series. Therefore, the
constant term doesn’t matter and can be ignored. ax1 can also be ignored since we know x = 0 once we
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have differentiated (since we are at the minimum). So, any such series only contains terms we are
interested in starting at bx2 + cx3 +… . Indeed, for small oscillations, you can even ignore all but the bx2

term (unless it is equal to zero).

The energy H = 1

2
m

⋅
x

2
+ 1

2
kx2. Because both of these terms are positive, conservation of energy will

not allow the kinetic energy in the system to go above a limiting amount. Therefore, the oscillations can
only be so large.

_ = 1

2
m

⋅
x

2
− 1

2
kx2, To work out the equations of motion for this example, we could just write F = ma,

but let us try the more general process.
∂_
∂
⋅
x

= m
⋅
x and d

dt

∂_
∂
⋅
x

= m
⋅⋅
x

∂_
∂x

= −kx

And Hook’s law tells us that d

dt

∂_
∂
⋅
x

= ∂_
∂x

, or m
⋅⋅
x = −kx and

⋅⋅
x = − kx

m . The solution to this equation is

cosines and sins. Why?

Suppose I have x = cosωt (where ω is the angular frequency) , and I differentiat it once…
⋅
x = −ω sinωt.

And if I differentiat it again, I get
⋅⋅
x = −ω2 cosωt = −ω2x. This is similar to

⋅⋅
x = − kx

m . It says that when I
take the second derivative, I get back a function which is proportional to itself, but multiplied by a

negative. So, ω2 = k
m or ω = k

m . This works for sin as well, as well as in the linear combination of sin

or cosine.

The solution can be written either as a general solution with coefficients a and b…

x = a cosωt + b sinωt or as x = A cosωt − t0 where A tells us how big the oscillations are
(amplitude), and t0 tells you when the largest amplitude occurs (the phase). If you were to pull on a
spring, and then let it go, the moment you let it go would be represented by t0.

Now let us think about its Hamiltonian, and its canonical momenta.

P = Πx = ∂L

∂
⋅
x
= m

⋅
x.

H = P
⋅
x −_ = m

⋅
x

2
− 1

2
m

⋅
x

2
+ k

2
x2 = 1

2
m

⋅
x

2
+ 1

2
kx2. Which is what we expected, and as we know

this quantity (the energy) is conserved.

Up until now, we have worked with the Lagrangian formulation of the equations of motion, now we will
turn to the Hamiltonian formulation.

Instead of working with q and
⋅
q or x and

⋅
x, The Hamiltonian works with the basic variables of canonical

momenta and coordinates (qs and Ps). Why are we doing this? it works well in quantum mechanics
(which we won’t be covering), and the formulations are very elegant. The goal is to write the equations
not in terms of positions and velocities, but rather to write the equations in terms of positions and
canonical momenta. As an aside, in quantum mechanics, there is a difference regarding the zero point
energy. This is the understanding that at the quantum level, there is a minimum amount of energy
necessary to disturb a particle. So, the accuracy that normally increases as the amount of oscillation
decreases has a lower limit.

Let us rewrite the previous equation in terms of qs and Ps.

P = m
⋅
x,

⋅
x = P

m ,

H = 1

2
m

⋅
x

2
+ 1

2
kx2 = 1

2
m P

m 2
+ 1

2
kx2 = 1

2m
P2 + k

2
x2. This creates a symmetry between the Ps and the

xs.

Imagine a Cartesian coordinate plane with x (location) being on the horizontal axis, and P (momentum)
being on the vertical axis (Phase Space). A starting position in the graph would consist of a location
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and a momentum x0, P0. Because we are using the Hamiltonian formulation, we will witness a
symmetry between the two axes that would not have occurred if using the Lagrangian velocity based
equations. As the system moves in the phase space, the location and velocity change. our task is to
track the trajectory as it moves through phase space. One tool that we have is that we know that the
energy is conserved (E = 1

2m
P2 + k

2
x2). The formulation of the equation indicates that the shape of this

function is going to be an ellipse. If the coefficients were equal, then the shape would be a circle, and
the radius would be a function of E. So, from our starting point, the function will move along an ellipse.
We can discover the intercepts by first setting P and then x equal to zero and solving for the other
variable.

E = 1

2m
02 + k

2
x2 ⇒ x = ± 2E

k
,

E = 1

2m
P2 + k

2
02 ⇒ P = ± 2mE .

How long does it take for the particle (phase point) to orbit the system (complete the ellipse around the
origin)? That depends upon ω (frequency). The larger the ω, the more quickly the function completes
the cycle. Now, project the phase point onto the x-axis (we ignore the P, and just look at the
x-coordinate). In this case, the point oscillates. When the point is furthest out relative to the
x-coordinate, it is also moving the slowest. The same relationship occurs when you project the phase
point onto the P-axis. You can think of these two motions along the two axes as the projection of the
circular phase space motion on to the x-axis and onto the P-axis.

Not all systems can be mapped onto an ellipses, but they will all map onto some contoured shape that
maintains conservation of energy.

If you took a small piece of your phase space, you can consider this as being an area of uncertainty
regarding where you began. You know that you began somewhere within that small piece of phase
space, but that is all you know. As the function propagates, that small area of phase space also
propagates with the function. We will come back to this idea…

Lecture 6: Hamiltonian Formulation

Definition of a phase space: a system in which if you know the current state of the system, you know
the subsequent state of the system, and the previous state of the system. This requires a system that
has rules which make this predictive and retracing ability possible. In a phase space where the rules
allow points to bifurcate either forward in time or backward in time, locations in the phase space can
become un-occupyable. Hamiltonian space does not allow for this. This is also called information
conservation.

Equations that are in the realm of F = ma type equations are not in a form that satisfies the above
criteria. Why not? Let’s imagine a three-dimensional space, and a particular point in that space for
which you know the location (q). In order to no where the particle will be next, we need to know not only
where it is now, but where it was a moment to go. In other words, I need to know both the position and
the velocity (

⋅
q). So, phase space is a way of describing a system which gives you enough information

to make these predictions.

The number of equations that define a system in three dimensions is equal to the number of particles in
that system times three. For each particle, the three equations are for each of the three dimensions.
Each of these equations is a second order differential equation (like F = ma where acceleration is the
second derivative with respect to time). Hamilton’s formulation allows you to take these second-order
differential equations (let’s say there are n of them) and replace them with twice as many first-order
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differential equations. While the process is completely general, let us try it for equations of the form
F = ma …

There are many ways of doing this, but for today let us assume that every particle in our system has
the same mass.

mai = m
d2xi

dt2
= F i ⇒ n of them

Define m
dxi

dt
= pi.

Then, F i =
dp i

dt
. Therefore, for each particle there are two equations (both of first order), and now there

are twice as many variables. In this case, instead of just one variable (x i), there are now two variables
(x i, pi). This in some ways is merely a bit of redefinition. However, embedded in it is a different mindset.
It allows one to know where one is going by merely knowing where one is in the phase space. It
requires that you know the position and the velocity for each degree of freedom in the system (which in
phase space is included in knowing where you are).

You can think of it in the following way: Classical mechanics represents a flow in the phase space.
wherever you are you know where to go next. So, if you populate this phase space by taking a lot of
identical systems (particles) and starting them at a lot of different points in the phase space, and
watching them as they evolve (propagate), that would define a flow in the phase space. The flow in the
phase space is what Hamiltonian physics is all about.

Legendre Transformation is generic, but the variables used (v, p) can be thought of in many contexts
as velocity (v) and momentum (p). These variables are actually functions of each other. These
functions are also bijective so that if you know the value of one of the functions, you know the value of
the other.

Let’s define _v such that d_

dv
= p. Given _, we can generate asymmetrically related function Hp.

When we think about _, we will think about v as the independent variable. And similarly with H and p.
_ is a function of p because p is a function of v. Similarly, H is a function of v, because p is a function of
v. d

dp
Hp = v.

If we solve ( d_

dv
= p = pv) for _, we get _v = ∫

0

v
pvdv. So, _v becomes the area under the curve

between the origin and v. Similarly, if we solve ( dH

dv
= v = vp) for H, we get Hp = ∫

0

p
vpdp. So, Hp

becomes the area "under the curve" between the origin and p. Of course, if we imagine these two
integrations on the same Cartesian coordinate plane, one would be the area beneath the curve as we
normally think of it, and the other would be the area to the left of the curve (between the curve and the
vertical axis). So, H +_ = pv and H = pv −_.

Let’s say we are given _v, we then differentiate it to get d_

dv
= p. We then construct H by multiplying

pv −_ = H. But, because _ is a function of v, we can instead replace these references with p.

Hp = p ⋅ vp −_vp.
We will now prove that the derivative of Hp in terms of p is v. How much does H change when we
change p by just a little amount?

δH = p ⋅ δv + δp ⋅ v − d_

dv
⋅ δv = p ⋅ δv + δp ⋅ v − p ⋅ δv = δp ⋅ v.

Therefore, dH

dp
= v.

A similar formulation occurs when there are multiple vs. However, because there are now multiple
variables, it is a partial derivative: ∂_

∂vi
= pi and ∂H

∂p i
= v i.

