Orbital Mechanics Flashcards made to prepare for the Oral Exams

Lagrange equations of the First Kind

Lagrange equations

of the First Kind

Examples

Lagrange equations of the Second Kind

Newton's laws

Benefits/Draw-backs

Treat constraints explicitly as extra equations, often using Lagrange multipliers $\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}+\sum_{i=1}^{c} \lambda_{i} \frac{\partial f_{i}}{\partial q_{i}}=0$, for each of c constraint equations f_{i}.

Pendulum - Unconstrained: $\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y$. Constraint: $x^{2}+y^{2}-\ell^{2}=0$.
EOM: $m \ddot{x}=2 \lambda x, \quad m \ddot{y}=2 \lambda y, \quad x^{2}+y^{2}-l^{2}=0 . \bar{L}=+\lambda\left(x^{2} y^{2}-\ell^{2}\right)$

$$
\frac{d}{d t} \frac{\partial \bar{L}}{\partial \dot{x}_{i}}=\frac{\partial \bar{L}}{\partial x_{i}}, \quad \frac{d}{d t} \frac{\partial \bar{L}}{\partial \dot{y}_{i}}=\frac{\partial \bar{L}}{\partial y_{i}}, \quad \frac{d}{d t} \frac{\partial \bar{L}}{\partial \dot{\lambda}}=\frac{\partial \bar{L}}{\partial \lambda}
$$

Incorporate the constraints directly by judicious choice of generalized coordinates.

Benefits: Can include non-conservative forces like friction Draw-backs: Must include constraint forces explicitly and are best suited to Cartesian coordinates
$2 n$ ODEs where H is smooth real valued defined on open set in $\mathbb{R}^{1} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$. Satisfying Hamilton's (canonical) Equations: $\frac{d q}{d t}=\frac{\partial H}{\partial p}, \frac{d p}{d t}=-\frac{\partial H}{\partial q}, \frac{\partial \mathcal{L}}{\partial t}=-\frac{\partial H}{\partial t}$; which can be rewritten as $\dot{z}=J \nabla H(t, z)$.

| Hamiltonian |
| :--- | :--- |
| System |
| Advantage |\quad| Gives important insight about the dynamics, even if the initial value problem |
| :--- |
| cannot be solved analytically. Example: 3BP, even if there is no simple solution |
| to the general problem, Poincaré showed for first time that it exhibits deterministic chaos. |

Constant of Motion VS
Integrals of Motion/
First Integrals

In a force field COM is any function of time and phase-space coordinates that is constant throughout a trajectory (e.g., $C(x, v, t)=x-v t) \mathrm{VS}$
Functions of only the phase-space coordinates that are constant along an orbit.
Symplectic Matrix
$M \in \mathbb{R}^{2 n \times 2 n}$ that satisfies: $M^{T} \Omega M=\Omega$, where Ω is fixed $2 n \times 2 n$ nonsingular, skew-symmetric matrix. $\operatorname{det} M=1, \&$ symplectic matrices in $\mathbb{R}^{2 n \times 2 n}$ form subgroup $\operatorname{Sp}(2 n, \mathbb{R})$ of special linear group $S L(2 n, \mathbb{R})$ (set of matrices in $\mathbb{R}^{2 n \times 2 n}$ w/det 1$)$

Kepler Problem
2BP w/central force F that varies in strength as $\vec{F}=\frac{k}{r^{2}} \widehat{r}$
Force may be attractive or repulsive.
Solution can be expressed as a Kepler orbit using six orbital elements.
Kepler's Inverse Problem

> Types of forces that would result in orbits obeying Kepler's laws of planetary motion

Kepler's Laws \quadOrbit of moving body (MB) is an ellipse with larger body (LB) at one of the two foci. Line segment joining MB \& LB sweeps out equal areas during equal intervals of time. $(\text { orbital period of } \mathrm{MB})^{2}=k(\text { MBs semi-major axis })^{3}$, for some $k \in \mathbb{R}^{+}$.

Orbital Elements
Kepler's

Shape and Size: Eccentricity (e), Semimajor axis (a)
Orientation of Orbital Plane: Inclination (i), Longitude of ascending node (Ω)
Remaining : Argument of periapsis (ω), True anomaly (v, θ, or f) at epoch $\left(t_{0}\right)$

Orbital Elements:
Shape and Size

Eccentricity (e): shape of ellipse, how elongated compared to circle. $\{0,(0,1), 1,(1, \infty)\}$ Semimajor axis (a): $\frac{\text { periapsis }+ \text { apoapsis }}{2}$. Means distance 'tween a focus \& max dist. of orbit. For 2BP, is distance tween centers of the bodies, not distance of bodies from COM.

Orbital Elements:
Orientation of
Orbital Plane

Inclination (i) : vertical tilt of ellipse measured @ascending nde. Tilt angle measured \perp
to line of intersectn tween orbital \& ref. plane. Longitude of ascndng node (Ω) :
horizontally orients ascndng node of ellipse wrt reference frame's vernal pt

Orbital Elements:
Remaining

Argument of periapsis (ω): orientation of ellipse in orbital plane, as angle measured from ascending node to periapsis.True anomaly (θ) at epoch $\left(t_{0}\right)$: position of body along ellipse at a specific time (the "epoch")

Kepler Problem
Mathematically

Central force $\vec{F}(q)$ varies as: $\vec{F}=\frac{k}{r^{2}} \widehat{r}$, where $r=|q|, \widehat{r}=\frac{q}{|q|}$.
Scalar potential energy of the non-central body is: $V(r)=-\frac{k}{r}$
Solve $\dot{q}=p \& \dot{p}=-k \frac{q}{|q|^{\mid}}$. \exists Sols on $\mathbb{R}^{2} \backslash \Delta$. Can regularize for 2BP

Problems arise when there are collisions causing
singularities in the differential equations.
One can regularize double collisions, but not triple collisions.

