
Orbital Mechanics Flashcards made to prepare for the Oral Exams

Lagrange equations Treat constraints explicitly as extra equations, often using Lagrange multipliers

of the First Kind �L

�q i
� d

dt

�L

�
�
q i

��
i�1

c � i
�f i

�q i
� 0, for each of c constraint equations f i.

Lagrange equations Pendulum - Unconstrained: 1
2

m
�
x

2
�

�
y

2
� mgy. Constraint: x2 � y2 � �2 � 0.

of the First Kind EOM: m
��
x � 2�x, m

��
y � 2�y, x2 � y2 � �2 � 0. L � ���x2y2 � �2�

Examples d

dt

�L

�
�
xi

�
�L

�xi
, d

dt

�L

�
�
yi

�
�L

�yi
, d

dt

�L

�
�
�

�
�L

��

Lagrange equations Incorporate the constraints directly by judicious choice of generalized coordinates.

of the Second Kind

Newton’s laws Benefits: Can include non-conservative forces like friction

Benefits/Draw-backs Draw-backs: Must include constraint forces explicitly

and are best suited to Cartesian coordinates

Hamiltonian system 2n ODEs where H is smooth real valued defined on open set in R1 � Rn � Rn.

Satisfying Hamilton’s (canonical) Equations:
dq

dt
� �H

�p
,

dp

dt
� � �H

�q
, �LLLL

�t
� � �H

�t
;

which can be rewritten as
�
z� J�H�t, z�.

Hamiltonian Gives important insight about the dynamics, even if the initial value problem

System cannot be solved analytically. Example: 3BP, even if there is no simple solution

Advantage to the general problem, Poincaré showed for first time that it exhibits deterministic chaos.

Constant of Motion VS In a force field COM is any function of time and phase-space coordinates

Integrals of Motion/ that is constant throughout a trajectory (e.g., C�x, v, t� � x � vt) VS

First Integrals Functions of only the phase-space coordinates that are constant along an orbit.

Symplectic Matrix M � R2n�2n that satisfies: MT�M � �, where Ω is fixed 2n � 2n nonsingular,

skew-symmetric matrix. det M � 1, & symplectic matrices in R2n�2n form subgroup

Sp�2n,R� of special linear group SL�2n,R� (set of matrices in R2n�2n w/det 1)
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Kepler Problem 2BP w/central force F that varies in strength as F � k

r2

�
r

Force may be attractive or repulsive.

Solution can be expressed as a Kepler orbit using six orbital elements.

Kepler’s Inverse Problem Types of forces that would result in orbits obeying

Kepler’s laws of planetary motion

Kepler’s Laws Orbit of moving body (MB) is an ellipse with larger body (LB) at one of the two foci.

Line segment joining MB & LB sweeps out equal areas during equal intervals of time.

(orbital period of MB)2 � k(MBs semi-major axis)3, for some k � R�.

Orbital Elements Shape and Size: Eccentricity (e), Semimajor axis (a)

Kepler’s Orientation of Orbital Plane: Inclination (i), Longitude of ascending node (Ω)

Remaining : Argument of periapsis (ω), True anomaly (ν, θ, or f) at epoch (t0)

Orbital Elements: Eccentricity (e): shape of ellipse, how elongated compared to circle. {0,(0,1),1,(1,�)}

Shape and Size Semimajor axis (a):
periapsis � apoapsis

2
. Means distance ’tween a focus & max dist. of orbit.

For 2BP, is distance tween centers of the bodies, not distance of bodies from COM.

Orbital Elements: Inclination (i): vertical tilt of ellipse measured @ascending nde. Tilt angle measured �

Orientation of to line of intersectn tween orbital & ref. plane. Longitude of ascndng node (Ω):

Orbital Plane horizontally orients ascndng node of ellipse wrt reference frame’s vernal pt

Orbital Elements: Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured

Remaining from ascending node to periapsis.True anomaly (θ) at epoch (t0): position

of body along ellipse at a specific time (the "epoch")

Kepler Problem Central force F�q� varies as: F � k

r2

�
r , where r � |q|,

�
r �

q

|q |
.

