These flashcards were generated to study for a Dynamical Systems oral exam.

Section 1: Examples of DEQs and Basic Concepts

Newton's early method for solving first order ODE w/init value	Power series as ansatz: $y=y_{0}+y_{1} t+\ldots$ subst in \& compare sides. w/init value determine some y_{j}. Repeat.

Pendulum

$$
\text { Nonlinear Oscillator: } \ddot{\varphi}=-\frac{g}{l} \sin \varphi,
$$ where ℓ is length, g is gravity

Planetary Motion

Nonlinear Oscillator: $\ddot{x}=-\nabla V(x)$
Point-mass positions $x=\left(x^{1}, x^{2}, \ldots, x^{N}\right)$ for N-bodies, where $x^{j} \in \mathbb{R}^{3}$, and potential is $V(x)=-\sum_{1 \leq j<k \leq N} \frac{m_{j} m_{k}}{\left|x^{x}-x^{k}\right|}$.
Friction for Nonlinear Oscillator $\quad \ddot{x}=-\nabla V(x)-\gamma \dot{x}$, for $\gamma>0$.
Van der Pol Oscillator

Nonlinear Nonconservative Oscillator: $\ddot{x}=\gamma\left(1-x^{2}\right) \dot{x}-x=0$ γ is scalar parameter indicating strength of nonlinearity and damping. $(x=0, \dot{x}=0)$ is unstable. When x large, x^{2} term dominates $\&$ damping >0

Predator Prey Model

$$
\begin{aligned}
& x^{\prime}=(A-B y) x \text {, and } y^{\prime}=(C x-D) y, \\
& \text { where } y \text { is the predator, and } x \text { is the prey }
\end{aligned}
$$

\exists of sol for Autonomous ODE
$\dot{x}=f(x)$,
$x(0)=x_{0} \in R$
! of sol for Autonomous ODE
$\dot{x}=f(x)$,
$x(0)=: x_{0} \in R$
$f\left(x_{0}\right)=0 \Rightarrow x(t) \equiv x_{0}$ is sol. If $f\left(x_{0}\right) \neq 0 \& f \in C^{0}$, then by IFT (since $x \in C^{1}$)
$\tau^{\prime}(x)=\frac{1}{f(x)} \Rightarrow \tau(x(t))=\int_{x_{0}}^{x(t)} \frac{1}{f(y)} d y=: T\left(x(t) ; x_{0}\right)$. RHS is monotone in $x(t)$ away from $f=0$ (Need for IFT), so IFT $\Rightarrow x\left(t ; x_{0}\right)=T^{-1}\left(t ; x_{0}\right)$
f is Lipshitz. (i) $\forall x_{0}, \exists \delta>0 \& \exists!x(t)$ for $|t|<\delta$.
(ii) Any 2 sols coincide on common domain of def.
(iii) !sols are $x(t) \equiv x_{0}$ when $f\left(x_{0}\right)=0 \& \mathrm{o} / \mathrm{w}$ implicitly thru $\tau(x(t))=\int_{x_{0}}^{x(t)} \frac{1}{f(y)} d y$

Nonuniqueness ODE example
$\dot{x}=f(x)$,
$x(0)=: x_{0} \in R$
$x^{\prime}=|x|^{\beta}$, which is not differentiable for $\beta<1$ (unless $x \equiv 0$).
Nontrivial sol: $\frac{1}{|x|^{\beta}} d x=t+c$ for $x \neq 0 \quad \Rightarrow \quad \frac{x^{1-\beta}}{1-\beta}=t+c$.
Pcwise sol for $x_{0}=0: x(t)=(1-\beta)^{\frac{1}{1-\beta}} t^{\frac{1}{1-\beta}}, t \geq 0, \& x(t)=0$ for $t \leq 0$
First Integral

For $x^{\prime}=f(x)$, FI is $I: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{w} \backslash(x(t)) \equiv$ const; independent of time for all sols. Equivalently, $0=\frac{d}{d t} I(x(t))=\langle\nabla I(x(t)), f(x(t))\rangle_{\mathbb{R}^{n}}$.
That is, $\nabla I(x) \perp f(x)$ for all $x \in \mathbb{R}^{n}$.
Hamiltonian Systems H
$H: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, and symplectic matrix $J:=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$, with Hamiltonian equation $u^{\prime}=J \nabla H(u) \& H(p ; q)=\frac{1}{2 m}|p|^{2}+V(q)$

Hamiltonian Systems Examples

$$
\begin{aligned}
& \text { Pendulum, } n=1 \text { and } H(\varphi, v)=\frac{1}{2} v^{2}-\frac{g}{l} \cos \varphi \\
& \text { Gravitational, } H(x ; v)=\sum_{j} \frac{1}{2} m_{j}\left|v^{j}\right|^{2}+V(x) \\
& H=\text { Kin. }+ \text { Pot. }
\end{aligned}
$$

Proof Hamiltonian is First Integral
If f is vector field and
H the Hamiltonian

$(\nabla H, f)=(\nabla H, J \nabla H)=\left(J^{T} \nabla H, \nabla H\right)=(-J \nabla H, \nabla H)=(\nabla H,-J \nabla H)$
So, $J \nabla H=-J \nabla H$ or $J \nabla H=0$, and $(\nabla H, f)=0$
"Lie derivative of H along flow of f is zero."

Existence of Hamiltonian

Let $f \in C^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ be a vector field with $\operatorname{div}(f)=0$.
Then there exists $H \in C^{2}$ such that: $f=J \nabla H$.
Note that $\operatorname{div}(f)=\operatorname{div}(\dot{q}, \dot{p})=\operatorname{div}\left(\partial_{p} H,-\partial_{q} H\right)=\partial_{q} \partial_{p} H-\partial_{p} \partial_{q} H=0$.
Flow
$\Phi: \mathbb{R} \times X \rightarrow X,(t, u) \rightarrow \Phi(t, u)=: \Phi_{t}(u)$ is a (well defined) flow if it's differentiable satisfies cocycle property: $\Phi_{0}=i d$, $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}, \forall t, s \in \mathbb{R}$. In particular, Φ_{t} is invertible with inverse Φ_{-t}
Local flow
Φ is defined in a neighborhood of $\{0\} \times\left\{x_{0}\right\}$ when the cocycle property holds: i.e., when $\Phi_{t} \circ \Phi_{s}$ and Φ_{t+s} are defined.

Flow solution to ODE

Let f be vector field for flow Φ_{t}. Then $x(t):=\Phi_{t}\left(x_{0}\right)$ solves $\dot{x}(t)=f(x)$.
Proof: $x^{\prime}\left(t_{0}\right)=\left.\frac{d}{d t}\right|_{t=t_{0}} \Phi_{t}\left(x_{0}\right)=\left.\frac{d}{d t}\right|_{t=t_{0}} \Phi_{t-t_{0}}\left(\Phi_{t_{0}}\left(x_{0}\right)\right)$
$=\left.\frac{d}{d \tau}\right|_{\tau=0} \Phi_{\tau}\left(\Phi_{t_{0}}\left(x_{0}\right)\right)=f\left(\Phi_{t_{0}}\left(x_{0}\right)\right)=f\left(x\left(t_{0}\right)\right)$.
Metric Space
Complete Metric Space X
Normed Vector Space

Cauchy sequences converge in the set, that is: $\lim _{N \rightarrow \infty}\left[\sup _{m, n \geq N} d\left(x_{n}, x_{m}\right)\right]=0 \Rightarrow \exists y \in X$ such that $x_{n} \rightarrow y$. $N \rightarrow \infty$

Vector space X with a norm operator $|\cdot|: X \rightarrow \mathbb{R}_{+}$, where $|\lambda x|=|\lambda||x|$, $|x+y| \leq|x|+|y|, \quad|x|=0$ iff $x=0$.
A normed space is a metric space with distance $d(x, y)=|x-y|$.

Any closed subset of a Banach space

Lipshitz continuous

Locally Lipshitz Map
\qquad for all $x_{1}, x_{2} \in X$.

A set X equipped with a metric $d: X \times X \rightarrow \mathbb{R}_{+}$, where $d(x, y)=d(y, x), \quad d(x, z) \leq d(x, y)+d(y, z), \quad d(x, y)=0$ iff $x=y$. The metric defines a topology \& convergence, $x_{n} \rightarrow y$ iff $d\left(x_{n}, y\right) \rightarrow 0$
is a complete metric space
\qquad
A map $F: X \rightarrow Y$ between metric spaces
with Lipshitz constant L such that $d_{Y}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq L d_{X}\left(x_{1}, x_{2}\right)$,

If for every $x \in X$ there exists a neighborhood $U(x)$ such that the restriction of F to $U(x)$ is Lipshitz continuous, with a Lipshitz constant $L(x)$.
Contraction A Lipshitz map $F: X \rightarrow X$ on a complete metric space with Lipshitz constant $L<1$.

