Theory of Probability Flashcards

These are flashcards made in preparation for oral exams involving the topics in probability: Random walks, Martingales, and Markov Chains. Textbook used: "Probability: Theory and Examples," Durrett.

Random Walks

Random Walk

Stopping Time

Stopping Time Examples

Stopping Times Closure Lemma

Permutable Event
Symmetric Function

Exchangeable σ-field

Hewitt Savage 0-1 Law

Random Walk Possibilities on \mathbb{R}

Let X_{1}, X_{2}, \ldots be iid taking values in \mathbb{R}^{d} and let $S_{n}=X_{1}+\ldots+X_{n} . S_{n}$ is a random walk.
$\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right)_{n \geq 0}, \mathbb{P}\right)$ a filtered prob space.
Stopping time $T: \Omega \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}$ is r.v. s.t. $\{T \leq n\} \in \mathcal{F}_{n}$
$\forall n \geq 0$, or equivalently, $\{T=n\} \in \mathcal{F}_{n}$ for all $n \geq 0$.
Constant times (e.g., $T \equiv 10$) are always stopping times.
X_{n} an adapted process. Fix $A \in \mathcal{B}_{\mathbb{R}}$. Then first entry time into A,
$T_{A}:=\inf \left\{n \geq 0: X_{n} \in A\right\}, \mathrm{w} / \inf \emptyset:=+\infty$ is stopping time
If S, T, T_{n} are stopping times on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right)_{n \geq 0}, \mathbb{P}\right)$. Then so are:
$S+T, \quad S \wedge T:=\min (S, T), \quad S \vee T:=\max (S, T)$
$\lim \inf _{n} T_{n}$ and $\inf _{n} T_{n}, \quad \lim \sup _{n} T_{n}$ and $\sup _{n} T_{n}$
Given random seq. S and state space $\Omega:=\left\{\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in S\right\}$
Event $A \in \mathcal{F}$ is permutable if $\pi^{-1} A \equiv\{\omega: \pi \omega \in A\}=A$,
for any finite permutation $\pi . \quad \varepsilon:=\{A: A$ is permutable $\}$
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is symmetric if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ for each $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and for each permutation $\pi \in\{1,2, \ldots, n\}$
X_{1}, X_{2}, \ldots r.v.s on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $F_{n}:=\left\{f: R^{n} \rightarrow R\right.$ symmetric m'ble $\}$
Let $\varepsilon_{n}:=\sigma\left(F_{n}, X_{n+1}, X_{n+2}, \ldots\right)$. Exchangeable σ-field $\varepsilon:=\cap_{n=1}^{\infty} \varepsilon_{n}$.
ε exchngble σ-field of iid $X_{1}, X_{2}, \ldots, \mathcal{F}=\sigma\left(X_{1}, X_{2} \ldots\right)$,
then $\mathbb{P}(A) \in\{0,1\}, \forall A \in \varepsilon$

RWs on \mathbb{R}, 4 possibilities, one $\mathrm{w} / \mathrm{prob}=1$.
$S_{n}=0 \forall n, \quad S_{n} \rightarrow \pm \infty$, or $-\infty=\lim \inf S_{n}<\lim \sup S_{n}=\infty$

RW Conv/Transients Thm

RW Recurrence on \mathbb{R}^{d}

Recurrence Thm for RWs

RW Equivalencies Thm

(Hint: Recurrence)
Wald's Identity
Recurrent Value

Possible Value (of RW)

Transient/Recurrent (RW)

Convergence (divergence) of $\Sigma_{n} \mathbb{P}\left(\left|S_{n}\right|<\varepsilon\right) \forall \varepsilon>0$ is sufficient to determine transience (recurrence) of S_{n}
S_{n} recurrent in $d=1$ if $S_{n} / n \xrightarrow{p} 0$. (or SSRW)
S_{n} recurrent in $d=2$ if $S_{n} / \sqrt{n} \Rightarrow$ non-deg. norm. dist. (or SSRW)
S_{n} transient in $d \geq 3$ if is "truly three-dimensional"
$\{$ recurrent values $\}=\emptyset$ or is closed subgroup of \mathbb{R}^{d}.
If closed subgroup, then $\{$ recurrent values $\}=\{$ possible values $\}$

