Orbital Mechanics Flashcards made to prepare for the Oral Exams

Lagrange equa	tions Treat constraints explicitly as extra equations, often using Lagrange multipliers				
of the First Kin					
Lagrange equa	tions Pendulum - Unconstrained: $\frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - mgy$. Constraint: $x^2 + y^2 - \ell^2 = 0$.				
of the First Ki	of the First Kind EOM: $m\ddot{x} = 2\lambda x$, $m\ddot{y} = 2\lambda y$, $x^2 + y^2 - \ell^2 = 0$. $\overline{L} = +\lambda(x^2y^2 - \ell^2)$				
Examples					
Lagrange equa of the Second I					
Newton's laws Benefits/Draw	-backs Benefits: Can include non-conservative forces like friction Draw-backs: Must include constraint forces explicitly and are best suited to Cartesian coordinates				
Hamiltonian sy	2 <i>n</i> ODEs where <i>H</i> is smooth real valued defined on open set in $\mathbb{R}^1 \times \mathbb{R}^n \times \mathbb{R}^n$. Satisfying Hamilton's (canonical) Equations: $\frac{dq}{dt} = \frac{\partial H}{\partial p}, \frac{dp}{dt} = -\frac{\partial H}{\partial q}, \frac{\partial \mathcal{L}}{\partial t} = -\frac{\partial H}{\partial t}$; which can be rewritten as $\dot{z} = J\nabla H(t, z)$.				
Hamiltonian System Advantage	Gives important insight about the dynamics, even if the initial value problem cannot be solved analytically. Example: 3BP, even if there is no simple solution to the general problem, Poincaré showed for first time that it exhibits deterministic chaos.				
Constant of Mo Integrals of Mo First Integrals					
Symplectic Ma	trix $M \in \mathbb{R}^{2n \times 2n} \text{ that satisfies: } M^T \Omega M = \Omega, \text{ where } \Omega \text{ is fixed } 2n \times 2n \text{ nonsingular,}$ skew-symmetric matrix. det $M = 1$, & symplectic matrices in $\mathbb{R}^{2n \times 2n}$ form subgroup $Sp(2n, \mathbb{R})$ of special linear group $SL(2n, \mathbb{R})$ (set of matrices in $\mathbb{R}^{2n \times 2n}$ w/det 1)				

Kepler Problem	2BP w/central force F that varies in strength as $\vec{F} = \frac{k}{r^2} \hat{r}$				
	Force may be attractive or repulsive.				
	Solution can be expressed as a Kepler orbit using six orbital elements.				
Kepler's Inverse P	Problem Types of forces that would result in orbits obeying Kepler's laws of planetary motion				
Kepler's Laws	Orbit of moving body (MB) is an ellipse with larger body (LB) at one of the two foci. Line segment joining MB & LB sweeps out equal areas during equal intervals of time. (orbital period of MB) ² = k (MBs semi-major axis) ³ , for some $k \in \mathbb{R}^+$.				
Orbital Elements	Shape and Size: Eccentricity (e), Semimajor axis (a)				
Kepler's	Orientation of Orbital Plane: Inclination (i), Longitude of ascending node (Ω)				
	Remaining : Argument of periapsis (ω), True anomaly (ν , θ , or f) at epoch (t_0)				
Orbital Elements:	Eccentricity (<i>e</i>): shape of ellipse, how elongated compared to circle. $\{0, (0, 1), 1, (1, \infty)\}$				
Shape and Size	Semimajor axis (<i>a</i>): $\frac{\text{periapsis} + \text{apoapsis}}{2}$. Means distance 'tween a focus & max dist. of orbit				
-	For 2BP, is distance tween centers of the bodies, not distance of bodies from COM.				
Orbital Elements:	Inclination (<i>i</i>): vertical tilt of ellipse measured @ascending nde. Tilt angle measured \perp				
	to line of intersectn tween orbital & ref. plane. Longitude of ascndng node (Ω):				
Orientation of	to line of intersectin tween orbital & ref. plane. Longitude of aschang node (22):				
	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt				
Orbital Plane					
Orbital Plane Orbital Elements:	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt				
Orbital Plane Orbital Elements:	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured				
Orbital Plane Orbital Elements: Remaining	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis. True anomaly (θ) at epoch (t_0): position				
Orbital Plane Orbital Elements: Remaining Kepler Problem	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis. True anomaly (θ) at epoch (t_0): position of body along ellipse at a specific time (the "epoch")				
Orbital Plane Orbital Elements: Remaining Kepler Problem	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis. True anomaly (θ) at epoch (t_0): position of body along ellipse at a specific time (the "epoch") Central force $\vec{F}(q)$ varies as: $\vec{F} = \frac{k}{r^2}\hat{r}$, where $r = q , \hat{r} = \frac{q}{ q }$.				
Orientation of Orbital Plane Orbital Elements: Remaining Kepler Problem Mathematically 3BP Existence & U	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis. True anomaly (θ) at epoch (t_0): position of body along ellipse at a specific time (the "epoch") Central force $\vec{F}(q)$ varies as: $\vec{F} = \frac{k}{r^2}\hat{r}$, where $r = q $, $\hat{r} = \frac{q}{ q }$. Scalar potential energy of the non-central body is: $V(r) = -\frac{k}{r}$ Solve $\dot{q} = p \& \dot{p} = -k\frac{q}{ q ^3}$. \exists Sols on $\mathbb{R}^2 \backslash \Delta$. Can regularize for 2BP				
Orbital Plane Orbital Elements: Remaining Kepler Problem Mathematically	horizontally orients ascndng node of ellipse wrt reference frame's vernal pt Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis. True anomaly (θ) at epoch (t_0): position of body along ellipse at a specific time (the "epoch") Central force $\vec{F}(q)$ varies as: $\vec{F} = \frac{k}{r^2}\hat{r}$, where $r = q $, $\hat{r} = \frac{q}{ q }$. Scalar potential energy of the non-central body is: $V(r) = -\frac{k}{r}$ Solve $\dot{q} = p \& \dot{p} = -k\frac{q}{ q ^3}$. \exists Sols on $\mathbb{R}^2 \backslash \Delta$. Can regularize for 2BP				