Polar	
Coordinate	
Acceleratn	$\vec{a}=\vec{v}^{\prime}=(\dot{r}(\cos \varphi, \sin \varphi)+r \dot{\varphi}(-\sin \varphi, \cos \varphi))^{\prime}$ $=\ddot{r}(\cos \varphi, \sin \varphi)+2 \ddot{r} \dot{\varphi}(-\sin \varphi, \cos \varphi)+r \ddot{\varphi}(-\sin \varphi, \cos \varphi)-r \dot{\varphi}^{2}(\cos \varphi, \sin \varphi)$ $\operatorname{Let} \widehat{r}:=(\cos \varphi, \sin \varphi)$, and $\widehat{\varphi}:=\frac{d \widehat{r}}{d \varphi}$, then $\vec{v}=\dot{r} \hat{r}+r \dot{\varphi} \hat{\varphi}, \& \vec{a}=\left(\ddot{r}-r \dot{\varphi}^{2}\right) \widehat{r}+(2 \ddot{r} \ddot{\varphi}+r \ddot{\varphi}) \hat{\varphi}$

Newton's Laws of Motion
\& Law of
Universal Gravitation

1. $\Sigma \vec{F}=0 \Leftrightarrow \frac{d \vec{v}}{d t}=0 \quad$ (No External Force \Leftrightarrow No acceleration)
2. $\vec{F}=m \vec{a} . \quad 3 . \vec{F}_{12}=-\vec{F}_{21}$
$\vec{F}=-G \frac{M m}{r^{2}} \widehat{r}$

Solving 2BP
Newton

Plug Polar into $\ddot{x}=-\frac{G M}{r^{2}} \widehat{r}$, where $|\vec{x}|=: r$ and $\widehat{r}=\frac{x}{|x|}$ separate components, using L, solve for $\dot{\varphi}$, plug back in. Result: $\ddot{r}-\frac{L^{2}}{m^{2} r^{3}}=-\frac{G M}{r^{2}}$. Then, c.o.c. $r \rightarrow \frac{L^{2}}{G M u} \rightarrow$ Linear Nonhomogeneous DEQ

Solving 2BP	Form Lagrangian $\mathcal{L}=T-U$. Euler-Lagrange EOM: $\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}-\frac{\partial \mathcal{L}}{\partial q_{i}}=0$. Lagrangian Using L, solve for $\dot{\varphi}$, plug back in. Result: $\ddot{r}-\frac{L^{2}}{m^{2} r^{3}}=-\frac{G M}{r^{2}}$. Then, c.o.c. $r \rightarrow \frac{L^{2}}{G M u} \rightarrow$ Linear Nonhomogeneous DEQ

Define Conservative
Force wrt Potential

Negative vector gradient of a potential field:

$$
\vec{F}(\vec{r})=-\nabla U=-\frac{d U}{d \vec{r}}
$$

Gravitational Potential
of particle m
attracted to M

$$
\begin{aligned}
& U(\vec{r})=-\int_{\infty}^{\vec{r}} \vec{F} \cdot d \vec{r} \\
& =-\int_{\infty}^{\vec{r}}-\frac{G M m}{r^{2}} \widehat{r} \cdot d \vec{r}=-\frac{G M m}{r} .
\end{aligned}
$$

Gravitational Kinetic
of particle m

$$
\begin{aligned}
& T=\frac{1}{2} m \vec{v}^{2}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right), \text { or in polar coordinates: } \\
& T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) .
\end{aligned}
$$

Newtonian
NBP EOM

$$
\begin{aligned}
& m_{i} \frac{d^{2} q_{i}}{d t^{2}}=-\sum_{j=1, j \neq i}^{n} \frac{G m_{i} m_{j}\left(q_{j}-q_{i}\right)}{\left|q_{j}-q_{i}\right|^{3}}=-\frac{\partial U}{\partial q_{i}} \\
& U:=-\sum_{1 \leq i j j \leq n} \frac{G m_{i} m_{j}}{\left|q_{j}-q_{i}\right|} . \text { System of } 3 n \text { second order ODEs, } \\
& \text { with } 6 n \text { initial conditions as 3n position and 3n momentum }
\end{aligned}
$$

| Hamiltonian |
| :--- | :--- |
| NBP EOM |
| $\mathbf{H}=\mathbf{T}+\mathbf{U}$ |\quad| $p_{i}:=m_{i} \frac{d q_{i}}{d t}$. Kinetic energy is $T=\sum_{i=1}^{n} \frac{1}{2} m_{i} v^{2}=\sum_{i=1}^{n} \frac{\left\|p_{i}\right\|^{2}}{2 m_{i}}$ |
| :--- |
| $\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}}, \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}$. Hamilton's equations show that |
| the n-body problem is a system of 6 first-order differential equations. |

Symmetries in NBP

Translational symmetry: $C=\frac{\Sigma m_{i} q_{i}}{\Sigma m_{i}}$, so $C=L_{0} t+C_{0}$. (6 constants)
Rotational symmetry: $A=\Sigma\left(q_{i} \times p_{i}\right) .(3$ constants)
Conservation of energy H. Hence, every n-body problem has ten integrals of motion.

Scaling
invariance
in NBP

Prove COM
constant
in NBP

Because T and U are homogeneous functions of degree 2 and -1 , respectively the equations of motion have a scaling invariance: if $q_{i}(t)$ is a solution, then so is $\lambda^{-\frac{2}{3}} q_{i}(\lambda t)$ for any $\lambda>0$.

> 2nd Law: $m_{i} \ddot{r}_{i}=F_{i}$, 3rd Law: $\sum_{i} F_{i}=0$. Summing over $i: \frac{d^{2}}{d t^{2}}\left(\sum_{i} m_{i} r_{i}\right)=\sum_{i} F_{i}=0$. So $\frac{\sum_{i} m_{i} r_{i}}{\sum_{i} m_{i}}=c_{1} t+c_{2}$, but by symmetry of translation invariance we can choose a moving inertial reference frame such that $\frac{\sum_{i} m_{i} r_{i}}{\sum_{i} m_{i}}=0$.