Let $\tau_{0}=0$ and $\tau_{n}=\inf \left\{m>\tau_{n-1}: S_{m}=0\right\}$ be time of nth return to 0 $\mathbb{P}\left(\tau_{1}<\infty\right)=1 \quad \Leftrightarrow \quad \mathbb{P}\left(S_{m}=0\right.$ i.o. $)=1 \quad \Leftrightarrow \quad \sum_{m=0}^{\infty} \mathbb{P}\left(S_{m}=0\right)=\infty$
ξ_{1}, ξ_{2}, \ldots be iid w/ $\mu:=\mathbb{E}\left[\xi_{n}\right]<\infty$. Set ξ_{0} and let $S_{n}=\xi_{1}+\ldots+\xi_{n}$ Let T be stopping time $\mathrm{w} / \mathbb{E}[T]<\infty$. Then, $\mathbb{E}\left[S_{T}\right]=\mu \mathbb{E}[T]$
$x \in S$ is recurrent if, $\forall \varepsilon>0$, we have $\mathbb{P}\left(\left|S_{n}-x\right|<\varepsilon\right.$ i.o. $)=1$
$S:=\{$ possible values $\}$. $x \in S$ if for $\forall \varepsilon>0, \exists n$ such that $\mathbb{P}\left(\left|S_{n}-x\right|<\varepsilon\right)>0$.

If $\{$ recurrent values $\}=\emptyset$, RW is transient, otherwise it is recurrent

Martingales

Conditional Expectation

$E[X \mid A]$, where A is an event is:
$E[X \mid Y]$, where Y is a r.v. is:
$\mathbb{E}\left[X \mid 1_{A}\right]$ is:

Absolute Continuity

Radon-Nikodym Lemma

If $G=\{\emptyset, \Omega\}$, then $E[X \mid G]=$

If X independent of G,

 then $E[X \mid G]=$
Pre-Tower Property

If $\mathcal{F} \subset \mathcal{G}$ and $\mathbb{E}[X \mid \mathcal{G}] \in \mathcal{F}$, then
$(\Omega, \mathcal{F}, P) \mathrm{w} / X \in L^{1}, G \subseteq \mathcal{F}, \mathrm{Y}:=\mathbb{E}[X \mid G]$ is unique s.t.
Y is G-measurable and $\mathbb{E}|Y|<\infty$.
$\mathbb{E}\left[\mathbb{E}[X \mid G] 1_{A}\right]=\mathbb{E}\left[Y 1_{A}\right]=\mathbb{E}\left[X 1_{A}\right], A \in G$
Expected value of X given that A occurs
r.v whose value at $\omega \in \Omega$ is $\mathbb{E}[X \mid A]$
where A is the event $\{Y=Y(\omega)\}$

The case of $\mathbb{E}[X \mid Y]$, for r.v. $Y=1_{A}$, and $1_{A}(\omega)$ is 1 if $\omega \in A$ and 0 otherwise.
It's a r.v that returns $\mathbb{E}[X \mid A]$ if $\omega \in A$ and $\mathbb{E}\left[X \mid A^{c}\right]$ if $\omega \notin A$
Let v and μ be σ-finite measures on (Ω, \mathcal{F}).
$v \ll \mu$, means that $\mu(A)=0 \Rightarrow v(A)=0$, for each $A \in \mathcal{F}$

Let v and μ be two σ-finite measures on $(\Omega, \mathcal{F}) . v \ll \mu \Leftrightarrow$
$\exists \mathcal{F}$-measurable $f: \Omega \rightarrow[0, \infty)$ s.t. $v(B)=\int_{B} f d \mu, \forall B \in \mathcal{F}$
X a.s.

$$
\mathbb{E}[X]
$$

$\mathbb{E}[X]$ a.s.. To prove this, observe that $\mathbb{E}[X]$
is G-measurable and for any $A \in G$ we have:
$\mathbb{E}\left[X 1_{A}\right]=\mathbb{E}[X] \mathbb{E}\left[1_{A}\right]=\mathbb{E}\left[\mathbb{E}[X] 1_{A}\right]$.
$\mathbb{E}[X \mid \mathcal{F}]=\mathbb{E}[X \mid \mathcal{G}]$

Tower Property
Let $H \subseteq G$ be sub- σ-fields of \mathcal{F}.
Then: $\mathbb{E}[\mathbb{E}[X \mid G] \mid H]=\mathbb{E}[X \mid H]$ a.s.