Polar	$\vec{a} = \vec{v}' = \left(\dot{r} \left(\cos\varphi, \sin\varphi\right) + r \dot{\varphi} \left(-\sin\varphi, \cos\varphi\right)\right)'$				
Coordinate	$= \ddot{r} (\cos \varphi, \sin \varphi) + 2 \dot{r} \dot{\varphi} (-\sin \varphi, \cos \varphi) + r \ddot{\varphi} (-\sin \varphi, \cos \varphi) - r \dot{\varphi}^{2} (\cos \varphi, \sin \varphi)$				
Acceleratn	Let $\hat{r} := (\cos \varphi, \sin \varphi)$, and $\hat{\varphi} := \frac{d\hat{r}}{d\varphi}$, then $\vec{v} = \dot{r} \hat{r} + r \dot{\varphi} \hat{\varphi}$, & $\vec{a} = (\ddot{r} - r \dot{\varphi}^2)\hat{r} + (2 \dot{r} \dot{\varphi} + r \ddot{\varphi})\hat{\varphi}$				
Newton's La & Law of	Newton's Laws of Motion & Law of $1. \Sigma \vec{F} = 0 \Leftrightarrow \frac{d\vec{v}}{dt} = 0$ (No External Force \Leftrightarrow No acceleration) $2. \vec{F} = m\vec{a}. 3. \vec{F}_{12} = -\vec{F}_{21}$				
Universal G	ravitation $\vec{F} = -G \frac{Mm}{r^2} \hat{r}$				
Solving 2BP	Plug Polar into $\ddot{x} = -\frac{GM}{r^2}\hat{r}$, where $ \vec{x} =: r$ and $\hat{r} = \frac{x}{ x }$ separate components,				
Newton	using <i>L</i> , solve for $\dot{\varphi}$, plug back in. Result: $\ddot{r} - \frac{L^2}{m^2 r^3} = -\frac{GM}{r^2}$.				
	Then, c.o.c. $r \rightarrow \frac{L^2}{GMu} \rightarrow$ Linear Nonhomogeneous DEQ				
Solving 2BP	Form Lagrangian $\mathcal{L} = T - U$. Euler-Lagrange EOM: $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0$.				
Lagrangian	Using <i>L</i> , solve for $\dot{\varphi}$, plug back in. Result: $\ddot{r} - \frac{L^2}{m^{2}r^3} = -\frac{GM}{r^2}$.				
	Then, c.o.c. $r \rightarrow \frac{L^2}{GMu} \rightarrow$ Linear Nonhomogeneous DEQ				
Define Cons					
Force wrt Po	ptential $\vec{F}(\vec{r}) = -\nabla U = -\frac{dU}{d\vec{r}}.$				
Gravitationa	d Potential $U(\vec{r}) = -\int_{\infty}^{\vec{r}} \vec{F} \cdot d\vec{r}$				
of particle m	$= -\int_{\infty}^{\overrightarrow{r}} -\frac{GMm}{r^2} \widehat{r} \cdot d\overrightarrow{r} = -\frac{GMm}{r}.$				
attracted to	attracted to M				
Gravitationa	d Kinetic $T = \frac{1}{2}m\vec{v}^2 = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$, or in polar coordinates:				
of particle m	$(\cdot, 2, \cdot, 2)$				
Newtonian	$m_i \frac{d^2 q_i}{dt^2} = -\sum_{j=1, j \neq i}^n \frac{Gm_i m_j (q_j - q_i)}{ q_j - q_i ^3} = -\frac{\partial U}{\partial q_i}$				
NBP EOM	$U := -\sum_{1 \le i < j \le n} \frac{Gm_i m_j}{ q_j - q_i }$. System of 3 <i>n</i> second order ODEs,				

	2					
Hamiltonian	$p_i := m_i \frac{dq_i}{dt}$. Kinetic energy is $T = \sum_{i=1}^n \frac{1}{2} m_i v^2 = \sum_{i=1}^n \frac{ p_i ^2}{2m_i}$					
NBP EOM	$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}.$ Hamilton's equations show that					
$\mathbf{H} = \mathbf{T} + \mathbf{U}$	the <i>n</i> -body problem is a system of 6n first-order differential equations.					
Symmetries Translational symmetry: $C = \frac{\sum m_i q_i}{\sum m_i}$, so $C = L_0 t + C_0$. (6 constants)						
in NBP	Rotational symmetry : $A = \Sigma(q_i \times p_i)$. (3 constants)					
	Conservation of energy <i>H</i> . Hence, every <i>n</i> -body problem has ten integrals of motion.					
Scaling	Because T and U are homogeneous functions of degree 2 and -1, respectively					
invariance	the equations of motion have a scaling invariance:					
in NBP	if $q_i(t)$ is a solution, then so is $\lambda^{-\frac{2}{3}}q_i(\lambda t)$ for any $\lambda > 0$.					
Prove COM	2nd Law: $m_i \ddot{r}_i = F_i$, 3rd Law: $\sum_i F_i = 0$. Summing over $i: \frac{d^2}{dt^2} (\sum_i m_i r_i) = \sum_i F_i = 0$.					
constant	So $\frac{\sum_{i}m_{i}r_{i}}{\sum_{i}m_{i}} = c_{1}t + c_{2}$, but by symmetry of translation invariance					
in NBP	we can choose a moving inertial reference frame such that $\frac{\sum_{i}m_{i}r_{i}}{\sum_{i}m_{i}} = 0.$					
	we can choose a moving methal reference frame such that $\frac{1}{\sum_i m_i} = 0$.					
Prove Energy $F_i := -\frac{d}{dr_i} U(r_1, r_2,)$. Then take total energy: $E = \sum_i \frac{m_i \dot{r_i} ^2}{2} + U$.						
is constant						
in NBP	$\frac{dE}{dt} = \sum_{i} m_i (\ddot{r}_i \dot{r}_i) + \sum_{i} \frac{dU}{dr_i} \dot{r}_i = \sum_{i} (F_i - F_i) \dot{r}_i = 0.$					
Central Force	Force is always directed from m toward, or away, from a fixed point O					
on a particle	Magnitude of the force only depends on the distance r from O					
of mass m	\vec{F} is C.F. $\Leftrightarrow \vec{F} = f(r)\hat{r} = f(r)\frac{\vec{r}}{r}$.					
Particle moving	Path of particle must be a plane curve.					
thru/Central Fo	Angular momentum of particle is conserved.					
Properties	Position vector sweeps out equal areas in equal times. (Law of Areas)					
Conservative	Work $W = \int_{A}^{B} \vec{F} \cdot d\vec{r}$ done in moving from A \rightarrow B is independent of path chosen.					
Force \vec{F}	Only depends on the endpoints. So W from A assigns scalar value to every other point.					
	Defines scalar potential field V. Force defined as $\vec{F}(\vec{r}) = -\frac{dV}{d\vec{r}}$. So $W = V(A) - V(B)$					
	, , ui					

