These flashcards were generated to study for a Dynamical Systems oral exam.

Section 1: Examples of DEQs and Basic Concepts

Newton's early method for	Power series as ansatz: $y = y_0 + y_1t +$
solving first order ODE	subst in & compare sides. w/init value
w/init value	determine some y_j . Repeat.

Pendulum	Nonlinear Oscillator: $\ddot{\varphi} = -\frac{g}{\ell} \sin \varphi$,
	where l is length , g is gravity

Planetary Motion	Nonlinear Oscillator : $\ddot{x} = -\nabla V(x)$
	Point-mass positions $x = (x^1, x^2,, x^N)$ for <i>N</i> -bodies, where $x^j \in \mathbb{R}^3$,
	and potential is $V(x) = -\sum_{1 \le j < k \le N} \frac{m_j m_k}{ x^j - x^k }$.

Friction for Nonlinear Oscillator

$$\ddot{x} = -\nabla V(x) - \gamma \dot{x}$$
, for $\gamma > 0$.

Van der Pol Oscillator	Nonlinear Nonconservative Oscillator: $\ddot{x} = \gamma(1 - x^2) \dot{x} - x = 0$
	γ is scalar parameter indicating strength of nonlinearity and damping.
	$(x = 0, \dot{x} = 0)$ is unstable. When x large, x^2 term dominates & damping > 0

Predator Prey Model	x' = (A - By)x, and $y' = (Cx - D)y$,
	where <i>y</i> is the predator, and <i>x</i> is the prey

∃ of sol for Autonomous ODE	$f(x_0) = 0 \Rightarrow x(t) \equiv x_0$ is sol. If $f(x_0) \neq 0$ & $f \in C^0$, then by IFT (since $x \in C^1$)
$\dot{x} = f(x),$	$\tau'(x) = \frac{1}{f(x)} \Rightarrow \tau(x(t)) = \int_{x_0}^{x(t)} \frac{1}{f(y)} dy =: T(x(t); x_0).$ RHS is
$x(0) = x_0 \in R$	monotone in $x(t)$ away from $f = 0$ (Need for IFT), so IFT $\Rightarrow x(t;x_0) = T^{-1}(t;x_0)$
! of sol for Autonomous ODE	f is Lipshitz. (i) $\forall x_0, \exists \delta > 0 \& \exists ! x(t)$ for $ t < \delta$.
$\dot{x} = f(x),$	(ii) Any 2 sols coincide on common domain of def.
$x(0) =: x_0 \in R$	(iii) !sols are $x(t) \equiv x_0$ when $f(x_0) = 0$ & o/w implicitly thru $\tau(x(t)) = \int_{x_0}^{x(t)} \frac{1}{f(y)} dy$

]
Nonuniqueness ODE example	$x' = x ^{\beta}$, which is not differentiable for $\beta < 1$ (unless $x \equiv 0$).
$\dot{x} = f(x),$	Nontrivial sol: $\frac{1}{ x ^{\beta}}dx = t + c$ for $x \neq 0 \Rightarrow \frac{x^{1-\beta}}{1-\beta} = t + c$.
$x(0) \eqqcolon x_0 \in R$	Previse sol for $x_0 = 0$: $x(t) = (1 - \beta)^{\frac{1}{1 - \beta}} t^{\frac{1}{1 - \beta}}, t \ge 0, \& x(t) = 0$ for $t \le 0$
Equivale	$f(x), \text{ FI is } I : \mathbb{R}^n \to \mathbb{R} \text{ wV}(x(t)) = \text{const; independent of time for all sols.}$ $\text{ntly, } 0 = \frac{d}{dt}I(x(t)) = \left\langle \nabla I(x(t)), f(x(t)) \right\rangle_{\mathbb{R}^n}.$ $VI(x) \perp f(x) \text{ for all } x \in \mathbb{R}^n.$
	$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, and symplectic matrix $J := \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$, with Hamiltonian equation $u' = J\nabla H(u) \& H(p;q) = \frac{1}{2m} p ^2 + V(q)$
Hamiltonian Systems Examples	Pendulum, $n = 1$ and $H(\varphi, v) = \frac{1}{2}v^2 - \frac{g}{\ell}\cos\varphi$ Gravitational, $H(x; v) = \sum_j \frac{1}{2}m_j v^j ^2 + V(x)$
	H = Kin. + Pot.
Proof Hamiltonian is First Integr	ral $(\nabla H, f) = (\nabla H, J \nabla H) = (J^T \nabla H, \nabla H) = (-J \nabla H, \nabla H) = (\nabla H, -J \nabla H)$
If f is vector field and	So, $J\nabla H = -J\nabla H$ or $J\nabla H = 0$, and $(\nabla H, f) = 0$
H the Hamiltonian	"Lie derivative of <i>H</i> along flow of <i>f</i> is zero."
	et $f \in C^1(\mathbb{R}^2; \mathbb{R}^2)$ be a vector field with $div(f) = 0$.
	hen there exists $H \in C^2$ such that: $f = J\nabla H$.
N	Note that $\operatorname{div}(f) = \operatorname{div}(\dot{q}, \dot{p}) = \operatorname{div}(\partial_p H, -\partial_q H) = \partial_q \partial_p H - \partial_p \partial_q H = 0.$

Section 2: Flows and Vector Fields

Flow	$\Phi : \mathbb{R} \times X \to X, \ (t,u) \to \Phi(t,u) =: \Phi_t(u) \text{ is a (well defined) flow if it's}$	
	differentiable satisfies cocycle property : $\Phi_0 = id$,	
	$\Phi_t \circ \Phi_s = \Phi_{t+s}, \forall t, s \in \mathbb{R}.$ In particular, Φ_t is invertible with inverse Φ_{-t}	

Local flow	Φ is defined in a neighborhood of $\{0\} \times \{x_0\}$
	when the cocycle property holds: i.e., when
	$\Phi_t \circ \Phi_s$ and Φ_{t+s} are defined.

Flow solution to ODE	Let f be vector field for flow Φ_t . Then $x(t) := \Phi_t(x_0)$ solves $\dot{x}(t) = f(x)$.
	Proof: $x'(t_0) = \frac{d}{dt} _{t=t_0} \Phi_t(x_0) = \frac{d}{dt} _{t=t_0} \Phi_{t-t_0}(\Phi_{t_0}(x_0))$
	$= \frac{d}{d\tau} _{\tau=0} \Phi_{\tau}(\Phi_{t_0}(x_0)) = f(\Phi_{t_0}(x_0)) = f(x(t_0)).$

Metric Space	A set <i>X</i> equipped with a metric $d : X \times X \to \mathbb{R}_+$, where
	$d(x,y) = d(y,x), d(x,z) \le d(x,y) + d(y,z), d(x,y) = 0 \text{ iff } x = y.$
	The metric defines a topology & convergence, $x_n \rightarrow y$ iff $d(x_n, y) \rightarrow 0$

Complete Metric Space <i>X</i>	Cauchy sequences converge in the set, that is:
	$\lim_{N\to\infty} \left[\sup_{m,n\geq N} d(x_n,x_m)\right] = 0 \Rightarrow \exists y \in X \text{ such that } x_n \to y.$

Normed Vector Space	Vector space X with a norm operator $ \cdot : X \to \mathbb{R}_+$, where $ \lambda x = \lambda x $,
	$ x + y \le x + y , x = 0 \text{ iff } x = 0.$
	A normed space is a metric space with distance $d(x, y) = x - y $.

Any closed subset of a Banach space	
	is a complete metric space

Lipshitz continuous	A map $F : X \to Y$ between metric spaces
	with Lipshitz constant <i>L</i> such that $d_Y(F(x_1), F(x_2)) \leq Ld_X(x_1, x_2)$,
	for all $x_1, x_2 \in X$.

Locally Lipshitz Map	If for every $x \in X$ there exists a neighborhood $U(x)$ such that
	the restriction of F to $U(x)$ is Lipshitz continuous, with a
	Lipshitz constant $L(x)$.