Prove Energy
is constant
in NBP

$F_{i}:=-\frac{d}{d r_{i}} U\left(r_{1}, r_{2}, \ldots\right)$. Then take total energy: $E=\sum_{i} \frac{\left.m_{i} \dot{r}_{i}\right|^{2}}{2}+U$.
And differentiate with respect to time:
$\frac{d E}{d t}=\sum_{i} m_{i}\left(\ddot{r}_{i} \quad \dot{r}_{i}\right)+\sum_{i} \frac{d U}{d r_{i}} \dot{r}_{i}=\sum_{i}\left(F_{i}-F_{i}\right) \dot{r}_{i}=0$.

Central Force on a particle
of mass m

Force is always directed from m toward, or away, from a fixed point O Magnitude of the force only depends on the distance r from O \vec{F} is C.F. $\Leftrightarrow \vec{F}=f(r) \hat{r}=f(r) \frac{\vec{r}}{r}$.

Particle moving
thru/Central Force
Properties

Path of particle must be a plane curve.
Angular momentum of particle is conserved.
Position vector sweeps out equal areas in equal times. (Law of Areas)

Conservative
Force \vec{F}

Work $W=\int_{A}^{B} \vec{F} \cdot d \vec{r}$ done in moving from $\mathrm{A} \rightarrow \mathrm{B}$ is independent of path chosen.
Only depends on the endpoints. So W from A assigns scalar value to every other point.
Defines scalar potential field V. Force defined as $\vec{F}(\vec{r})=-\frac{d V}{d \vec{r}}$. So $W=V(A)-V(B)$

How to compute
potential V in
central force field $f ?$

$\vec{F}(\vec{r}):=-\frac{d V}{d r} \Rightarrow \vec{F} \cdot d \vec{r}=-d V(*) . \vec{r} \cdot \vec{r}=r^{2}$, and $d(\vec{r} \cdot \vec{r})=d\left(r^{2}\right) \Rightarrow$
$(\vec{r} \cdot d \vec{r})+(d \vec{r} \cdot \vec{r})=2 r d r$. So we have: $\vec{r} \cdot d \vec{r}=r d r$. From (LHS of *):
$\vec{F} \cdot d \vec{r}=f(r) \frac{\vec{r}}{r} \cdot d \vec{r}=f(r) d r$. So, $f(r) d r=-d V \Rightarrow V=-\int f(r) d r$.

Orbit Space	System after quotienting out of the orbit angle.

Formally stable relative equilibrium	evo are
Central Configuration Relative Equilibrium Relationship	

evolutions of sufficiently small perturbations of RE solutions are arbitrarily confined to that relative equilibrium's orbit

Barycenter

Given the correct initial velocities, a central configuration will rigidly rotate about its center of mass. Such a solution is called a relative equilibrium.

Prove $\frac{d}{d t}$ COM
constant
in 2BP

2BP Solution

Factoids
$\vec{R}:=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$, COM. Add force equations: $\vec{F}_{12}+\vec{F}_{21}=m_{1} \ddot{x}_{1}+m_{2} \ddot{x}_{2}$ $=\left(m_{1}+m_{2}\right) \ddot{R}=0$ (by Newton's 3 rd). $\ddot{R}=0 \Rightarrow V=d \vec{R} / d t$ of COM is constant. So, total momentum $m_{1} v_{1}+m_{2} v_{2}$ is also constant (conserv. of momentum).

Two bodies' orbits are similar conic sections (differ by a ratio).
The same ratios apply for the velocities, and, without the minus, for the angular momentum and for the kinetic energies, all with respect to the barycenter.
True Anomaly

Angle between the current position of the orbiting object and the location in the orbit at which it is closest to the central body (called the periapsis)

Newton's law of motion
for the gravitational
N-body problem

Central Configuration

Equation

invariant under:

Equivalent Central

Configurations
$q, q^{\prime} \in \mathbb{R}^{N d}$
$m_{i} \ddot{q}_{i}=F_{i}=-\sum_{j \neq i} \frac{m_{i} m_{j}\left(q_{j}-q_{i}\right)}{r_{i j}^{3}}$
$F_{i}=-\nabla_{i} U$ where: $U=-\sum_{j \neq i} \frac{m_{i} m_{j}}{r_{i j}}$

The Euclidean similarities of \mathbb{R}^{d} translations, rotations, reflections and dilations.

There are constants $k \in \mathbb{R}, b \in \mathbb{R}^{d}$ and a $d \times d$ orthogonal matrix Q such that $q_{i}^{\prime}=k Q q_{i}+b, i=1, \ldots, N$.
So one can speak of an equivalence class of central configurations.

For configurations w/c $=0$
(COM at origin), the CC equations are

$$
-\lambda q_{i}=\sum_{j \neq i} \frac{m_{j}\left(q_{j}-q_{i}\right)}{r_{i j}^{i}}
$$

and any configuration satisfying this equation has $c=0$.
CC and 2BP

Euler Collinear
3BP Sols

Any two configurations of $N=2$ particles in \mathbb{R}^{d} are equivalent. Every configuration of two bodies is central with $\epsilon \in[0,1]$.
Each mass moves on a conic section according to Kepler's laws.

Lagrange	Equilateral triangle is CC for any $3 m_{1}, m_{2}, m_{3}$. CC 3BP Sol\quadThe only noncollinear CC for 3BP. Stable if $m_{1} \geq 25 m_{2}$. Regular simplex is CC of N bodies in $N-1$ dims for all choices of masses

Homothetic Motion

Released from rest, a CC maintains the same shape as it heads toward total collision

 Colliding Bodies
Lagrangian point Def

For any collision orbit in the nBP, the colliding bodies asymptotically approach a CC

5 Points near 2 large bodies in orbit where a smaller object will maintain position relative to large bodies. Forces of large bodies: centripetal \& (for certain points) Coriolis match up

Stability of
Lagrangian
points

Orbits arising from
Inverse Square Law

elliptical, parabolic or hyperbolic orbits.

| NBP |
| :--- | :--- |
| First Integrals |\quad| 3 center of mass, 3 linear momentum, 3 angular momentum |
| :--- |
| one for energy. Allows the reduction of system |
| from $\mathbf{6 n}$ variables to $6 n-10$. |

Reduction of NBP
Beyond first 10.