Banach's FP Theorem

A contraction possesses a unique fixed point.
Frechet differentiable

Given $U \subset X, V \subset Y$, open subsets. $F: U \rightarrow V$. F is Frechet differentiable in x if $\exists L(x) \epsilon \mathcal{L}(X, Y)$ (bounded) s.t. $\forall u \neq x \in U, F(u)-F(x)-L(x) \cdot(u-x)=o(x-u)$, where $\frac{o(\delta)}{|\delta|} \rightarrow 0$ for $\delta \neq 0 . L(x)$ is the derivative @ x \& write: $D F(x):=L(x)$

Gateaux differentiable in x

$F: X \rightarrow Y$ where for any $x_{0} \in X$ the function $f_{x}: \mathbb{R} \rightarrow Y$ with
$f_{x}\left(t ; x_{0}\right)=F\left(x+t x_{0}\right)$ is Frechet differentiable in t at $t=0, \forall x$.
Note that Frechet \Rightarrow Gateaux. "Directional deriv. in direction of x_{0} "

Gateaux implies Frechet

Suppose F is Gateaux differentiable and $f_{x}\left(t ; x_{0}\right)=F\left(x+t x_{0}\right)=L_{t}(x) x_{0}$ for some bounded operator $L_{t}(x)$ that depends continuously on x. Then F is Frechet differentiable.

Implicit
Function
Thm

Suppose $F \in C^{k}(X \times \Lambda, Y), k>1, F\left(x_{0} ; \lambda_{0}\right)=0, \& D_{x} F\left(x_{0} ; \lambda_{0}\right)$ has bounded inverse. \exists Nbhds U of $\lambda_{0} \& V$ of x_{0}, s.t. \exists ! sol. to $F(x ; \lambda)=0, \forall \lambda \in U \mathrm{w} / x \in V$, given thru $x=\varphi(\lambda)$. Moreover, $\varphi \in C^{k}, \varphi\left(\lambda_{0}\right)=x_{0}$, and $D_{\lambda} \varphi=-\partial_{x} F^{-1} \partial_{\lambda} F$, at $(x, \lambda)=\left(x_{0}, \lambda_{0}\right)$

Banach's FP Thm with parameters

Picard-Lindelof

Let $U \subset \mathbb{R}^{n}$ open, $f: U \rightarrow \mathbb{R}^{n}$ a locally Lipshitz vector field on U. $\forall x_{0} \in U, \exists t_{b}\left(x_{0}\right)>0 \&$ sol. $x:\left[-t_{b} ; t_{b}\right] \rightarrow U$ of $x^{\prime}=f(x) ; \quad x(0)=x_{0}$. Also, given sol $\widetilde{x}(t)$, where $t \in J$ interval, and $\widetilde{x}(0)=x_{0}$, then $\widetilde{x}(t)=x(t), \forall t \in J \cap\left[-t_{b} ; t_{b}\right]$

Smooth Dependence on Parameters sols$\quad$$f \in C^{k}\left(U \times P, \mathbb{R}^{n}\right), U \times P \subset \mathbb{R}^{n} \times \mathbb{R}^{p}$, for some $1 \leq k \leq \infty, \omega$. Then \exists ! sol $x\left(t ; t_{0}, x_{0}, \mu\right)$ and its derivative wrt t are C^{k} in all vars. "Smooth f gives smooth $x \& x^{\prime} . "$

Suppose f continuous @ x_{0}.
Then $\exists \delta>0$ and sol of IVP: $x^{\prime}=f(x)$, $x(0)=x_{0}$, on $(-\delta, \delta)$.

Flow Existence?
$\left(t, x_{0}\right) \rightarrow$
$x\left(t ; x_{0}\right)=: \Phi_{t}\left(x_{0}\right)$

$f \in C^{1}$ (or Lipshitz) wrt vars \¶ms. Moreover, it has inverse in 2 nd argument Φ_{-t}, by uniqueness of sols, which is also differentiable. In particular, the derivative $\partial_{x_{0}} \Phi_{t}\left(x_{0}\right)$ invertible \& $\Phi_{t}(\cdot)$ is local diffeo. If global in t, DEQ generates flow in nghbd of $\{0\} \times U$

Sol Blowup

Criteria
Let f locally Lipshitz, defined on $U \subset \mathbb{R}^{n}$. Then maximal time interval of existence $T_{\max }$ is nonempty and open. If $T_{\max } \neq \mathbb{R}$ and $t_{*} \in \partial T_{\max }$ with $t \rightarrow t_{*}$ in $T_{\max }$ we have that either $x(t) \rightarrow \partial U$ or $|x(t)| \rightarrow \infty$.
Explicit Euler
Implicit Euler

Let Φ_{t} be the flow to an ODE $x^{\prime}=f(x)$. Since
$\Phi_{h}\left(x_{0}\right)=x(h)=x_{0}+\int_{0}^{h} f(x(s)) d s$, then $x(h) \approx x_{0}+h f\left(\varphi_{h}\left(x_{0}\right)\right)$, a 1st order numerical approximation $\left(h^{1}\right)$ to the solution at time h.

Order of Numerical Method

Global Error

Accumulated error over all steps. At step n, for $h=\frac{t}{n}$, global error at a fixed time t is of order $p . E_{n}=\left|\varphi_{h}^{n}\left(x_{0}\right)-\Phi_{n h}\left(x_{0}\right)\right| \leq n O\left(h^{p+1}\right)=O\left(h^{p}\right)$ If f has global Lipshitz constant L, then error estimate is $\left|\varphi_{h}^{\frac{t}{h}}\left(x_{0}\right)-\Phi_{t}\left(x_{0}\right)\right| \leq C e^{L t} h^{p}$

Backward Error Analysis

Discover that our numer. approx. exactly solves slightly different DEQ $x^{\prime}=\widetilde{f}(x)$, $x(0)=x_{0}$; for suitable \widetilde{f}. Usually true for smaller errors, $O\left(e^{-\frac{c}{h}}\right)$ w/analytic vect flds f.
OR, exactly solves w/slightly different initial condition, $x^{\prime}=f(x), \quad x(0)=\widetilde{x}_{0}(h)$.

We say that a numerical method is of order p if local error is of order $p+1$, $\Phi_{h}\left(x_{0}\right)-\varphi_{h}\left(x_{0}\right)=O\left(h^{p+1}\right),\left(\right.$ as h increases, the error grows as $\left.h^{p+1}\right)$.
\qquad

Runge-Kutta

Assuming autonomous f. Estimate $x(h)=x(0)+\int_{0}^{h} f(x(s)) d s$, using $x_{k}=x_{0}+h \sum_{i<k} b_{j} f_{i}$, where $f_{i}=f\left(x_{i}\right)=f\left(x_{0}+h\left(\Sigma_{j<i} a_{i j} f_{j}\right)\right)=\ldots$ where $a_{i j}, b_{i}$ are taken from a butcher tableau

Backward Differentiation Methd
 Good for stiff problems

Form $\mathrm{k}^{\text {th }}$ deg. interpolating poly $y(t) \mathrm{w} / y\left(t_{n}\right), y\left(t_{n-1}\right), \cdots, y\left(t_{n-k}\right)$. Differentiate \& evaluate it @ t_{n}. Example:interpolate thru $y\left(t_{n}\right) \& y\left(t_{n-1}\right)$ is: $y(t) \approx y\left(t_{n}\right)+\left(t-t_{n}\right) \frac{y_{n}-y_{n-1}}{t_{n}-t_{n-1}}$ Approximating $y^{\prime}=f(y, t)$ gives Backward Euler $y_{n}=y_{n-1}+\left(t_{n}-t_{n-1}\right) f\left(y_{n}, t_{n}\right)$

Section 4: Qualitative Dynamics

| Change of Coordinate |
| :--- | | Hyrtman-Grobman |
| :--- |
| Thm |

If ψ a smooth diffeo $\& \Phi_{t}$ a flow to $x^{\prime}=f(x)$. Then $\widetilde{\Phi}_{t}:=\psi^{-1} \circ \Phi_{t} \circ \psi$ is a flow, w/ associated ODE for the variable $y=\psi^{-1}(x)$, as $y^{\prime}=(D \psi(y))^{-1} f(\psi(y))$

| Blowing-Up on \mathbb{R}^{2} |
| :--- | :--- | :--- |
| Non-hyperbolic f.p. |\quad| Change of coords "blows-up" non-hyperb f.p. into curve on which singularities occur |
| :--- |
| 1. Perform the blowup with polar coordinates. |
| 2. Perform stereographic projection. 3. Use algebra to analyze. |