Hp = ∑piv i −_vp.
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δH = ∑pi ⋅ δv i + δpi ⋅∑ v i − d_

dvi
⋅ δv i

= ∑pi ⋅ δv i + δpi ⋅∑ v i −∑pi ⋅ δv i

= ∑ v iδpi.
∂H

∂p i
= v i

The above relationship between H and _ is identical to the relationship between the Hamiltonian and
the Lagrangian formulations of the equations of motion. The only detail we haven’t looked at is how the
locations of particles the qs enter into the equations. However, they “just go along for the ride."

Now let us assume we have our velocities
⋅

qi, and let’s instead refer to them as v i. Then our Lagrangian
becomes…

_qi, v i
Also, remember that pi =

∂_
∂

⋅
q i

= ∂_
∂vi

.

So, ∂_
∂vi

= pi. And here we start to see the relationship between the derivative of the Lagrangian with

respect to velocity, and the momentum. It is now the case that both our velocities and our canonical
momenta are functions of both each other and of the qs (pv, q and vp, q).

Now we will define Hamiltonian…

Hp = ∑pi

⋅
qi −_vp, q = ∑piv i −_.

Now, let us calculate how the Hamiltonian changes when we change the ps and the qs by a small
amount (δp and δq).

δH = ∑pi ⋅ δv i + δpi ⋅∑ v i − d_

dq i
δqi − d_

dvi
δv i

= ∑pi ⋅ δv i + δpi ⋅∑ v i − d_

dq i
δqi −∑pi ⋅ δv i

= ∑ v iδpi − d_

dq i
⋅ δqi.

∂H

∂p i
= v i = qi.

∂H

∂q i
= − d_

dq i
δqi.

Let’s think of how we can interpret this last equation. We know that…
d

dt

∂_
∂

⋅
q i

= ∂_
∂q i

and therefore,
⋅

pi = ∂_
∂q i

.

So, ∂H

∂q i
= −

⋅
pi and ∂H

∂p i
= qi, which are Hamilton’s equations.

H = ∑piv i −_qi, v i
δH = ∑pi ⋅ δv i + δpi ⋅∑ v i − d_

dq i
δqi − d_

dvi
δv i

= ∑pi ⋅ δv i + δpi ⋅∑ v i − d_

dq i
δqi −∑pi ⋅ δv i

= ∑ v iδpi − d_

dq i
⋅ δqi.

∂H

∂p i
=

⋅
qi.

∂H

∂q i
= − d_

dq i
δqi = − d

dt
pi = −

⋅
pi.

So, the equations of motion get greatly simplified into first-order equations. You only need to know one
function of ps and qs, and through differentiation you can discover the regular velocity as well as the
canonical momentum and therefore know the history of the system.

Let’s try it for F = ma.
Let’s make sure it works. Again, imagine a Cartesian coordinate with p () being on the horizontal axis,
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and q () being on the vertical axis. At each point in the plane, we can differentiate the Hamiltonianwith
respect to p and q, and calculate

⋅
p and

⋅
q. Doing so defines a velocity vector through the phase space.

This is not a normal velocity, but rather a phase space velocity. If you were to do this with points
throughout the phase space, and draw the vectors, you would see the flow through the phase space.

As an aside: If your system does not have a one-to-one relationship between your ps and qs (you
cannot invert them, they lose their symmetry), it means the system will break down at some point into
and infinity (for example, infinite velocity). It means that the system at some point does not know how a
point should propagate (the rules are not clear).

Our new equations of mechanics ( ∂H

∂p i
=

⋅
qi and − ∂H

∂q i
=

⋅
pi) give us a phase space, a flow through the

phase space, and a new way of thinking about the laws of mechanics. Let’s see if are familiar
equations work out with this new formulation…
1

2
mv2 − Ux ⇒ H =

p2

2m
+ Ux

∂H

∂p
=

p
m =

⋅
x → It checks out ( the relationship between velocity and momentum).

− ∂H

∂q i
should equal

⋅
pi, − ∂H

∂q i
= − ∂U

∂x
=

⋅
p, (or F = m

⋅⋅
x or F = ma).

Energy Conservation.
Can we prove that energy is conserved? Can we prove ∂H

∂t
= 0?

∂H

∂t
= ∑

i

∂H

∂p i
−

⋅
pi + ∂H

∂q i

⋅
qi

Now let’s use Hamiltons equations…

= ∑
i
− ∂H

∂p i

∂H

∂q i
+ ∂H

∂q i

∂H

∂p i
= ∑

i
0 = 0.

If we imagine the phase space as a topological structure, the previous equation means that the particle
would travel along the topological lines equating to a constant energy level, as do all particles as they
flow along the phase space flow. As with a topological map, these lines can also take a shape which is
circular or elliptical. Our previous example in which we examined and elliptical structure within the
phase space (H = p2 + x2) is an example of this phenomena. The shape can also be merely a dot. This
represents a system which is not changing. In the harmonic oscillator, this might relate to a node. In
this topological view of phase space, the flow takes on a similar property as that found in
thermodynamics. That is, as the lines of the topological map get closer together, the speed of the flow
increases (like water flowing through a narrowing pipe). In the case of phase space, the increased flow
relates to the Hamiltonian (or amount of energy) changing rapidly when the ps and qs are changing.

Now, let us not worry about why there is a conservation law, but rather what it means to have one.

Let us ask ourselves if A (a function of the phase space) is conserved. Wherever you are in the phase
space, Ap, q has a value. For example, we had previously worked out that the angular momentum of a
particle moving in a plane is given by…

xpy − ypx. In general, everything we can want to know about a particle is a function of its position and
velocity. So, if there is a property we wish to discover about particle, there is a function which will tell us
this property that consists of position and velocity as inputs to that function. What mathematical
conditions (written in terms of Hamilton’s equations) will cause Ap, q to be conserved? This will
introduce to us a new set of quantities, Poisson brackets. We wish to know if the time derivative of A

is zero or not.
d

dt
Ap, q = ∑

i

∂A

∂p i

⋅
pi +

∂A

∂q i

⋅
qi = ∑

i
− ∂A

∂p i

∂H

∂q i
+ ∂A

∂q i

∂H

∂p i
= 0.
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More generally, take any two functions of p and q, …

Ap, q, Bp, q, include them within the Poisson brackets Ap, q, Bp, q, and their defined as…

Ap, q, Bp, q = ∑
i

∂A

∂q i

∂B

∂p i
− ∂A

∂p i

∂B

∂q i
.

Relating this to our previous example where we took the time derivative of Ap, q =
⋅
A, this tells us that

we can notate such a time derivative as
⋅
A = A, H. This is yet another formulation of the equations

of mechanics.

Let’s check it with an example.
⋅
q must be = to q, H =

∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= 1 ∂H

∂p
− 0 ∂H

∂q
= ∂H

∂p
. Or,

⋅
q = ∂H

∂p
, which is just Hamilton’s

equation.
⋅
p must be = to p, H =

∂p

∂q

∂H

∂p
− ∂p

∂p

∂H

∂q
= 0 ∂H

∂p
− 1 ∂H

∂q
= − ∂H

∂p
. Or,

⋅
p = − ∂H

∂q
, which is just Hamilton’s

equation.

So, Hamilton’s equations are special cases of a much more general rule that the time derivative of any
function is the Poisson brackets of the function with the Hamiltonian. Hamiltonians, therefore, produce
time dependence by the action of Poisson brackets. The action of taking the Poisson brackets with the
Hamiltonian tells you how systems behaves over time.

Question from the audience: What would happen if the Hamiltonian were dependent upon time.

If we imagine the system we are studying to be a particle floating in space. And, instead of the normal
situation where the potential energy is a function of x, imagine it were instead of function of both
location x (which might implicitly depend on time) and explicitly time, Ux, t. In the situation, when we
take the Poisson brackets of this function, we get …

d

dt
Hp, q, t = ∑

i

∂A

∂q i

∂B

∂p i
− ∂A

∂p i

∂B

∂q i
+ ∂H

∂t
where ∂H

∂t
= ∂U

∂t
. And since this time dependence implies that

the value of this term is not zero, in general you will not get a zero value from this equation.

Lecture 7: Liouville’s Theorem
Liouville’s theorem is at the heart of classical mechanics, and a companion theory (unitary) is at the
heart of quantum mechanics.

In phase space, particles existing in the phase space propagate in ways which are neither convergent
(two points in the phase space flow into a common third point) nor divergent (a point in the phase
space flows into two separate points). As a result, the phase volume is noncompressible. Another way
of saying this is that, if the space begins with each particle in a separate part of the phase space, as the
phase volume propagates, at no time will there be particles in the same part of the phase space.

Now imagine a bunch of particles in the phase space. As these particles propagate, because the phase
volume is noncompressible, the area/volume the phase volume occupies maintains a constant volume.
Equivalently, if you are to measure the vacant space around an individual particle, as the system
propagates, the volume of vacant space around the particle remains constant. The phase volume will
also maintain connectedness. This is a result of the fact that the rules of the system tell each particle
where to go within the phase volume. So, a particle going off on its own would represent the system
failing to tell the particle the proper place to go within the phase volume. The distance between the
points, however, is not maintained. Volume is conserved, but not linear distance. In phase space, we
define chaotic systems as systems which evolve in such a way as to become radically different in
shape, as opposed to systems which maintain their original shape.
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We are going to prove Liouville’s Theorem by using Hamilton’s equations.