Beyond the 10 first integrals, Jacobi showed that using a so-called reduction of nodes (some symmetries), the dimension of the system could be further reduced to $6 n-12$.

Relative Equilibrium
 when $n=1$
 \square

Steady rotations around the principal axes of inertia (found from the Moment of Inertia Matrix eigenvectors). Minimum energy motions are rotations around the axis of maximum moment-of-inertia.

When does
Energetic Stability
Occur? (calculation)

Reduction of NBP

> When the Hessian of the amended potential is positive definite or $\left[\partial_{q}^{2} U_{\text {red }}\right]$, has only positive eigenvalues. With one negative eigenvalue, the system can escape from RE while conserving energy

Coriolis	
Acceleration	"Ficticious Force." Depends on the velocity of an orbiting object and cannot be modeled as a contour map.Faster Angular Momentum \Rightarrow More Coriolis. Caused by Velocity perpendicular to rotational axis.

L4/L5 linearly stable if $\frac{M 1}{M 2}$ sufficiently large, where M_{1} is the larger body. Kidney bean-shaped orbit around the point as seen in the corotating frame of reference. Nonlinearly stable via KAM
"Ficticious Force." Depends on the velocity of an orbiting object and cannot be modeled as a contour map.Faster Angular Momentum \Rightarrow More Coriolis. Caused by Velocity perpendicular to rotational axis.

3 center of mass, 3 linear momentum, 3 angular momentum one for energy. Allows the reduction of system from $\mathbf{6 n}$ variables to $6 n-10$.
When does the Hamiltonian
represent the energy
constant of motion?

If the Lagrangian (and therefore Hamiltonian) is not an explicity function of time. Often this is not the case in rotating reference frames.

Turning 2BP eq:
$m(r \ddot{\varphi}+2 \ddot{r} \ddot{\varphi})=0$
into a constant of motion
$m(r \ddot{\varphi}+2 \dot{r} \dot{\varphi})=\frac{m}{r}\left(r^{2} \ddot{\varphi}+2 r \dot{r} \dot{\varphi}\right)=\frac{m}{r} \frac{d}{d t}\left(r^{2} \dot{\varphi}\right)=0$ or $r^{2} \dot{\varphi}=$ constant $=h$.

Way to show we have
Conserved Total
Energy w/NBP?

$\mathrm{CC} \Rightarrow \quad$ Force is a function of position only, so work over closed loops are zero, equivalently, work done between two points is independent of choice of path. \Rightarrow Conserved Total Energy \Rightarrow Conservative Force

Recall in 2BP: $L=m r^{2} \dot{\varphi}$
So, $r^{2} \dot{\varphi}=h$, const.
If $h \neq 0$, then:

Curvilinear Sector of area swept out by \vec{r} is:
$S(t)=\frac{h t}{2}$, thus $\dot{S}=\frac{h}{2}$ and the sector velocity is constant. "area integral" or "Kepler's 2nd Law". h is "area constant."

When is a force called conservative?

If there's a potential V such that the components of force can be written as $F_{i}=-\frac{\partial V}{\partial x_{i}} \equiv-\partial_{i} V$.
Gravity and electrostatic force satisfy this.

Pros of Lagrange
Eqs vs Newton's Laws of Motion

Lagrange's EQ hold in arbitrary curvilinear coordinate system. \# of Lagrange EQs = \# of degrees of freedom. Newton: 3 EQs for each body \& possibly constraint EQs

Derive Newton's
Force Law from
Lagrange's Equations

Euler-Lagrange EQ: $\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0$. Observe: $\frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}=m \dot{x}_{i}=p_{i}$.
So, $\frac{d p_{i}}{d t}=\frac{\partial \mathcal{L}}{\partial x_{i}}$. Observe: $\frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}(T-V)=-\frac{\partial V}{\partial x_{i}}$, since T does not depend on x_{i}.
Observe: $F_{i}:=-\frac{\partial V}{\partial x_{i}}$, therefore $\frac{d p_{i}}{d t}=F_{i}$, Newton's Law of Force.

| Generalized Momentum |
| :--- | :--- |
| conjugate to q_{i} |
| for Hamiltonian |\quad| Defined to be: $p_{i}:=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}$ |
| :--- |
| e.g., Angular Momentum \vec{L} |

Legendre Transformation of
$f\left(x_{1}, \ldots, x_{n}\right) \equiv f(x)$.

Let: $y_{i}=\frac{\partial f}{\partial x_{i}}$ and $g:=\Sigma x_{i} y_{i}-f$. g is the Legendre Transformation.
Hamiltonian $\mathcal{H}=\Sigma p_{i} \dot{q}_{i}-\mathcal{L}$ is a transformation of \mathcal{L}.

Differences between
Hamilton's Eqs \&
Lagrange's Eqs

How to Integrate
Hamiltonian
Problem

For an integral F, sols lie on $F^{-1}(c)$ with $\operatorname{dim}=2 n-1$.
If you have $2 n-1$ such independent $\left(\left\{F_{i}, F_{j}\right\}=0, \forall i \neq j\right)$ integrals F_{i}, then holding these fixed would define a !sol curve in $\mathbb{R}^{2 n}$
Stable RE

An equilibrium point z_{0} is stable if for every $\varepsilon>0, \exists \delta>0$ such that $\left|z_{0}-\varphi\left(t, z_{1}\right)\right|<\varepsilon, \forall t$ whenever $\left|z_{0}-z_{1}\right|<\delta$.

Define: $V: O \rightarrow \mathbb{R}$ as
pos. def. wrt f.p. z_{0}
of $\dot{z}=f(z)$ smooth: If...
there is a neighborhood $Q \subset O$
of z_{0} such that $V\left(z_{0}\right)<V(z), \forall z \in O \backslash\left\{z_{0}\right\}$.
And, z_{0} is called a strict local minimum of V.