Contraction	A Lipshitz map $F : X \to X$ on a complete metric space with Lipshitz constant $L < 1$.
Banach's Fl	Theorem A contraction possesses a unique fixed point.
Frechet diff	Given $U \subset X, V \subset Y$, open subsets. $F : U \to V$. F is Frechet differentiable in x if $\exists L(x) \in \mathcal{L}(X, Y)$ (bounded) s.t. $\forall u \neq x \in U, F(u) - F(x) - L(x) \cdot (u - x) = o(x - u)$ where $\frac{o(\delta)}{ \delta } \to 0$ for $\delta \neq 0$. $L(x)$ is the derivative @ x & write: $DF(x) := L(x)$
Gateaux dif	Forentiable in <i>x</i> $F: X \to Y \text{ where for any } x_0 \in X \text{ the function } f_x : \mathbb{R} \to Y \text{ with}$ $f_x(t;x_0) = F(x + tx_0) \text{ is Frechet differentiable in } t \text{ at } t = 0, \forall x.$ Note that Frechet \Rightarrow Gateaux. "Directional deriv. in direction of x_0 "
Gateaux im	blies Frechet Suppose <i>F</i> is Gateaux differentiable and $f_x(t;x_0) = F(x + tx_0) = L_t(x)x_0$ for some bounded operator $L_t(x)$ that depends continuously on <i>x</i> . Then <i>F</i> is Frechet differentiable.
Implicit Function Thm	Suppose $F \in C^{k}(X \times \Lambda, Y)$, $k > 1$, $F(x_{0}; \lambda_{0}) = 0$, & $D_{x}F(x_{0}; \lambda_{0})$ has bounded inverse. \exists Nbhds U of λ_{0} & V of x_{0} , s.t. \exists ! sol. to $F(x; \lambda) = 0$, $\forall \lambda \in U \ w/x \in V$, given thru $x = \varphi(\lambda)$. Moreover, $\varphi \in C^{k}$, $\varphi(\lambda_{0}) = x_{0}$, and $D_{\lambda}\varphi = -\partial_{x}F^{-1}\partial_{\lambda}F$, at $(x, \lambda) = (x_{0}, \lambda_{0})$
Banach's Fl with param	
Picard-Lind	elof Let $U \subset \mathbb{R}^n$ open, $f: U \to \mathbb{R}^n$ a locally Lipshitz vector field on U . $\forall x_0 \in U, \exists t_b(x_0) > 0 \& \text{ sol. } x: [-t_b; t_b] \to U \text{ of } x' = f(x); x(0) = x_0. \text{ Also,}$ given sol $\tilde{x}(t)$, where $t \in J$ interval, and $\tilde{x}(0) = x_0$, then $\tilde{x}(t) = x(t), \forall t \in J \cap [-t_b; t_b]$
Smooth Dep on Paramet	

Peano's Existenc	e Suppose f continuous @ x_0 .		
	Then $\exists \delta > 0$ and sol of IVP: $x' = f(x)$,		
	$x(0) = x_0$, on $(-\delta, \delta)$.		
Flow Existence?	$f \in C^1$ (or Lipshitz) wrt vars & params. Moreover, it has inverse in 2nd argument Φ_{-t} ,		
$(t,x_0) \rightarrow$	by uniqueness of sols, which is also differentiable. In particular, the derivative $\partial_{x_0} \Phi_t(x_0)$		
$x(t;x_0) =: \Phi_t(x_0)$	invertible & $\Phi_t(\cdot)$ is local diffeo. If global in <i>t</i> , DEQ generates flow in nghbd of $\{0\} \times U$		
Sol Blowup	Let f locally Lipshitz, defined on $U \subset \mathbb{R}^n$. Then maximal time interval of existence		
Criteria	T_{\max} is nonempty and open. If $T_{\max} \neq \mathbb{R}$ and $t_* \in \partial T_{\max}$ with $t \to t_*$ in T_{\max}		
	we have that either $x(t) \rightarrow \partial U$ or $ x(t) \rightarrow \infty$.		
Explicit Euler	Let Φ_t be the flow to an ODE $x' = f(x)$. Since $x(h) = x_0 + \int_0^h f(x(s)) ds$		
	$x(h) \approx \varphi_h(x_0) := x_0 + hf(x_0),$		
	a 1st order numerical approximation (h^1) to the solution at time h.		
Implicit Euler	Let Φ_t be the flow to an ODE $x' = f(x)$. Since		
	$\Phi_h(x_0) = x(h) = x_0 + \int_0^h f(x(s)) ds, \text{ then } x(h) \approx x_0 + hf(\varphi_h(x_0)),$		
	a 1st order numerical approximation (h^1) to the solution at time h .		

Section 3: Numerical Methods

Order of Numerical Method	We say that a numerical method is of order p if local error is of order $p + 1$,
	$\Phi_h(x_0) - \varphi_h(x_0) = O(h^{p+1})$, (as <i>h</i> increases, the error grows as h^{p+1}).

Global	Accumulated error over all steps. At step <i>n</i> , for $h = \frac{t}{n}$,			
Error	global error at a fixed time t is of order p. $E_n = \varphi_h^n(x_0) - \Phi_{nh}(x_0) \le nO(h^{p+1}) = O(h^p)$			
	If <i>f</i> has global Lipshitz constant <i>L</i> , then error estimate is $\left \varphi_h^{\frac{t}{h}}(x_0) - \Phi_t(x_0) \right \le Ce^{Lt}h^p$			

Backward Error Analysis	Discover that our numer. approx. exactly solves slightly different DEQ $x' = \tilde{f}(x)$,
	$x(0) = x_0$; for suitable \tilde{f} . Usually true for smaller errors, $O(e^{-\frac{c}{h}})$ w/analytic vect flds f .
	OR, exactly solves w/slightly different <i>initial condition</i> , $x' = f(x)$, $x(0) = \tilde{x}_0(h)$.

Runge-Kutta	Assum	Assuming autonomous f. Estimate $x(h) = x(0) + \int_0^h f(x(s)) ds$,		
	using <i>x</i>	using $x_k = x_0 + h \sum_{i < k} b_j f_i$, where $f_i = f(x_i) = f(x_0 + h(\sum_{j < i} a_{ij} f_j)) = \dots$		
	where	where a_{ij}, b_i are taken from a butcher tableau		
Backward		Form k th deg. interpolating poly $y(t)$ w/ $y(t_n)$, $y(t_{n-1})$, \dots , $y(t_{n-k})$. Differentiate &		
Differentiation Methd evaluate it $@t_n$. Example:interpolate thru $y(t_n) & y(t_{n-1})$ is: $y(t) \approx y(t_n) + (t - t_n)$		evaluate it @ t_n . Example:interpolate thru $y(t_n)$ & $y(t_{n-1})$ is: $y(t) \approx y(t_n) + (t - t_n) \frac{y_n - y_{n-1}}{t_n - t_{n-1}}$		
Good for stiff problems Approximating $y' = f(y,t)$ gives Backward Euler $y_n = y_{n-1} + (t_n - t_{n-1})f(y_n,t_n)$		Approximating $y' = f(y,t)$ gives Backward Euler $y_n = y_{n-1} + (t_n - t_{n-1})f(y_n, t_n)$		

Section 4: Qualitative Dynamics

Change of Co	bordinate If ψ a smooth diffeo & Φ_t a flow to $x' = f(x)$. Then $\widetilde{\Phi}_t := \psi^{-1} \circ \Phi_t \circ \psi$ is a flow, w/ associated ODE for the variable $y = \psi^{-1}(x)$, as $y' = (D\psi(y))^{-1}f(\psi(y))$
Hartman–Gr Hyperbolic L Thm	
Blowing-Up o Non-hyperbo	
Time Rescalin	Ing Let $\alpha : \mathbb{R}^n \to \mathbb{R}^+$ be smooth, strictly positive. Then $\{x(t), t \in \mathbb{R}\}$ to $x' = f(x)$ are trajectories to $y' = \alpha(y)f(y)$. So, $\exists \gamma : T \to T'$, a diffeo of max existence intervals for $x' = f(x) \& y' = \alpha(y)f(y)$ w/InitConds $x(0) = y(0) = x_0$, resp. s.t. $y(\gamma(t)) = x(t)$
	The term of term
Flow-Box	If $f \in C^k$ with $k \ge 1$, $f(x_0) \ne 0$. Then, $\exists \text{local diffeo } \psi \in C^k$, $\psi : N_{x_0} \rightarrow N_0$ s.t. $y := \psi(x)$ satisfies $y' = f(x_0) = const$, $\forall y \in N_0$.
Invariant S	If $\Phi_t(S) \subset S$ for all $t \in \mathbb{R}$, then <i>S</i> is invariant. Invariant sets are unions of trajectories. Level sets of first integrals are invariant.
ω-limit set of	The set of accumulation points as time tends to infinity $\omega(x_0) = \left\{ y \in X \mid \exists t_k \to \infty, \ \Phi_{t_k}(x_0) \to y \right\}$
Examples of ω -limit sets	Equilibrium $\Rightarrow \omega(x_0) = \alpha(x_0) = \{x_0\}$. Homoclinic if $\omega(x_0) = \alpha(x_0) = \{x_*\}, x_* \neq x_0$. Heteroclinic if $\omega(x_0) = \{x_+\} \neq \alpha(x_0) = \{x\}$ Periodic orbit $\Rightarrow \omega(x_0) = \alpha(x_0) = \gamma(x_0) := \{\Phi_t(x_0) t \in \mathbb{R}\}$

Forward orbit of	i) Nonempty, ii) Compact iii) Connected, iv) Invariant, v) $\omega(x_0) = \bigcap_{T \ge 0} \overline{\bigcup_{t \ge T} \Phi_t(x_0)}$				
x_0 is bounded.	and $\lim_{t\to\infty} dist(\Phi_t(x_0), \omega(x_0)) \to 0$, where $dist(y, A) = \inf_{z \in A} z - y $.				
Then , $\omega(x_0)$ is:	We similarly define $\omega(U)$ for sets $U \subset X$, $\omega(U) = \bigcap_{T \ge 0} \overline{\bigcup_{t \ge T} \Phi_t(U)}$.				
Counter Example to	Flow on [0,1] to $x' = x - x^2$, where of course, $\omega([0,1]) = [0,1]$				
$\omega(U) = \bigcup_{x_0 \in U} \omega(x_0)$	but $\omega(x) = 1$ for all $x > 0$ and $\omega(0) = 0$ such that $\bigcup_x \omega(x) = \{0, 1\}$				
Non-Wandering Set Ω	$x \in \Omega \Leftrightarrow \text{ for all } U(x) \text{ there exists } t_k \to \infty \text{ such that } \Phi_{t_k}(U(x)) \cap U(x) \neq \emptyset$				
Chain Recurrent Set	$x \in CR \Leftrightarrow \forall \varepsilon, T > 0, \exists \varepsilon$ -pseudo-orbit w/ $x_n = x$ (endpoint = start point), where ε -pseudo-orbits are piecewise orbits with at most ε -jumps				
	that is, there exists $T_j > T$, x_j , $0 \le j \le n-1$, $ \Phi_{T_j}(x_j) - x_{j+1} < \varepsilon$.				