Time Rescaling
Let $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be smooth, strictly positive. Then $\{x(t), t \in \mathbb{R}\}$ to $x^{\prime}=f(x)$ are trajectories to $y^{\prime}=\alpha(y) f(y)$. So, $\exists \gamma: T \rightarrow T^{\prime}$, a diffeo of max existence intervals for $x^{\prime}=f(x) \& y^{\prime}=\alpha(y) f(y) \mathrm{w} /$ InitConds $x(0)=y(0)=x_{0}$, resp, s.t. $y(\gamma(t))=x(t)$

Scaling Symmetry

For scale invariant equations:
$u^{\prime}=f(u), f(\lambda u)=\lambda^{p} f(u) \forall \lambda>0$

Change to polar, $u=R v, R>0, v \in S^{n-1} \subset \mathbb{R}^{n},|v|=1$.
Since v lives in sphere, we conclude $\left\langle v^{\prime}, v\right\rangle=0$, so we solve for v^{\prime}.
w/substitution we eliminate v^{\prime} and reduce dimensions of DEQ s

Flow-Box \quad| If $f \in C^{k}$ with $k \geq 1, f\left(x_{0}\right) \neq 0$. Then, \exists local diffeo $\psi \in C^{k}$, |
| :--- |
| $\psi: N_{x_{0}} \rightarrow N_{0}$ s.t. $y:=\psi(x)$ satisfies $y^{\prime}=f\left(x_{0}\right)=$ const, $\forall y \in N_{0}$. |

Invariant \mathbf{S}	If $\Phi_{t}(S) \subset S$ for all $t \in \mathbb{R}$, then S is invariant. Invariant sets are unions of trajectories. Level sets of first integrals are invariant.

ω-limit set of x_{0}

The set of accumulation points as time tends to infinity $\omega\left(x_{0}\right)=\left\{y \in X \mid \exists t_{k} \rightarrow \infty, \Phi_{t_{k}}\left(x_{0}\right) \rightarrow y\right\}$

Examples of

 ω-limit setsEquilibrium $\Rightarrow \omega\left(x_{0}\right)=\alpha\left(x_{0}\right)=\left\{x_{0}\right\}$. Homoclinic if $\omega\left(x_{0}\right)=\alpha\left(x_{0}\right)=\left\{x_{*}\right\}, x_{*} \neq x_{0}$.
Heteroclinic if $\omega\left(x_{0}\right)=\left\{x_{+}\right\} \neq \alpha\left(x_{0}\right)=\left\{x_{-}\right\}$
Periodic orbit $\Rightarrow \omega\left(x_{0}\right)=\alpha\left(x_{0}\right)=\gamma\left(x_{0}\right):=\left\{\Phi_{t}\left(x_{0}\right) \mid t \in \mathbb{R}\right\}$

Forward orbit of x_{0} is bounded.

Then, $\omega\left(x_{0}\right)$ is:

Counter Example to

$\omega(U)=\bigcup_{x_{0} \in U} \omega\left(x_{0}\right)$

Non-Wandering Set Ω

Chain Recurrent Set

i) Nonempty, ii) Compact iii) Connected, iv) Invariant, v) $\omega\left(x_{0}\right)=\cap_{T \geq 0} \overline{U_{t \geq T} \Phi_{t}\left(x_{0}\right)}$ and $\lim _{t \rightarrow \infty} \operatorname{dist}\left(\Phi_{t}\left(x_{0}\right), \omega\left(x_{0}\right)\right) \rightarrow 0$, where $\operatorname{dist}(y, A)=\inf _{z \in A}|z-y|$.
We similarly define $\omega(U)$ for sets $U \subset X, \quad \omega(U)=\cap_{T \geq 0} \overline{U_{t \geq T} \Phi_{t}(U)}$.

Flow on $[0,1]$ to $x^{\prime}=x-x^{2}$, where of course, $\omega([0,1])=[0,1]$ but $\omega(x)=1$ for all $x>0$ and $\omega(0)=0$ such that $\cup_{x} \omega(x)=\{0,1\}$
$x \in \Omega \Leftrightarrow$ for all $U(x)$ there exists $t_{k} \rightarrow \infty$ such that $\Phi_{t_{k}}(U(x)) \cap U(x) \neq \emptyset$
$x \in C R \Leftrightarrow \forall \varepsilon, T>0, \exists \varepsilon$-pseudo-orbit $\mathrm{w} / x_{n}=x$ (endpoint $=$ start point), where ε-pseudo-orbits are piecewise orbits with at most ε-jumps that is, there exists $T_{j}>T, x_{j}, 0 \leq j \leq n-1,\left|\Phi_{T_{j}}\left(x_{j}\right)-x_{j+1}\right|<\varepsilon$.

Lyap if V cont $\& V\left(\Phi_{t}(x)\right)$ non-increasing in $t, \forall x$. If $V \in C^{1}$, then cond. becomes $\frac{d}{d t} V\left(\Phi_{t}(x)\right) \leq 0$, or equivalently $(\nabla V, f) \leq 0$. Sublevel sets $V_{c}=\{x \mid V(x) \leq c\}$ are forward invar. If $V\left(x\left(t_{*}\right)\right) \leq c$ for t_{*}, then $\forall t>t_{*}$, still have $V(x(t)) \leq c$.

Stability of invariant set $\emptyset \neq M \subseteq X$

Lyapunov function V

LaSalle's
Invariance Principle

Corollary to Morse Lemma	Consider $x^{\prime}=f(x)$ with $f(0)=0$, and assume that $V(x)$ is a Lyapunov function near 0, with $V(0)=0, \nabla V(0)=0$, and $D^{2} V(0)>0$. Then 0 is stable.

| Lyapunov | If $x^{\prime}=A x \&$ neg defint $A=A^{T}($ So $\sigma(A)<0)$ we've Lyap $V(x)=-\frac{1}{2}\langle A x, x\rangle \cdot \frac{d}{d t} V(x(t))=-\frac{1}{2}(\langle A(A x), x\rangle+\langle A x, A x\rangle)$ |
| :--- | :--- | :--- |
| Function | |
| $=-\|A x\|^{2}<0$. Also: $D^{2} V(x)=-\frac{1}{2} D^{2}\left(x^{T} A x\right)=-\frac{1}{2} D\left[\left(A x+x^{T} A\right) \cdot \overrightarrow{1}\right]=-\Sigma A_{i j}>0$ (neg def), | |
| Example | |
| $\left.\nabla V(x)\right\|_{0}=-\left.\frac{1}{2}\left(x^{T}(\nabla A x)+\left(\nabla x^{T}\right) A x\right)\right\|_{0}=-\left.\left(x^{T} A+A x\right)\right\|_{0}=0$. And $f(0)=A(0)=0$. So stable by Morse. | |

i) Suppose V Lyapunov, $\omega\left(x_{0}\right) \neq \emptyset$. Then V is constant on $\omega\left(x_{0}\right)$, AKA $V\left(\omega\left(x_{0}\right)\right)=\left\{V_{0}\right\}$.
ii) Suppose V strict Lyapunov. Then $y^{\prime}=0, \forall y \in \omega\left(x_{0}\right)$, that is, ω-limit set consists of equilibria

Section 5: Linear Equations

Matrix Exponential for
$\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \in \mathbb{R}^{n}$,
$\mathbf{x}(\mathbf{0})=\mathbf{x}_{0}, \quad \mathbf{A} \in \mathbb{R}^{n \times n}$

Coordinate Changes for

$\mathbf{x}^{\prime}=\mathbf{A x} \in \mathbb{R}^{n}$
$\mathbf{x}(\mathbf{0})=\mathbf{x}_{0}, \quad \mathbf{A} \in \mathbb{R}^{n \times n}$

Absolutely convergent $e^{A t}:=\sum_{k=0}^{\infty} \frac{(A t)^{k}}{k!}$
Differentiate termwise and find $\frac{d}{d t} t^{A t}=A e^{A t}$.
As a consequence, $e^{A t} x_{0}$ is the unique solution to $x^{\prime}=A x$
$S \in G L(X), x=S y$, which gives: $y^{\prime}=S^{-1} A S y$
with solutions $y(t)=e^{S^{-1} A S t} y_{0}$. Note that $e^{S^{-1} A S t}=S^{-1} e^{A t} S$, by change of coords rule (or by inspecting cancellations in infinite sum)

Linear combinations of solutions, $\Sigma_{j} \alpha_{j} x_{j}(t)$ are solutions for any $\alpha_{j} \in \mathbb{R}$ if $x_{j}(t)$ are solutions. Therefore, if $X=V \oplus W$, (invariant subspaces under A) it is sufficient to solve DEQ in V and W, separately.