The flow of the particles in a phase space move in a characteristic way governed by Hamilton’s
equations. The flow is determined by a single function whose input is all of the ps and qs. This means,
if you know the Hamiltonian equation, and you are given a starting point for a system, you can follow
that system through time determining its state. At any point in the phase space, a given particle will
have two coordinates:

⋅
p,

⋅
q .The time derivatives of the ps, or

⋅
p relates to the velocity of the particle in

the direction p, and similarly with the time derivative of the qs (the regular velocities in normal space), or
⋅
q.
⋅

pi = − ∂H

∂q i
and

⋅
qi = ∂H

∂p i

Let us show what it means for a flow to be incompressible. We are going to start with a
one-dimensional flow. Imagine a line with particles spread out along the line in a uniform fashion.
Incompressible flow in this context would be observed if the points were all moving in tandem (the
same velocity). If the points to the left on this line traveled to the right faster than the points on the right
traveled, we would see a clumping of points, an increase in their density. There are two ways of looking
at this, one view is to take a look at a few of the particles. The range (volume) these particles occupy
must remain constant through time for the system to be considered incompressible. Another view is to
choose a range within the phase volume and note the number of particles within that range. As time
passes, if the phase volume is incompressible, the number of particles which leave that range as time
passes is always equal to the number of particles which enter it. So the density of that arbitrary range is
conserved. So, in this arbitrary range, if particles have a higher velocity (v2) and are therefore leaving
more quickly at one end of the range than are entering at the other end (v1), this does not represent an
incompressible phase volume. In this case, the density is changing by
v2 − v1 ⋅ The density of the points . However, if the density is assumed to be distributed evenly, then

this reduces to v2 − v1. And, if we are deciding that the phase volume is incompressible, this must
mean that v2 − v1 = 0. For increasingly small intervals, the same idea can be expressed as ∂v

∂x
Δx where

Δx is the interval. So, ∂vx

∂x
Δx = 0. And, since Δx is just a number and not a variable, we can reduce this

to ∂v

∂x
= 0.

Two dimensional phase space (x and y): Imagine a rectangular phase volume whose size is Δx ⋅ Δy,
and whose orientation aligns the sides of the rectangle with the coordinate axes. Let us label the sides
of the rectangle r1, r2, r3, and r4, with r1 being the side of the rectangle witches closest to the Y axis and
parallel to it, r2 being the top of the rectangle, and so on clockwise. How many points are entering and
leaving each side of this rectangle? We imagine that initially the density across the phase space is
uniform. The number of particles entering the rectangle through r1 per unit time must be proportional to
the X component of velocity, and the Y component must not contribute anything. vx ⋅ Δy therefore
represents the particles entering r1. However, a similar but opposite phenomena occurs on r3 such that
−vx ⋅ Δy represents the particles leaving the space. However, the velocity is not the same at r1 and r3.
The difference between these velocities is obtained with ∂vx

∂x
Δx. Therefore, the change in particles

between these two sides can be represented as ∂vx

∂x
ΔxΔy. For the horizontal edges, we have a similar

situation where the net number of particles coming into the system is represented as
∂vy

∂y
ΔyΔx. So, the

total number of points entering the system is equal to ∂vx

∂x
ΔxΔy +

∂vy

∂y
ΔyΔx = ΔxΔy

∂vx

∂x
+

∂vy

∂y
.

∂vx

∂x
+

∂vy

∂y
or ∇v is referred to as the divergence of the velocity field (or more simply, the divergence).

If it is positive, it accompanies an increase in the density, and a decrease when it is negative. However,

if this is an incompressible fluid, this quantity must be equal to zero, ∂vx

∂x
+

∂vy

∂y
= 0. Note that this

equation does not require the velocity to remain constant from place to place, but rather if it is
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increasing along the x-coordinate, it must simultaneously be decreasing along the y-coordinate. More
generally with any number of dimensions, ∑

i

∂vi

∂xi
= 0 or ∇v = 0. You can make a similar equation while

not assuming the uniformity of density, but this results in the adding of a density factor.

Now let us apply this concept to phase space. Instead of xs, we have ps, qs. However, for reasons we
mentioned earlier, there are twice as many terms; for each q (for a spatial coordinate, for example), we
also have a p. In this scenario,

⋅
p and

⋅
q are the local velocities or the v is. So,

⋅
p = vp i and

⋅
q = vq i .

Now let us calculate the divergence of the flow. We will use Hamilton’s equations to see that the

divergence of the flow is exactly 0. In one dimension,
∂vp

∂p
= ∂

∂p
− ∂H

∂q
and

∂vq

∂q
= ∂

∂q

∂H

∂p
. So,

∇v = ∂
∂p

− ∂H

∂q
+ ∂

∂q

∂H

∂p
.

And, if we had multiple dimensions, this would change to…

∇v = ∑
i

∂
∂p i

− ∂H

∂q i
+ ∂

∂q i

∂H

∂p i
.

However, because of the nature of partial differentiation we know that ∂
∂p

∂H

∂q
= ∂

∂q

∂H

∂p
. So,

∂
∂p

− ∂H

∂q
+ ∂

∂q

∂H

∂p
= 0. Therefore, the flow in phase space is incompressible. This is a profound fact

about Hamiltonian mechanics. Remember, there is no conservation of distance in the phase space,
only volume.

Let’s take a two-dimensional phase space example…

We are going to simplify this by setting the mass m = 1.

So, the kinetic energy of a particle moving along the X axis is _ =
⋅
x

2

2
.

px = d

dt

⋅
x

2

2
=

⋅
x.

Now, let’s try the same thing but with a new coordinate we will call y (not necessarily the vertical axis
you are used to, but actually in the same direction as the previous axis but with a different quality…). In
this case y = αx, where α is an arbitrary constant (this end up being a unit transformation).
y
α = x and

⋅
y
α =

⋅
x

Let’s rewrite the Lagrangian. Its value should not change when we change coordinates…

_ =

⋅
y
α

2

2
=

⋅
y

2

2α2
and py = d

dt

⋅
y

2

2α2
=

⋅
y

α2
=

⋅
x
α =

px

α .

So, y = αx, py = 1
α px. Notice that if you stretch the x-axis, you shrink the p-axis.

Liouville’s Theorem is the statement that the volume in phase space is incompressible.

Area has an invariant meaning in phase space, and becomes the concept of uncertainty in quantum
mechanics.

In extremely complicated systems (chaotic systems), to practically model these systems, it becomes
necessary to do something other than follow every individual particle. Rather, one instead defines an
amount of volume large enough that one can divide up the initial system into sectors that have that
amount of volume, and that one can then follow the phase space while maintaining an accuracy down
to that amount of volume. The difficulty with this method (course grained), is that if you then add up all
of the volumes at the end of the timeframe in which you are watching the system, the total volume will
have changed. In reality, this has not occurred, and is therefore a pitfall to following a system in this
manner. This is the origin of the second law of thermodynamics. The entropy of a system is the
detectable volume of the phase space that the system occupies. If you know that a system exists
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somewhere within a particular volume of space space, Entropy is the logarithmic measure of that
volume. And, because you haven’t be precision to follow the system carefully enough, the detectable
volume of the phase space which includes to propagated system necessarily increases. That’s why
entropy increases. It’s a statement that when a phase space propagates you lose information, not
because information is inherently lost in the universe, but because you have a limitation to the degree
you can follow the information.

And now for something completely different…

Let’s work out how will particle moves in an electromagnetic field.

The new thing in this type of the situation is velocity dependent forces. So far, the forces we have
encountered depend upon where you are, but not how you are moving.

In our previous examples, we differentiated the potential energy with respect to x, to discover the force
(which was a function of position x): −∂xUx = Fx. However, there are forces in nature that depend
upon your velocity (a magnetic field acting on a particle is a prime example). Friction is also an
example. If an object is not moving, there is no friction, and the faster the object is moving the more
friction occurs. The difference between a magnetic field force and a friction force includes the fact that
the magnetic force is derivable from the principle of least action, has a Lagrangian formulation, there is
a conservation of energy, and there is a Hamiltonian formulation. Although, there is a new twist to the
Lagrangian and Hamiltonian formulation, which we will now work out…

Let’s start out with the force that a magnetic field has on a charged particle.

Bx is a vector representing the magnetic field, and depends upon the location of the particle.

The force on a particle is equal to q v × B where q is the charge of the particle, and v is the velocity of

the particle.

Fx = v × B
x
= vyBz − vzBy, Fy = v × B

y
= vzBx − vxBz, Fz = v × B

z
= vxBy − vyBx.

F = v × B = vyBz − vzBy, vzBx − vxBz, vxBy − vyBx.

New concept: Vector Potential (A) (a way of notating magnetic fields)

It is needed for writing the equations in the form of a Lagrangian or a Hamiltonian formulation.

The magnetic field is the curl of the vector potential.

B = ∇ × A

Vectors which are curls of other vectors has no divergence. A magnetic field has no divergence, which
is why it is convenient to write it this way.