Stability of invariant set $\emptyset \neq M \subseteq X$	Stable if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\Phi_t(U_{\delta}(M)) \subset U_{\varepsilon}(M)$, $\forall t \ge 0$.
	Set is asymptotically stable if it's stable & if $\forall x_0$ in some nghbd $V(M)$,
	$\lim_{t\to\infty} dist(\Phi_t(x_0), M) = 0.$

Lyapunov function V	Lyap if V cont & $V(\Phi_t(x))$ non-increasing in $t, \forall x$. If $V \in C^1$, then cond. becomes
	$\frac{d}{dt}V(\Phi_t(x)) \le 0, \text{ or equivalently } (\nabla V, f) \le 0. \text{ Sublevel sets } V_c = \{x \mid V(x) \le c\}$
	are forward invar. If $V(x(t_*)) \leq c$ for t_* , then $\forall t > t_*$, still have $V(x(t)) \leq c$.

LaSalle's	i) Suppose V Lyapunov, $\omega(x_0) \neq \emptyset$. Then V is <i>constant</i> on $\omega(x_0)$, AKA $V(\omega(x_0)) = \{V_0\}$.
Invariance	ii) Suppose V strict Lyapunov. Then $y' = 0$, $\forall y \in \omega(x_0)$, that is, ω -limit set consists of equilibria
Principle	

Corollary to Morse Lemma	Consider $x' = f(x)$ with $f(0) = 0$,
	and assume that $V(x)$ is a Lyapunov function near 0,
	with $V(0) = 0$, $\nabla V(0) = 0$, and $D^2 V(0) > 0$. Then 0 is stable.

Lyapunov	If $x' = Ax$ & neg define $A = A^T$ (So $\sigma(A) < 0$) we've Lyap $V(x) = -\frac{1}{2}\langle Ax, x \rangle$. $\frac{d}{dt}V(x(t)) = -\frac{1}{2}(\langle A(Ax), x \rangle + \langle Ax, Ax \rangle)$
Function	$= - Ax ^{2} < 0. \text{ Also: } D^{2}V(x) = -\frac{1}{2}D^{2}(x^{T}Ax) = -\frac{1}{2}D\left[(Ax + x^{T}A) \cdot \vec{1}\right] = -\Sigma A_{ij} > 0 \text{ (neg def)},$
Example	$\nabla V(x) _{0} = -\frac{1}{2}(x^{T}(\nabla Ax) + (\nabla x^{T})Ax) _{0} = -(x^{T}A + Ax) _{0} = 0.$ And $f(0) = A(0) = 0.$ So stable by Morse.

Section 5: Linear Equations

Section 5. Linear	Equations
Matrix Exponent	ial for Absolutely convergent $e^{At} := \sum_{k=0}^{\infty} \frac{(At)^k}{k!}$
$\mathbf{x}' = \mathbf{A}\mathbf{x} \in \mathbb{R}^n$,	Differentiate termwise and find $\frac{d}{dt}e^{At} = Ae^{At}$.
$\mathbf{x}(0) = \mathbf{x}_0, \ \mathbf{A} \in \mathbb{R}$	
Coordinate Chan	ges for $S \in GL(X), x = Sy$, which gives: $y' = S^{-1}ASy$
$\mathbf{x}' = \mathbf{A}\mathbf{x} \in \mathbf{R}^n$	with solutions $y(t) = e^{S^{-1}ASt}y_0$. Note that $e^{S^{-1}ASt} = S^{-1}e^{At}S$, by
$\mathbf{x}(0) = \mathbf{x}_0, \mathbf{A} \in \mathbf{R}$	change of coords rule (or by inspecting cancellations in infinite sum)
Superposition De	comp for Linear combinations of solutions, $\Sigma_i \alpha_i x_i(t)$ are solutions for any $\alpha_i \in \mathbb{R}$
$\mathbf{x}' = \mathbf{A}\mathbf{x} \in \mathbb{R}^n$	if $x_j(t)$ are solutions. Therefore, if $X = V \oplus W$, (invariant subspaces under A)
$\mathbf{x}(0) = \mathbf{x}_0, \mathbf{A} \in \mathbb{R}$	
Invariant Subspa	ce Corollary Suppose $V \subset X$ is a subspace invariant under $A, AV \subset V$.
	Then V is invariant under the flow $\Phi_t = e^{At}$,
	or $\Phi_t(x_0) = x_0 e^{At}$, where $x_0 \in V$
Invariant Subspa	ce under If you change coordinates $y = S^{-1}x \in \mathbb{C}^n$, then the conjugate matrix
Change of Coord	in \mathbb{C}^n $S^{-1}AS$, where $A \in \mathbb{R}^{n \times n}$ possesses (real linear) <i>n</i> -dimensional
	invariant subspaces $S^{-1}V_{r/i}$. Since $V_{r/i}$ is invariant under A.
If Spectrum of <i>A</i>	$\subset C^{n \times n}$ is There exists a basis w/accordinate abanga Ω of \mathbb{C}^n such that in the new basis
II Spectrum of A	
$\lambda_{1,\ldots,n} = 0$, then n	new form ? $A_{ii} = 0, A_{i,i+1} \in \{0,1\}$. For example: $S^{-1}AS = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, for nonsemisimple
Jordan Normal F	form $\forall A \in \mathbb{C}^n$, \exists change of coordinates <i>S</i> s.t. <i>S</i> ⁻¹ <i>AS</i> is block diagonal
-	and each block is of the form $\lambda_j i d_{k_j} + N_{k_j}$, where $k_j \ge 1$
	is the size of the block and λ_i is an eigenvalue.
JNF Solution	Since e^{At} leaves subspaces invariant that are A invariant, It has same block diagonal structure
Decomp	as JNF of A. So, it's sufficient to compute exponential of a single block, $\lambda i d_k + N_k$.
for $x' = Ax$	Since identity and N_k commute: $e^{(\lambda i d_k + N_k)t} = e^{\lambda t} e^{N_k t} = e^{\lambda t} \sum_{j=0}^{k-1} \frac{t^j}{j!} N_k^j$, since $N^k = 0$.
Jordan Ansatz	$x(t) = \sum_{\lambda \in \sigma(A)} p_{\lambda}(t) e^{\lambda t}$, where $p_{\lambda}(t)$ is a vector valued polynomial in t
to $x' = Ax$	
$\mathbf{to} x = Ax$	with degree at most the maximal algebraic multiplicity of λ