Invariant Subspace Corollary

Invariant Subspace under Change of Coord in \mathbb{C}^{n}

If Spectrum of $A \in C^{n \times n}$ is
$\lambda_{1, \ldots, n}=0$, then new form?

Superposition Decomp for

$\mathbf{x}^{\prime}=\mathbf{A x} \in \mathbb{R}^{n}$
$\mathbf{x}(\mathbf{0})=\mathbf{x}_{0}, \quad \mathbf{A} \in \mathbb{R}^{n \times n}$

Suppose $V \subset X$ is a subspace invariant under $A, A V \subset V$. Then V is invariant under the flow $\Phi_{t}=e^{A t}$, or $\Phi_{t}\left(x_{0}\right)=x_{0} e^{A t}$, where $x_{0} \in V$
, λ_{1} ?

If you change coordinates $y=S^{-1} x \in \mathbb{C}^{n}$, then the conjugate matrix $S^{-1} A S$, where $A \in \mathbb{R}^{n \times n}$ possesses (real linear) n-dimensional invariant subspaces $S^{-1} V_{r / i}$. Since $V_{r / i}$ is invariant under A.

There exists a basis w/coordinate change S of \mathbb{C}^{n} such that in the new basis: $A_{i i}=0, A_{i, i+1} \in\{0,1\}$. For example: $S^{-1} A S=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, for nonsemisimple
$\forall A \in \mathbb{C}^{n}, \exists$ change of coordinates S s.t. $S^{-1} A S$ is block diagonal and each block is of the form $\lambda_{j} i d_{k_{j}}+N_{k_{j}}$, where $k_{j} \geq 1$ is the size of the block and λ_{j} is an eigenvalue.

JNF Solution
Decomp
for $x^{\prime}=A x$

Jordan Ansatz
to $x^{\prime}=A x$

Since $e^{A t}$ leaves subspaces invariant that are A invariant, It has same block diagonal structure as JNF of A. So, it's sufficient to compute exponential of a single block, $\lambda i d_{k}+N_{k}$.
Since identity and N_{k} commute: $e^{\left(\lambda i d_{k}+N_{k}\right) t}=e^{\lambda t} e^{N_{k} t}=e^{\lambda t} \sum_{j=0}^{k-1} \frac{t^{j}}{j!} N_{k}^{j}$, since $N^{k}=0$. $x(t)=\sum_{\lambda \in \sigma(A)} p_{\lambda}(t) e^{\lambda t}$, where $p_{\lambda}(t)$ is a vector valued polynomial in t with degree at most the maximal algebraic multiplicity of λ

Discontinuous	$\left.\begin{array}{l}\text { Consider }\left(\begin{array}{ll}\varepsilon & 1 \\ 0 & 0\end{array}\right) . \text { At } \varepsilon=0, \text { it is JNF, w/transform: } S=i d \text {. For } \varepsilon>0, S= \\ \\ \\ \hline\end{array} \begin{array}{cc}1 & 1 \\ -\varepsilon & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & \varepsilon\end{array}\right)\left(\begin{array}{cc}0 & -\frac{1}{\varepsilon} \\ 1 & \frac{1}{\varepsilon}\end{array}\right)=S D S^{-1}$ has a pole at $\varepsilon=0$. Eigenvectors collide.

$\operatorname{det} \mathbf{e}^{A t=? ?}$
Suffices to triangularize: $A=P^{-1} T P, \mathrm{w} / P$ invertible \& T upper-triangular. $\operatorname{det} e^{T t}=e^{\lambda_{1} t} \ldots e^{\lambda_{n} t}=e^{\left(\lambda_{1}+\ldots+\lambda_{n}\right) t}=e^{\operatorname{tr}(T) t}$. Observe $\operatorname{tr}(A)=\operatorname{tr}(T)$, So: $\operatorname{det} \mathbf{e}^{A t}=\left|P^{-1} \mathbf{e}^{T t} P\right|=\left|P^{-1}\left\|\mathbf{e}^{T t}\right\| P\right|=\frac{|P|}{|P|} \prod_{\lambda} e^{\lambda t}=e^{\Sigma \lambda t}=e^{(t r A) t}$.

How to Simplify

Higher-Order Equations
$x^{(n)}+a_{1} x^{(n-1)}+\ldots+a_{n}=0$

Write as a first order system with characteristic polynomial:
$\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}=0$, and eigenvectors $\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n-1}\right)^{T}$, that is, the geometric multiplicity is always 1 .

Spectral Projections

Linear maps $\mathrm{w} / P^{2}=P \Rightarrow P$ is identity on its range. Range \& ker of P span $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$. Interesting are projections that commute w / A, so $P A=A P$.
Since such projections leave $P($ range $(A))$ and $P(\operatorname{ker}(A))$ invariant under A.

| Matrix Differential Equations |
| :--- | :--- |
| $X^{\prime}=A X$, where $A \in \mathbb{R}^{n \times n}$ |
| and $X \in \mathbb{R}^{n \times m}$ |\quad| If $m=n, \& X(0)=i d$, then $X(t)=e^{A t}$ is called fund. matrix. sol |
| :--- |
| If $X\left(t_{0}\right)$ invertible, then fund. matrix sol can be calculated as |
| $\Phi(t)=X(t) X^{-1}\left(t_{0}\right)$. |

Eigenvalues are
completely
determined by

Trace and determinant
e.g. planar: $\lambda_{1 / 2}=\frac{t r}{2} \pm \sqrt{\frac{t r^{2}}{4}-\operatorname{det}}$.

| Planar
 Center Equilibrium$\quad$$t r=0$, det $>0 . \lambda_{1 / 2}= \pm i \omega$.
 Solutions are ellipses or (in JNF) circles in the phase plane. |
| :--- | :--- |

Planar
 Unstable Focus Equilibrium

Planar

Resonant Node Equilibrium

$t r>0, \operatorname{det}>0, \operatorname{det}<\frac{t r^{2}}{4} . \lambda_{1}, \bar{\lambda}_{2}=\eta \pm i \omega, \mathrm{w} / \omega, \eta>0$.
Sols in the complex JNF $z=e^{i \omega t} e^{\eta t}$, hence logarithmic spirals $|z| \sim e^{\arg (z)}$.
$t r>0, \operatorname{det}>0, \frac{t r^{2}}{4}=\operatorname{det} . \quad \lambda_{1}=\lambda_{2}>0$.
If A semi-simple, sols are simply $x(t)=x_{0} e^{\lambda t}$ radially exponentially outward. A is non-semi simple, in JNF $x_{2}(t)=e^{\lambda t} x_{2}^{0}, x_{1}=t e^{\lambda t} x_{2}^{0}+e^{\lambda t} x_{1}^{0}$. Twisted Star

Planar

Unstable Node Equilibrium

Planar

Unstable/Zero Equilibrium
$t r>0$, det >0, det $<\frac{t r^{2}}{4} \cdot \lambda_{1}>\lambda_{2}>0$
Solutions in JNF are $x_{1}(t)=x_{1}^{0} e^{\lambda_{1} t}, x_{2}(t)=x_{2}^{0} e^{\lambda_{2} t}$.
Hence typical solutions are $x_{1}(t) \sim x_{2}(t)^{\lambda_{1} / \lambda_{2}}$ or parabolae
$t r>0$, det $=0 . \quad \lambda_{2}>\lambda_{1}=0$
Solutions in JNF are $x_{2}(t)=x_{2}^{0} e^{\lambda_{2} t}, x_{1}(t)=x_{1}^{0}$.
Trajectories are parallel to x_{2}-axis, converging to the x_{1}-axis in backward time

Planar

Saddle Equilibrium
$\operatorname{tr}>0, \operatorname{det}<0 . \quad \lambda_{1}>0>\lambda_{2}$.
Solutions in JNF are $x_{1}(t)=x_{1}^{0} e^{\lambda_{1} t}, x_{2}(t)=x_{2}^{0} e^{\lambda_{2} t}$.
Hence typical solutions are hyperbolae: $x_{1}(t) \sim x_{2}(t)^{\lambda_{1} / \lambda_{2}}$