Low to compute otential V in entral force field f? $\vec{F}(\vec{r}) := -\frac{dV}{dr} \Rightarrow \vec{F} \cdot d\vec{r} = -dV(*). \ \vec{r} \cdot \vec{r} = r^{2}, \text{ and } d(\vec{r} \cdot \vec{r}) = d(r^{2}) \Rightarrow d\vec{r} + (d\vec{r} \cdot \vec{r}) = 2rdr. \text{ So we have: } \vec{r} \cdot d\vec{r} = rdr. \text{ From (LHS of *):}$ $\vec{F} \cdot d\vec{r} = f(r)\frac{\vec{r}}{r} \cdot d\vec{r} = f(r)dr. \text{ So, } f(r)dr = -dV \Rightarrow V = -\int f(r)dr.$				
entral force field f ? $\vec{F} \cdot d\vec{r} = f(r)\frac{\vec{r}}{r} \cdot d\vec{r} = f(r)dr$. So, $f(r)dr = -dV \Rightarrow V = -\int f(r)dr$.				
BP Constant $\dot{A} = \lim_{\Delta t \to 0} \frac{\Delta A}{\Delta t} = \lim_{\Delta t \to 0} \frac{1}{2} \vec{r} \times \frac{\Delta r}{\Delta t} = \frac{1}{2} \vec{r} \times \vec{v} .$				
$(1, \dots, n) \rightarrow (1, \dots, n) \rightarrow (1, \dots, n)$				
Law of Areas" $ \vec{r} \times \vec{v} = r^2 \dot{\theta} = \frac{ \vec{L} }{m} \dot{\vec{A}} = \dot{A} \vec{k} = \frac{1}{2}r^2 \dot{\theta} \vec{k} = \frac{L}{2m}\vec{k}$ is constant areal velocity				
Orbit Space System after quotienting out of the orbit angle.				
ormally stable evolutions of sufficiently small perturbations of RE solutions				
elative are arbitrarily confined to that relative equilibrium's orbit				
quilibrium				
Central Configuration Given the correct initial velocities, a central configuration will				
elative Equilibrium rigidly rotate about its center of mass.				
elationship Such a solution is called a relative equilibrium.				
arycenter $\vec{R} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$, position of the center of mass				
Prove $\frac{d}{dt}$ COM $\vec{R} := \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$, COM. Add force equations: $\vec{F}_{12} + \vec{F}_{21} = m_1 \ddot{x}_1 + m_2 \ddot{x}_2$				
constant $ = (m_1 + m_2) \stackrel{"}{R} = 0 \text{ (by Newton's 3rd)} \stackrel{"}{R} = 0 \Rightarrow V = d\vec{R}/dt \text{ of COM is constant}. $				
2BP So, total momentum $m_1v_1 + m_2v_2$ is also constant (conserv. of momentum).				
BP Solution Two bodies' orbits are similar conic sections (differ by a ratio).				
actoids The same ratios apply for the velocities, and, without the minus, for the angular momentum				
and for the kinetic energies, all with respect to the barycenter.				

True Anomaly

Angle between the current position of the orbiting object and the location in the orbit at which it is closest to the central body (called the periapsis)

Newton's l for the gra N-body pr	vita	tional	ion $ \begin{array}{l} \ddot{m}_{i} \ddot{q}_{i} = F_{i} = -\sum_{j \neq i} \frac{m_{i}m_{j}(q_{j}-q_{i})}{r_{ij}^{3}} \\ F_{i} = -\nabla_{i}U \text{ where: } U = -\sum_{j \neq i} \frac{m_{i}m_{j}}{r_{ij}} \end{array} $	
Central Configuration Equation invariant under:		-	The Euclidean similarities of \mathbb{R}^d translations, rotations, reflections and dilations.	
EquivalentConfigura $q, q' \in \mathbb{R}^{Nd}$ For config	tions urat	s ions w	r_{ij}	
(COM at origin), the CC equations are and any configuration satisfying this equation has $c = 0$.				
CC and 2F	CC and 2BPAny two configurations of $N = 2$ particles in \mathbb{R}^d are equivalent.Every configuration of two bodies is central with $\epsilon \in [0, 1]$.Each mass moves on a conic section according to Kepler's laws.			
Euler Coll 3BP Sols	Euler CollinearOne equivalence class of collinear central configurations3BP Solsfor each possible ordering of the masses along the line. Leading to periodic motions of all three bodies on ellipses.			
Lagrange CC 3BPEquilateral triangle is CC for any $3 m_1, m_2, m_3$.SolThe only noncollinear CC for 3BP. Stable if $m_1 \ge 25m_2$.Regular simplex is CC of N bodies in $N - 1$ dims for all choices of masses				
Homotheti	Homothetic Motion Released from rest, a CC maintains the same shape as it heads toward total collision			