DiscontinuousConsider $\begin{pmatrix} z & 1 \\ 0 & 0 \end{pmatrix}$. At $\varepsilon = 0$, it is JNF, w/transform: $S = id$. For $\varepsilon > 0$, $S =$ JNF $\begin{pmatrix} 1 & 1 \\ -\varepsilon & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \varepsilon \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{\varepsilon} \\ 1 & \frac{1}{\varepsilon} \end{pmatrix} = SDS^{-1}$ has a pole at $\varepsilon = 0$. Eigenvectors collide.det $e^{M_{\varepsilon}} = ??$ Suffices to triangularize: $A = P^{-1}TP$, w/P invertible & T upper-triangular.det $e^{M_{\varepsilon}} = e^{1/\varepsilon} \dots e^{\lambda_{\varepsilon} U} = e^{i(T)} \dots e^{\lambda_{\varepsilon} U} = e^{i(T)} Observe tr(A) = tr(T), So:det e^{M_{\varepsilon}} = P^{-1}PP = P^{-1} e^{TP} P = \frac{ P }{ P } \prod_{\lambda} e^{i\omega} = e^{2\lambda i} = e^{i(\alpha i)}.How to SimplifyWrite as a first order system with characteristic polynomial:\lambda^{n} + a_1\lambda^{n-1} + \dots + a_n, \lambda + a_n = 0, and eigenvectors (1, \lambda, \lambda^2, \dots, \lambda^{n-1})^T, that is, the geometric multiplicity is always 1.Spectral ProjectionsLinear maps w/P^2 - P = P is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n).Interesting are projections leave P(range(\Lambda)) and P(ker(\Lambda)) invariant under \Lambda.Matrix Differential EquationsX^i = AX, where A \in \mathbb{R}^{von}If m = n, \& X(0) = id, then X(t) = e^{At} is called fund. matrix. solIf X(t_0) invertible, then fund. matrix sol can be calculated asand X \in \mathbb{R}^{von}PlanarCompletelydetermined byTrace and determinante.g. planar: \lambda_{1/2} = \frac{w}{2} \pm \sqrt{\frac{M^2}{4} - \det 1}.PlanarUnstable Focus Equilibriumm > 0, \det > 0, \det > 0, \det < \frac{m_1^2}{4} = \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/a, \eta > 0.Solv in the complex JNF z = e^{i\omega} e^{i\omega}, hence logarithmic spirals z - e^{i\pi z }.PlanarResonant Node Equilibriumtr > 0, \det > 0, det > 0, \frac{m_2^2}{4} = \det \lambda_1 - \lambda_2 > 0.If A semi-simple, in JNF x_2(1) = e^{i\pi x_2^2}, t_1 = t^{i\pi x_2^2} + e^{i\pi x_1^2}. Twisted Sta$		
det $e^{M} = ??$ Suffices to triangularize: $\Lambda = P^{-1}TP$, w/P invertible & T upper-triangular. det $e^{T} = e^{\lambda_1} \dots e^{\lambda_n t} = e^{(\lambda_1 + \dots + \lambda_n)} = e^{w(T)}$. Observe $tr(\Lambda) = tr(T)$, So: det $e^{M} = P^{-1} e^{T}P = P^{-1} e^{T} P = \frac{ P_1 }{ P_1 } \prod_{\lambda} e^{\lambda_1} = e^{\Sigma \lambda_2} = e^{(C \wedge \lambda_1)}$. How to Simplify Higher-Order Equations $x^{(m)} + a_1 x^{(m-1)} + \dots + a_n = 0$ Write as a first order system with characteristic polynomial: $\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 1 \lambda + a_n = 0$, and eigenvectors $(1, \lambda, \lambda^2, \dots, \lambda^{n-1})^T$, that is, the geometric multiplicity is always 1. Spectral Projections Linear maps $w/P^2 - P \Rightarrow P$ is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n). Interesting are projections that commute w/A , so $PA = AP$. Since such projections leave $P(range(\Lambda))$ and $P(ker(\Lambda))$ invariant under A . Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{wn}$ and $X \in \mathbb{R}^{wn}$ $X' = AX$, where $A \in \mathbb{R}^{wn}$ $x' = a_X$, where $A \in \mathbb{R}^{wn}$ $x' = 0$, det $v = 0$, $\lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane. Planar Center Equilibrium $Tr > 0$, det > 0 , det $< \frac{x^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Solutions are ellipses or (in JNF) circles in the phase plane. Planar Resonant Node Equilibrium $Tr > 0$, det > 0 , $\frac{w^2}{4}$ = det. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	Discontinuous Consider	$\begin{pmatrix} \varepsilon & 1 \\ 0 & 0 \end{pmatrix}$. At $\varepsilon = 0$, it is JNF, w/transform: $S = id$. For $\varepsilon > 0$, $S =$
$\begin{aligned} \det e^{Tt} = e^{\lambda_{1}t} \dots e^{\lambda_{n}t} = e^{(\lambda_{1}+\dots+\lambda_{n})t} = e^{\mu(Tt)}. \text{ Observe } tr(A) = tr(T), \text{ So:} \\ \det e^{At} = P^{-1}e^{Tt}P = P^{-1} e^{Tt} P = \frac{ P_{1} }{ P_{1} } \prod_{k} e^{At} = e^{\Sigma kt} = e^{(trA)t}. \end{aligned}$ $\begin{aligned} \text{How to Simplify} \\ \text{Higher-Order Equations} \\ x^{(n)} + a_{1}x^{(n-1)} + \dots + a_{n} = 0 \end{aligned}$ $\begin{aligned} \text{Write as a first order system with characteristic polynomial:} \\ \lambda^{n} + a_{1}x^{(n-1)} + \dots + a_{n-1}\lambda + a_{n} = 0, \text{ and eigenvectors } (1, \lambda, \lambda^{2}, \dots, \lambda^{n-1})^{T}, \\ \text{that is, the geometric multiplicity is always 1.} \end{aligned}$ $\begin{aligned} \text{Spectral Projections} \end{aligned}$ $\begin{aligned} \text{Linear maps } w/P^{2} = P \Rightarrow P \text{ is identity on its range. Range & ker of P \text{ span } \mathbb{R}^{n} (or \mathbb{C}^{n}). \\ \text{Interesting are projections that commute w/A, so PA = AP. \\ \text{Since such projections leave } P(range(A)) \text{ and } P(ker(A)) \text{ invariant under } A. \end{aligned} \begin{aligned} \text{Matrix Differential Equations} \\ x' = AX, \text{ where } A \in \mathbb{R}^{n \times n} \end{aligned} \begin{aligned} \text{If } m = n, & & X(0) = id, \text{ then } X(t) = e^{At} \text{ is called fund. matrix. sol} \\ \text{If } X(t_{0}) \text{ invertible, then fund. matrix sol can be calculated as} \\ \Phi(t) = X(t)X^{-1}(t_{0}). \end{aligned} \begin{aligned} \text{Figenvalues are} \\ \text{c.g. planar: } \lambda_{1/2} = \frac{\mu}{2} \pm \sqrt{\frac{\mu^{2}}{4} - \det}. \end{aligned} \begin{aligned} \text{Solutions are ellipses or (in JNF) circles in the phase plane.} \end{aligned} \begin{aligned} \text{Planar} \\ \text{Center Equilibrium} \end{aligned} \begin{aligned} tr > 0, det > 0, det > 0, det < \frac{\mu^{2}}{4} - \lambda_{1}, \overline{\lambda}_{2} = \eta \pm ia, w/o, \eta > 0. \\ \text{Sols in the complex JNF } z = e^{iwr}e^{w}, \text{ hence logarithmic spirals } z \sim e^{wrg(z)}. \end{aligned} \begin{aligned} \text{Planar} \\ \text{Resonant Node Equilibrium} \end{aligned} \begin{aligned} tr > 0, det > 0, \frac{\mu^{2}}{4} = \det, \lambda_{1} = \lambda_{2} > 0. \\ \text{If } A \text{ semi-simple, sols are simply } x(t) = x_{0}e^{\lambda t} \text{ radially exponentially outward.} \end{aligned}$	JNF $\begin{pmatrix} 1 & 1 \\ -\varepsilon & 0 \end{pmatrix}$	$\int \left(\begin{array}{cc} 0 & 0 \\ 0 & \varepsilon \end{array}\right) \left(\begin{array}{cc} 0 & -\frac{1}{\varepsilon} \\ 1 & \frac{1}{\varepsilon} \end{array}\right) = SDS^{-1} \text{ has a pole at } \varepsilon = 0. \text{ Eigenvectors collide.}$
Higher-Order Equations $x^{(n)} + a_1 x^{(n-1)} + \dots + a_n = 0$ $\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$, and eigenvectors $(1, \lambda, \lambda^2, \dots, \lambda^{n-1})^T$, that is, the geometric multiplicity is always 1.Spectral ProjectionsLinear maps $w/P^2 = P \Rightarrow P$ is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n). Interesting are projections that commute w/A , so $PA = AP$. Since such projections leave $P(range(A))$ and $P(ker(A))$ invariant under A .Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $m = n$, $\& X(0) = id$, then $X(t) = e^{At}$ is called fund. matrix, sol If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4}} - \det$.Planar Unstable Focus Equilibrium $tr > 0$, det > 0 , det $< \frac{tr^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Resonant Node Equilibrium $tr > 0$, det > 0 , $\frac{tr^2}{4} = \det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	$\det e^{Tt} = e^{\lambda_1 t}$	$e^{\lambda_n t} = e^{(\lambda_1 + + \lambda_n)t} = e^{tr(T)t}$. Observe $tr(A) = tr(T)$, So:
Higher-Order Equations $x^{(n)} + a_1 x^{(n-1)} + \dots + a_n = 0$ $\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$, and eigenvectors $(1, \lambda, \lambda^2, \dots, \lambda^{n-1})^T$, that is, the geometric multiplicity is always 1.Spectral ProjectionsLinear maps $w/P^2 = P \Rightarrow P$ is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n). Interesting are projections that commute w/A , so $PA = AP$. Since such projections leave $P(range(A))$ and $P(ker(A))$ invariant under A .Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $m = n$, $\& X(0) = id$, then $X(t) = e^{At}$ is called fund. matrix, sol If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4}} - \det$.Planar Unstable Focus Equilibrium $tr > 0$, det > 0 , det $< \frac{tr^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Resonant Node Equilibrium $tr > 0$, det > 0 , $\frac{tr^2}{4} = \det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	How to Simplify	Write as a first order system with characteristic polynomial:
$x^{(n)} + a_1 x^{(n-1)} + \dots + a_n = 0$ that is, the geometric multiplicity is always 1.Spectral ProjectionsLinear maps $w/P^2 - P \Rightarrow P$ is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n). Interesting are projections that commute w/A , so $PA = AP$. Since such projections leave $P(range(A))$ and $P(ker(A))$ invariant under A .Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $m = n$, $\& X(0) = id$, then $X(t) = e^{At}$ is called fund. matrix. sol If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4}} - \det$.Planar Unstable Focus Equilibrium $tr > 0$, det > 0 , $det < \frac{tr^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Resonant Node Equilibrium $tr > 0$, det > 0 , $\frac{tr^2}{4} = \det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.		
Spectral ProjectionsLinear maps $w/P^2 = P \Rightarrow P$ is identity on its range. Range & ker of P span \mathbb{R}^n (or \mathbb{C}^n). Interesting are projections that commute w/A , so $PA = AP$. Since such projections leave $P(range(A))$ and $P(ker(A))$ invariant under A .Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $m = n$, & $X(0) = id$, then $X(t) = e^{At}$ is called fund. matrix. sol If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{u^2}{4}} - \det$.Planar Unstable Focus Equilibrium $tr > 0$, $det > 0$, $\lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0$, $det > 0$, $det < \frac{m^2}{4} = \det$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Sols in the complex JNF $z = e^{i\omega r}e^{i\theta}$, hence logarithmic spirals $ z \sim e^{arg(c)}$.Planar Resonant Node Equilibrium $tr > 0$, $det > 0$, $\frac{m^2}{4} = \det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.		
Interesting are projections that commute w/A, so $PA = AP$. Since such projections leave $P(range(A))$ and $P(ker(A))$ invariant under A.Matrix Differential Equations $X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $m = n, \& X(0) = id$, then $X(t) = e^{At}$ is called fund. matrix. sol If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant $e.g.$ planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4}} - \det$.Planar Center Equilibrium $tr = 0, \det > 0, \lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, \det > 0, \det < \frac{tr^2}{4} - \frac{\lambda_1}{\lambda_1}, \overline{\lambda_2} = \eta \pm i\omega, w/\omega, \eta > 0$. Sols in the complex JNF $z = e^{i\omega e^{\eta t}}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, \det > 0, \frac{tr^2}{4} = \det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	$x + a_1 x + \dots + a_n = 0$	that is, the geometric multiplicity is always 1.
$X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4} - \det}$.Planar Center Equilibrium $tr = 0$, $det > 0$. $\lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0$, $det > 0$, $det < \frac{tr^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0$, $det > 0$, $\frac{tr^2}{4} = det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	Int	there exists a projections that commute w/A , so $PA = AP$.
$X' = AX$, where $A \in \mathbb{R}^{n \times n}$ If $X(t_0)$ invertible, then fund. matrix sol can be calculated as $\Phi(t) = X(t)X^{-1}(t_0)$.Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4} - \det}$.Planar Center Equilibrium $tr = 0$, $det > 0$. $\lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0$, $det > 0$, $det < \frac{tr^2}{4}$. $\lambda_1, \overline{\lambda}_2 = \eta \pm i\omega$, $w/\omega, \eta > 0$. Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0$, $det > 0$, $\frac{tr^2}{4} = det$. $\lambda_1 = \lambda_2 > 0$. If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	Matrix Differential Equation	If $m = n \& X(0) = id$ then $X(t) = e^{At}$ is called fund matrix sol
and $X \in \mathbb{R}^{n \times m}$ $\Phi(t) = X(t)X^{-1}(t_0).$ Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4}} - \det .$ Planar Center Equilibrium $tr = 0, \ \det > 0. \ \lambda_{1/2} = \pm i\omega.$ Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, \ \det > 0, \ \det < \frac{tr^2}{4}. \ \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, \ \det > 0, \ \frac{tr^2}{4} = \det. \ \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.	-	
Eigenvalues are completely determined byTrace and determinant e.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4} - \det}$.Planar Center Equilibrium $tr = 0, det > 0. \lambda_{1/2} = \pm i\omega$. Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{\alpha trg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.		
completely determined bye.g. planar: $\lambda_{1/2} = \frac{tr}{2} \pm \sqrt{\frac{tr^2}{4} - \det}$.Planar Center Equilibrium $tr = 0, \det > 0. \lambda_{1/2} = \pm i\omega.$ Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, \det > 0, \det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, \det > 0, \frac{tr^2}{4} = \det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
determined byPlanar Center Equilibrium $tr = 0, det > 0. \lambda_{1/2} = \pm i\omega.$ Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.	Eigenvalues are Trace a	nd determinant
determined byPlanar Center Equilibrium $tr = 0, det > 0. \lambda_{1/2} = \pm i\omega.$ Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0e^{\lambda t}$ radially exponentially outward.		
Planar Center Equilibrium $tr = 0, det > 0. \lambda_{1/2} = \pm i\omega.$ Solutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
Center EquilibriumSolutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
Center EquilibriumSolutions are ellipses or (in JNF) circles in the phase plane.Planar Unstable Focus Equilibrium $tr > 0, det > 0, det < \frac{tr^2}{4}. \lambda_1, \overline{\lambda}_2 = \eta \pm i\omega, w/\omega, \eta > 0.$ Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar Resonant Node Equilibrium $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ If A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.	Planar tr =	= 0, det > 0. $\lambda_{1/2} = \pm i\omega$.
Unstable Focus EquilibriumSols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ Resonant Node EquilibriumIf A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
Unstable Focus EquilibriumSols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ Resonant Node EquilibriumIf A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
Unstable Focus EquilibriumSols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.Planar $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ Resonant Node EquilibriumIf A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.		
Planar $tr > 0, det > 0, \frac{tr^2}{4} = det. \lambda_1 = \lambda_2 > 0.$ Resonant Node EquilibriumIf A semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.	Planar	T T
Resonant Node Equilibrium If <i>A</i> semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.	Unstable Focus Equilibrium	Sols in the complex JNF $z = e^{i\omega t}e^{\eta t}$, hence logarithmic spirals $ z \sim e^{arg(z)}$.
Resonant Node Equilibrium If <i>A</i> semi-simple, sols are simply $x(t) = x_0 e^{\lambda t}$ radially exponentially outward.	Planar	$tr > 0$ det > 0 $\frac{tr^2}{r} = det$ $\lambda_1 = \lambda_2 > 0$
	Kesonani ivoue Equinorium	