Zero Eigenvalues Equilibrium

Adjoint Equation:

$x^{\prime}=A x$, and $\psi^{\prime}=-A^{*} \psi$.
For any solutions $x(t), \psi(t) \ldots$?
$\operatorname{tr}=0$, det $=0$. If A semi-simple, $x^{\prime}=0 \&$ flow trivial, all points are EQ. If A non-semisimple, we find in JNF: $x_{2}(t)=x_{2}^{0}, x_{1}(t)=t x_{2}^{0}+x_{1}^{0}$, a shear flow parallel to x_{1}-axis w/equilibria on x_{1}-axis.

$$
\begin{aligned}
& \frac{d}{d t}\langle(x(t), \psi(t))\rangle=0 \\
& \text { Proof: } \frac{d}{d t}\langle x(t), \psi(t)\rangle=\left\langle\frac{d}{d t} x(t), \psi(t)\right\rangle+\left\langle x(t), \frac{d}{d t} \psi(t)\right\rangle \\
& =\langle A x(t), \psi(t)\rangle+\left\langle x(t),-A^{*} \psi(t)\right\rangle=\left\langle x, A^{*} \psi\right\rangle+\left\langle x,-A^{*} \psi\right\rangle=0
\end{aligned}
$$

Let $x^{\prime}=A x$, and $\psi^{\prime}=-A^{*} \psi$.
Let E_{λ} be generalized eigenspace to $\lambda \in \mathbb{R}$ of A Similarly, define E_{λ}^{*}. Then, $E_{\lambda}=$

$$
E_{\lambda}=\left(E_{\lambda}^{c, *}\right)^{\perp}
$$

where E_{λ}^{c} the sum of all other generalized eigenspaces. Also: $E_{\lambda}^{c}=\left(E_{\lambda}^{*}\right)^{\perp}$.

Duhamel formula for

non-autonomous inhomogeneous
$\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{g}(\mathbf{t}), \quad \mathbf{x}(\mathbf{0})=\mathbf{x}_{0}$

Variation of Constant Formula for Non-Autonomous Equations $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} g(s) d s$.
Proof: Differentiate!

Solve nonautonomous homog.

$x^{\prime}=A(t) X, x\left(t_{0}\right)=x_{0}$,
for $A(t)$ cont.

Floquet theory for

non-autonom homog periodic
$\dot{x}=A(t) x$, w $/ A(t)$ T-periodic

Write $\Phi_{t, t_{0}} x_{0}$ for the solution, where $\Phi_{t_{0}, t_{0}}=i d$, and $\Phi_{t, t_{0}}$ is linear. $\Phi_{t, 0}$ is fund. sol. since we generate any solution $\Phi_{t, s}$ as : $\Phi_{t, s}=\Phi_{t, 0} \cdot\left(\Phi_{s, 0}\right)^{-1}$ Duhamel: $x^{\prime}=A(t) x+g(t), \quad x\left(t_{0}\right)=x_{0}, \quad \Rightarrow \quad x(t)=\Phi_{t, t_{0}} x_{0}+\int_{t_{0}}^{t} \Phi_{t, s} g(s) d s$.

If $\varphi(t)$ is fundamental matrix sol, then $\forall t, \varphi(T+t)=\varphi(t) \varphi^{-1}(0) \varphi(T)$. $\exists B$ s.t. $e^{T B}=\varphi^{-1}(0) \varphi(T), \exists T$-period invertb. $Q(t)$ s.t. $\varphi(t)=Q(t) e^{t B}, \forall t$. Also, $\exists R \in \mathbb{R}^{n \times n}$ and $\exists 2 T$-periodic $Q(t)$ s.t. $\varphi(t)=Q(t) e^{t R}, \forall t$.

Consequence of Floquet
thm. $\dot{x}=A(t) x$,
w/A(t) T-periodic

Sol $\varphi(t)=Q(t) e^{t R}$ gives rise to t-dependent change of coordinates $\left(y=Q^{-1}(t) x\right)$. Original system becomes autonomous linear sys w/real constant coeffs $y=R y$. Stability of the zero solution for $y(t)$ and $x(t)$ is determined by the eigenvalues of R.

Characteristic/

Floquet multipliers
$\dot{x}=A(t) x, \mathbf{w} / A(t)$ T-periodic

Floquet Exponents

$\dot{x}=A(t) x, \mathbf{w} / A(t)$ T-periodic

Recall: $e^{T B}=\varphi^{-1}(0) \varphi(T)$ for fundamental matrix sol $\varphi(t)$. Eigenvalues $e^{\mu T}=: \lambda_{i}$ of $e^{T B}$ (where μ are Floquet Exponents) are the Characteristic/Floquet Multipliers. They are also the eigenvalues of the (linear) Poincaré maps $x(t) \rightarrow x(t+T)$.

Recall: $e^{T B}=\varphi^{-1}(0) \varphi(T)$ for fundamental matrix sol $\varphi(t)$.
FE are the eigenvalues of B. Floquet exponents are not unique, since $e^{\left(\mu+\frac{2 \pi i k}{T}\right) T}=e^{\mu T}=: \lambda_{i}$, where $k \in \mathbb{Z}$

Basic Bistability Model and Coupled Model

$$
\begin{aligned}
& u^{\prime}=u(1-u)\left(u-\frac{1}{2}\right)+a \\
& u_{1}^{\prime}=d\left(u_{2}-u_{1}\right)+u_{1}\left(1-u_{1}\right)\left(u_{1}-\frac{1}{2}\right)+a \\
& u_{2}^{\prime}=d\left(u_{1}-u_{2}\right)+u_{2}\left(1-u_{2}\right)\left(u_{2}-\frac{1}{2}\right)+a
\end{aligned}
$$

Weakly Coupled Bistability
 Model Conclusions. $d \ll 1$. $u_{i}^{\prime}=d\left(u_{i}-u_{j}\right)+\ldots+a$

Strongly Coupled Bistability

Model Conclusions. $d \gg 0$. $u_{i}^{\prime}=d\left(u_{i}-u_{j}\right)+\ldots+a$

Implicit Function Theorem IFT

Full Rank Theorem

(which means the image has full dimensions)
$F\left(u_{*}\right)=0$

9 f.p. in the bistable regime. Linearizing the equation with $u_{j}^{\prime}=0$ at these f.p., we find a diagonal matrix w/nonzero entries. So, by IFT $\exists 9$ unique solutions for $|d| \ll 1$, around these f.p.

All equilibria have $u_{1}=u_{2}$.

Suppose $F \in C^{k}, k=1, \ldots, \infty, \omega, F\left(u_{*} ; \mu_{*}\right)=0$,
$\& \partial_{u} F\left(u_{*} ; \mu_{*}\right)$ invertible
Then \exists locally unique $\varphi(\mu)$ s.t. $F(\varphi(\mu) ; \mu)=0$.

Suppose $F \in C^{k}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right), F\left(u_{*}\right)=0$, and $D F\left(u_{*}\right)$ is onto $\left(\operatorname{Img}\left(D F\left(u_{*}\right) \vec{v}\right)=\mathbb{R}^{n}\right.$ for $\vec{v} \in \mathbb{R}^{m}$, in particular $\left.m>n\right)$. Then the set of zeros of F near u_{*} is a C^{k}-manifold of dim: $m-n$

Sards Theorem

Suppose $F \in C^{k}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$, with $k>1$ if $m \leq n \& k>m-n+1$, otherwise. Let C be critical points, i.e., $D F(u)$ doesn't have max rank for $u \in C$. Then $F(C)$, the set of critical values, has Lebesgue measure zero.

Smooth Bifurcation Curves Corollary
 Any smooth one-parameter family of vector fields $F(u ; \mu)$ can be \ldots

> approximated by vector fields $F(u ; \mu)+\varepsilon_{k}, \varepsilon_{k} \rightarrow 0$, for $\varepsilon_{k} \in \mathbb{R}^{n}$ such that the equilibria $F(u ; \mu)+\varepsilon_{k}=0$ form smooth curves in $\mathbb{R}^{n} \times \mathbb{R}$ for each ε_{k}.