CC &	For any collision orbit in the nBP,		
Colliding Bodies	s the colliding bodies asymptotically approach a CC		
Lagrangian poir Def	nt 5 Points near 2 large bodies in orbit where a smaller object will maintain position relative to large bodies. Forces of large bodies:		
	centripetal & (for certain points) Coriolis match up		
Stability of	L4/L5 linearly stable if $\frac{M_1}{M_2}$ sufficiently large, where M_1 is the		
Lagrangian	larger body. Kidney bean-shaped orbit around the point		
points	as seen in the corotating frame of reference. Nonlinearly stable via KAM		
Coriolis	"Ficticious Force." Depends on the velocity of an orbiting object and cannot		
Acceleration	eleration be modeled as a contour map.Faster Angular Momentum⇒More Coriolis.		
	Caused by Velocity perpendicular to rotational axis.		
Orbits arising fr	rom elliptical, parabolic or hyperbolic orbits.		
Inverse Square			
NBP	3 center of mass, 3 linear momentum, 3 angular momentum		
	3 center of mass, 3 linear momentum, 3 angular momentum one for energy. Allows the reduction of system		
First Integrals	one for energy. Allows the reduction of system from 6n variables to $6n - 10$.		
First Integrals Reduction of NE	one for energy. Allows the reduction of systemfrom 6n variables to $6n - 10$.BPBeyond the 10 first integrals, Jacobi showed that using		
First Integrals Reduction of NE	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries),		
First Integrals Reduction of NE	one for energy. Allows the reduction of systemfrom 6n variables to $6n - 10$.BPBeyond the 10 first integrals, Jacobi showed that using		
First Integrals Reduction of NE Beyond first 10.	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6n - 12$.		
First Integrals Reduction of NE Beyond first 10. Relative Equilib	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6n - 12$.		
First Integrals Reduction of NE Beyond first 10. Relative Equilib	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6n - 12$. orium Steady rotations around the principal axes of inertia		
First Integrals Reduction of NE Beyond first 10. Relative Equilib when $n = 1$	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6n - 12$. Drium Steady rotations around the principal axes of inertia (found from the Moment of Inertia Matrix eigenvectors). Minimum en motions are rotations around the axis of maximum moment-of-inert		
NBP First Integrals Reduction of NE Beyond first 10. Relative Equilib when $n = 1$ When does Energetic Stabil	one for energy. Allows the reduction of system from 6n variables to $6n - 10$. BP Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6n - 12$. Drium Steady rotations around the principal axes of inertia (found from the Moment of Inertia Matrix eigenvectors). Minimum en motions are rotations around the axis of maximum moment-of-inert When the Hessian of the amended potential is positive definite or		

When does the Hamiltoniar	n If the Lagrangian (and therefore Hamiltonian)		
represent the energy	is not an explicity function of time.		
constant of motion?	Often this is not the case in rotating reference frames.		
Turning 2BP eq:	$m\left(r \ddot{\varphi} + 2 \dot{r} \dot{\varphi}\right) = \frac{m}{r} \left(r^2 \ddot{\varphi} + 2r \dot{r} \dot{\varphi}\right) = \frac{m}{r} \frac{d}{dt} \left(r^2 \dot{\varphi}\right) = 0$		
$m\left(r \ddot{\varphi} + 2 \dot{r} \dot{\varphi}\right) = 0$	or $r^2 \dot{\varphi} = \text{constant} = h$.		
into a constant of motion			
Way to show we have	$CC \Rightarrow$ Force is a function of position only, so work over closed loops are zero,		
Conserved Total	equivalently, work done between two points is independent of choice of path.		
Energy w/NBP?	\Rightarrow Conserved Total Energy \Rightarrow Conservative Force		
Recall in 2BP : $L = mr^2 \dot{\phi}$	Curvilinear Sector of area swept out by \vec{r} is:		
So , $r^2 \dot{\phi} = h$, const.	$S(t) = \frac{ht}{2}$, thus $\dot{S} = \frac{h}{2}$ and the sector velocity is constant.		
If $h \neq 0$, then:	"area integral" or "Kepler's 2nd Law". <i>h</i> is "area constant."		
When is a force If	there's a potential V such that the components of force		
called conservative?	an be written as $F_i = -\frac{\partial V}{\partial x_i} \equiv -\partial_i V.$		
Gravity and electrostatic force satisfy this.			
Pros of Lagrange Lagr	range's EQ hold in arbitrary curvilinear coordinate system. # of Lagrange EQs		
Eqs vs Newton's = # c	of degrees of freedom. Newton: 3 EQs for each body & possibly constraint EQs		
Laws of Motion			
Derive Newton's	Euler-Lagrange EQ: $\frac{d}{dt} \frac{\partial \mathbf{r}}{\partial x_i} - \frac{\partial \mathbf{r}}{\partial x_i} = 0$. Observe: $\frac{\partial \mathbf{r}}{\partial x_i} = m \dot{x}_i = p_i$.		
Force Law from	So, $\frac{dp_i}{dt} = \frac{\partial \mathbf{L}}{\partial x_i}$. Observe: $\frac{\partial \mathbf{L}}{\partial x_i} = \frac{\partial}{\partial x_i}(T-V) = -\frac{\partial V}{\partial x_i}$, since <i>T</i> does not depend on x_i .		
Lagrange's Equations	Observe: $F_i := -\frac{\partial V}{\partial x_i}$, therefore $\frac{dp_i}{dt} = F_i$, Newton's Law of Force.		
Lagrange 5 Equations $T_i := -\frac{1}{\partial x_i}$, therefore $\frac{1}{dt} = F_i$, newton's Law of Force.			
Generalized Momentum	Defined to be: $p_i := \frac{\partial \boldsymbol{\mathcal{L}}}{\partial \boldsymbol{\alpha}_i}$		
	- 11		
conjugate to q_i	e.g., Angular Momentum \vec{L}		
for Hamiltonian			
[
Legendre Transformation of	of Let: $y_i = \frac{\partial f}{\partial x_i}$ and $g := \sum x_i y_i - f$.		
$f(x_1,\ldots,x_n)\equiv f(x).$	g is the Legendre Transformation.		
	Hamiltonian $\mathcal{H} = \Sigma p_i \dot{q}_i - \mathcal{L}$ is a transformation of \mathcal{L} .		

Differences between	Both hold in arbitrary curvilinear coordinate systems. Both EOM derived from		
Hamilton's Eqs &	scalar functions \mathcal{L} or \mathcal{H} . \mathcal{H} : 1st-order, \mathcal{L} : 2nd-order. \mathcal{L} : One EQ per degree		
Lagrange's Eqs	freedom. \mathcal{H} : Two EQ per degree freedom; one for q_i , and one for p_i .		