Planar	$tr > 0$, det > 0 , det $< \frac{tr^2}{4}$. $\lambda_1 > \lambda_2 > 0$
Unstable Node Equilibriu	
-	Hence typical solutions are $x_1(t) \sim x_2(t)^{\lambda_1/\lambda_2}$ or parabolae
Planar	$tr > 0$, det $= 0$. $\lambda_2 > \lambda_1 = 0$
Unstable/Zero Equilibriu	Im Solutions in JNF are $x_2(t) = x_2^0 e^{\lambda_2 t}$, $x_1(t) = x_1^0$.
	Trajectories are parallel to x_2 -axis, converging to the x_1 -axis in backward time
Planar	$tr > 0, det < 0. \lambda_1 > 0 > \lambda_2.$
Saddle Equilibrium	Solutions in JNF are $x_1(t) = x_1^0 e^{\lambda_1 t}$, $x_2(t) = x_2^0 e^{\lambda_2 t}$.
	Hence typical solutions are hyperbolae: $x_1(t) \sim x_2(t)^{\lambda_1/\lambda_2}$
Zono Figonyaluog Fauilik	$t_{\mu} = 0$ dat 0 If A sami simple $u' = 0$ & flow trivial all points are EQ
Zero Eigenvalues Equilit	brium tr = 0, det = 0. If A semi-simple, $x' = 0$ & flow trivial, all points are EQ. If A non-semisimple, we find in JNF: $x_2(t) = x_2^0$, $x_1(t) = tx_2^0 + x_1^0$,
	a shear flow parallel to x_1 -axis w/equilibria on x_1 -axis.
Adjoint Equation:	$\frac{d}{dt}\langle (x(t),\psi(t))\rangle = 0$
$x' = Ax$, and $\psi' = -A^*\psi$.	Proof: $\frac{d}{dt}\langle x(t), \psi(t) \rangle = \left\langle \frac{d}{dt}x(t), \psi(t) \right\rangle + \left\langle x(t), \frac{d}{dt}\psi(t) \right\rangle$
For any solutions $x(t)$, $\psi(t)$	
Tor any solutions $x(t), \psi(t)$	$= \langle I \lambda(t), \psi(t) \rangle + \langle \lambda(t), I I \psi(t) \rangle = \langle \lambda, I I \psi \rangle + \langle \lambda, I I \psi \rangle = 0$
Let $x' = Ax$, and $\psi' = -A$	* ψ . $E_{\lambda} = (E_{\lambda}^{c,*})^{\perp},$
Let E_{λ} be generalized eig	enspace to $\lambda \in \mathbb{R}$ of A where E_{λ}^{c} the sum of all other generalized eigenspaces.
Similarly, define E_{λ}^* . The	$E_{\lambda} = $ Also: $E_{\lambda}^{c} = (E_{\lambda}^{*})^{\perp}$.
Duhamel formula for	Variation of Constant Formula for Non-Autonomous Equations
non-autonomous inhomo	geneous $x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)}g(s)ds.$
$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{g}(\mathbf{t}), \mathbf{x}(0) = \mathbf{x}_0$	Proof: Differentiate!
Solve nonautonomous ho	mog. Write $\Phi_{t,t_0} x_0$ for the solution, where $\Phi_{t_0,t_0} = id$, and Φ_{t,t_0} is linear.
$x' = A(t)X, \ x(t_0) = x_0,$	$\Phi_{t,0}$ is fund. sol. since we generate any solution $\Phi_{t,s}$ as : $\Phi_{t,s} = \Phi_{t,0} \cdot (\Phi_{s,0})^{-1}$
for $A(t)$ cont.	Duhamel: $x' = A(t)x + g(t), x(t_0) = x_0, \Rightarrow x(t) = \Phi_{t,t_0}x_0 + \int_{t_0}^t \Phi_{t,s}g(s)ds.$
Floquet theory for	If $\varphi(t)$ is fundamental matrix sol, then $\forall t, \varphi(T+t) = \varphi(t)\varphi^{-1}(0)\varphi(T)$.
non-autonom homog per	iodic $\exists B \text{ s.t. } e^{TB} = \varphi^{-1}(0)\varphi(T), \exists T \text{-period invertb. } Q(t) \text{ s.t. } \varphi(t) = Q(t)e^{tB}, \forall t.$

Consequence of Floquet
thm. $\dot{x} = A(t)x$,
w/A(t) T-periodic

Characteristic/
Floquet multipliers
$\dot{x} = A(t)x, w/A(t)$ T-periodic

Floquet Exponents $\dot{x} = A(t)x$, w/A(t) T-periodic

Sol $\varphi(t) = Q(t)e^{tR}$ gives rise to <i>t</i> -dependent change of coordinates $(y = Q^{-1}(t)x)$.
Original system becomes autonomous linear sys w/real constant coeffs $\dot{y} = Ry$.
Stability of the zero solution for $y(t)$ and $x(t)$ is determined by the eigenvalues of R.