Mathematically Scalar potential energy of the non-central body is: V�r� � � k
r

Solve
�
q � p &

�
p � �k

q

|q |3
. �Sols on R2\�. Can regularize for 2BP

3BP Existence & Uniqueness Problems arise when there are collisions causing

singularities in the differential equations.

One can regularize double collisions, but not triple collisions.
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Polar a � v
�
�

�
r �cos� , sin�� � r

�
� �� sin�, cos��

�

Coordinate �
��
r �cos� , sin�� � 2

�
r
�
� �� sin�, cos�� � r

��
� �� sin�, cos�� � r

�
�

2
�cos�, sin��

Acceleratn Let
�
r :��cos� , sin��, and

��:� d
�
r

d�
, then v �

�
r
�
r � r

�
� ��, & a�

��
r �r

�
�

2 �
r� 2

�
r
�
� �r

��
� ��

Newton’s Laws of Motion 1. �F � 0 � d v

dt
� 0 (No External Force � No acceleration)

& Law of 2. F � ma . 3. F12 � �F21

Universal Gravitation F � �G Mm

r2

�
r

Solving 2BP Plug Polar into
��
x� � GM

r2

�
r , where x �: r and

�
r � x

|x|
separate components,

Newton using L, solve for
�
�, plug back in. Result:

��
r � L2

m2r3
� � GM

r2
.

Then, c.o.c. r 	 L2

GMu
	 Linear Nonhomogeneous DEQ

Solving 2BP Form Lagrangian LLLL � T � U. Euler-Lagrange EOM: d

dt

�LLLL
�
�
q i

� �LLLL
�q i

� 0.

Lagrangian Using L, solve for
�
�, plug back in. Result:

��
r � L2

m2r3
� � GM

r2
.

Then, c.o.c. r 	 L2

GMu
	 Linear Nonhomogeneous DEQ

Define Conservative Negative vector gradient of a potential field:

Force wrt Potential F r � ��U � � dU

d r
.

Gravitational Potential U r � � �
�

r
F � d r

of particle m � � �
�

r
� GMm

r2

�
r � d r � � GMm

r .

attracted to M

Gravitational Kinetic T � 1
2

mv
2
� 1

2
m

�
x

2
�

�
y

2
, or in polar coordinates:

of particle m T � 1
2

m
�
r

2
� r2

�
�

2

.

Newtonian mi
d2q i

dt2
� ��

j�1,j	i

n Gmimj�q j�q i �

|q j�q i |
3

� � �U

�q i

NBP EOM U :� ��
1
i
j
n

Gmimj

|q j�q i |
. System of 3n second order ODEs,

with 6n initial conditions as 3n position and 3n momentum
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Hamiltonian pi :� mi
dq i

dt
. Kinetic energy is T � �

i�1

n 1
2

miv
2 � �

i�1

n |p i |
2

2mi

NBP EOM
dq i

dt
� �H

�p i
,

dp i

dt
� � �H

�q i
. Hamilton’s equations show that

H � T � U the n-body problem is a system of 6n first-order differential equations.

Symmetries Translational symmetry: C �
�miq i

�mi
, so C � L0t � C0. (6 constants)

in NBP Rotational symmetry: A � ��qi � pi�. (3 constants)

Conservation of energy H. Hence, every n-body problem has ten integrals of motion.

Scaling Because T and U are homogeneous functions of degree 2 and -1, respectively

invariance the equations of motion have a scaling invariance:

in NBP if qi�t� is a solution, then so is λ�
2
3 qi�λt� for any λ � 0.

Prove COM 2nd Law: mi

��
r i � F i, 3rd Law: �iF i � 0. Summing over i: d2

dt2
��imiri� � �iF i � 0.

constant So
�imir i

�imi
� c1t � c2, but by symmetry of translation invariance

in NBP we can choose a moving inertial reference frame such that
�imir i

�imi
� 0.