Arclength

Continuation
Algorithm

Find sol. $v_{*}=\left(u_{*}, \mu_{*}\right) ;$ init ds arclength step size. Start loop. Find kernel e of $\partial_{v} F\left(v_{*}\right)$, $\mathrm{w} /|e|=1$. Step $v_{*}:=v_{*}+d s \cdot e$. Solve (8.3) $F(v)=0,\left\langle v-v_{*}, e\right\rangle=0$ for v using Newton $w /$ init guess $v_{*} . v_{*}:=v$; End loop

Lyapunov-Schmidt Reduction Thm

Suppose $F=F(u ; \mu) \in C^{k}, F(0 ; 0)=0$. Let $P \& Q$ be projections onto ker \& rng of $\partial_{u} F(0 ; 0)$. ヨlocally defined $\varphi \in C^{k}: R g P \times \mathbb{R}^{p} \rightarrow R g Q$, s.t. sols $(u ; \mu)$ to $F(u ; \mu)=0$ in 1-1 corresp. w/sols to $\varphi(\widetilde{u} ; \mu)=0$.

Lyapunov-Schmidt

Constrct $F\left(x_{0}, \lambda_{0}\right)=0$
$\left(x_{0}, \lambda_{0}\right) \in X \times \Lambda \rightarrow Y$
$Y:=Y_{1} \oplus Y_{2}=\operatorname{range}\left(\partial_{x} F_{0}\right) \oplus \operatorname{range}\left(\partial_{x} F_{0}\right)^{\perp} . Q:=$ projection onto Y_{1}. $X:=X_{1} \oplus X_{2}=\operatorname{ker}\left(\partial_{x} F_{0}\right) \oplus \operatorname{ker}\left(\left(\partial_{x} F_{0}\right)^{\perp}\right)$. Decomp $F: Q F(x, \lambda)=0, \quad(I-Q) F(x, \lambda)=0$ Let $x_{1} \in X_{1} \& x_{2} \in X_{2}$, then $Q F\left(x_{1}+x_{2}, \lambda\right)=0$ solved wrt x_{2} by IFT.

Bifurcations are failures of one of the three generic properties of vector fields:

Codimension 1 Bifurcations
 Exmpls. Categorized by their vector field failures:

Codimension 2 Bifurcations

Exmpls

Hyperbolic equilibrium points. Hyperbolic periodic orbits Transversal intersections of stable and unstable manifolds of equilibrium points and periodic orbits.

EQ: Saddle-Node, Hopf. P-Orbits: Fold Limit Cycle, Flip, Torus. Global: Homocl of f.p.s, Homocl tang. of maniflds of p-orbits. Heterocl of f.p.s \& p-orbits.

Bogdanov-Takens.
Cusp Bifurcation. Fold-Hopf.
Hopf-Hopf.

Sols near Saddle-Node Bif

L-S Reduc gives $\varphi(L e ; \mu)=0$ $\mathbf{w} / L \in \mathbb{R}$

Suppose $F(0 ; 0)=0$ s.t. 1) ker of $\partial_{u} F(0 ; 0)$ is $1 \mathrm{D}=\operatorname{span}(e)$. 2) Reduced coeffs in Taylor exp: $\varphi(L e ; \mu)=\sum_{j, k=0}^{\infty} \varphi_{j k} L^{j} \mu^{k}$ satisfy $\varphi_{01} \cdot \varphi_{20} \neq 0$ Then \exists sols near $0 \Leftrightarrow-\operatorname{sign}\left(\varphi_{01} \cdot \varphi_{20}\right) \mu>0$. One sol when $\mu=0$, two o/w.

Saddle-Node Bif	Local bif where 2 f.p.s collide \& annihilate $1 D-$ unstable saddle, stable node. Normal: $\frac{d x}{d t}=r \pm x^{2}$. $\varphi_{20} \cdot \varphi_{01} \neq 0$ (nondegenerate)

Sols near Transcrit Bif

L-S Reduc gives $\varphi(L \vec{e} ; \mu)=0$ $\mathbf{w} / L \in \mathbb{R}$

Suppose \exists trivial sol $F(0 ; \mu)=0, \forall \mu$ s.t. ker of $\partial_{u} F(0 ; 0)$ is $1 \mathrm{D}=\operatorname{span}(\vec{e})$
$\& \varphi(L \vec{e} ; \mu)=\sum_{j, k=0}^{\infty} \varphi_{j k} L^{j} \mu^{k}$ satisfies $\varphi_{11} \cdot \varphi_{20} \neq 0$. Then $\exists!u_{ \pm} \neq 0$
to $F(u ; \mu)=0$ for $\mu \neq 0, \mu \ll 1 \mathrm{w} / \exp : u_{ \pm}(\mu)=-\frac{\varphi_{11} \mu}{\varphi_{20}} \vec{e}+O\left(\mu^{2}\right)$.

Transcrit Bif \quad| |
| :--- |
| they collide. Normal: $\frac{d u}{d t}=r u-u^{2} . u_{+/-} \in\{0, r\}$. |
| Bif @ $r=0 . \quad \varphi_{11} \cdot \varphi_{20} \neq 0$ |

Vector field f
Equivariant with respect to Γ,
where $\Gamma \subset O(n)$

$$
\begin{array}{|l|}
\forall \gamma \in \Gamma, f(\gamma u ; \mu)=\gamma f(u ; \mu) \text { and } \\
L \gamma=\gamma L, \text { with } L=\partial_{u} f(0 ; 0) . \text { So, } \\
\operatorname{Ker}(L) \text { is invariant under } \Gamma, \text { or } \Gamma \text { acts on } \operatorname{Ker}(L)
\end{array}
$$

Equivariant L-S Lemma
for $\Gamma \subset O(n)$,
where $L:=\partial_{u} f(0,0)$

If we choose projections $P \& Q$ in the L-S Thm as orthogonal projections then L-S Reduction $\varphi\left(u_{0} ; \mu\right)=0$ is equivariant wrt Γ on $\operatorname{Ker}(L)$ and $\operatorname{coker}(L)$

Sol Near Pitchfork	
Bifurcation	Suppose $F \in C^{3}$ s.t. $F(\gamma u ; \mu)=\gamma F(u ; \mu)$, for a $\gamma \in O(n)$, $F(0 ; 0)=0, \operatorname{Ker}\left(\partial_{u} F(0 ; 0)\right)=\operatorname{span}(e)$ is $1 \mathrm{D}, \gamma e=-e, \varphi_{11} \cdot \varphi_{30} \neq 0$, and $\varphi_{10}=\varphi_{20}=\varphi_{01}=0$. Sols u, μ near 0 include $u \equiv 0, \& u= \pm \sqrt{\frac{-\mu \varphi_{11}}{\varphi_{30}}}$

Pitchfork Bifurcation
w/Normal Form

Local bif w/ 1 f.p. $\rightarrow 3$ f.p.s. $\varphi_{11} \cdot \varphi_{30} \neq 0 . \varphi_{10}=\varphi_{20}=\varphi_{01}=0$ Supercrit Norm: $\frac{d u}{d t}=\mu u-u^{3}$. Two stable f.p.s @ $u= \pm \sqrt{\mu}$ Subcrit Norm: $\frac{d u}{d t}=\mu u+u^{3}$. Two unstable f.p.s @ $u \pm \sqrt{-\mu}$

Newton Polygon

For $f(u ; \mu)$.
Ex: $\mu^{4}+\mu u+u^{3}+\mu^{2} u$

Locate terms assoc. w/Leading Order Segment. e.g: $u^{3}, \mu u$. Equate them, divide out common factors, \& scale, e.g: $u=u_{1} \varepsilon$ w $/\left|u_{1}\right|=1$, so: $\mu=\varepsilon^{2}$. Substitute into f, simplify, set $\varepsilon=0$. e.g: $u_{1}+u_{1}^{3}=0 \mathrm{w} / 3$ sols $u_{1}=0, \pm i$. So, $u= \pm i \mu^{1 / 2}+\boldsymbol{O}(\mu) . f \in C^{\omega} \Rightarrow$ find all sols

Stable Manifld Thm

Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be $C^{k}(k \geq 1) \mathrm{w} / f(p)=0$. \mathbb{R}^{n} splits into eignspcs of $D f_{p}: \mathbb{R}^{n}=\mathbb{E}^{u} \oplus \mathbb{E}^{c} \oplus \mathbb{E}^{s}$ for $\lambda>,=,<1$ (discrete) or $\lambda>,=,<0$ (cont.). \exists nhbd $\boldsymbol{U}_{p} \subset U$, s.t. $\mathcal{W}^{s} \& \mathcal{W}^{u}$ are C^{k} manif. tang. to $\mathbb{E}^{s} \& \mathbb{E}^{u}$. $\mathcal{W}^{\Sigma / u} \operatorname{Pos} /$ Neg Invariant. Given init. cond. $x \in \mathcal{W}^{s}, \lim _{t \rightarrow \infty} x(t)=0$, or $x \in \mathcal{W}^{u}, \lim _{t \rightarrow-\infty} x(t)=0$.