Lyapunov's
Stability
Theorem

If there exists a function V that is positive definite wrt z_{0} and such that $\dot{V} \leq 0$ in a neighborhood of z_{0}, then the equilibrium z_{0} is positively stable (as $t \rightarrow \infty$).

Dirichlet's Stability
Theorem

If z_{0} is a strict local minimum or maximum of H, then z_{0} is a stable equilibrium of $\dot{z}=J \nabla H(z)$.

Chetaev's	
Thm for	
$\dot{z}=J \nabla H(z)=f(z)$	$V: O \rightarrow \mathbb{R}$ a smooth function $\& \Omega$ an open subset of $O \mathrm{w} /: z_{0} \in \partial \Omega$. Also:
$V>0$ for $z \in \Omega . V=0$ for $z \in \partial \Omega . \dot{V}=V \cdot f>0$ for $z \in \Omega$.	
Then, f.p. $z 0$ is unstable. $\exists N\left(z_{0}\right)$ such that sols in $N \cap \Omega$ leave N in positive time	

Requirement for
Generalized Coordinates

Span the space of the motion in phase space, and be linearly independent. Often found by: $p_{i}:=\partial_{\dot{q}_{i}} \mathcal{L}$.

Requirements for Solving 2BP	2 Integrals of Motion (L, H) and two initial values $\left(\varphi_{0}, r_{0}\right)$

Poission Bracket of
F and G

$\{F, G\}=\Sigma_{i}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}\right)$. Skew-symmetric and bilinear In terms of phase variable \vec{z}, bracket of $F(\vec{z}, t), G(\vec{z}, t)$ is $\nabla F \cdot J \nabla G$ Associated with every Hamiltonian is a vector field defined by: $\widehat{v}_{H}(F)=\{F, H\}$.

NBP. How force on each mass \vec{f}_{i} is derived given: $\mathbf{V}(\vec{r})=-\Sigma_{i<j} \frac{G m_{i} m_{j}}{\left|\vec{r}_{j}-\vec{r}_{i}\right|}$.

$$
\vec{f}_{i}=-\nabla_{\vec{r}_{i}} V(\vec{r})=\Sigma_{j \neq i} \vec{f}_{i j}(\vec{r})
$$

$$
\text { where } \vec{f}_{i j}=\frac{G m_{i} m_{j}}{\left|\vec{r}_{j}-\vec{r}_{i}\right|^{3}}\left(\vec{r}_{j}-\vec{r}_{i}\right) \text {. }
$$

Potential	
for ERB.	
$V_{i j}=$	$d m_{i}=\rho_{i}\left(\vec{a}_{i}\right) d \vec{a}_{i}$, where \vec{a}_{i} position in body frame \mathcal{F}_{i} for \mathcal{B}_{i} and ρ_{i} density distribution. $V_{i j}=-G \int_{\mathcal{B}_{i}} d m_{i} \int_{\mathcal{B}_{j}} d m_{j} \frac{1}{\left\|\left(\vec{r}_{i}-\vec{r}_{j}\right)+\mathbf{B}_{i} \vec{a}_{i}-\mathbf{B}_{j} \vec{a}_{j}\right\|}$, where $\mathbf{B}_{i}\left(\vec{\theta}_{i}\right)$ is the transformation matrix in Euler angles $\vec{\theta}_{i}=\left(\psi_{i}, \theta_{i}, \varphi_{i}\right)$ from body frame to inertial frame. So, $V(\vec{r}, \vec{\theta})=\Sigma_{i<j} V_{i j}$

| "Natural" |
| :--- | :--- |
| Hamiltonian | | $H(q, p)=T(q, p)+U(q)$, |
| :--- |
| where T is the kinetic energy, |
| and U the potential energy. No time dependence. |

Variational Equation for Equilibrium z_{0}

"Hamiltonian Matrix"
L

Eigenvalues of
Hamiltonian Matrix

Lyapunov Stability
of Hamiltonian
Systems

Assume $\delta z=z-z_{0}$ is infinitesimal, Variational Eq is $\delta \dot{z}=L \delta z$, where constant matrix $L=J D^{2} H\left(z_{0}\right)$ is the linearization. Solution is called the "tangent flow." Assuming distinct evals, it has the form: $\delta z=\Sigma_{j} c_{j} v_{j} e^{\sigma_{j} t}$, w/ σ_{j} evals \& v_{j} evects
$2 n \times 2 n$ matrix L such that $J L$ is symmetric, where J is the Poisson matrix, and $L^{T} J+J L=0$. Example: $J D^{2} H\left(z_{0}\right)=: L$.

Come in pairs $\pm \sigma$. Therefore, Exponential growing terms exists unless all $\sigma \in i \mathbb{R}$. Thus, Linear Stability reduces to finding eigenvalues and eigenvectors of Hamiltonian Matrix L

Equilibrium $z_{0} \in \mathbb{R}^{2 n}$ is Lyapunov stable (nonlinearly stable) if for every neighborhood V of z_{0}, there exists a neighborhood $U \subseteq V$ such that $z(0) \in U \Rightarrow z(t) \in V$ for all time.

Linear Stability of Hamiltonian Systems

F.p. $z_{0} \in \mathbb{R}^{2 n}$ is linearly stable if all orbits $z(t)$ of tangent flow are bounded $\forall t$.

Thus, nonlinear much stronger than linear stability, as sets $U \& V$ where $z(t)$ begin don't have to be infinitesimally small. Need $\sigma \in i \mathbb{R}$ (like spectral), AND 1D Jordan blocks.

Spectral Stability of Hamiltonian Systems

Equilibrium $z_{0} \in \mathbb{R}^{2 n}$ is spectrally stable if $\sigma \in i \mathbb{R}$. If in addition, 1D Jordan blocks \Rightarrow Linearly stable.