B x = ∇ × A
x
= ∂yAz − ∂zAy, B y = ∇ × a

y
= ∂zAx − ∂xAz, B z = ∇ × A

z
= ∂xAy − ∂yAx.

B = ∇ × A = ∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx.

So, the force on a charged particle due to a magnetic field…

F = q v × B = q v × ∇ × A .

Fz = qvxBy − vyBx  = qvx∂zAx − ∂xAz − vy∂yAz − ∂zAy,
Fx = qvyBz − vzBy  = qvy∂xAy − ∂yAx − vz∂zAx − ∂xAz,
Fy = qvzBx − vxBz  = qvz∂yAz − ∂zAy − vx∂xAy − ∂yAx.
F = Fx + Fy + Fz. However, now we see that these terms of the force depend not only on position A,
but also on velocity v.

We want to formulate equations of motions for a charged particle moving in a magnetic field using the
Lagrangian or the Hamiltonian form. It is not immediately obvious that we can do this. The easiest way
to do this is to really make a guess as to as to what the action is, and then to follow it through. We do
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expect that if the charge of the particle is zero, that the normal parts of the equation will occur. Our
guess…

∫_dt = ∫ mv2

2
dt where v2 is the sums of the squares of the x-component, y-component, and

z-component of the velocity.

Then we add another term. Imagine a charged particle moving through its orbit, break the path up into

little segments. Each segment we could label dx, dy, and dz; but for simplicity, let us just label it as dx.
The added term is proportional to the electric charge q, this allows the term to disappear if there is no
magnetic field or charge.

∫_dt = ∫ mv2

2
dt + q ∫A ⋅ dx

What this last term means, is that at every point in space you have a vector potential A , as the

particle sweeps out along its trajectory, there is a contribution to its action along each dx. This

contribution is calculated by taking the dot product of the action potential A with the amount of

displacement dx. Notice that this equation does not have the normal form of an action which depends

upon velocities and positions. The vector potential depends upon positions normally, but dx is a
problem. To fix it, however, all we need to do is multiply by dt

dt
…

∫_dt = ∫ mv2

2
dt + q ∫ A ⋅ dx dt

dt

= ∫ mv2

2
dt + q ∫ A ⋅ dx

dt
dt

= ∫ mv2

2
dt + q ∫ A ⋅ v dt

= ∫∑
i

m
⋅

xi
2

2
+ q A i

⋅
x i dt . This is now in our usual form. Our Lagrangian can now be written

as depending upon position and velocity, as it should.

_ = ∑
i

1

2
m

⋅
x

2
+ q

⋅
x i A i .

The next step is to prove that the equations of motion for the situation are equal to F = ma, where

ma = q V × B .

First, what is the canonical momenta px? It is the integral of the Lagrangian with respect to
⋅
x.

px = ∂_
∂
⋅
x

= m
⋅
x + qAx, py = m

⋅
y + qAy, pz = m

⋅
z + qAz.

Notice that the canonical momenta now has an additional term that depends upon the charge of the
particle and the magnetic field. Sometimes m

⋅
x is referred to as the mechanical momentum, and the

whole value is referred to as the canonical momentum. Let’s work out the z-component of the
equations of motion, which is the time derivative of the momentum ( d

dt

∂_
∂
⋅
z

= d

dt
pz = ∂_

∂z
), .

pz = m
⋅
z + qAz.

d

dt
pz = m

⋅⋅
z +q

⋅
Az

That was the left-hand of our equation ( d

dt
pz = ∂_

∂z
), now let us work out the right-hand side…

∂_
∂z

= q
⋅
x

∂Ax

∂z
+

⋅
y

∂Ay

∂z
+
⋅
z

∂Az

∂z

Now back to the left-hand side of our equation, how do we calculate
⋅

Az? It (the time derivative of the
magnetic field) is not equal to zero. As the particle moves through the field (even though where using
an example where the field itself does not change over time), the particle experiences time-dependent
changes in the field as it moves through it. So,

d

dt
pz = m

⋅⋅
z +q

⋅
Az= m

⋅⋅
z +q

∂Az

∂x

⋅
x + ∂Az

∂y

⋅
y + ∂Az

∂z

⋅
z = q

⋅
x

∂Ax

∂z
+

⋅
y

∂Ay

∂z
+
⋅
z

∂Az

∂z
, (from above).

By canceling we get…

m
⋅⋅
z +q

∂Az

∂x

⋅
x + ∂Az

∂y

⋅
y = q

⋅
x

∂Ax

∂z
+

⋅
y

∂Ay

∂z
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m
⋅⋅
z = q

⋅
x

∂Ax

∂z
− ∂Az

∂x
+

⋅
y

∂Ay

∂z
− ∂Az

∂y

maz = q vxB y − vyB x = q v × B
z
, (the substitutions were retrieved from definitions listed above)

As you can see, the Lagrangian depends upon the vector potential (A), but the equation of motion only

depends upon the magnetic field B. So, even if there is an ambiguity in the vector potential, it doesn’t
affect the equation of motion itself.

So, we now have an example of a velocity dependent force. It is almost like a friction force, except the
friction force acts along the direction of velocity. This is an important difference. When a velocity
dependent force acts only along the direction of velocity, it has the limited effect of either speeding up
or slowing down the particle. If, on the other hand, the velocity dependent force can act in other
directions, it can have the effect of curving the trajectory, and it won’t affect the energy (energy
conservation).

Now let us work out the Hamiltonian, so that we can determine what is conserved. We are assuming
that the magnetic field itself is unchanging overtime. This allows for conservation of energy. The
conservation is easy to express in terms of velocities, but not as easy in terms of momenta.

px = m
⋅
x +qAx, py = m

⋅
y + qAy, pz = m

⋅
z + qAz.

Let’s calculated, not in terms of p (momenta), but instead in terms of
⋅
x (velocities).

Hp = ∑piv i −_., (from earlier in the course )

Hp = px

⋅
x + py

⋅
y + pz

⋅
z −_.

This equation takes each momenta, multiplies it by the relevant velocity, and subtracts the Lagrangian.
If I plug in for the ps, their expressions in terms of velocities, I’ll have an expression for the energy in
terms of velocities. That won’t be good for Hamilton’s equations, but it will be good for telling me what
the energy is in terms of velocities. So, let’s do it…

Hp = m
⋅
x +qAx

⋅
x + m

⋅
y + qAy

⋅
y + m

⋅
z + qAz

⋅
z −_.

= m
⋅

x i +qAxi

⋅
x i − 1

2
m

⋅
x i

2
+ q

⋅
x i Axi

= m
⋅

x i

2
+ q

⋅
x i Axi − 1

2
m

⋅
x i

2
− q

⋅
x i Axi

= 1

2
m

⋅
x i

2
, Which is exactly the energy we get when we calculated the initial kinetic energy. The

magnetic field does not contribute to the energy when expressed in terms of velocity. Why is that? That
is equivalent to the statement that magnetic fields do no work. It’s because the force is perpendicular to
the velocity. Because the force on a particle moving in a magnetic field is perpendicular to the velocity,
the magnitude of the velocity does not change. Its direction may change, but not its speed. But this
form does not let us write the equation in terms of a Hamiltonian. To do this, we must express it in
terms of momenta (p).
⋅
x =

px−qAx

m

Hx = 1

2
m

px−qAx

m

2
=

px−qAx 2

2m
, Hy =

py−qAy 2

2m
, Hz =

pz−qAz 2

2m

H =
px−qAx 2

2m
+

py−qAy 2

2m
+

pz−qAz 2

2m
= 1

2m
px − qAx2 + py − qAy

2
+ pz − qAz2

.

Exercise: Take this Hamiltonian, workout Hamiltons equations, and check that you get the same

equations of motion. ma = v × B
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Lecture 8

Let’s do more with a charged particle in an electromagnetic field. We’re not going to worry about (in this
course) the dynamic nature of the field itself. For our purposes, the electric and magnetic fields are
merely given to us. For simplicity, we are going to assume that these fields do not depend on time (they
are static), although they may depend on space. First, let us rework out the situation when a particle is
in a magnetic field, as the situation is not intuitive.

Let’s make a list of the various forms of mechanics we’ve covered so far:

● Equations of motion (e.g., F = ma) which are differential equations of second order.

● Principle of Least Action

● Lagrange’s equations of motion (derived from the principle of least action by applying the
Euler-Lagrange equations)

● Hamiltonian Form (by interpreting Lagrange in a phase space. The advantage is the ability to
observe a flow through phase-space and information conservation, the disadvantage is that it is
less intuitive to calculate)

Equation for a non-relativistic particle (slow-moving) moving through an electromagnetic field:

F = ma = qE + q v × B where q is the charge of the particle, E is the electric field. In some usages,

the second term includes the speed of light in the denominator. However, for our usages we will absorb
that constant into another quantity (either into q, into the magnetic field, or into your definition of v ). And
as we learned before, the force of magnetism on the particle is not along the direction of the velocity,
and therefore neither adds nor subtracts from the speed. It therefore does not affect the overall kinetic
energy of the system (magnetic fields do no work). This can be observed by the fact that the magnetic
force is a cross product of the vector, and cross products are always at right angles to the vectors
involved.