Prove Energy F i :� � d

dr i
U�r1, r2,� �. Then take total energy: E � �i

mi|
�
r i |2

2
� U.

is constant And differentiate with respect to time:

in NBP dE

dt
� �imi�

��
r i

�
ri � � �i

dU

dr i

�
ri � �i�F i � F i�

�
ri � 0.

Central Force Force is always directed from m toward, or away, from a fixed point O

on a particle Magnitude of the force only depends on the distance r from O

of mass m F is C.F. � F � f�r��r � f�r� r
r .

Particle moving Path of particle must be a plane curve.

thru/Central Force Angular momentum of particle is conserved.

Properties Position vector sweeps out equal areas in equal times. (Law of Areas)

Conservative Work W � �
A

B
F � d r done in moving from A	B is independent of path chosen.

Force F Only depends on the endpoints. So W from A assigns scalar value to every other point.

Defines scalar potential field V. Force defined as F r � � dV

d r
. So W � V�A� � V�B�
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How to compute F r :� � dV

dr
� F � d r � �dV (*). r � r � r2, and d r � r � d�r2� 

potential V in r � d r � d r � r � 2rdr. So we have: r � d r � rdr. From (LHS of *):

central force field f ? F � d r � f�r� r
r � d r � f�r�dr. So, f�r�dr � �dV � V � � � f�r�dr.

2BP Constant
�
A �

�t	0

lim �A
�t

�
�t	0

lim 1
2

r � �r
�t

� 1
2

r � v .

Areal Velocity r � v � r �
�
r
�
r � r

�
�
�
� � r

�
r ��r � �

r � � r2
�
� �

r �
�
� � r2

�
� k . 2

�
A �

“Law of Areas" r � v � r2
�
� �

L

m .

�

A �
�
A k � 1

2
r2

�
� k � L

2m
k is constant areal velocity

Orbit Space System after quotienting out of the orbit angle.

Formally stable evolutions of sufficiently small perturbations of RE solutions

relative are arbitrarily confined to that relative equilibrium’s orbit

equilibrium

Central Configuration Given the correct initial velocities, a central configuration will

Relative Equilibrium rigidly rotate about its center of mass.

Relationship Such a solution is called a relative equilibrium.

Barycenter R �
m1x1�m2x2

m1�m2
, position of the center of mass

Prove d

dt
COM R :�

m1x1�m2x2

m1�m2
, COM. Add force equations: F12 � F21 � m1

��
x1 � m2

��
x2

constant � �m1 � m2�
��
R � 0 (by Newton’s 3rd).

��
R � 0 � V � dR/dt of COM is constant.

in 2BP So, total momentum m1v1 � m2v2 is also constant (conserv. of momentum).

2BP Solution Two bodies’ orbits are similar conic sections (differ by a ratio).

Factoids The same ratios apply for the velocities, and, without the minus, for the angular momentum

and for the kinetic energies, all with respect to the barycenter.
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True Anomaly Angle between the current position of the orbiting object and the location

in the orbit at which it is closest to the central body (called the periapsis)

Newton’s law of motion mi

��
qi � F i � ��

j	i

mimj�q j�q i �

r ij
3

for the gravitational F i � �� iU where: U � ��
j	i

mimj

r ij

N-body problem

Central Configuration The Euclidean similarities of Rd

Equation translations, rotations, reflections and dilations.

invariant under:

Equivalent Central There are constants k � R, b � Rd and a d � d orthogonal matrix Q

Configurations such that qi
� � kQqi � b, i � 1,� , N .

q, q��RNd So one can speak of an equivalence class of central configurations.

For configurations w/c � 0 �λqi � �j	i
mj�q j�q i�

r ij
3

(COM at origin), and any configuration satisfying this equation has c � 0.

the CC equations are

CC and 2BP Any two configurations of N � 2 particles in Rd are equivalent.

Every configuration of two bodies is central with ϵ � �0, 1�.

Each mass moves on a conic section according to Kepler’s laws.

Euler Collinear One equivalence class of collinear central configurations

3BP Sols for each possible ordering of the masses along the line.

Leading to periodic motions of all three bodies on ellipses.

Lagrange Equilateral triangle is CC for any 3 m1, m2, m3.