Center
Manifold Thm I

Let $f \in C^{k}, k \geq 1$. $\exists n b h d \boldsymbol{U}$ of 0 in $\mathbb{R}^{n} \times \mathbb{R}^{p} \& h: \mathcal{U} \cap\left(\mathbb{E}^{c} \times \mathbb{R}^{p}\right) \rightarrow \mathbb{E}^{h}, h(0,0)=0, h \in C^{k}$, such that $\mathcal{W}^{c}=\operatorname{graph}(h)$, is a center manifold $\mathrm{w} /$ properties described on a different flashcard.

Center Manifold

Thm II

Center

Manifold
Properties

Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be $C^{k} \mathrm{w} / k \geq 1 \& f(0)=0$. Assume $0<\mu<1<\lambda$. For $r>0$ define $\bar{f} \in C^{k}$ $\mathrm{w} / \bar{f}|B(0, r)=f| B(0, r),\left|\bar{f}-D f_{0}\right|_{C^{1}}<\varepsilon, \& \bar{f}=D f_{0}$ off $B(0,2 r)$. If $\varepsilon \& r$ small enough, Jinvariant $\boldsymbol{W}^{c s}(0, \bar{f}) \in C^{k}$, tang. to $\mathbb{E}^{c} \oplus \mathbb{E}^{s}$ at 0, w/ $\mathcal{W}^{c s}=\left\{q: d\left(\bar{f}^{j}(q), 0\right) \lambda^{-j} \rightarrow 0\right.$ as $\left.j \rightarrow \infty\right\}$, similarly $W^{c u}$

Hopf Bifurcation

Local birth or death of a per-sol from a f.p. as parameter crosses a crit value.
Conjugate $\lambda_{ \pm}$pair of $\partial_{u} f(0,0) \rightarrow \pm i \omega$ as $\mu \rightarrow$ crit. Need $\operatorname{Re} \lambda^{\prime}(0) \neq 0$. Then \exists p-sols. P-sols asy-stable when f.p. unstable, \& unstable o/w. Normal: $u^{\prime}=u\left(r-|u|^{2}\right)$

For systems w/ certain bifs, a NF is a simplified form of the DEQ which is locally topologically equivalent to the original system.

Normal Form Prop 1
$x^{\prime}=L x+g(x) \in \mathbb{R}^{n}$,
$g \in C^{\infty}, g=O\left(|x|^{2}\right)$

Let $H_{\ell} \subseteq Y_{\ell}, \ell \geq 2$, subspace of homog. polys of degree ℓ s.t. $R g\left(a d_{\ell} L\right) \oplus H_{\ell}=Y_{\ell}$. \exists seq of polys transfs $i d+\Phi_{\ell} \cdot y^{(\ell)} \mathrm{w} / y^{(\ell)} \in H_{\ell}$ and $\Phi_{\ell} \in \mathbb{R}^{k}$ for some k s.t. we end up with NF: $y^{\prime}=L y+g^{n f}(y)+O\left(|y|^{k+1}\right), \quad g^{n f}(y)=\sum_{l=2}^{k} g_{\ell}^{n f} \cdot y^{(\ell)}$, where $g_{\ell}^{n f} \in \mathbb{R}^{k}$

We can choose $H_{\ell}=\operatorname{ker}\left(\operatorname{ad} d_{\ell}\left(L^{*}\right)\right)$, that is: $\operatorname{ker}\left(\operatorname{ad}_{\ell}\left(L^{*}\right) \oplus R_{g}\left(a d_{l} L\right)\right)=Y_{\ell}$.
Normal Form Corollary

A sequence of normal form transformations can achieve $a d_{\ell}\left(L^{*}\right)=\left(a d_{\ell}(L)\right)^{*}$ up to any order: $g_{\text {new }}\left(e^{L^{*} \varphi} y\right)=e^{L^{*} \varphi} g_{\text {new }}(y)$, for all $\varphi \in \mathbb{R}^{n}$.
\qquad Means that n parameters must be varied for all relevant bifurcations to occur. Zero eigenvalue walgebraic multiplicity n

Bogdanov-Takens Bif
$y^{\prime}=f(y, \beta)$

Bif w/co-dim 2. $f(p)=p . \partial_{u} f(p)$ has double eigenvalue @ 0 .
Normal: $y_{1}^{\prime}=y_{2} . y_{2}^{\prime}=\beta_{1}+\beta_{2} y_{1}+y_{1}^{2} \pm y_{1} y_{2}$.
3 co-dim 1 bifs nearby: SN, Hopf \& Homoc.

| Separatrix \quad Boundary separating two modes of behaviour in a differential equation. |
| :--- | :--- |

Poincaré Bendixson
 General

Let $\vec{f} \in C^{1}(E)$ where $E \subseteq \mathbb{R}^{2}$ open $\& \dot{x}=f(x)$ has trajectry $\Gamma \mathrm{w} \backslash \Gamma^{+} \subseteq F$ compct subst of E. Suppose only finite \# of f.p.s in F, then $\omega(\Gamma)$ is either f.p., periodic orbit, or consists of finite \# of f.p.s $\vec{p}_{1}, \ldots, \vec{p}_{m}$ w/countable \# of limit orbits whose $\alpha \cup \omega \in\left\{\vec{p}_{1}, \ldots, \vec{p}_{m}\right\}$.

| Devil's | $f(x) \in C^{0}, f^{\prime}=0$ off Cantor, but rises from $0 \rightarrow 1$. Take $x_{0} \in[0,1]$, express x_{0} in base 3.
 Staircase
 Chop off base 3 expansion after first "1." Change $2 \mathrm{~s} \rightarrow 1 \mathrm{~s}$. Now f has only 0 's or 1 's in expansion,
 We interpret it as base 2. Call this new number $f\left(x_{0}\right) . f(x)$ is the Devils Staircase. |
| :--- | :--- | :--- |

Circle Map
C^{1} orientation preserving homeomorphism of the circle, S^{1}, into itself: $f: S^{1} \rightarrow S^{1}$.

Lift
of a
Circle Map

Let $\Pi(x): \mathbb{R} \rightarrow S^{1}$, where $\Pi(x)=e^{2 \pi i x}$.
The map $F: \mathbb{R} \rightarrow \mathbb{R}$ is said to be a lift of $f: S^{1} \rightarrow S^{1}$ if $\Pi \circ F=f \circ \Pi$. "Lift F accomplishes f, but on \mathbb{R}."

Lifts Vary by an Integer Thm	Let $f: S^{1} \rightarrow S^{1}$ be orientation preserving homeomorphism of circle. Let $F_{1} \& F_{2}$ be lifts of f. Then $F_{1}=F_{2}+k$, where k is some integer. Proof: Two lifts must satisfy $f \circ \Pi=\Pi \circ F_{1,2}=e^{2 \pi i F_{1}}=e^{2 \pi i F_{2}}$, so $F_{1}=F_{2}+k$.

Circle Map
Lift Iterates
Thm

Lift Arguments

Expel
Integers Thm

If F is a lift of f, then F^{n} is a lift of f^{n} for $n \geq 1$.
Proof: By definition: $\Pi \circ F=f \circ \Pi$. Therefore
$\Pi \circ F^{2}=\Pi \circ F \circ F=f \circ \Pi \circ F=f \circ f \circ \Pi=f^{2} \circ \Pi$. And similarly for n.