Counterexample
Linear Stability \Rightarrow
NonLinear Stability

Cherry Hamilt:: $H=\frac{\omega_{1}}{2}\left(p_{1}^{2}+q_{1}^{2}\right)-\frac{\omega_{2}}{2}\left(p_{2}^{2}+q_{2}^{2}\right)-\frac{\alpha}{2}\left[2 q_{1} p_{1} p_{2}-q_{2}\left(p_{1}^{2}-q_{1}^{2}\right)\right]$, At $(0,0)$, linearly stable $\left(\sigma_{1,2}= \pm i \omega_{1} \& \sigma_{3,4}= \pm i \omega_{2}\right)$, when $\omega_{2}=2 \omega_{1}$ an explicit solution shows nonlinear terms lead to explosive growth.

| Orbital
 Stability of
 Hamiltonian\quadDescribes the divergence of two neighboring orbits,
 regarded as point sets |
| :--- | :--- |

Structural Stability of Hamiltonian	Sensitivity (or insensitivity) of the qualitative features (f.p. \& invariant sets) of a flow to changes in parameters.

Hamiltonian
Loss of Spectral
Stability

$H(z, \mu)$ smooth in $\mu \Rightarrow \sigma$ also smooth in μ. Stability loss due to: $\sigma_{1,2}= \pm i \omega_{1} \&$ $\sigma_{3,4}= \pm i \omega_{2}$ merge @ 0 , \& split onto \mathbb{R} (saddle-nde). Or $\sigma_{1,2}, \sigma_{3,4}$ collide @ $z_{0}, \bar{z}_{0} \neq 0$ $\&$ split off into complex plane forming complex quadruplet (Krein bifurcation)

Hamiltonian Reduced
Characteristic
Polynomial

Since σ in \pm pairs, characteristic polynomial $P_{2 n}$ is even. Introducing $\tau:=-\sigma^{2}$ gives: $Q_{n}(\tau)=(-1)^{n} P_{2 n}=\tau^{n}-A_{1} \tau^{n-1}+\ldots+(-1)^{n} A_{n} . \Rightarrow$ Hamiltonian f.p.s are spectrally stable \Leftrightarrow all zeros of $Q_{n}(\tau)$ are real positive. Use Sturm.

Sturm's Thm
for polynml
$\mathbf{Q}(\tau)$

Sequence: $\left\{F_{k}(\tau)\right\}$ by $F_{0}(\tau):=Q(\tau), F_{1}(\tau):=Q^{\prime}(\tau)$. At each stage divide, $\frac{F_{k-2}}{F_{k-1}}$ to get $G_{k-1}+$ Remainder $=G_{k-1}-\frac{F_{k}}{F_{k-1}}$, so $F_{k}=G_{k-1} F_{k-1}-F_{k-2}$, where $\operatorname{deg} F_{k}<\operatorname{deg} F_{k-1} . V(\tau):=(\#$ of variations in sign). \# of !(roots) in $(a, b]$ is $V(a)-V(b)$

Spectral
Stability via
Sturm's Thm

> | Recall for Hamiltonian stable zeros of Reduced $Q(\tau)$ must be nonnegative real. |
| :--- |
| Via Sturm's Thm, this is true $\Leftrightarrow V(0)-V(\infty)=n$. |
| For Natural systems, this implies nonlinear stability as well. |

Lagrange-Dirichlet
Theorem

Let the 2 nd variation of the Hamiltonian $\delta^{2} H$ be definite at an equilibrium z_{0}. Then, z_{0} is stable.
$\delta^{2} H:=\left.\frac{d^{2}}{d t^{2}} H\left(z_{0}+t h\right)\right|_{t=0}$

Relative
Equilibrium

Solution which becomes an equilibrium in some uniformly rotating a coordinate system.
f.p. of dyn sys which has been reduced through quotienting out of rotation angle. Critical points of an "amended potential"

History
RE for ERBs
in F2BP

Maciejewski: 36 non-Lagrangian RE as $\vec{r} \rightarrow \infty$.
Scheeres: Nec/Suff for pt/ERB.
Moeckel: lower bounds on \# of RE for F2BP where radius of the system is large, but finite

How to
Reduce in
orbital RE?

For RE, invariance of orbit requires uniform rot. w/fixed $\vec{L} \& r$.
So, symmetry of φ about \vec{L}, not found in \mathcal{L}. Symmetry gives first integral \&
allows elimination of velocity variable by solving for it explicitly in EOM.

How solve
general point
mass 2BP

Change of variables such that $2 \mathrm{BP} \rightarrow \mathrm{R} 2 \mathrm{BP}$. $\vec{r}:=\vec{r}_{2}-\vec{r}_{1} . \quad M:=\frac{M_{1} M_{2}}{M_{1}+M_{2}}$.
Then, apply sol. for Kepler Problem.

| Central |
| :--- | :--- |
| Force |
| on m_{i} |\quad| The force on m_{i} is always directed toward, or away from a fixed point O; and |
| :--- |
| The magnitude of the force only depends on the distance r of m_{i} from O. |

Central Force
Motion is
Planar

init pos \& vel vectors define a plane. $\vec{r} \cdot \vec{L}=\vec{r} \cdot(\vec{r} \times m \vec{v})=m \vec{v} \cdot(\vec{r} \times \vec{r})=0$. $\vec{r} \& \frac{d \vec{r}}{d t}$ always lies in plane perpendicular to $\vec{L} \cdot \vec{L}$ is constant $\Rightarrow \vec{F}$ in plane.
$\frac{d \vec{L}}{d t}=\frac{d}{d t}(\vec{r} \times m \vec{v})=(\vec{v} \times m \vec{v})+\left(\vec{r} \times m \frac{d}{d t} \vec{v}\right)=\vec{r} \times \vec{F}$. And, $\mathrm{CF} \Rightarrow \vec{r} \times \vec{F}=0$.