Imagine the field through which are particle will be traveling as a two-dimensional plane (the
whiteboard) with the magnetic field oriented perpendicular to the whiteboard, and the electric field
oriented parallel to the whiteboard. The cross product of the magnetic field is also therefore parallel to
the whiteboard, and therefore all alterations of the trajectory due to magnetism also occur parallel to
the whiteboard (allowing us to visualize it on this plane). To make the step from a simple equation of
motion (listed above) to one of the more useful forms of mechanics we’ve studied, you need the idea of

the vector potential (A).

B = ∇ × A

Vectors which are curls of other vectors has no divergence. A divergence is the spread of a vector field
away from a point. We know that a magnetic field has no divergence because it can be written in the
form of a curl of a another vector. Although, there may be many ways to write such a curl (there is not
one unique way to write it, which becomes important). This means that you can change the vector
potential you use without changing the magnetic field, and therefore without changing the equations of
motion (this is called gauge invariance).

The electric field is a more ordinary, non-velocity dependent force. It depends upon position, and it is
conservative (in that it respects the conservation of energy). And we know that conservative forces are
generated from potential energy functions. Force is equal to minus the gradient of a potential energy
function (F = −∇U or F i =

∂
∂xi

U). For energy, we write…

E = −∇v where v (measured in volts, which is an energy per unit charge,
energy

unit charge
) is like potential

energy, but it is missing the charge. So, potential energy of a charge is U = qv. This tells us that the

Jodin Morey’s class notes while auditing Leonard Susskind’s Stanford University Lectures on Classical
Mechanics (via YouTube), Page21



potential energy of a charge is proportional to its charge (if you double the charge, you double the
potential energy).

Now let us discuss the principle of least action. The only known formula for an action which gives rise to

the equation (F = qE + q v × B ), requires you to use the vector potential. You cannot avoid making

the substitution. This is rather odd because the behavior of the particle does not depend upon the
non-unique vector potential, but rather upon the magnetic field. Let’s compute the action of the
particle…

Action = ∫ 1

2
m

⋅
x

2
+

⋅
y

2
− q ⋅ vx, y dt + ∫ q A i ⋅ dx i

The second term is of course the contribution from the magnetic field.

Let’s move one of the terms, and look at it a different way…

Action = ∫ 1

2
m

⋅
x

2
+

⋅
y

2
dt + ∫ q A i ⋅ dx i − qv dt = ∫ 1

2
m

⋅
x

2
+

⋅
y

2
dt + q ∫ A i ⋅ dx i − v dt

So, for the second term we have the vector potential in each direction being multiplied by a small
change in that direction, and for the time component, we have v dt. It’s as if we plotted the motion in
space time, we are not talking about relativity for the moment, but you can see that what is being set up
here is going to be particularly simple when we think about the special theory of relativity, where x and y
form space-time. So, imagine a three-dimensional Cartesian set of coordinates in which x, y and t form
the axes. And imagine a particle moving through this space. Now break up the trajectory into little
pieces. Now, turning back toward equation, it’s as if v is the fourth component of a vector potential
(including all three directions of space and time, dotted with a fourth dimension of voltage).

The A i ⋅ dx i should look a little unfamiliar. Up until now we have been integrating a Lagrangian, that has

been a function of velocities and positions. A i and v are functions of position. However, there is this odd

form of A i being multiplied by dx i. However, we can rewrite it in a more familiar way by multiplying by
dt

dt
…

Action = ∫ 1

2
m

⋅
x

2
+

⋅
y

2
dt + q ∫ A i ⋅ dx i ⋅ dt

dt
− v dt

= ∫ 1

2
m

⋅
x

2
+

⋅
y

2
dt + q ∫ A i ⋅

dxi

dt
dt − v dt

= ∫ 1

2
m

⋅
x

2
+

⋅
y

2
dt + q ∫ A i ⋅ v i − v dt, where v i is the velocity, and v is the measurement and

volts.

And now to give the Lagrangian, we just remove the integration signs…

_ = 1

2
m

⋅
x

2
+

⋅
y

2
+ q A i ⋅ v i − v

Exercise: And the construction of the Hamiltonian would proceed similarly to how we did it in the last
lecture.

Now let us focus on the concept of a gauge invariance…

What kind of things can you do to the vector potential that do not change the magnetic field? It does
not change the underlying physics, and therefore there must be some redundancy in the description.
We can also think of it as a symmetry of the system where changing the vector potential in certain a
way, has no influence on the motion. To help us understand it, let’s focus on a particular component of

∇ × A
z
.

∇ × A
z
= ∂xAy − ∂yAx

Suppose that I add to the vector potential, something which is itself a gradient.
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A + ∇λx, y = ∑
i

A i +
∂
∂xi

λx, y where λ can be any function. The point is, changing the vector

potential in this way does not change the curl of the vector potential. Let’s see why this is.

We are going to recalculate the curl of A, but with our addition.

Ax +
∂
∂x
λx, y, Ay +

∂
∂y
λx, y,

∇ × A
z
= ∂xAy − ∂yAx + ∂x∂yλ − ∂y∂xλ = ∂xAy − ∂yAx. So, by adding the gradient of a scaler, it

does not change the curl of a vector. The gradient of a scaler does not have a curl.

Let’s work out the equations of motion, starting with the Lagrangian and see that it really does have the

form..(F = ma = qE + q v × B ). As an aside, the form of this equation F = qE + q v × B is referred

to as the Lorentz force law. Lets just do this for the X component. We first calculate the canonical
momentum conjugate to x. That’s the derivative of the Lagrangian with respect to

⋅
x.

_ = 1

2
m

⋅
x

2
+

⋅
y

2
+ q A i ⋅ v i − v

px = m
⋅
x +qAx, (the second term comes from the fact that qA i ⋅ v i contains within it qAxvx = qAx

⋅
x). So,

we end up with an extra term that is dependent upon the vector potential. This is strange because the
new term is not gauge invariant (in that it depends upon the vector potential). The canonical
momentum of a point particle within a magnetic field is not gauge invariant. Later, we will give
examples of having different vector potentials to see how this works. Let’s see the equation of motion
which is the time derivative of this canonical momentum.

d

dt
px = d

dt

∂_
∂
⋅
x

= ∂_
∂x

d

dt
px = m

⋅⋅
x +q

∂Ax

∂x

⋅
x + ∂Ax

∂y

⋅
y , (While the magnetic field does not change with time, the force upon the

particle as the particle moves along its trajectory was time does change. Therefore, the second term of
this equation when differentiating with time does not disappear).
∂_
∂x

= ∂
∂x

q Ax

⋅
x +Ay

⋅
y −vx, y = q

∂Ax

∂x

⋅
x +

∂Ay

∂x

⋅
y − ∂v

∂x

So, m
⋅⋅
x +q

∂Ax

∂x

⋅
x + ∂Ax

∂y

⋅
y = q

∂Ax

∂x

⋅
x +

∂Ay

∂x

⋅
y − ∂v

∂x

⇒ m
⋅⋅
x +q

∂Ax

∂y

⋅
y = q

∂Ay

∂x

⋅
y − ∂v

∂x

⇒ m
⋅⋅
x = q

∂Ay

∂x
− ∂Ax

∂y

⋅
y − ∂v

∂x

⇒ m
⋅⋅
x = q Bz

⋅
y − ∂v

∂x
, Bz

⋅
y is exactly the same as the x-component of v × B

( v × B
x
= vyBz − vzBy, from above).

Also, − ∂v

∂x
ends up equaling E, since F i =

∂
∂xi

U, E = −∇v, F = −∇U and U = qv (from above).

− ∂v

∂x
= − 1

q Fx = − 1
q −∇Ux = 1

q ∇qv = ∇v = −Ex.

Fx = m
⋅⋅
x = qEx + q v × Bx

Again, even though we had to use the vector potential to complete our calculations, when we arrived at
our equations of motion, only the term for the magnetic field appeared in our equations. So, the vector
potential appears in a gauge invariant way. Often in physics, in order to have your equations notated in
Lagrangian, least action, or Hamiltonian form, you need to introduce redundant descriptions of things.
We call these redundant descriptions of things Gauge Invariances. The transformations that
correspond to these redundancies (the changes that you make that are really not changes at all in the
underlying physics), those are called Gauge Transformations.

Now we’re going to work with some examples of vector potentials, and in particular we are going to
concentrate on the problem of a uniform magnetic field; one that does not vary from place to place. In
our example, the magnetic field will be pointing into the blackboard. We’re going to construct one from
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a vector potential. We want Bz to be independent of position.

Bz = ∂xAy − ∂ yAx

Here are two examples of vector potentials that satisfy this requirement: The magnetic field goes into
the blackboard (meaning it is positive), and its magnitude is…

|B| = b

Make Ay = bx, and Ax = 0, In this case, the derivative of the Ay with respect to x is b. Bz therefore is
equal to b. So, this is one set of vector potentials that will give rise to the unified magnetic field.

Another one is Ay = 0 and Ax = −by. And another one is Ay = b
2

x and Ax = − b
2

y. These different vector

potentials are related by gauge transformations. It’s not too difficult to work out that there is some
scaler that takes you from one vector potential to another by taking its gradient.