CC 3BP The only noncollinear CC for 3BP. Stable if m1 � 25m2.

Sol Regular simplex is CC of N bodies in N � 1 dims for all choices of masses

Homothetic Motion Released from rest, a CC maintains the same shape

as it heads toward total collision
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CC & For any collision orbit in the nBP,

Colliding Bodies the colliding bodies asymptotically approach a CC

Lagrangian point 5 Points near 2 large bodies in orbit where a smaller object will

Def maintain position relative to large bodies. Forces of large bodies:

centripetal & (for certain points) Coriolis match up

Stability of L4/L5 linearly stable if M1
M2

sufficiently large, where M1 is the

Lagrangian larger body. Kidney bean-shaped orbit around the point

points as seen in the corotating frame of reference. Nonlinearly stable via KAM

Coriolis "Ficticious Force." Depends on the velocity of an orbiting object and cannot

Acceleration be modeled as a contour map.Faster Angular MomentumMore Coriolis.

Caused by Velocity perpendicular to rotational axis.

Orbits arising from elliptical, parabolic or hyperbolic orbits.

Inverse Square Law

NBP 3 center of mass, 3 linear momentum, 3 angular momentum

First Integrals one for energy. Allows the reduction of system

from 6n variables to 6n � 10.

Reduction of NBP Beyond the 10 first integrals, Jacobi showed that using

Beyond first 10. a so-called reduction of nodes (some symmetries),

the dimension of the system could be further reduced to 6n � 12.

Relative Equilibrium Steady rotations around the principal axes of inertia

when n � 1 (found from the Moment of Inertia Matrix eigenvectors). Minimum energy

motions are rotations around the axis of maximum moment-of-inertia.

When does When the Hessian of the amended potential is positive definite or

Energetic Stability ��q
2Ured �, has only positive eigenvalues. With one negative eigenvalue,

Occur? (calculation) the system can escape from RE while conserving energy
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When does the Hamiltonian If the Lagrangian (and therefore Hamiltonian)

represent the energy is not an explicity function of time.

constant of motion? Often this is not the case in rotating reference frames.

Turning 2BP eq: m r
��
� �2

�
r
�
� � m

r r2
��
� �2r

�
r
�
� � m

r
d

dt
r2

�
� � 0

m r
��
� �2

�
r
�
� � 0 or r2

�
�� constant � h.

into a constant of motion

Way to show we have CC  Force is a function of position only, so work over closed loops are zero,

Conserved Total equivalently, work done between two points is independent of choice of path.

Energy w/NBP?  Conserved Total Energy  Conservative Force

Recall in 2BP: L � mr2
�
� Curvilinear Sector of area swept out by r is:

So, r2
�
� � h, const. S�t� � ht

2
, thus

�
S � h

2
and the sector velocity is constant.

If h 	 0, then: “area integral" or “Kepler’s 2nd Law". h is “area constant."

When is a force If there’s a potential V such that the components of force

called conservative? can be written as F i � � �V

�xi
� ��iV.

Gravity and electrostatic force satisfy this.

Pros of Lagrange Lagrange’s EQ hold in arbitrary curvilinear coordinate system. # of Lagrange EQs

Eqs vs Newton’s � # of degrees of freedom. Newton: 3 EQs for each body & possibly constraint EQs

Laws of Motion

Derive Newton’s Euler-Lagrange EQ: d

dt

�LLLL
�
�
xi

� �LLLL
�xi

� 0. Observe: �LLLL
�
�
xi

� m
�
x i � pi.

Force Law from So,
dp i

dt
� �LLLL

�xi
. Observe: �LLLL

�xi
� �

�xi
�T � V� � � �V

�xi
, since T does not depend on x i.

Lagrange’s Equations Observe: F i :� � �V

�xi
, therefore

dp i

dt
� F i, Newton’s Law of Force.

Generalized Momentum Defined to be: pi :� �LLLL
�
�
q i

conjugate to qi e.g., Angular Momentum L

for Hamiltonian

Legendre Transformation of Let: y i �
�f

�xi
and g :� �x iy i � f.

f�x1,� , xn� � f�x�. g is the Legendre Transformation.