Derive Pot. from Newton
law of gravitation
tween m \& M

$$
\begin{aligned}
& \vec{F}(\vec{r})=-\frac{G M m}{r^{3}} \vec{r} \text {. Integrating we find: } \\
& U(r)=-\int_{\infty}^{\vec{r}} \vec{F}(\vec{s}) \cdot d \vec{s}=-\int_{\infty}^{\vec{r}}-\frac{G M m}{\left|| |^{3}\right.} \vec{s} \cdot d \vec{s}=\int_{\infty}^{r} \frac{G M m}{s^{2}} d s \\
& =-\frac{G M m}{r} . \text { And Kinetic is: } T=\frac{1}{2} m \vec{v}^{2}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)
\end{aligned}
$$

Find reduced
Lagrangian
$\mathbf{L}_{\text {red }} \mathbf{w} /$ Red. EOM

Usefulness of
conservation of
linear momentum

We can assume the system's COM moves at a constant rate. This allows us to choose an inertial reference frame such that our choice of origin coincides with the system's COM.

| Dumbbell's | $($ Mass-of-point-1)(radius
 Moment
 of Inertia |
| :--- | :--- | | $\left(M_{2} \boldsymbol{x}_{1}\right) \boldsymbol{x}_{2}^{2}+\left(M_{2} \boldsymbol{x}_{2}\right) \boldsymbol{x}_{1}^{2}=M_{2} \boldsymbol{x}_{1} \boldsymbol{x}_{2}$ |
| :--- |
| Scaled: $\frac{\boldsymbol{x}_{1} \boldsymbol{x}_{2}}{M_{1}}=B$. Or $\boldsymbol{x}_{11} \boldsymbol{x}_{12} M_{1} \ell_{1}^{2}=\frac{\boldsymbol{x}_{11} \boldsymbol{x}_{12} \ell_{1}^{2}}{M_{2}}=B_{1}$ |

Simplify Equations
with ratio variables
$\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=1$

Let $\boldsymbol{x}_{1}=\frac{u}{1+u}$ and $x_{2}=\frac{1}{1+u}$.
Note that we still have $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=1$,
but now we have characterized them with one variable $0<u<\infty$.

Descartes'
Rule of
Signs for f

> \# of positive roots is at most the \# of sign changes in sequence of f 's coefficients (omitting zero coefficients), and that difference between these two \#s is always even. This implies that if the \# of sign changes is 0 or 1 , then there are exactly 0 or 1 positive roots, resp.

Graph of

$f^{\prime}=f^{\prime \prime}=0$
Points in the space at which extremums and inflection points collide and annihilate
$\sim \rightarrow$
$A x^{2}+B y^{2}+C x y+D x+E y+F=0$, where one of A,B,C are non-zero.
All circles are similar. 2 ellipses are similar \Leftrightarrow ratios of lengths of minor axes to lengths of major axes are equal.

Chetaev's
Thm for
$\dot{z}=J \nabla H(z)=f(z)$

$V: O \rightarrow \mathbb{R}$ a smooth function $\& \Omega$ an open subset of $O \mathrm{w} /: z_{0} \in \partial \Omega$. Also:
$V>0$ for $z \in \Omega . V=0$ for $z \in \partial \Omega . \dot{V}=V \cdot f>0$ for $z \in \Omega$.
Then, f.p. z_{0} is unstable. $\exists N\left(z_{0}\right)$ such that sols in $N \cap \Omega$ leave N in positive time

Cyclic
Hamiltonian
Coordinate φ

Doesn't appear in H. Momentum ($p=m \dot{\varphi}$) conjugate to φ is integral of motion. Associated w/symmetry of system. Noether identified correspondence.
Generalized momentum $p=\frac{\partial L}{\partial \dot{q}}$, from Euler Lagrange $\frac{d}{d t} \partial_{\dot{q}} L=\partial_{q} L=0$. So, p conserved

Relationship
Between Work
Force, and Potential

$$
W=\int_{C} \vec{F} \cdot d \vec{x}=\int_{\vec{x}\left(t_{1}\right)}^{\overrightarrow{(}\left(t_{2}\right)} \vec{F} \cdot d \vec{x}=U\left(\vec{x}\left(t_{1}\right)\right)-U\left(\vec{x}\left(t_{2}\right)\right)
$$

If work for applied force is indep. of the path, then work done by (conservative) force, by the gradient theorem, defines a pot. funct.

Euler Angles
Axes: $x y z, X Y Z$
L.O.N.: $N=z \times Z$

α is angle between x axis and N axis (Line of Nodes)
β is angle between z axis and Z axis
γ is angle between N axis and X axis

Levi-Civita
Time
Transfrmtn Step
$d t=r d \tau$
Adds variable to sys \& DEQ, giving extended phase space.
$\dot{x}=\frac{d x}{d t}=\frac{d x}{d \tau} \frac{d \tau}{d t}=\frac{x^{\prime}}{r}$. Substite in.

Levi-Civita
Conformal
Squaring Step

Represent the complex physical coordinate x as u^{2} of $u=u_{1}+i u_{2}$. So, $x=u^{2}$
parametric u-manifold is a Riemann surface $\mathrm{w} / 2$ sheets, connected by branch pts at $u=0 \& u=\infty$. $r=|x|=|u|^{2}=u \bar{u} . \quad x^{\prime}=2 u u^{\prime}, \quad x^{\prime \prime}=2\left(u u^{\prime \prime}+\left(u^{\prime}\right)^{2}\right)$, and $r^{\prime}=u^{\prime} \bar{u}+u \bar{u}^{\prime}$

Levi-Civita

Elimination
Singularities Step

After Conformal Squaring. Produces linear DEQs for the unperturbed problem. $u^{\prime \prime}+\frac{1}{2} u(\sim)=|u|^{2} \bar{u} f, \& H=\sim$. Substitute H into DEQ: $u^{\prime \prime}+\frac{1}{2} u H=|u|^{2} \bar{u} f$ $t^{\prime}=r, H^{\prime}=\left\langle x^{\prime}, f\right\rangle$. DEQs for the dependent vars u, t, H as functions of fictitious time τ.