Let’s see what we learn about these types of vector potentials from conservation laws. If we consider
the gauge Ax = by, and Ay = 0 (Gauge 1), the Lagrangian is (for simplicity we are going to ignore the
electric field for the moment):

_ = 1

2
m

⋅
x

2
+

⋅
y

2
+ q A i ⋅ v i = 1

2
m

⋅
x

2
+

⋅
y

2
+ q Ax

⋅
x , (because Ay = 0).

= 1

2
m

⋅
x

2
+

⋅
y

2
+ qby

⋅
x, Now let’s calculate the canonical momenta conjugate to x and y.

px = ∂_
∂
⋅
x

= m
⋅
x +qby, py = ∂_

∂
⋅
y

= m
⋅
y, Which one of these is conserved? px (the x-component of

momentum) is conserved. The Lagrangian does not depend on x (and so px is conserved), but it does
depend on

⋅
x and y (and so py is not conserved). If I make a transformation x → x + , the derivative of

x +  does not change from the derivative of x (
⋅
x). So, in ( 1

2
m

⋅
x

2
+

⋅
y

2
+ qby

⋅
x), if we transform x, it

does not affect
⋅
x, and there is no x in the equation to affect. And changing x, obviously does not affect y

or
⋅
y. On the other hand, if I make the transformation y → y + , this will end up changing the term qby

⋅
x.

What we have learned, is that in this gauge (px = m
⋅
x +qby) is conserved. Let’s take the case when

px = 0. It will stay zero. If it starts out as some other quantity, it will stay that quantity as well.

m
⋅
x +qby = 0 ⇒

⋅
x = − qb

m y, This tells us that the x-component of velocity is proportional to y.

Now let us work out the theory with the other gauge (Ax = 0 and Ay = −bx) (Gauge 2).

_ = 1

2
m

⋅
x

2
+

⋅
y

2
+ q A i ⋅ v i = 1

2
m

⋅
x

2
+

⋅
y

2
+ q Ay

⋅
y , (because Ax = 0).

= 1

2
m

⋅
x

2
+

⋅
y

2
− qbx

⋅
y, Now let’s calculate the canonical momenta conjugate to x and y.

px = ∂_
∂
⋅
x

= m
⋅
x, py = ∂_

∂
⋅
y

= m
⋅
y −qbx, Which one of these is conserved? py!

m
⋅
y −qbx = 0 ⇒

⋅
y =

qb
m x, This tells us that the x-component of velocity is proportional to y.

So, without having to solve any equations, but rather by just writing down the conservation laws, we
found out that the x-component of velocity is proportional to −y, and the y-component of velocity is
proportional to x (circular motion).

Let’s consider a particle moving in a circle around the origin. If we call the angle from the radius θ, and
the distance from the origin r, then x = r cosθ and y = r sinθ. Assuming an angular velocity: ω (radians
per second), then x = r cosωt and y = r sinω t. Let’s check that this solves our equation.
⋅
x = −rω sinωt = −ωy,

⋅
y = rω cosωt = ωx. So, we’ve shown that the x-component of velocity

is proportional to −y, and the y-component of velocity is proportional to x. In order to find out what ω is,
we just have to compare the equations.
⋅
x = − qb

m y = −ωy ⇒ ω =
qb
m ,

⋅
y =

qb
m x = ωx ⇒ ω =

qb
m .
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Notice that we were able to write the canonical momentum as px = m
⋅
x +qby (Gauge 1).

And also as py = m
⋅
y −qbx (Gauge 2). Because the physics doesn’t rely on which gauge you use, you

can use gauge 1 to figure out what x does, and gauge 2 to figure out what y does. The circular motion
we studied occurred when we set either one of these momenta equal to zero. Again, we are imagining
this magnetic field to be completely uniform. So, every place in the magnetic field is equal force wise.
Imagine another particle with a circular motion next to our original orbiting particle. Let us calculate if
our above calculated momenta are still conserved. To that, we add a term to each location (the central
coordinate of the circle x0, y0)…
x = r cosωt + x0

y = r sinω t + y0

Let’s now calculate what the canonical momentum is along the x-axis (Gauge 1).

px = m
⋅
x +qby

= m−rω sinωt + ωmr sinω t + qby0, (substituting from ω =
qb
m above)

= −rmω sinωt + ωmr sinω t + qby0 = qby0. And px is conserved. And similarly, py = −qbx0.

So, the physical meaning of the momenta is entirely different than what is expected. The two gauges,
which are the conserved canonical momentum, or simply proportional to the initial starting location of
the circle around which the particles orbit. And what the conservation tells you is that the central
location of the circle does not move.

Let’s put back the electric field…

We’re going to put it back in the X direction. It will not be the case anymore that px will be conserved.

Let’s define the magnitude of the electric field to be notated as: E = E

That means some potential that looks like…

v = −Ex

− ∂v

∂x
= Ex = E, − ∂v

∂y
= 0.

Lagrangian becomes…

_ = 1

2
m

⋅
x

2
+

⋅
y

2
− qbx

⋅
y − −qEx = 1

2
m

⋅
x

2
+

⋅
y

2
− qbx

⋅
y +qEx, qEx is now the electric field force

(energy).

This does not affect the canonical momentum equations (because qEx does not depend upon velocity).
However, there are no longer conserved. The time derivative of px is equal to the x derivative of qEx.
Why? Because of Lagrangian’s equations…

px = m
⋅
x +qby

d

dt
px = m

⋅⋅
x +qb

⋅
y

d

dt
px = ∂_

∂x
= qE = m

⋅⋅
x +qb

⋅
y

What about the equation for py in the other gauge (Gauge 2)? That is unchanged because I have not
put any force in the y direction…

d

dt
py = m

⋅⋅
y −qb

⋅
x = 0.

Now we want to look for a particular type of solution to the equations. For simplicity, let’s look for a
solution with no acceleration. That means the velocity has to be constant, but it can’t be ANY constant.
So, let us remove the terms which include acceleration from our time derivatives of the canonical
momenta…

qE = qb
⋅
y, and qb

⋅
x = 0.

This tells us that the movement in the x direction must be zero. However, from our other equation, we
see that the movement in the y direction is equal to E

b
, the ratio of the electric to the magnetic field.
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Notice that the movement IS constant. We were correct to look for a solution that had no acceleration.
And what we’re left with is a very special velocity, namely a velocity in the y direction, with uniform
motion equal to the ratio of the electric to the magnetic field. This is interesting because we put the
electric force in pointing in the x direction. A bit of a surprise. That is called the Hall effect.

If you have a magnetic field and no electric field, is there any solution with no acceleration? Motion in a
circle has acceleration. Nonetheless, there are solutions with no solution, namely a circle with zero
radius where the particle just sits still. That is a solution of a Lorentz force law. No acceleration, no
velocity.

However, when you turn on the electric field in the x direction, you get movement along the y-axis. That
is called the Hall effect. So, if you place a bunch of charged particles on a plane with no kinetic energy,
that also has a magnetic field imposed on the plane perpendicularly, the particles will not move.
However, if you then add an electric field parallel to the plane, the particles will then move along the
plane in a direction perpendicular to the electric field, and with a velocity that is not proportional to the
charge of the particle, but rather proportional to the amplitude of the electric field divided by the
magnetic field.

Poisson Brackets
And now for another form of mechanics which is an abstraction of the Hamiltonian form.

Poisson brackets. There would be very little point in teaching this if it were not so central to quantum
mechanics.

The two Hamiltonian equations of motion are… ∂H

∂p i
=

⋅
qi and ∂H

∂q i
= −

⋅
pi. So, for each component i, we

have two equations. We have twice as many equations as with the Hamiltonian formulation, but they
are only first order differential equations. Let us take some function of velocity and position to consider
in this context. Ap, q, imagine this well-defined function moving through a phase space. as a particle
moves through the phase flow, the value of the function changes with time. That is not to say that the
function definition changes with time, but rather that the particle takes on differing values as it
propagates through the phase space. So how does A change with time through a trajectory? We take
the time derivative of the function along the trajectory, assuming that A has no explicit time
dependency.
⋅
A= ∂A

∂q i

⋅
qi +

∂A

∂p i

⋅
pi, (when we rate the equations in this way, the reader can assume it means to sum the

equation over i)

Now let us substitute the Hamiltonian equations from above…
⋅
A= ∂A

∂q i

∂H

∂p i
− ∂A

∂p i

∂H

∂q i

One could use Poisson Brackets on any two arbitrary functions. In the second we will be using A and H.
But now, let’s look at it more generally.

A, B = ∑
i

∂A

∂q i

∂B

∂p i
− ∂A

∂p i

∂B

∂q i
, The elements of a Poisson bracket are not commutative. Instead…

A, B = −B, A, So, Poisson brackets are anti-symmetric for any two functions.

So, d

dt
Ap, q = A, H. (let’s only consider one p and one q, so we can stop writing the index i).

Let’s consider the extremely simple case of A = 1. In this instance, the function is unchanging
throughout the phase space. Therefore, the time derivative is merely 0. Let’s check it…

1, H = ∂1

∂q

∂H

∂p
− ∂1

∂p

∂H

∂q
= 0 ⋅ ∂H

∂p
− 0 ⋅ ∂H

∂q
= 0.