Hamiltonian HHHH � �pi

�
qi � LLLL is a transformation of LLLL.
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Differences between Both hold in arbitrary curvilinear coordinate systems. Both EOM derived from

Hamilton’s Eqs & scalar functions LLLL or HHHH. HHHH: 1st-order, LLLL: 2nd-order. LLLL: One EQ per degree

Lagrange’s Eqs freedom. HHHH: Two EQ per degree freedom; one for qi, and one for pi.

How to Integrate For an integral F, sols lie on F�1�c� with dim � 2n � 1.

Hamiltonian If you have 2n�1 such independent (	F i, F j
 � 0, i 	 j) integrals

Problem F i, then holding these fixed would define a !sol curve in R2n

Stable RE An equilibrium point z0 is stable if for every � � 0, �� � 0

such that |z0 � ��t, z1�| 
 �, t whenever |z0 � z1 | 
 �.

Define: V : O 	 R as there is a neighborhood Q � O

pos. def. wrt f.p. z0 of z0 such that V�z0� 
 V�z�, z � O\	z0
.

of
�
z� f�z� smooth: If... And, z0 is called a strict local minimum of V.

Lyapunov’s If there exists a function V that is positive definite

Stability wrt z0 and such that
�
V 
 0 in a neighborhood of z0,

Theorem then the equilibrium z0 is positively stable (as t 	 �).

Dirichlet’s Stability If z0 is a strict local minimum or maximum of H,

Theorem then z0 is a stable equilibrium of
�
z � J�H�z�.

Chetaev’s V : O 	 R a smooth function & � an open subset of O w/: z0 � ��. Also:

Thm for V � 0 for z � �. V � 0 for z � ��.
�
V� V � f � 0 for z � �.

�
z �J�H�z��f�z� Then, f.p. z0 is unstable. �N�z0� such that sols in N � � leave N in positive time

Requirement for Span the space of the motion in phase space,

Generalized Coordinates and be linearly independent.

Often found by: pi :� � �
q i
LLLL.

Requirements for 2 Integrals of Motion �L, H�

Solving 2BP and two initial values ��0, r0�
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Poission Bracket of 	F, G
 � �i
�F

�q i

�G

�p i
� �F

�p i

�G

�q i
. Skew-symmetric and bilinear

F and G In terms of phase variable z , bracket of F� z , t�, G� z , t� is �F � J�G

Associated with every Hamiltonian is a vector field defined by:
�
v H�F� � 	F, H
.

NBP. How force on each f i � �� r i
V r � �j	i f ij r

mass f i is derived given: where f ij �
Gmimj

r j� r i
3

r j � r i .

V r � ��i
j
Gmimj

r j� r i

.

Potential dmi � � i a i da i, where a i position in body frame FFFF i for BBBB i and � i density distribution.

for ERB. V ij � �G �
BBBB i

dmi �
BBBB j

dmj
1

r i� r j �B i a i�B j a j

, where Bi � i is the transformation matrix

V ij � in Euler angles � i � ��i,�i,� i� from body frame to inertial frame. So, V r , � � �i
jV ij

"Natural" H�q, p� � T�q, p� � U�q�,

Hamiltonian where T is the kinetic energy,

and U the potential energy. No time dependence.

Variational Equation Assume �z � z � z0 is infinitesimal, Variational Eq is �
�
z � L�z, where constant

for Equilibrium z0 matrix L � JD2H�z0� is the linearization. Solution is called the "tangent flow."

Assuming distinct evals, it has the form: �z � �jc jv je
	jt, w/	j evals & v j evects

"Hamiltonian Matrix" 2n � 2n matrix L such that JL is symmetric,

L where J is the Poisson matrix, and

LTJ � JL � 0. Example: JD2H�z0� �: L.