How to Integrate	For an integral F, sols lie on $F^{-1}(c)$ with dim $= 2n - 1$.
Hamiltonian	If you have $2n-1$ such independent $(\{F_i, F_j\} = 0, \forall i \neq j)$ integrals
Problem	F_i , then holding these fixed would define a !sol curve in \mathbb{R}^{2n}

Stable RE	An equilibrium point z_0 is stable if for every $\varepsilon > 0$, $\exists \delta > 0$
	such that $ z_0 - \varphi(t, z_1) < \varepsilon$, $\forall t$ whenever $ z_0 - z_1 < \delta$.

Define : $V: O \to \mathbb{R}$ as	there is a neighborhood $Q \subset O$
pos. def. wrt f.p. z ₀	of z_0 such that $V(z_0) < V(z), \forall z \in O \setminus \{z_0\}.$
of $\dot{z} = f(z)$ smooth: If	And, z_0 is called a strict local minimum of V .

Lyapunov's	If there exists a function V that is positive definite
Stability	wrt z_0 and such that $\dot{V} \leq 0$ in a neighborhood of z_0 ,
Theorem	then the equilibrium z_0 is positively stable (as $t \to \infty$).

Dirichlet's Stability		If z_0 is a strict local minimum or maximum of H ,	
Theorem		then z_0 is a stable equilibrium of $\dot{z} = J\nabla H(z)$.	

Chetaev's	$V: O \to \mathbb{R}$ a smooth function & Ω an open subset of O w/: $z_0 \in \partial \Omega$. Also:
Thm for	$V > 0$ for $z \in \Omega$. $V = 0$ for $z \in \partial \Omega$. $V = V \cdot f > 0$ for $z \in \Omega$.
$\dot{z} = J\nabla H(z) = f(z)$	Then, f.p. z_0 is unstable. $\exists N(z_0)$ such that sols in $N \cap \Omega$ leave N in positive time

Requirement for	Span the space of the motion in phase space	e,
Generalized Coordinates	and be linearly independent.	
	Often found by: $p_i := \partial_{\dot{q}_i} \mathcal{L}$.	

Requirements for	2 Integrals of Motion (L, H)
Solving 2BP	and two initial values (φ_0, r_0)

Poission Bracket of

F and G

 $\{F,G\} = \sum_{i} \left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}} - \frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}} \right).$ Skew-symmetric and bilinear In terms of phase variable \vec{z} , bracket of $F(\vec{z},t), G(\vec{z},t)$ is $\nabla F \cdot J \nabla G$ Associated with every Hamiltonian is a vector field defined by: $\hat{v}_{H}(F) = \{F,H\}.$

NBP. How force on each mass \vec{f}_i is derived given: $\mathbf{V}(\vec{r}) = -\Sigma_{i < j} \frac{Gm_i m_j}{|\vec{r}_j - \vec{r}_i|}.$

$$\vec{f}_{i} = -\nabla_{\vec{r}_{i}}V(\vec{r}) = \sum_{j\neq i}\vec{f}_{ij}(\vec{r})$$

where $\vec{f}_{ij} = \frac{Gm_{i}m_{j}}{|\vec{r}_{j}-\vec{r}_{i}|^{3}}(\vec{r}_{j}-\vec{r}_{i}).$

Pot	ential
for	ERB.

 $V_{ij} =$

	$dm_i = \rho_i (\vec{a}_i) d\vec{a}_i$, where \vec{a}_i position in body frame \mathcal{F}_i for \mathcal{B}_i and ρ_i density distribution.	
	$V_{ij} = -G \int_{\mathcal{B}_i} dm_i \int_{\mathcal{B}_j} dm_j \frac{1}{ (\vec{r}_i - \vec{r}_j) + \mathbf{B}_i \vec{a}_i - \mathbf{B}_j \vec{a}_j }, \text{ where } \mathbf{B}_i \left(\vec{\theta}_i\right) \text{ is the transformation matrix}$	
	in Euler angles $\vec{\theta}_i = (\psi_i, \theta_i, \varphi_i)$ from body frame to inertial frame. So, $V(\vec{r}, \vec{\theta}) = \sum_{i < j} V_{ij}$	

"Natural"	H(q,p) = T(q,p) + U(q),			
Hamiltonian	where <i>T</i> is the kinetic energy,			
	and U the potential energy. No time dependence.			

Variational Equation	Assume $\delta z = z - z_0$ is infinitesimal, Variational Eq is $\delta \dot{z} = L \delta z$, where constant
for Equilibrium z ₀	matrix $L = JD^2H(z_0)$ is the linearization. Solution is called the "tangent flow."
	Assuming distinct evals, it has the form: $\delta z = \sum_j c_j v_j e^{\sigma_j t}$, w/ σ_j evals & v_j evects

"Hamiltonian Matrix"	$2n \times 2n$ matrix L such that JL is symmetric,
L	where J is the Poisson matrix, and
	$L^T J + J L = 0$. Example: $J D^2 H(z_0) =: L$.

Eigenvalues of	Come in pairs $\pm \sigma$. Therefore, Exponential growing
Hamiltonian Matrix	terms exists unless all $\sigma \in i\mathbb{R}$. Thus, Linear Stability reduces
	to finding eigenvalues and eigenvectors of Hamiltonian Matrix L
	to finding eigenvalues and eigenvectors of Hamiltonian Matrix
I vanunov Stability	Equilibrium $z_0 \in \mathbb{P}^{2n}$ is Lyanupov stable (nonlinearly stable) if

Lyapunov Stability	Equilibrium $z_0 \in \mathbb{R}^{2n}$ is Lyapunov stable (nonlinearly stable) if
of Hamiltonian	for every neighborhood V of z_0 , there exists a neighborhood $U \subseteq V$ such that
Systems	$z(0) \in U \Rightarrow z(t) \in V$ for all time.