Let’s instead consider the case of A = p.
d

dt
p = p, H =

∂p

∂q

∂H

∂p
− ∂p

∂p

∂H

∂q

= 0 ⋅ ∂H

∂p
− 1 ⋅ ∂H

∂q
(
∂p

∂q
= 0, because p and q are independent variables perpendicular to each other

in space).
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= − ∂H

∂q
(and this is one of Hamilton’s equations)

Let’s instead consider the case of A = q.
d

dt
q = q, H =

∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q

= 1 ⋅ ∂H

∂p
− 0 ⋅ ∂H

∂q

= ∂H

∂p
(and this is the other of Hamilton’s equations)

As you can see, we are reducing all of classical mechanics to an algebraic structure involving Poisson
brackets.

Let’s review a few properties that Poisson brackets have that are actually sufficient to recover any
Poisson bracket you might be interested in.

A, B = −B, A
p, p = −p, p ⇒ p, p = q, q = 0. (any quantity that is equal to its negative must be equal to 0)

pi, pj = qi, qj = 0.

q, p =
∂q

∂q

∂p

∂p
− ∂q

∂p

∂p

∂q
= 1,

qi, pj = 0, if i ≠ j, qi, pj = δij = 0 if i ≠ j, 1 if i = j (Kronecker Delta)

p, q =
∂p

∂q

∂q

∂p
− ∂p

∂p

∂q

∂q
= −1,

pi, qj = 0, if i ≠ j, pi, qj = −δij = 0 if i ≠ j, − 1 if i = j

The simplectic structure of quantum mechanics says that whenever you switch q and p, you end up
with a negative sign.

p, Fq, p =
∂p

∂q

∂F

∂p
− ∂F

∂q

∂p

∂p
= 0 − ∂F

∂q
= − ∂F

∂q
. Taking the Poisson brackets of and arbitrary function with

respect to p is the same as taking the derivative of that function with respect to q with a minus sign.

With many variables… pi, Fq, p = − ∂F

∂q i
.

qi, Fq, p = + ∂F

∂p i
. So taking Poisson brackets with qs and ps is basically the act of taking a derivative.

One big take away: the time derivative of anything, is equal to the Poisson bracket of that thing with H

(
⋅
A= A, H).

Linearity of the Poisson brackets with respect to one of the entries:

αA, B = αA, B where α ∈ ℝ

A + C, B = A, B + C, B where α ∈ ℝ.

These properties are almost enough to determine the Poisson brackets of any function of p and q, with
any other function of p and q.

The last element you need is a product rule...

AB, C = ∂AB

∂q

∂C

∂p
− ∂AB

∂p

∂C

∂q

= A ∂B

∂q

∂C

∂p
+ B ∂A

∂q

∂C

∂p
− A ∂B

∂p

∂C

∂q
− B ∂A

∂p

∂C

∂q

= A ∂B

∂q

∂C

∂p
− ∂B

∂p

∂C

∂q
+ B ∂A

∂q

∂C

∂p
− ∂A

∂p

∂C

∂q
= AB, C + BA, C.
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Lecture 9

Poisson Brackets

Phase space has a structure to it, it’s not just a bunch of qs and ps, but rather it’s a bunch of qs and ps
with a certain kind of structure to it. Spaces have structures, the structures are the things which are
invariant under the various transformations that you might want to do. An example of a structure that
might be on a space, if you know anything about curved spaces and differential geometry, the metric
structure of metrical spaces (of Remann spaces) are part of the structure of those spaces. They are
characterized by a metric in that space, a distance formula between neighboring points. Poisson
structures are different from metric structures in that they are more abstract, and they were created
largely to describe the structure of the space, and its properties under transformations which change
the coordinates. The coordinates of the phase space are not just the qs, but include the ps. So, a basic
question you might have is how might one conduct transformations in this phase space that maintains
the qs and ps, while maintaining the structure of the phase space.

Poisson brackets are useful for describing flows on phase space. One type of flow in phase space is
the motion of particles through the space with time. All the particles propagate with time under the
influence of a particular Hamiltonian. However, there are other flows that can be examined in phase
space for other purposes; for example symmetries. The problem with discussing symmetries as it
relates to classical mechanics is the lack of examples which give a large range of situations. In
classical mechanics, we’re generally working with rotational and translational symmetries.

In advance of our examining symmetries in phase space, let’s look at it in Cartesian space. If we think
about rotation in the space, we can think of it in two ways. We can either imagine an object rotating, or
equivalently locating the origin of this space in the center of the object, and rotating the coordinates
system. Either way, you can divide up the rotation into infinitely small fractions of the rotation, and see
the large rotation as merely a summation of all of these smaller fractions. You can imagine the moving
of the coordinate system as a type of flow. One can similarly apply this idea to translation. In phase
space, similar flows occur, but instead of just adjusting directional coordinates (qs), we are also
manipulating qs and ps. And these flows in phase space are described by Poisson brackets.

A more complicated version of linearity: αA + βB, C = αA, C + βB, C
While Poisson brackets in classical mechanics are commutativein how they are multiplied by functions,
they are not necessarily in quantum mechanics. So, an alternate version of the product rule which is
more consistent is…

AB, C = AB, C + A, CB

A linguistic note: When physicists use the term scaler, they need a property which does not change
under the rotation of space. This differs from its use in mathematics.

Because the definition of Poisson brackets includes both ∂
∂p

s and ∂
∂q

s, if you place to functions within

the brackets, both of which only depend upon a single variable, you get… Fq, Gq = 0 and
Fp, Gp = 0.

So, we have an algebraic system of Poisson brackets which characterize the relationship between qs
and ps in phase space. Let’s add to that, another postulate about the time evolution of a system that
can be completely derived from Hamilton’s equations. In fact, we’ve directed a couple of times
previously in this course…
⋅
A p, q = A, H, This means that the time derivative of the function in phase space, or the speed with
which the qs and ps change in phase space is equal to the Poisson brackets of that function with the

Hamiltonian.
⋅
A is the derivative with respect to time to the function on the phase space, and is thought
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of as applying the flow to the function for a particular particle.

Let’s see what happens if our Hamiltonian happens to be
p2

2m
. Then, we apply this Hamiltonian to

⋅
p

within the Poisson brackets.
⋅
p = p, H = p,

p2

2m
= 0 (because, as stated earlier, the possible

bracket of p, with any other function which is solely a function of p equals zero).
⋅
q = q, H = q,

p2

2m

= ∂
∂p

p2

2m
=

p
m . So, without knowing Hamiltons equations, we are able to derive these properties

using Poisson brackets.

Symmetries
Symmetries are transformations of a system which do not change the dynamics.

Up until now, the symmetries we have studied have been transformations in terms of one of the
variables q, but not of p. Such as rotations in space…

Q = Qq.
So, are there symmetries in nature which include both qs and ps. And if such symmetries do exist, what
are the rules/laws which allow you to manipulate the qs and ps, while simultaneously preserving the
laws of classical mechanics. We want rules (transformations on phase space) which maintain a form
we can recognize, namely the Poisson algebra.

For example, let’s try making an arbitrary transformation and see how it affects things.

Let’s define the following transformations…P = 2p and Q = 2q. So, the question is whether or not these
transformations preserve the Poisson structures.

P, Q = 2p, 2q = 4, This does not maintain our Poisson structure.

Instead, how about P =
p

2
and Q = 2q.

P, Q =
p

2
, 2q = 1, This does maintain our Poisson structure.

It’s not necessarily a symmetry in a physical system, but it is another set of coordinates which is exactly
the same Poisson bracket relations as the original. In the phase space, we would see the initial
transformation (which did not maintain Poisson structure) as an attempt to stretch the phase space
both vertically and horizontally. The second transformation (which didn’t maintain the Poisson structure)
was an attempt to squeeze the space horizontally while simultaneously stretching vertically. When only
working with one q and p, this has a conservation of area.

Instead, how about P = cosθ ⋅ p + sinθ ⋅ q and Q = − sinθ ⋅ p + cosθ ⋅ q

This will have the effect of rotating the phase space (P rotated into Q), and should therefore maintain
the area. So, we might suspect that it will preserve our Poisson structure.

Q, P = q cosθ − p sinθ , p cosθ + q sinθ
= q cosθ, p cosθ + q sinθ − p sinθ, p cosθ + q sinθ

= −p cosθ + q sinθ, q cosθ + p cosθ + q sinθ, p sinθ
= −p cosθ, q cosθ − q sinθ, q cosθ + p cosθ, p sinθ + q sinθ, p sinθ
= q sinθ, p sinθ − p cosθ, q cosθ
=

∂q sinθ
∂q

∂p sinθ
∂p

− ∂p sinθ
∂q

∂q sinθ
∂p

− ∂p cosθ
∂q

∂q cosθ
∂p

− ∂q cosθ
∂q

∂p cosθ
∂p

=
∂q sinθ

∂q

∂p sinθ
∂p

− 0 ⋅ ∂q sinθ
∂p

− 0 ⋅ ∂q cosθ
∂p

− ∂q cosθ
∂q

∂p cosθ
∂p

=
∂q sinθ

∂q

∂p sinθ
∂p

+
∂q cosθ

∂q

∂p cosθ
∂p

= sinθ ⋅ sinθ + cosθ ⋅ cosθ = 1.This does maintain our Poisson

structure.