Why can 2BP
collisions be
regularized

Different

Regularization
Approaches
$\ddot{x}=-\alpha|x|^{-\alpha-2}$. ヨrestriction on $\alpha: \alpha=2\left(1-\frac{1}{n}\right)$ for $n \in \mathbb{Z}^{+}$,
for a body to be regularizable. And for Kepler problem, $\alpha=1$ or $n=2$.

Sundman: didn't guarantee smoothness of flow wrt init data.
Levi-Civita: ditches DEQ singularity. Guarantees info bout flows close to collisions.
Easton: isolating block. Collision close orbit gives extn for collision orbit? (block regularization)

| Block | $\dot{x}=y \& \dot{y}=-\alpha\|x\|^{-\alpha-2} x, \mathrm{w} / \alpha>0$. Let $x \rightarrow r^{\gamma} e^{i \theta}, y \rightarrow r^{-\beta \gamma}(v+i w) e^{i \theta}, \mathrm{w} \backslash \beta=\frac{\alpha}{2} \& \gamma=\frac{1}{\beta+1}$
 So: $\dot{r}=(\beta+1) v, \dot{\theta}=\frac{w}{r}, \dot{w}=\frac{\beta-1}{r} w v, \dot{v}=\frac{w^{2}+\beta\left(v^{2}-2\right)}{r}$
 $\mathbf{M}=\{(r, \theta, w, v): r \geq 0 \&$ DEQs Hold $\}, \mathbf{N}=\{(r, \theta, w, v) \in \mathbf{M}(h): \vec{r}=0\} . \mathrm{N}$ Reglbl $\Leftrightarrow \beta=1-n^{-1}$ |
| :--- | :--- | :--- |

Bertrand's	
Theorem	For conservative central-force (CF) potentls w/bounded orbits, only 2 types of CF potentials w/property that $\{$ bounded orbits $\}=\{$ closed orbits $\}: 1)$ inverse-square CF such as gravitational or electrostatic potentl: $V(r)=-\frac{k}{r}, \&(2)$ radial harmonic oscillator potential: $V(r)=\frac{1}{2} k r^{2}$

Bertrand	closed orbits are all ellipses. In inverse square case, force Orbit is directed toward one focus of ellipse. In harmonic oscillator, force directed toward geometric center of ellipse.

| Conservation |
| :--- | :--- |
| of Linear |
| Momentum in NBP |\quad| $m_{k} \ddot{x}_{k}=\sum_{j=1, j \neq k}^{n} \frac{m_{j} m_{k}}{r_{j k}}\left(x_{j}-x_{k}\right)$. Summing RHS gives zero. So, |
| :--- |
| $\ddot{\rho}=\frac{d^{2}}{d t^{2}} \sum_{k=1}^{n} m_{k} x_{k}=0$, or $\rho=L_{0} t+\rho_{0}$. |
| Expresses translational symmetry COM moves uniformly in straight line |

Conservation
of Energy H
in NBP

$$
\begin{aligned}
& H:=T-U . T:=\frac{1}{2} \sum_{k=1}^{n} m_{k}\left|v_{k}\right|^{2} . \\
& F_{i}=-\frac{d}{d x_{i}} U\left(x_{1}, x_{2}, x_{3}\right) . \text { So differentiating } H \text { with respect to time: } \\
& \frac{d H}{d t}=\sum_{i} m_{i}\left(\ddot{x}_{i} v_{i}\right)+\sum_{i} \frac{d U}{d x_{i}} v_{i}=(F-F) v_{i}=0 .
\end{aligned}
$$

Conservation

of Angular
Momentum in NBP
$m_{k} \ddot{x}_{k}=\sum_{j=1, j \neq k}^{n} \frac{m_{j} m_{k}}{r_{j k}^{3}}\left(x_{j}-x_{k}\right)$, forming $x_{k} \times \ddot{x}_{k}$, and summing: $\sum_{k=1}^{n} m_{k}\left(x_{k} \times \ddot{x}_{k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{m_{j} m_{k}}{r_{j k}^{3}} x_{k} \times x_{j}=0$. Integrating LHS: $\sum_{k=1}^{n} m_{k}\left(x_{k} \times v_{k}\right)=c$. Expresses rotational symmetry

Constant	Approximate area of arc sweep by Parallelogram: $\left.A=\frac{1}{2} \right\rvert\, \vec{r} \times \vec{v}$
Areal	$\vec{r} \times \vec{v}=\vec{r} \times(\dot{r} \hat{r}+r \dot{\theta} \widehat{\theta})=r \dot{r}(\widehat{r} \times \widehat{r})+r^{2} \dot{\theta}(\hat{r} \times \widehat{\theta})=r^{2} \dot{\theta} \vec{k} .$
Velocity	Result: $\vec{A}=\dot{A} \vec{k}=\frac{1}{2} r^{2} \dot{\theta} \vec{k}$. Kepler's 2nd law

$\begin{array}{r}\text { Bertrand Proof } \\ m \ddot{r}-m r \dot{\theta}^{2} \\ =-V_{r} \\ \hline\end{array}$

EOM. Eliminate $\dot{\theta} \mathrm{w} \backslash L, \&$ time $\mathrm{w} \backslash \frac{d}{d t}=\frac{L}{m r^{2}} \frac{d}{d \theta}$. C.O.V. $u \equiv \frac{1}{r} \Rightarrow \frac{d^{2} u}{d \theta^{2}}+u=-\frac{m}{L^{2}} \frac{d}{d u} V\left(\frac{1}{u}\right)=: J$, quasilinear. Pert from circ: $\eta \equiv u-u_{0}$ into a J tayl series. Let $\beta^{2}: \equiv 1-J^{\prime}\left(u_{0}\right) . \Rightarrow B \in \mathbb{Q}$, cuz $\eta \approx k \cos (\beta \theta)$ Fourier $\eta=h_{0}+h_{1} \cos \beta \theta+\ldots$, substitute in. Equate low frequency. Get $\beta^{2}\left(1-\beta^{2}\right)\left(4-\beta^{2}\right)=0$