Linear Stability	F.p. $z_0 \in \mathbb{R}^{2n}$ is linearly stable if all orbits $z(t)$ of tangent flow are bounded $\forall t$.
of Hamiltonian	Thus, nonlinear much stronger than linear stability, as sets $U \& V$ where $z(t)$ begin don't
Systems	have to be infinitesimally small. Need $\sigma \in i\mathbb{R}$ (like spectral), AND 1D Jordan blocks.

Spectral Stability		Equilibrium $z_0 \in \mathbb{R}^{2n}$ is spectrally stable if $\sigma \in i\mathbb{R}$.
of Hamiltonian	I	f in addition, 1D Jordan blocks⇒Linearly stable.
Systems		
Counterexample		Cherry Hamilt.: $H = \frac{\omega_1}{2}(p_1^2 + q_1^2) - \frac{\omega_2}{2}(p_2^2 + q_2^2) - \frac{\alpha}{2}[2q_1p_1p_2 - q_2(p_1^2 - q_1^2)],$
Linear Stability ≠	>	At (0,0), linearly stable $(\sigma_{1,2} = \pm i\omega_1 \& \sigma_{3,4} = \pm i\omega_2)$, when $\omega_2 = 2\omega_1$
NonLinear Stabili	ity	an explicit solution shows nonlinear terms lead to explosive growth.
Orbital	Descr	ibes the divergence of two neighboring orbits,
Stability of	regard	led as point sets
Hamiltonian	e	•
Structural	Sensit	ivity (or insensitivity) of the qualitative features
Stability of		t invariant sets) of a flow to changes in parameters.
Hamiltonian	` 1	
Hamiltonian	H((z,μ) smooth in $\mu \Rightarrow \sigma$ also smooth in μ . Stability loss due to: $\sigma_{1,2} = \pm i\omega_1 \&$
Loss of Spectral		$a_{4,4} = \pm i\omega_2$ merge @0, & split onto \mathbb{R} (saddle-nde). Or $\sigma_{1,2}$, $\sigma_{3,4}$ collide $@z_0, \overline{z}_0 \neq 0$
Stability		split off into complex plane forming complex quadruplet (Krein bifurcation)
J		
Hamiltonian Redu	uced	Since σ in ±pairs, characteristic polynomial P_{2n} is even. Introducing $\tau := -\sigma^2$
Characteristic		gives: $Q_n(\tau) = (-1)^n P_{2n} = \tau^n - A_1 \tau^{n-1} + + (-1)^n A_n \Rightarrow$ Hamiltonian f.p.s are
Polynomial		spectrally stable \Leftrightarrow all zeros of $Q_n(\tau)$ are real positive. Use Sturm.
		Spectrum for the matrice of $\mathcal{L}_n(\mathbf{r})$ are teal postarior of the station
Sturm's Thm	Sequ	ence: $\{F_k(\tau)\}$ by $F_0(\tau) := Q(\tau), F_1(\tau) := Q'(\tau)$. At each stage divide,
for polynml	-	to get G_{k-1} + Remainder = $G_{k-1} - \frac{F_k}{F_{k-1}}$, so $F_k = G_{k-1}F_{k-1} - F_{k-2}$, where
1 0	~ 1	$F_k < \deg F_{k-1}. V(\tau) := (\# \text{ of variations in sign}). \# \text{ of } !(\text{roots}) \text{ in } (a,b] \text{ is } V(a) - V(b)$
$\mathbf{Q}(\tau)$	ucgr	$k < \operatorname{deg} [r_{k-1}, v(t)] := (\# \operatorname{or variations in sign}), \# \operatorname{or stroots}) \operatorname{in} (a, b] \operatorname{is} v(a) = v(b)$
Spectral	Reca	Il for Hamiltonian stable zeros of Reduced $Q(\tau)$ must be nonnegative real.
-		
Stability via		Sturm's Thm, this is true $\Leftrightarrow V(0) - V(\infty) = n$.
Sturm's Thm	FOR N	Natural systems, this implies nonlinear stability as well.
I agrange Divishl	ot	Let the 2nd variation of the Hamiltonian $\delta^2 H$ be definite at an equilibrium z_0 .
Lagrange-Dirichle	ei	
Theorem		Then, z_0 is stable.
		$\delta^2 H := \frac{d^2}{dt^2} H(z_0 + th) _{t=0}$

Deletine	
Relative	Solution which becomes an equilibrium in some uniformly rotating a coordinate system.
Equilibrium	f.p. of dyn sys which has been reduced through quotienting out of rotation angle.
	Critical points of an "amended potential"
History	Maciejewski: 36 non-Lagrangian RE as $\overrightarrow{r} \rightarrow \infty$.
RE for ERBs	Scheeres: Nec/Suff for pt/ERB.
in F2BP	Moeckel: lower bounds on # of RE for F2BP where radius of the system is large, but finite
How to	For RE, invariance of orbit requires uniform rot. w/fixed $\vec{L} \& r$.
Reduce in	So, symmetry of φ about \vec{L} , not found in \boldsymbol{L} . Symmetry gives first integral &
orbital RE?	allows elimination of velocity variable by solving for it explicitly in EOM.
How solve	Change of variables such that $2BP \rightarrow R2BP$.
general point	$\vec{r} := \vec{r}_2 - \vec{r}_1$. $M := \frac{M_1 M_2}{M_1 + M_2}$.
mass 2BP	Then, apply sol. for Kepler Problem.
Central Th	the force on m_i is always directed toward, or away from a fixed point O; and
Force Th	he magnitude of the force only depends on the distance r of m_i from O .
on <i>m</i> _{<i>i</i>}	
Central Force	init pos & vel vectors define a plane. $\vec{r} \cdot \vec{L} = \vec{r} \cdot (\vec{r} \times m\vec{v}) = m\vec{v} \cdot (\vec{r} \times \vec{r}) = 0.$
Motion is	$\vec{r} \& \frac{d\vec{r}}{dt}$ always lies in plane perpendicular to \vec{L} . \vec{L} is constant $\Rightarrow \vec{F}$ in plane.
Planar	$\frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times m\vec{v}) = (\vec{v} \times m\vec{v}) + (\vec{r} \times m\frac{d}{dt}\vec{v}) = \vec{r} \times \vec{F}. \text{ And, } \text{CF} \Rightarrow \vec{r} \times \vec{F} = 0.$
Derive Pot. from	n Newton $\vec{F}(\vec{r}) = -\frac{GMm}{r^3}\vec{r}$. Integrating we find:
law of gravitation	on $U(r) = -\int_{\infty}^{r} \vec{F}(\vec{s}) \cdot d\vec{s} = -\int_{\infty}^{r} -\frac{GMm}{ s ^3} \vec{s} \cdot d\vec{s} = \int_{\infty}^{r} \frac{GMm}{s^2} ds$
tween <i>m</i> & <i>M</i>	$= -\frac{GMm}{r}$. And Kinetic is: $T = \frac{1}{2}m\vec{v}^2 = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2)$
Find reduced	$\mathcal{L}_{red} = T_{red} - U_{red}$, where T_{red} and U_{red} those necessary for
Lagrangian	$\frac{d}{dt} \frac{\partial \mathcal{L}_{red}}{\partial \dot{r}_i} - \frac{\partial \mathcal{L}_{red}}{\partial r_i}$ to produce reduced EOM
L _{red} w/Red. EO	
Usefulness of	We can assume the system's COM moves at a constant rate.
conservation of	This allows us to choose an inertial reference frame such that
linear momentu	m our choice of origin coincides with the system's COM.