Eigenvalues of Come in pairs �	. Therefore, Exponential growing

Hamiltonian Matrix terms exists unless all 	 � iR. Thus, Linear Stability reduces

to finding eigenvalues and eigenvectors of Hamiltonian Matrix L

Lyapunov Stability Equilibrium z0 � R2n is Lyapunov stable (nonlinearly stable) if

of Hamiltonian for every neighborhood V of z0, there exists a neighborhood U � V such that

Systems z�0� � U  z�t� � V for all time.

Linear Stability F.p. z0 � R2n is linearly stable if all orbits z�t� of tangent flow are bounded t.

of Hamiltonian Thus, nonlinear much stronger than linear stability, as sets U & V where z�t� begin don’t

Systems have to be infinitesimally small. Need 	 � iR (like spectral), AND 1D Jordan blocks.
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Spectral Stability Equilibrium z0 � R2n is spectrally stable if 	 � iR.

of Hamiltonian If in addition, 1D Jordan blocksLinearly stable.

Systems

Counterexample Cherry Hamilt.: H �

1

2
�p1

2 � q1
2� � 
2

2
�p2

2 � q2
2� � �

2
�2q1p1p2 � q2�p1

2 � q1
2��,

Linear Stability � At �0, 0�, linearly stable 	1,2 � �i
1 & 	3,4 � �i
2 , when 
2 � 2
1

NonLinear Stability an explicit solution shows nonlinear terms lead to explosive growth.

Orbital Describes the divergence of two neighboring orbits,

Stability of regarded as point sets

Hamiltonian

Structural Sensitivity (or insensitivity) of the qualitative features

Stability of (f.p. & invariant sets) of a flow to changes in parameters.

Hamiltonian

Hamiltonian H�z,�� smooth in �  	 also smooth in �. Stability loss due to: 	1,2 � �i
1 &

Loss of Spectral 	3,4 � �i
2 merge @0, & split onto R (saddle-nde). Or 	1,2, 	3,4 collide @z0, z 0 	 0

Stability & split off into complex plane forming complex quadruplet (Krein bifurcation)

Hamiltonian Reduced Since 	 in �pairs, characteristic polynomial P2n is even. Introducing  :� �	2

Characteristic gives: Qn�� � ��1�nP2n � n � A1n�1 �����1�nAn. Hamiltonian f.p.s are

Polynomial spectrally stable � all zeros of Qn�� are real positive. Use Sturm.

Sturm’s Thm Sequence: 	Fk��
 by F0�� :� Q��, F1�� :� Q���. At each stage divide,

for polynml
Fk�2

Fk�1
to get Gk�1 � Remainder � Gk�1 � Fk

Fk�1
, so Fk � Gk�1Fk�1 � Fk�2, where

Q�� degFk 
 degFk�1. V�� :�(# of variations in sign). # of !(roots) in �a, b� is V�a� � V�b�

Spectral Recall for Hamiltonian stable zeros of Reduced Q�� must be nonnegative real.

Stability via Via Sturm’s Thm, this is true � V�0� � V��� � n.

Sturm’s Thm For Natural systems, this implies nonlinear stability as well.

Lagrange-Dirichlet Let the 2nd variation of the Hamiltonian �2H be definite at an equilibrium z0.

Theorem Then, z0 is stable.

�2H :� d2

dt2
H�z0 � th�|t�0
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Relative Solution which becomes an equilibrium in some uniformly rotating a coordinate system.

Equilibrium f.p. of dyn sys which has been reduced through quotienting out of rotation angle.

Critical points of an "amended potential"

History Maciejewski: 36 non-Lagrangian RE as r 	 �.

RE for ERBs Scheeres: Nec/Suff for pt/ERB.

in F2BP Moeckel: lower bounds on # of RE for F2BP where radius of the system is large, but finite

How to For RE, invariance of orbit requires uniform rot. w/fixed L & r.

Reduce in So, symmetry of � about L, not found in LLLL. Symmetry gives first integral &

orbital RE? allows elimination of velocity variable by solving for it explicitly in EOM.

How solve Change of variables such that 2BP	R2BP.

general point r :� r 2 � r 1. M :�
M1M2

M1�M2
.

mass 2BP Then, apply sol. for Kepler Problem.