Recall: $e^{TB} = \varphi^{-1}(0)\varphi(T)$ for fundamental matrix sol $\varphi(t)$. Eigenvalues $e^{\mu T} =: \lambda_i$ of e^{TB} (where μ are Floquet Exponents) are the Characteristic/Floquet Multipliers. They are also the eigenvalues of the (linear) Poincaré maps $x(t) \rightarrow x(t+T)$.

Recall: $e^{TB} = \varphi^{-1}(0)\varphi(T)$ for fundamental matrix sol $\varphi(t)$. FE are the eigenvalues of *B*. Floquet exponents are not unique, since $e^{\left(\mu + \frac{2\pi i k}{T}\right)T} = e^{\mu T} =: \lambda_i$, where $k \in \mathbb{Z}$

Basic Bistability Model <i>u'</i>	$= u(1-u)\left(u-\frac{1}{2}\right) + a$
and Coupled Model u'_1	$u_1 = d(u_2 - u_1) + u_1(1 - u_1)\left(u_1 - \frac{1}{2}\right) + a$
<i>u</i> ²	$u_2 = d(u_1 - u_2) + u_2(1 - u_2)\left(u_2 - \frac{1}{2}\right) + a$
Weakly Coupled Bistability	9 f.p. in the bistable regime. Linearizing the equation with $u'_i = 0$
Model Conclusions. <i>d</i> << 1.	at these f.p., we find a diagonal matrix w/nonzero entries. So, by IFT
$u_i' = d(u_i - u_j) + \ldots + a$	$\exists 9 \text{ unique solutions for } d \ll 1$, around these f.p.
,	
Strongly Coupled Bistability	All equilibria have $u_1 = u_2$.
Model Conclusions . <i>d</i> >> 0.	
$u'_i = d(u_i - u_j) + \ldots + a$	
Implicit Function Theorem	Suppose $F \in C^k$, $k = 1,, \infty, \omega, F(u_*; \mu_*) = 0$,
IFT	& $\partial_u F(u_*;\mu_*)$ invertible
	Then \exists locally unique $\varphi(\mu)$ s.t. $F(\varphi(\mu); \mu) = 0$.
Full Rank Theorem	Suppose $F \in C^{k}(\mathbb{R}^{m},\mathbb{R}^{n})$, $F(u_{*}) = 0$, and $DF(u_{*})$ is onto
(which means the image has full dimensions)	$(\text{Img}(DF(u_*)\vec{v}) = \mathbb{R}^n \text{ for } \vec{v} \in \mathbb{R}^m, \text{ in particular } m > n).$
$F(u_*) = 0$	Then the set of zeros of F near u_* is a C^k -manifold of dim: $m - n$

Sards Theorem

Suppose $F \in C^k(\mathbb{R}^m, \mathbb{R}^n)$, with k > 1 if $m \le n \& k > m - n + 1$, otherwise. Let *C* be critical points, i.e., DF(u) doesn't have max rank for $u \in C$. Then F(C), the set of critical values, has Lebesgue measure zero.

Smooth Bifurcation Curves Corollary	approximated by vector fields $F(u; \mu) + \varepsilon_k, \ \varepsilon_k \to 0$, for $\varepsilon_k \in \mathbb{R}^n$
Any smooth one-parameter family	such that the equilibria $F(u; \mu) + \varepsilon_k = 0$ form
of vector fields $F(u; \mu)$ can be	smooth curves in $\mathbb{R}^n \times \mathbb{R}$ for each ε_k .

Arclength	Find sol. $v_* = (u_*, \mu_*)$; init ds arclength step size. Start loop. Find kernel e of $\partial_v F(v_*)$,
Continuation	$w/ e = 1$. Step $v_* := v_* + ds \cdot e$. Solve (8.3) $F(v) = 0$, $\langle v - v_*, e \rangle = 0$
Algorithm	for v using Newton w/init guess v_* . $v_* := v$; End loop

Lyapunov-Schmidt	Suppose $F = F(u; \mu) \in C^k$, $F(0; 0) = 0$. Let $P \& Q$ be projections
Reduction Thm	onto ker & rng of $\partial_u F(0;0)$. \exists locally defined $\varphi \in C^k : RgP \times \mathbb{R}^p \to RgQ$,
	s.t. sols $(u; \mu)$ to $F(u; \mu) = 0$ in 1-1 corresp. w/sols to $\varphi(\tilde{u}; \mu) = 0$.

Lyapunov-Schmidt	$Y := Y_1 \oplus Y_2 = range(\partial_x F_0) \oplus range(\partial_x F_0)^{\perp}. Q := \text{projection onto } Y_1.$
Constrct $F(x_0, \lambda_0) = 0$	$X := X_1 \oplus X_2 = \operatorname{ker}(\partial_x F_0) \oplus \operatorname{ker}((\partial_x F_0)^{\perp}). \text{ Decomp } F : QF(x,\lambda) = 0, \ (I-Q)F(x,\lambda) = 0$
$(x_0,\lambda_0)\in X imes\Lambda o Y$	Let $x_1 \in X_1$ & $x_2 \in X_2$, then $QF(x_1 + x_2, \lambda) = 0$ solved wrt x_2 by IFT.

Bifurcations are failures of one	Hyperbolic equilibrium points. Hyperbolic periodic orbits
of the three generic	Transversal intersections of stable and unstable manifolds
properties of vector fields:	of equilibrium points and periodic orbits.
Codimension 1 Bifurcations	EQ: Saddle-Node, Hopf. P-Orbits: Fold Limit Cycle, Flip, Torus.
Exmpls. Categorized by their	Global: Homocl of f.p.s, Homocl tang. of maniflds of p-orbits.
vector field failures:	Heterocl of f.p.s & p-orbits.
Codimension 2 Bifurcations	Bogdanov-Takens.
Exmpls	Cusp Bifurcation. Fold-Hopf.
	Hopf-Hopf.
Sols near Saddle-Node Bif	Suppose $F(0;0) = 0$ s.t. 1) ker of $\partial_u F(0;0)$ is $1D = \text{span}(e)$. 2) Reduced
L-S Reduc gives $\varphi(Le; \mu) = 0$	coeffs in Taylor exp: $\varphi(Le; \mu) = \sum_{j,k=0}^{\infty} \varphi_{jk} L^j \mu^k$ satisfy $\varphi_{01} \cdot \varphi_{20} \neq 0$

Then \exists sols near $0 \Leftrightarrow -sign(\varphi_{01} \cdot \varphi_{20})\mu > 0$. One sol when $\mu = 0$, two o/w.

Saddle-Node Bif	Local bif where 2 f.p.s collide & annihilate
	1D - unstable saddle , stable node . Normal: $\frac{dx}{dt} = r \pm x^2$.
	$\varphi_{20} \cdot \varphi_{01} \neq 0$ (nondegenerate)

Sols near Transcrit Bif	Suppose \exists trivial sol $F(0; \mu) = 0$, $\forall \mu$ s.t. ker of $\partial_{\mu} F(0; 0)$ is $1D = \text{span}(\vec{e})$
L-S Reduc gives $\varphi(L\vec{e};\mu) = 0$	& $\varphi(L\vec{e};\mu) = \sum_{j,k=0}^{\infty} \varphi_{jk} L^{j} \mu^{k}$ satisfies $\varphi_{11} \cdot \varphi_{20} \neq 0$. Then $\exists ! u_{\pm} \neq 0$
$\mathbf{w}/L \in \mathbb{R}$	to $F(u;\mu) = 0$ for $\mu \neq 0$, $\mu \ll 1$ w/exp: $u_{\pm}(\mu) = -\frac{\varphi_{11}\mu}{\varphi_{20}}\vec{e} + O(\mu^2)$.