Let $f: S^{1} \rightarrow S^{1}$ be an orientation preserving homeomorphism of the circle and let F be a lift. Then $F(x+k)=F(x)+k$, for $k \in \mathbb{Z}$

Let $f: S^{1} \rightarrow S^{1}$ be orientation preserving homeomorphism of circle $\&$ let F be a lift of f.
Then $F^{n}-i d$ is a periodic function with period one for $n \geq 1$.

| Lift Rotation |
| :--- | :--- |
| Number ρ_{0} |\quad| For orientation preserving homeomorphism $f: S^{1} \rightarrow S^{1}$, |
| :--- |
| with F a lift of $f: \rho_{0}(F) \equiv \lim _{n \rightarrow \infty} \frac{\left\|F^{n}(x)\right\|}{n}$ |

| Different Lift $\rho_{0} s$ |
| :--- | :--- |
| Differ by an Integer |\quad| Let $S^{1} \rightarrow S^{1}$ be orientation preserving homeomorphism |
| :--- |
| $\&$ let $F_{1} \& F_{2}$ be lifts s.t. $\rho_{0}\left(F_{1}\right) \& \rho_{0}\left(F_{2}\right)$ exist. |
| Then, $\rho_{0}\left(F_{1}\right)=\rho_{0}\left(F_{2}\right)+k$, where $k \in \mathbb{Z}$. |

Rotation
Number

For $f: S^{1} \rightarrow S^{1}$ an orientation preserving homeomorphism, with F a lift of f : the rotation number of f, denoted to $\rho(f)$ is the fractional part of $\rho_{0}(F)$.

| Rotation |
| :--- | :--- |
| Number |
| Existence |\quad| For an orientation preserving homeomorphism $f: S^{1} \rightarrow S^{1}$ with F, |
| :--- |
| a lift of f, the rotation number exists and it is independent of x. |

Periodic Points
from
Rotation Numbers

A rotation number is irrational if and only if f has no periodic points
Conjugate Invariance
of Rotation Number

Let $f \& g$ be orientation preserving homeomorphisms of S^{1}, then $\rho(f)=\rho\left(g^{-1} f g\right)$

Rational
Rotation
Number: $\frac{p}{q}$

| Irrational | Given initial condition, there are three possibilities
 Rotation
 Number |
| :--- | :--- | | Orbit that densely fills circle. Orbit that densely fills a Cantor set on circle. |
| :--- |
| Orbit homoclinic to a Cantor set on circle. |

Linear Stability
Characterization
$\dot{x}=A x$

Origin is linearly stable if $\left|e^{A t}\right|$ is uniformly bounded for $t>0$; it is asymptotically stable if $\left|e^{A t}\right| \rightarrow 0$ for $t \rightarrow \infty$.

Linear Asy
Stability
$\sigma(\mathbf{A})$

Linear	
Stability	
$\boldsymbol{\sigma}(\mathbf{A})$	If and only if $\operatorname{Re}(\sigma(A)) \leq 0$ and all eigenvalues with $\operatorname{Re}(\lambda)=0$ are semi-simple.

Speed of f.p.	$\exists C, \varepsilon, \delta>0$ s.t. \forall (init cond) $w \backslash\left\|x_{0}\right\|<\varepsilon:\|x(t)\| \leq C e^{-\delta t}\left\|x_{0}\right\|$. Asymptotic Constant $-\delta$ must be chosen larger than, but arbitrarily close to, $\max \operatorname{Re}(\sigma(A))$.

Asymptotic Stability
via
Poincaré Maps

Assume Floquet multipliers lie inside unit circle except $\lambda=1$, algebraically simple.
Then the Poincaré map is a contraction near $\gamma(0)$ in a suitably defined norm.

| Asy stability |
| :--- | :--- |
| of periodic |
| orbits |\quad| If Floquet exponents λ are s.t. $\{\operatorname{Re} \lambda<0\}$ except for an algebraically simple $\lambda=0$, |
| :--- |
| then periodic orbit $\Gamma=\{\gamma(t), 0 \leq t<T\}$ is asymptotically stable. $\exists C, \eta>0$, |
| a nghbrhd $U(\Gamma), \&$ smooth $\theta: U \rightarrow \mathbb{R} /(T \mathbb{Z})$ s.t. $\forall x_{0} \in U,\left\|x(t)-\gamma\left(t-\theta\left(x_{0}\right)\right)\right\| \leq C e^{-\eta t} \forall t \geq 0$ |

Strong	$f(0)=0 \& A=D f(0)$ has splitting $@-\eta$, for some $\eta>0, \mathbb{R}^{n}=E^{s s} \oplus E^{w u}$, w/projection $P^{s s} E^{s s}=E^{s s}$, -Stable Maniflds
$P^{s s} E^{w u}=\emptyset, A P^{s s}=P^{s s} A, \operatorname{Re}(\sigma(A)) I_{E^{s s}}<-\eta,\left.\operatorname{Re}(\sigma(A))\right\|_{E^{w s}}>-\eta$. Can characterize $E^{s s}$ as set of x_{0} s.t. $l e^{A t} x_{0} \mid \leq C e^{-\eta t}$, for all $t \geq 0$. Strong stable manifold: $W^{s s}=\left\{x_{0} \mid \Phi_{t}\left(x_{0}\right) \leq C e^{-\eta t}\right\}$.	
Center $\{$ weak-unstable $\} \cap\{$ weak-stable $\}$ manflds gives loclly invar. manfld tang. to subspc of λs w $-\eta_{-}<\lambda<\eta_{+}$ Choosing $\eta_{ \pm} \ll 1$, subspace contains precisely generalized eigenspace to $\lambda s \in i \mathbb{R}$. Such a manifold tangent to this eigenspace exists, of class $C^{k}, \forall k<\infty$, if $f \in C^{k}$.	

Structural Stability	One considers perturbations of the vector field, as opposed to perturbations of the initial data.

Conservative System

$\dot{x}=f(x), x \in \mathbb{R}^{n}$ is considered conservative if there exists a C^{1} scalar function $E: \Omega \rightarrow \mathbb{R}$ which is not constant on any open set in Ω, but is constant on orbits.

Non-asymptotic
An equilibrium point q of a conservative system cannot be asymptotically stable.

stable f.p.s in

Conservative Sys

Strong
$E: \Omega \rightarrow \mathbb{R}$ has strong minimum at q if \exists nghbrhd N of q s.t.
Minimum
$E(x)>E(q)$ for every $x \in N$ except for $x=q$.

Stability

from Strong
Minima

Suppose q is f.p. of conservative, autonomous sys \& that its integral E has strong minimum there.
Then q is stable.

Linear Instb \nRightarrow
Nonlinear Instb
Example
$H=p^{4}+q^{2}$. So $\dot{p}=-\partial H_{q} \& \dot{q}=\partial H_{p}$, and linearized eqs are $\dot{q}=4 p^{3}, \quad \dot{p}=-2 q . \lambda=0$, so: $A:=\left(J_{0}-\lambda \mathbb{I}\right)=J_{0}$. Calculating gen. evects: $A^{2} v_{2}:=A^{2}\left\langle\begin{array}{ll}1 & 0\end{array}\right\rangle=0 \& A v_{2}=\langle 0,-2\rangle=: v_{1}$ has sols increasng linearly $\mathrm{w} / t:\langle q, p\rangle=c_{1}\langle 0,-2\rangle+c_{2}(\langle 0,-2\rangle t+\langle 1,0\rangle)$. But $\langle 0,0\rangle$ is strict Min of H

| Linear Stb \nRightarrow |
| :--- | :--- | :--- |
| Nonlinear Stb |
| Example |\quad| $H=\frac{1}{2}\left(q_{1}^{2}+p_{1}^{2}\right)-\left(q_{2}^{2}+p_{2}^{2}\right)-\frac{1}{2} p_{2}\left(q_{1}^{2}-p_{1}^{2}\right)-q_{1} q_{2} p_{1}$. Linearized sys can be read from EOM. |
| :--- |
| Has periodic sols. For $T>0: p_{1}=\sqrt{2} \frac{\sin (t-T)}{t-T}, q_{1}=\sqrt{2} \frac{\cos (t-T)}{t-T}, q_{2}=\frac{\cos (2(t-T))}{t-T}, p_{2}=\frac{\sin (2(t-T))}{t-T}$ |
| is sol which blows up when $t=T$. |

$\theta_{n+1}=\theta_{n}+\Omega+\frac{K}{2 \pi} \sin \left(2 \pi \theta_{n}\right)(\bmod 1)$, where K is the coupling strength which determines the degree of nonlinearity, and Ω is an externally applied driving frequency.

| Arnold | |
| :--- | :--- | :--- |
| Tongue | |
| AT | Mode-locked region in driven weakly-coupled harmonc oscillatr. $\theta_{n+1}=\theta_{n}+\Omega+\frac{K}{2 \pi} \sin \left(2 \pi \theta_{n}\right)(\bmod 1)$
 AT around each $\Omega \in \mathbb{Q}$. External freq. Ω. If $K \neq 0$, motion may
 be periodic in finite region. $K=0 \Rightarrow A=\{\mathbb{Q}\} . K=1 \Rightarrow A=\{$ Cantor $\}$. |

Mode

locking for
Arnold

For $0<K<1$, in Mode Locked region, θ_{n} have a limiting behavior as a rational multiple of n. Rotation (map winding) number : $\omega=\lim _{n \rightarrow \infty} \frac{\theta_{n}}{n}$.
Regions form V -shape that touch down to rational $\Omega=\frac{p}{q}$ in limit of $K \rightarrow 0$.