Central The force on mi is always directed toward, or away from a fixed point O; and

Force The magnitude of the force only depends on the distance r of mi from O.

on mi

Central Force init pos & vel vectors define a plane. r � L � r � r � mv � mv � r � r � 0.

Motion is r & d r

dt
always lies in plane perpendicular to L. L is constant� F in plane.

Planar dL

dt
� d

dt
� r � mv � � �v � mv � � r � m d

dt
v � r � F. And, CF� r � F � 0.

Derive Pot. from Newton F r � � GMm

r3
r . Integrating we find:

law of gravitation U�r� � � �
�

r
F s � d s � � �

�

r
� GMm

|s |3
s � d s � �

�

r GMm

s2
ds

tween m & M � � GMm
r . And Kinetic is: T � 1

2
mv

2
� 1

2
m

�
r

2
� r2

�
�

2

Find reduced LLLLred � Tred � Ured, where Tred and Ured those necessary for

Lagrangian d

dt

�LLLLred

�
�
r i

� �LLLLred

�r i
to produce reduced EOM

Lred w/Red. EOM

Usefulness of We can assume the system’s COM moves at a constant rate.

conservation of This allows us to choose an inertial reference frame such that

linear momentum our choice of origin coincides with the system’s COM.
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Dumbbell’s (Mass-of-point-1)(radius2)�(Mass-of-point-1)(radius2) �

Moment �M2xxxx1�xxxx2
2 � �M2xxxx2�xxxx1

2 � M2xxxx1xxxx2

of Inertia Scaled:
xxxx1xxxx2

M1
� B. Or xxxx11xxxx12M1�1

2 �
xxxx11xxxx12�1

2

M2
� B1

Simplify Equations Let xxxx1 � u
1�u

and x2 � 1
1�u

.

with ratio variables Note that we still have xxxx1 � xxxx2 � 1,

xxxx1 � xxxx2 � 1 but now we have characterized them with one variable 0 
 u 
 �.

Descartes’ # of positive roots is at most the # of sign changes in sequence of f ’s coefficients

Rule of (omitting zero coefficients), and that difference between these two #s is always even. This

Signs for f implies that if the # of sign changes is 0 or 1, then there are exactly 0 or 1 positive roots, resp.

Graph of Points in the space at which extremums and inflection points collide and annihilate

f � � f �� � 0

� � �

Conic Ax2 � By2 � Cxy � Dx � Ey � F � 0, where one of A,B,C are non-zero.

Sections All circles are similar. 2 ellipses are similar �

ratios of lengths of minor axes to lengths of major axes are equal.
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Chetaev’s V : O 	 R a smooth function & � an open subset of O w/: z0 � ��. Also:

Thm for V � 0 for z � �. V � 0 for z � ��.
�
V� V � f � 0 for z � �.

�
z �J�H�z��f�z� Then, f.p. z0 is unstable. �N�z0� such that sols in N � � leave N in positive time

Cyclic Doesn’t appear in H. Momentum (p � m
�
�) conjugate to � is integral of motion.

Hamiltonian Associated w/symmetry of system. Noether identified correspondence.

Coordinate � Generalized momentum p � �L

�
�
q

, from Euler Lagrange d

dt
� �

q
L � �qL � 0. So, p conserved

Relationship W � �
C

F � dx � �
x �t1 �

x �t2 �
F � dx � U�x �t1�� � U�x �t2��

Between Work If work for applied force is indep. of the path, then work

Force, and Potential done by (conservative) force, by the gradient theorem, defines a pot. funct.

Euler Angles � is angle between x axis and N axis (Line of Nodes)

Axes: xyz, XYZ � is angle between z axis and Z axis

L.O.N.: N � z � Z � is angle between N axis and X axis
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Levi-Civita dt � rd

Time Adds variable to sys & DEQ, giving extended phase space.

Transfrmtn Step
�
x � dx

dt
� dx

d
d
dt

� x�

r . Substite in.

Levi-Civita Represent the complex physical coordinate x as u2 of u � u1 � iu2. So, x � u2

Conformal parametric u-manifold is a Riemann surface w/2 sheets, connected by branch pts at u � 0 & u � �.