Transcrit Bif	

 $\mathbf{w}/L \in \mathbb{R}$

\exists f.p.s $u_{+/-}$, $\forall r$. However, $u_{+/-}$ switch stability as μ varies &
they collide. Normal: $\frac{du}{dt} = ru - u^2$. $u_{+/-} \in \{0, r\}$.
Bif @ $r = 0$. $\varphi_{11} \cdot \varphi_{20} \neq 0$

Vector field fEquivariant with respect to Γ , where $\Gamma \subset O(n)$ $\forall \gamma \in \Gamma, f(\gamma u; \mu) = \gamma f(u; \mu) \text{ and}$ $L\gamma = \gamma L, \text{ with } L = \partial_u f(0; 0). \text{ So,}$ $Ker(L) \text{ is invariant under } \Gamma, \text{ or } \Gamma \text{ acts on } Ker(L)$

[
Equivariant L-S	Lemma If we choose projections <i>P</i> & <i>Q</i> in the L-S Thm as
for $\Gamma \subset O(n)$,	orthogonal projections then L-S Reduction $\varphi(u_0; \mu) = 0$
where $L := \partial_{u} f(0)$,0) is equivariant wrt Γ on $Ker(L)$ and $coker(L)$
Sol Near Pitchfo	rk Suppose $F \in C^3$ s.t. $F(\gamma u; \mu) = \gamma F(u; \mu)$, for a $\gamma \in O(n)$,
Bifurcation	$F(0;0) = 0, Ker(\partial_u F(0;0)) = span(e)$ is 1D, $\gamma e = -e, \varphi_{11} \cdot \varphi_{30} \neq 0$, and
	$\varphi_{10} = \varphi_{20} = \varphi_{01} = 0$. Sols u, μ near 0 include $u \equiv 0$, & $u = \pm \sqrt{\frac{-\mu\varphi_{11}}{\varphi_{30}}}$
Pitchfork Bifurd	Exaction Local bif w/ 1 f.p. \rightarrow 3 f.p.s. $\varphi_{11} \cdot \varphi_{30} \neq 0$. $\varphi_{10} = \varphi_{20} = \varphi_{01} = 0$
w/Normal Form	Supercrit Norm: $\frac{du}{dt} = \mu u - u^3$. Two stable f.p.s @ $u = \pm \sqrt{\mu}$
	Subcrit Norm: $\frac{du}{dt} = \mu u + u^3$. Two unstable f.p.s @ $u \pm \sqrt{-\mu}$
	Subern Norm. $\frac{dt}{dt} = \mu u + u$. Two unstable 1.p.s $@ u \pm \sqrt{-\mu}$
Norton Dolucou	Least terms and a dire Order Second to a 3 and Equate them
Newton Polygon	
For $f(u;\mu)$.	divide out common factors, & scale, e.g: $u = u_1 \varepsilon$ w/ u_1 = 1, so: $\mu = \varepsilon^2$. Substitute into <i>f</i> ,
Ex: $\mu^4 + \mu u + u^3 + \mu^2 u$	simplify, set $\varepsilon = 0$. e.g: $u_1 + u_1^3 = 0$ w/3 sols $u_1 = 0, \pm i$. So, $u = \pm i\mu^{1/2} + O(\mu)$. $f \in C^{\omega} \Rightarrow$ find all sole
	t $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be C^k $(k \ge 1)$ w/ $f(p) = 0$. \mathbb{R}^n splits into eignspcs of $Df_p: \mathbb{R}^n = \mathbb{E}^u \oplus \mathbb{E}^c \oplus \mathbb{E}^s$ for
	$\lambda_{p,=},<1$ (discrete) or $\lambda_{p,=},<0$ (cont.). \exists nhbd $\boldsymbol{U}_{p,\subseteq} U$, s.t. $\boldsymbol{\mathcal{W}}^{s}$ & $\boldsymbol{\mathcal{W}}^{u}$ are C^{k} manif. tang. to \mathbb{E}^{s} & \mathbb{E}^{u} .
Thm W	^{ts/u} Pos/Neg Invariant. Given init. cond. $x \in \mathcal{W}^s$, $\lim_{t\to\infty} x(t) = 0$, or $x \in \mathcal{W}^u$, $\lim_{t\to\infty} x(t) = 0$.
	et $f \in C^k$, $k \ge 1$. $\exists nbhd \ \mathcal{U}$ of 0 in $\mathbb{R}^n \times \mathbb{R}^p \& h : \mathcal{U} \cap (\mathbb{E}^c \times \mathbb{R}^p) \to \mathbb{E}^h$, $h(0,0) = 0$, $h \in C^{k}$.
Manifold	such that $\mathbf{W}^c = graph(h)$, is a center manifold
Thm I	w/ properties described on a different flashcard.
	et $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be C^k w/ $k \ge 1$ & $f(0) = 0$. Assume $0 < \mu < 1 < \lambda$. For $r > 0$ define $\overline{f} \in C^k$
Manifold w	$\frac{1}{\bar{f}} B(0,r) = f B(0,r), \left \bar{f} - Df_0\right _{C^1} < \varepsilon, \& \bar{f} = Df_0 \text{ off } B(0,2r). \text{ If } \varepsilon \& r \text{ small enough, } \exists \text{invariant}$
Thm II	$W^{cs}(0,\bar{f}) \in C^k$, tang. to $\mathbb{E}^c \oplus \mathbb{E}^s$ at 0, w/ $W^{cs} = \left\{q : d(\bar{f}^j(q), 0) \lambda^{-j} \to 0 \text{ as } j \to \infty \right\}$, similarly W^{cu}
Center	<i>h</i> is: Maximal: $u(t) \in \mathcal{U}, \forall t \Rightarrow u(t) \in \mathcal{W}^{c}, \forall t$. Tangent to $\mathbb{E}^{c}: \partial_{u}h(0,0) = 0$.
	Stable: If $\mathbb{E}^u = \{0\} : \exists C, \eta > 0 \text{ s.t. if } u(t) \in \mathcal{U}, \forall t \ge 0, \text{ then } \exists z(t) \in \mathcal{W}^c, \forall t \ge 0 \text{ s.t.} \}$
	$ u(t) - z(t) \le Ce^{-\eta t}, \ \forall t \ge 0.$ CM not unique, unless all sols on CM are bounded in \mathcal{U} .
	$\mathbf{u}_{\mathbf{v}}$, \mathbf{u}
Hopf Bifurcation	n Local birth or death of a per-sol from a f.p. as parameter crosses a crit value.
pr Difut cutto	Conjugate λ_{\pm} pair of $\partial_{\mu} f(0,0) \rightarrow \pm i\omega$ as $\mu \rightarrow crit$. Need $Re\lambda'(0) \neq 0$. Then $\exists p$ -sols.
	P-sols asy-stable when f.p. unstable, & unstable o/w. Normal: $u' = u(r - u ^2)$
	1^{-5015} as y-scable when i.p. unstable, & unstable 0/w. Normal. $u^{-1} = u(t^{-1}u^{-1})$

	systems w/ certain bifs, a NF is a simplified form of the DEQ ch is locally topologically equivalent to the original system.
Normal Form Prop 1 $x' = Lx + g(x) \in \mathbb{R}^n$, $g \in C^{\infty}, g = O(x ^2)$	Let $H_{\ell} \subseteq Y_{\ell}$, $\ell \ge 2$, subspace of homog. polys of degree ℓ s.t. $Rg(ad_{\ell}L) \oplus H_{\ell} = Y_{\ell}$. \exists seq of polys transfs $id + \Phi_{\ell} \cdot y^{(\ell)} w/y^{(\ell)} \in H_{\ell}$ and $\Phi_{\ell} \in \mathbb{R}^{k}$ for some k s.t. we end up with NF: $y' = Ly + g^{nf}(y) + O(y ^{k+1})$, $g^{nf}(y) = \sum_{\ell=2}^{k} g_{\ell}^{nf} \cdot y^{(\ell)}$, where $g_{\ell}^{nf} \in \mathbb{R}^{k}$
Normal Form Prop 2	We can choose $H_{\ell} = ker(ad_{\ell}(L^*)),$ that is: $ker(ad_{\ell}(L^*) \oplus R_g(ad_{\ell}L)) = Y_{\ell}.$
Normal Form Corollar	y A sequence of normal form transformations can achieve $ad_{\ell}(L^*) = (ad_{\ell}(L))^*$ up to any order: $g_{new}(e^{L^*\varphi}y) = e^{L^*\varphi}g_{new}(y)$, for all $\varphi \in \mathbb{R}^n$.
Bifurcation w/co-dime	Asion n Means that n parameters must be varied for all relevant bifurcations to occur. Zero eigenvalue w\algebraic multiplicity n
Bogdanov–Takens Bif $y' = f(y, \beta)$	Bif w/co-dim 2. $f(p) = p$. $\partial_u f(p)$ has double eigenvalue@0. Normal: $y'_1 = y_2$. $y'_2 = \beta_1 + \beta_2 y_1 + y_1^2 \pm y_1 y_2$. 3 co-dim 1 bifs nearby: SN, Hopf & Homoc.