Dumbbell's	(Mass-of-point-1)(radius ²)+(Mass-of-point-1)(radius ²) =
Moment	$(M_2 \boldsymbol{x}_1) \boldsymbol{x}_2^2 + (M_2 \boldsymbol{x}_2) \boldsymbol{x}_1^2 = M_2 \boldsymbol{x}_1 \boldsymbol{x}_2$
of Inertia	Scaled: $\frac{\mathbf{x}_1 \mathbf{x}_2}{M_1} = B$. Or $\mathbf{x}_{11} \mathbf{x}_{12} M_1 \ell_1^2 = \frac{\mathbf{x}_{11} \mathbf{x}_{12} \ell_1^2}{M_2} = B_1$

Simplify Equations	Let $\mathbf{x}_1 = \frac{u}{1+u}$ and $x_2 = \frac{1}{1+u}$.
with ratio variables	Note that we still have $\boldsymbol{x}_1 + \boldsymbol{x}_2 = 1$,
$x_1 + x_2 = 1$	but now we have characterized them with one variable $0 < u < \infty$.

Descartes'	# of positive roots is at most the # of sign changes in sequence of f 's coefficients
Rule of	(omitting zero coefficients), and that difference between these two #s is always even. This
Signs for f	implies that if the # of sign changes is 0 or 1, then there are exactly 0 or 1 positive roots, resp.

_

Graph of	Points in the space at which extremums and inflection points collide and annihilate
$\left f'=f''=0\right $	
	$\sim \rightarrow \setminus$

Conic	$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$, where one of A,B,C are non-zero.
Sections	All circles are similar. 2 ellipses are similar \Leftrightarrow
	ratios of lengths of minor axes to lengths of major axes are equal.

Chetaev's	$V: O \to \mathbb{R}$ a smooth function & Ω an open subset of O w/: $z_0 \in \partial \Omega$. Also:		
Thm for	$V > 0$ for $z \in \Omega$. $V = 0$ for $z \in \partial \Omega$. $V = V \cdot f > 0$ for $z \in \Omega$.		
$\dot{z} = J\nabla H(z) = f(z)$	Then, f.p. z_0 is unstable. $\exists N(z_0)$ such that sols in $N \cap \Omega$ leave N in positive time		
Cyclic	Doesn't appear in H. Momentum $(p = m \phi)$ conjugate to ϕ is integral of motion.		
Hamiltonian	Associated w/symmetry of system. Noether identified correspondence.		
Coordinate φ	Generalized momentum $p = \frac{\partial L}{\partial \dot{q}}$, from Euler Lagrange $\frac{d}{dt}\partial_{\dot{q}}L = \partial_q L = 0$. So, p conserved		
Relationship	$W = \int_C \vec{F} \cdot d\vec{x} = \int_{\vec{x}(t_1)}^{\vec{x}(t_2)} \vec{F} \cdot d\vec{x} = U(\vec{x}(t_1)) - U(\vec{x}(t_2))$		
Between Work	If work for applied force is indep. of the path, then work		
Force, and Poten	done by (conservative) force, by the gradient theorem, defines a pot. funct.		
Euler Angles	α is angle between x axis and N axis (Line of Nodes)		
Axes: xyz, XYZ	β is angle between z axis and Z axis		
$\mathbf{L.O.N.:} N = z \times Z$	γ is angle between N axis and X axis		