Squaring Step r � |x| � |u|2 � uu . x � � 2uu�, x �� � 2 uu�� � �u��2
, and r� � u�u � uu �

Levi-Civita After Conformal Squaring. Produces linear DEQs for the unperturbed problem.

Elimination u�� � 1
2

u�~� � |u|2u f, & H � ~. Substitute H into DEQ: u�� � 1
2

uH � |u|2u f

Singularities Step t � � r, H� � �x �, f . DEQs for the dependent vars u, t, H as functions of fictitious time .

Why can 2BP
��
x � ��|x|���2. �restriction on �: � � 2�1 � 1

n � for n � Z�,

collisions be for a body to be regularizable. And for Kepler problem, � � 1 or n � 2.

regularized

Different Sundman: didn’t guarantee smoothness of flow wrt init data.

Regularization Levi-Civita: ditches DEQ singularity. Guarantees info bout flows close to collisions.

Approaches Easton: isolating block. Collision close orbit gives extn for collision orbit? (block regularization)

Block
�
x � y &

�
y � ��|x|���2x, w/� � 0. Let x 	 r�e i�, y 	 r����v � iw�e i�, w\� � �

2
& � � 1

��1

Regularzatn So:
�
r � �� � 1�v,

�
� � w

r ,
�
w �

��1
r wv,

�
v �

w2�� v2�2

r

M� �r,�, w, v� : r � 0 & DEQs Hold , N� �r,�, w, v��M�h� : r � 0 . N Reglbl� � � 1 � n�1

Bertrand’s For conservative central-force (CF) potentls w/bounded orbits, only 2 types of CF potentials

Theorem w/property that {bounded orbits} � {closed orbits}: 1) inverse-square CF such as gravitational

or electrostatic potentl: V�r� � � k
r , & (2) radial harmonic oscillator potential: V�r� � 1

2
kr2

Bertrand closed orbits are all ellipses. In inverse square case, force

Orbit is directed toward one focus of ellipse. In harmonic

Shape oscillator, force directed toward geometric center of ellipse.

Conservation mk

��
xk � �

j�1, j	k

n mjmk

r jk
3

�x j � xk�. Summing RHS gives zero. So,

of Linear
��
� � d2

dt2
�

k�1

n
mkxk � 0, or � � L0t � �0.

Momentum in NBP Expresses translational symmetry COM moves uniformly in straight line
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Conservation H :� T � U. T :� 1
2
�

k�1

n
mk|vk |2.

of Energy H F i � � d

dxi
U�x1, x2, x3�. So differentiating H with respect to time:

in NBP dH

dt
� �imi�

��
x i v i� � �i

dU

dxi
v i � �F � F�v i � 0.

Conservation mk

��
xk � �

j�1, j	k

n mjmk

r jk
3

�x j � xk�, forming xk �
��
xk , and summing:

of Angular �
k�1

n
mk xk �

��
xk � �

k�1

n �
j�1

n mjmk

r jk
3

xk � x j � 0. Integrating LHS:

Momentum in NBP �
k�1

n
mk�xk � vk� � c. Expresses rotational symmetry

Constant Approximate area of arc sweep by Parallelogram:
�
A � 1

2
r � v .

Areal r � v � r �
�
r
�
r � r

�
�
�
� � r

�
r ��r � �

r � � r2
�
� �

r �
�
� � r2

�
� k .

Velocity Result:

�

A �
�
A k � 1

2
r2

�
� k . Kepler’s 2nd law

Bertrand Proof EOM. Eliminate
�
� w\L, & time w\ d

dt
� L

mr2

d

d� . C.O.V. u � 1
r  d2u

d�2
� u � � m

L2

d

du
V� 1

u � �: J,

m
��
r �mr

�
�

2

quasilinear. Pert from circ: � � u � u0 into a J tayl series. Let �2:� 1 � J ��u0�.  B � Q, cuz � � k cos����

� �Vr Fourier � � h0�h1 cos�� �� , substitute in. Equate low frequency. Get �2�1 � �2��4 � �2�� 0
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