Separatrix	Boundary separating two modes of behaviour in a differential equation.
Poincaré	Let $\vec{f} \in C^1(E)$ where $E \subseteq \mathbb{R}^2$ open & $\dot{x} = f(x)$ has trajectry Γ w\ $\Gamma^+ \subseteq F$ compct subst of E .
Bendixson	Suppose only finite # of f.p.s in F, then $\omega(\Gamma)$ is either f.p., periodic orbit, or consists of
General	finite # of f.p.s $\vec{p}_1, \ldots, \vec{p}_m$ w/countable # of limit orbits whose $\alpha \cup \omega \in \{\vec{p}_1, \ldots, \vec{p}_m\}$.
Devil's	$f(x) \in C^0, f' = 0$ off Cantor, but rises from $0 \rightarrow 1$. Take $x_0 \in [0, 1]$, express x_0 in base 3.
Staircase	Chop off base 3 expansion after first "1." Change $2s \rightarrow 1s$. Now <i>f</i> has only 0's or 1's in expansion
	We interpret it as base 2. Call this new number $f(x_0)$. $f(x)$ is the Devils Staircase.
Circle Map	C^1 orientation preserving homeomorphism of the circle, S^1 , into itself: $f : S^1 \to S^1$.
Lift	Let $\Pi(x) : \mathbb{R} \to S^1$, where $\Pi(x) = e^{2\pi i x}$.
of a	The map $F : \mathbb{R} \to \mathbb{R}$ is said to be a lift of $f : S^1 \to S^1$ if $\Pi \circ F = f \circ \Pi$.
Circle Map	"Lift <i>F</i> accomplishes <i>f</i> , but on \mathbb{R} ."
Lifts Vary by	Let $f: S^1 \to S^1$ be orientation preserving homeomorphism of circle. Let $F_1 \& F_2$ be lifts of
an Integer	Then $F_1 = F_2 + k$, where k is some integer.
Thm	Proof : Two lifts must satisfy $f \circ \Pi = \Pi \circ F_{1,2} = e^{2\pi i F_1} = e^{2\pi i F_2}$, so $F_1 = F_2 + k$.
Circle Map	If <i>F</i> is a lift of <i>f</i> , then F^n is a lift of f^n for $n \ge 1$.
Lift Iterates	Proof : By definition: $\Pi \circ F = f \circ \Pi$. Therefore
Thm	$\Pi \circ F^2 = \Pi \circ F \circ F = f \circ \Pi \circ F = f \circ f \circ \Pi = f^2 \circ \Pi.$ And similarly for <i>n</i> .
Lift Argumer	Its Let $f: S^1 \to S^1$ be an orientation preserving homeomorphism of the circle
Expel	and let <i>F</i> be a lift. Then $F(x + k) = F(x) + k$, for $k \in \mathbb{Z}$
Integers Thm	
Periodic Fund	ctns Let $f: S^1 \rightarrow S^1$ be orientation preserving homeomorphism of circle
from	& let F be a lift of f.

Lift Rotation Number ρ_0	For orientation preserving homeomorphism $f: S^1 \to S^1$, with F a lift of $f: \rho_0(F) \equiv \lim_{n \to \infty} \frac{ F^n(x) }{n}$
Different Lift Differ by an 1	
Rotation Number	For $f : S^1 \to S^1$ an orientation preserving homeomorphism, with F a lift of f : the rotation number of f , denoted to $\rho(f)$ is the fractional part of $\rho_0(F)$.
Rotation Number Existence	For an orientation preserving homeomorphism $f : S^1 \rightarrow S^1$ with F , a lift of f , the rotation number exists and it is independent of x .
Periodic Poir from Rotation Nur	f has no periodic points
Conjugate In of Rotation N	
RationalRotationNumber: $\frac{p}{q}$	Given init cond, \exists three possibilities for orbit. $\frac{p}{q}$ periodic orbit (PO) Homoclinic orbit. Asy approaches PO as $n \to \pm \infty$. Heteroclinic orbit. Asy approaches PO as $n \to -\infty$ & different PO as $n \to +\infty$.
Irrational Rotation Number	Given initial condition, there are three possibilities Orbit that densely fills circle. Orbit that densely fills a Cantor set on circle. Orbit homoclinic to a Cantor set on circle.
Linear Stabil Characteriza $\dot{x} = Ax$	

Linear Asy	Asymptotically stable if and only if $Re(\sigma(A)) < 0$.
Stability	In this case, there exist constants $C, \delta > 0$ such that: $ e^{At} \leq Ce^{-\delta t}$.
σ(A)	
Linear	If and only if $Re(\sigma(A)) \leq 0$ and
Stability	all eigenvalues with $Re(\lambda) = 0$ are semi-simple.
σ(A)	
Speed of f.p.	$\exists C, \varepsilon, \delta > 0 \text{ s.t. } \forall (\text{init cond}) \text{ w} x_0 < \varepsilon: x(t) \le Ce^{-\delta t} x_0 .$
Asymptotic	Constant $-\delta$ must be chosen larger than,
Convergence	but arbitrarily close to, max $Re(\sigma(A))$.
Asymptotic S	tability Assume Floquet multipliers lie inside unit circle except $\lambda = 1$, algebraically simple.
via	Then the Poincaré map is a contraction near $\gamma(0)$ in a suitably defined norm.
Poincaré Ma	ps
Asy stability	If Floquet exponents λ are s.t. {Re $\lambda < 0$ } except for an algebraically simple $\lambda = 0$,
of periodic	then periodic orbit $\Gamma = \{\gamma(t), 0 \le t < T\}$ is asymptotically stable. $\exists C, \eta > 0$,
orbits	a nghbrhd $U(\Gamma)$, & smooth $\theta: U \to \mathbb{R}/(T\mathbb{Z})$ s.t. $\forall x_0 \in U, x(t) - \gamma(t - \theta(x_0)) \le Ce^{-\eta t} \ \forall t \ge 0$
Strong	$f(0) = 0 \& A = Df(0)$ has splitting $@-\eta$, for some $\eta > 0$, $\mathbb{R}^n = E^{ss} \oplus E^{wu}$, w/projection $P^{ss}E^{ss} = E^{ss}$,
-Stable	$P^{ss}E^{wu} = \emptyset, AP^{ss} = P^{ss}A, Re(\sigma(A)) _{E^{ss}} < -\eta, Re(\sigma(A)) _{E^{wu}} > -\eta.$ Can characterize E^{ss} as set of x_0 s.t.
Maniflds	$ e^{At}x_0 \leq Ce^{-\eta t}, \text{ for all } t \geq 0. \text{ Strong stable manifold: } W^{ss} = \{x_0 \Phi_t(x_0) \leq Ce^{-\eta t}\}.$
Willinius	$x_0 = cc^2$, for all $t = 0$. Sublig stable manifold. $W = (x_0 + x_0) = cc^2$.
Center	{weak-unstable} \cap {weak-stable} manflds gives locily invar. manfld tang. to subspc of λs w\- $\eta_{-} < \lambda < \eta_{+}$
Manifld	Choosing $\eta_{\pm} \ll 1$, subspace contains precisely generalized eigenspace to $\lambda s \in i\mathbb{R}$.
	Such a manifold tangent to this eigenspace exists, of class C^k , $\forall k < \infty$, if $f \in C^k$.
	Such a manifold tangent to this eigenspace exists, of class C , $\forall x < \infty$, if $j \in C$.
Structural	One considers perturbations of the vector field,
Stability	as opposed to perturbations of the initial data.
Stability	
Conservative	$\dot{x} = f(x), x \in \mathbb{R}^n$ is considered conservative if there exists a C^1 scalar function
System	$E: \Omega \to \mathbb{R}$ which is not constant on any open set in Ω , but is constant on orbits.

Non-asympto	tic An equilibrium point q of a conservative system cannot be asymptotically stable.
stable f.p.s in	
Conservative	Sys
Strong	$E: \Omega \to \mathbb{R}$ has strong minimum at q if \exists nghbrhd N of q s.t.
Minimum	$E(x) > E(q)$ for every $x \in N$ except for $x = q$.
Stability	Suppose q is f.p. of conservative, autonomous sys
from Strong	& that its integral <i>E</i> has strong minimum there.
Minima	Then q is stable.
Linear Instb =	
Nonlinear Ins	$A := (J_0 - \lambda \mathbb{I}) = J_0. \text{ Calculating gen. evects: } A^2 v_2 := A^2 \langle 1 \ 0 \rangle = 0 \& A v_2 = \langle 0, -2 \rangle =: v_1 \text{ has}$
Example	sols increasing linearly w/t: $\langle q, p \rangle = c_1 \langle 0, -2 \rangle + c_2 (\langle 0, -2 \rangle t + \langle 1, 0 \rangle)$. But $\langle 0, 0 \rangle$ is strict Min of H
Linear Stb ⇒	$H = \frac{1}{2}(q_1^2 + p_1^2) - (q_2^2 + p_2^2) - \frac{1}{2}p_2(q_1^2 - p_1^2) - q_1q_2p_1$. Linearized sys can be read from EOM.
Nonlinear Sth	Has periodic sols. For $T > 0$: $p_1 = \sqrt{2} \frac{\sin(t-T)}{t-T}$, $q_1 = \sqrt{2} \frac{\cos(t-T)}{t-T}$, $q_2 = \frac{\cos(2(t-T))}{t-T}$, $p_2 = \frac{\sin(2(t-T))}{t-T}$
Example	is sol which blows up when $t = T$.
Nonlinear Cir	
	which determines the degree of nonlinearity,
	and Ω is an externally applied driving frequency.
<u> </u>	
	Mode-locked region in driven weakly-coupled harmonc oscillatr. $\theta_{n+1} = \theta_n + \Omega + \frac{K}{2\pi} \sin(2\pi\theta_n) \pmod{1}$
	AT around each $\Omega \in \mathbb{Q}$. External freq. Ω . If $K \neq 0$, motion may
AT	be periodic in finite region. $K = 0 \Rightarrow A = \{\mathbb{Q}\}$. $K = 1 \Rightarrow A = \{\text{Cantor}\}$.
Mode	For $0 < K < 1$, in Mode Locked region, θ_n have a limiting behavior
locking for	as a rational multiple of <i>n</i> . Rotation (map winding) number : $\omega = \lim_{n \to \infty} \frac{\theta_n}{n}$.
Arnold	Regions form V-shape that touch down to rational $\Omega = \frac{p}{q}$ in limit of $K \to 0$.