Levi-Civita Time Transfrmtn Step $dt = rd\tau$ Adds variable to sys & DEQ, giving extended phase space. $\dot{x} = \frac{dx}{dt} = \frac{dx}{dt} \frac{d\tau}{dt} = \frac{x'}{r}$. Substite in.Levi-Civita ConformalRepresent the complex physical coordinate x as u^2 of $u = u_1 + iu_2$. So, $x = u^2$ parametric u-manifold is a Riemann surface w/2 sheets, connected by branch pts at $u = 0$ & $u = \infty$.
Transfrmtn Step $\dot{x} = \frac{dx}{dt} = \frac{dx}{dt} \frac{d\tau}{dt} = \frac{x'}{r}$. Substite in.Levi-CivitaRepresent the complex physical coordinate x as u^2 of $u = u_1 + iu_2$. So, $x = u^2$
Levi-Civita Represent the complex physical coordinate x as u^2 of $u = u_1 + iu_2$. So, $x = u^2$
Conformal parametric <i>u</i> -manifold is a Riemann surface w/2 sheets, connected by branch pts at $u = 0 \& u = \infty$.
Squaring Step $r = x = u ^2 = u\overline{u}$. $x' = 2uu'$, $x'' = 2\left(uu'' + (u')^2\right)$, and $r' = u'\overline{u} + u\overline{u}'$
Levi-Civita After Conformal Squaring. Produces linear DEQs for the unperturbed problem.
Elimination $u'' + \frac{1}{2}u(\sim) = u ^2 \overline{u} f$, & $H = \sim$. Substitute <i>H</i> into DEQ: $u'' + \frac{1}{2}uH = u ^2 \overline{u} f$
Singularities Step $t' = r, H' = \langle x', f \rangle$. DEQs for the dependent vars u, t, H as functions of fictitious time τ .
Why can 2BP $\ddot{x} = -\alpha x ^{-\alpha-2}$. $\exists restriction on \alpha: \alpha = 2(1-\frac{1}{n}) for n \in \mathbb{Z}^+,$
collisions be for a body to be regularizable. And for Kepler problem, $\alpha = 1$ or $n = 2$.
regularized
Different Sundman: didn't guarantee smoothness of flow wrt init data.
Regularization Levi-Civita: ditches DEQ singularity. Guarantees info bout flows close to collisions.
Approaches Easton: isolating block. Collision close orbit gives extn for collision orbit? (block regularization)
Block $\dot{x} = y \& \dot{y} = -\alpha x ^{-\alpha-2} x, w/\alpha > 0.$ Let $x \to r^{\gamma} e^{i\theta}, y \to r^{-\beta\gamma} (v+iw) e^{i\theta}, w \land \beta = \frac{\alpha}{2} \& \gamma = \frac{1}{\beta+1}$
Regularzatn So: $\dot{r} = (\beta + 1)v$, $\dot{\theta} = \frac{w}{r}$, $\dot{w} = \frac{\beta - 1}{r}wv$, $\dot{v} = \frac{w^2 + \beta(v^2 - 2)}{r}$
$\mathbf{M} = \{(r, \theta, w, v) : r \ge 0 \& \text{ DEQs Hold}\}, \mathbf{N} = \{(r, \theta, w, v) \in \mathbf{M}(h) : \vec{r} = 0\}. \text{ N Reglbl} \Leftrightarrow \beta = 1 - n^{-1}$
$\mathbf{W} = \{(r, \sigma, w, v) : r \ge 0 \text{ a DEQS Hold}\}, \mathbf{W} = \{(r, \sigma, w, v) \in \mathbf{W}(n) : r = 0\}, \mathbf{W} \text{ Region} \implies p - 1 - n$
Bertrand's For conservative central-force (CF) potentls w/bounded orbits, only 2 types of CF potentials
Theoremw/property that {bounded orbits} = {closed orbits}: 1) inverse-square CF such as gravitational
or electrostatic potentl: $V(r) = -\frac{k}{r}$, & (2) radial harmonic oscillator potential: $V(r) = \frac{1}{2}kr^2$
of electrostate potenti. $V(r) = -\frac{1}{r}$, $\mathcal{L}(2)$ radial harmonic oscillator potential. $V(r) = \frac{1}{2}Kr$
Bertrand closed orbits are all ellipses. In inverse square case, force
Orbit is directed toward one focus of ellipse. In harmonic
Shape oscillator, force directed toward geometric center of ellipse.
Shape Usernator, force uncered toward geometric center of empse.
Conservation $\ddot{x}_k = \sum_{j=1, j \neq k}^n \frac{m_j m_k}{r_k^3} (x_j - x_k)$. Summing RHS gives zero. So,
of Linear $\ddot{\rho} = \frac{d^2}{dt^2} \sum_{k=1}^n m_k x_k = 0$, or $\rho = L_0 t + \rho_0$.
Momentum in NBP Expresses translational symmetry COM moves uniformly in straight line

Conservation	$H := T - U. \ T := \frac{1}{2} \sum_{k=1}^{n} m_k v_k ^2.$		
of Energy H	Energy H $F_i = -\frac{d}{dx_i} U(x_1, x_2, x_3)$. So differentiating H with respect to time:		
in NBP	$\frac{dH}{dt} = \sum_{i} m_i (\ddot{x}_i \ v_i) + \sum_{i} \frac{dU}{dx_i} v_i = (F - F) v_i = 0.$		
Conservation	$\overline{m_k \ \overset{\sim}{x_k}} = \sum_{j=1, \ j \neq k}^n \frac{m_j m_k}{r_{ik}^3} (x_j - x_k), \text{ forming } x_k \times \overset{\sim}{x_k}, \text{ and summing:}$		
of Angular	$\sum_{k=1}^{n} m_k \left(x_k \times \ddot{x}_k \right) = \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{m_j m_k}{r_{jk}^3} x_k \times x_j = 0.$ Integrating LHS:		
Momentum in	Momentum in NBP $\sum_{k=1}^{n} m_k (x_k \times v_k) = c.$ Expresses rotational symmetry		
Constant	Approximate area of arc sweep by Parallelogram: $\dot{A} = \frac{1}{2} \vec{r} \times \vec{v} $.		
	$\vec{r} \times \vec{v} = \vec{r} \times (\dot{r} \ \hat{r} + r \ \dot{\theta} \ \hat{\theta}) = r \ \dot{r} \ (\hat{r} \times \hat{r}) + r^2 \ \dot{\theta} \ (\hat{r} \times \hat{\theta}) = r^2 \ \dot{\theta} \ \vec{k}.$		
Velocity	Result: $\vec{A} = \vec{A} \vec{k} = \frac{1}{2}r^2 \dot{\theta} \vec{k}$. Kepler's 2nd law		
Bertrand Proo	f EOM. Eliminate $\dot{\theta}$ w\L, & time w\ $\frac{d}{dt} = \frac{L}{mr^2} \frac{d}{d\theta}$. C.O.V. $u \equiv \frac{1}{r} \Rightarrow \frac{d^2u}{d\theta^2} + u = -\frac{m}{L^2} \frac{d}{du} V(\frac{1}{u}) =: J,$		
$m \ddot{r} - mr \dot{\theta}^2$	quasilinear. Pert from circ: $\eta \equiv u - u_0$ into a <i>J</i> tayl series. Let $\beta^2 \equiv 1 - J'(u_0)$. $\Rightarrow B \in \mathbb{Q}$, cuz $\eta \approx k \cos(\beta\theta)$		
$= -V_{i}$	Fourier $\eta = h_0 + h_1 \cos \beta \theta +$, substitute in. Equate low frequency. Get $\beta^2 (1 - \beta^2) (4 - \beta^2) = 0$		