The family of transformations which preserve the Poisson structure are called Canonical
Transformations. Notice that these are not gauge transformations. These are not redundancies of a
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description, they are changes of a description to new coordinates. When you are talking about
canonical transformations, you’re talking about a change in description of the system, but not a change
in the physics of that system.

Let’s talk about how we build up the infinitesimal transformations of a symmetry, until it adds up to be
the whole transformation. What do we mean by an infinitesimal transformation? It means that the new
system Q, is only different from the old system q by a little amount: δqp, q.
Q = q + δqp, q
This just means that deviation from a trivial transformation is infinitesimal (δqp, q). In practice, what it
means is that in their formulas, we will drop things proportional to quadratic and higher powers of the
deltas (presumably because if they are less than 1, higher powers while only decrease the value?). It
means that small quantities, are quantities that are so small that we can drop higher powers of them.
that is what we will mean by infinitesimal, that we can drop higher powers of them. We can always
generate larger transformations by adding together smaller transformations for which we have dropped
higher powers of their infinitesimals, but then we have to combine them together which can become
complicated. We can test out very easily one of the rules for infinitesimal canonical transformations.

P = p + δp, (for efficiency, this text will assume that each δp = δpp, q, we will also suppress (p = pi)
the indices until the last step).

Let us write down the condition that this be a canonical transformation.

The interesting one here is…

Q, P = q + δq, p + δp = q, p + δp + δq, p + δp = q, p + q,δp + δq, p + δq,δp
= q, p + δq, p + q,δp + 0. Now, we want Q, P = q, p, which means we need

δq, p = −q,δp. This is necessary and sufficient. Let’s see the construction…

Let’s call δq = q, Gp, q where G is the generator of the canonical momentum.

And δp = p, Gp, q. Every infinitesimal canonical transformation is characterized by a function
Gp, q, which itself defines it a flow.

Let’s now prove the theory that if δq and δp are obtained by Poisson brackets with a generator G, then it
will always be true that δq, p = −q,δp (it can also be proved in the opposite direction which means
both conditions are necessary and sufficient to show the other).

First of all, δq = q, Gp, q =  ∂G

∂p
and δp = p, Gp, q = − ∂G

∂q
, with substitution…

 ∂G

∂p
, p = − q,− ∂G

∂q
⇒  ∂G

∂p
, p =  − ∂G

∂q
, q ⇒ ∂G

∂p
, p = − ∂G

∂q
, q ⇒ − ∂

∂q

∂G

∂p
= − ∂

∂p

∂G

∂q
. And

since it does not matter the order with which you partially differentiate something, these two terms are
indeed equal. Q. E. D.

What we have found is that flows that are generated by Poisson bracketing with respect to a generator
always defines canonical transformations. A special case of this is the Hamiltonian flow. Let’s look
again at these equations…

δq = q, Gp, q =  ∂G

∂p
and δp = p, Gp, q = − ∂G

∂q

Supposing we were talking about the time motion of the system. The time motion of a system is
⋅
q = q, H but if I instead write

⋅
q as

δq

δt
, and I just think of δt as ,

δq

δt
= q, H ⇒ δq = δtq, H = q, H, than the Hamiltonian flow takes on the form we just worked

with. Hamiltonian evolution of a system is a canonical transformation. In other words, the coordinate
transformation of qs and ps which are generated by the actual flow of the system, is itself a special case
of a canonical transformation. Furthermore, all canonical transformations can be generated by picking
some generator (as it were the Hamiltonian), imagining in our mind a Hamiltonian which caused the
flow which took the points from one place in the phase space to another, that defines the most general
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class of canonical transformations.

Above, we failed to reintroduce the indices. This can be a homework exercise.

If the transformations we are allowed to do, the ones that preserve the structure of mechanics are
canonical, with a given system and a given Hamiltonian, what is the subclass of those that are called
symmetries? Symmetries are the canonical transformations that do not change the Hamiltonian. This is
similar to what we said about the Lagrangian. We said that the coordinate transformations that did not
change the Lagrangian were symmetries. Now, the more general idea becomes: coordinate
transformations in phase space that are canonical, and which do not change the energy are
symmetries.

We can also say this in a geometric way. Imagine a two-dimensional phase space in which the
Hamiltonian corresponds to a flow. And it is also a canonical transformation. The infinitesimal smalltime
flow of any particles in the phase space are generated by the Hamiltonian, and the full transformation
over a period of time is canonical. Now, let us imagine another quantity, a generator G. It generates a
different flow, but not the time differentiated flow. It moves points through the phase space in some
other way. This can be imagined as flow lines traveling in a direction nonparallel to the Hamiltonian
flow. This would often have the effect of changing the energy of the system. However, imagine that the
Hamiltonian, and G flows relate in just such a way that the amount of energy in the system is not
affected. In this case, it is called the symmetry. What is the condition for that? Here is how q and p
change under the flow; δq = q, Gp, q =  ∂G

∂p
and δp = p, Gp, q = − ∂G

∂q
.

Let’s take a general function for q and p, and see how it changes along this flow.

δA = ∂A

∂q
δq + ∂A

∂p
δp, and with substitution from above we can rewrite this as…

δA = ∂A

∂q
 ∂G

∂p
+ ∂A

∂p
− ∂G

∂q
=  ∂A

∂q

∂G

∂p
− ∂A

∂p

∂G

∂q
= A, G, This is the exact formula used for the

time derivative of things when G was the Hamiltonian. The change of functions along the Hamiltonian
flow is just the Poisson bracket with a Hamiltonian. The change of any arbitrary function along any flow
is just the Poisson bracket with the generator of the flow. That’s what these generators do. The Poisson
bracket with the generator create the flow and they give you the derivatives of the way the functions
change along the flow. What is it mean that the energy does not change in the direction of the flow G?
It says that H, G = 0. It means that the Hamiltonian does not change in the direction of G. We can
verify this by substituting H, in our previous equation.

δH = ∂H

∂q
 ∂G

∂p
+ ∂H

∂p
− ∂G

∂q
=  ∂H

∂q

∂G

∂p
− ∂H

∂p

∂G

∂q
= H, G.

But this must also mean that G, H = 0, and that the value of G does not change in the direction of the

Hamiltonian. And since,G, H =
⋅

G, it tells us that G does not change with time (G is conserved). This
creates a symmetrical relationship between the two generators. This relationship is much easier to
conceive of in quantum mechanics because there are so many more examples, concrete examples to
examine.

One real life example is angular momentum: H =
p2

2m
+ Fx2 + y2, G = xpy − ypx

Homework exercise, show that: G, H = 0, xpy − ypx,
p2

2m
+ Fx2 + y2 = 0

We’re going to show it with a free particle, as it is a bit difficult to show it in general. We are also going
to set the mass equal to 1. G is the angular momentum, and H as usual is the Hamiltonian (the
energy).

H =
px

2

2
+

py
2

2
, G = xpy − ypx

G, H =
px

2

2
+

py
2

2
, xpy − ypx =

px
2

2
, xpy − ypx +

py
2

2
, xpy − ypx

=
px

2

2
, xpy +

px
2

2
,−ypx +

py
2

2
, xpy +

py
2

2
,−ypx
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=
px

2

2
, xpy + 0 + 0 +

py
2

2
,−ypx , (Poisson brackets in which you pair a momenta of one variable

with a different variable is equal to zero, the same occurs when pairing a momenta with any other
momenta)

= ypx,
py

2

2
− xpy,

px
2

2

= y px,
py

2

2
+ px y,

py
2

2
− x py,

px
2

2
− py x,

px
2

2

= y ⋅ 0 + px y,
py

2

2
− x ⋅ 0 − py x,

px
2

2
= px

∂
∂p

py
2

2
− py

∂
∂p

px
2

2
= pxpy − pypx = 0.

So, this is in example of two generators that have vanishing Poisson brackets between them. The

implication is that is the Hamiltonian is
px

2

2
+

py
2

2
, then the angular momentum xpy − ypx is conserved.

Interestingly, if we were to invent a new phase space in which the Hamiltonian were xpy − ypx, we would

find that there would be another conserved generator whose value was
px

2

2
+

py
2

2
. And, again, the idea of

the symmetry is a generator which does not change the energy of the system (the Hamiltonian).

So let us work out the example in which H = xpy − ypx.
⋅
x= x, H = x, xpy − x, ypx = ypx, x − xpy, x = ypx, x + pxy, x − xpy, x − pyx, x = y ⋅ −1 + px ⋅ 0 −
⋅
y= y, H = x.

These velocities would correspond with the particle traveling in a circle. As a homework assignment,

show that
px

2

2
+

py
2

2
is conserved.

From the audience: How do you find the ps when given the velocities of a system?

Answer: You start with Hamilton’s equation, and you work it out using Poisson brackets.

H =
p2

2m
+ Ux

⋅
x= x, H =

p
m

⋅
p= p, H = ∂U

∂x
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