Take out what is known

If X is G-measurable, then for any r.v. Y s.t.
$\mathbb{E}|Y|<\infty$ and $\mathbb{E}|X Y|<\infty$, we have:

Conditional MCT

Conditional Jensen's Inequality

L^{p} Contraction of Cond. Expectation

Conditional Fatou's Lemma

Conditional DCT

Chebyshev's Conditional Inequality

Martingale

(or sub, or super)

If X_{n} is a martingale,

then for $n>m, \mathbb{E}\left[X_{n} \mid \boldsymbol{F}_{m}\right]=$

If X_{n} is martingale wrt \mathcal{F}_{n} and φ is convex, then:
 (or sub)

$$
\mathbb{E}[X Y \mid G]=X \mathbb{E}[Y \mid G] \text { a.s. }
$$

Let $X, X_{n} \geq 0$ be integrable r.v.s and $X_{n} \uparrow X$.
Then $\mathbb{E}\left[X_{n} \mid G\right] \uparrow \mathbb{E}[X \mid G]$ a.s.

If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is convex, $\mathbb{E}|X|<\infty$ and $\mathbb{E}|\varphi(X)|<\infty$, then $\mathbb{E}[\varphi(X) \mid G] \geq \varphi(\mathbb{E}[X \mid G])$ a.s.

For $p \geq 1$, and $G \in \mathcal{F} \mathbb{E}\left[|\mathbb{E}[X \mid G]|^{p}\right] \leq \mathbb{E}\left[|X|^{p}\right]$.
Proof: Jensen's $\left.\Rightarrow \mathbb{E}[X \mid G]\right|^{p} \leq E\left[\left|X^{p}\right|: G\right]$.
Now take the expectation of both sides.
Let $X_{n} \geq 0$ be integrable r.v.s. and $\lim _{\inf _{n} X_{n}}$ be integrable.
Then $\mathbb{E}\left[\lim \inf _{n} X_{n} \mid G\right] \leq \lim \inf _{n} \mathbb{E}\left[X_{n} \mid G\right]$ a.s.

> If $X_{n} \rightarrow X$ a.s. and $\left|X_{n}\right| \leq Y$ for some integrable r.v. Y.
> Then $\mathbb{E}\left[X_{n} \mid G\right] \rightarrow \mathbb{E}[X \mid G]$ a.s.

If $a>0$, then $\mathbb{P}(|X| \geq a \mid \mathcal{F}) \leq a^{-2} \mathbb{E}\left[X^{2} \mid \mathcal{F}\right]$
X_{n} on $\left(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_{n}\right)$, s.t.
X_{n} is adapted to $\mathcal{F}_{n} . \quad \mathbb{E}\left|X_{n}\right|<\infty$ for each n.
and, $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$ a.s. $\forall n$. (or \geq, or \leq resp.)

> If $\mathbb{E}\left|\varphi\left(X_{n}\right)\right|<\infty \forall n$, then $\varphi\left(X_{n}\right)$ is a sub-martingale wrt \mathcal{F}_{n}. Consequently, if $p \geq 1$ and $\mathbb{E}\left|X_{n}\right|^{p}<\infty \forall n$, then $\left|X_{n}\right|^{p}$ is a sub-martingale wrt \mathcal{F}_{n}.

Predictable Sequence

Doob's Martingale Transform

Doob's Mart Transform Lemma

Doob's Decomp

Stopping Time SuperMartingale Prop

Stopped Martingale Corollary

Let T be a stopping time

 $\mathbf{w} / E[T]<\infty$, then $E[T]=$
Doob's Upcrossing Inequality

Martingale Convergence

L^{1}-Bounded Martingale Convergence

Non-negative Super-Mart Convergence
R.v.s H_{n} are predictible wrt \mathcal{F}_{n} if it is
\mathcal{F}_{n-1} measurable for each $n \geq 1$.

Let $\left(X_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)_{n \geq 0}-$ martingale, and H_{n} predictible.
Transform is: $(H \cdot X)_{0}=0, \quad(H \cdot X)_{n}=\sum_{k=1}^{n} H_{k}\left(X_{k}-X_{k-1}\right)$.
If $(H \cdot X)_{n}$ integrable, then $(H \cdot X)_{n}$ is a martingale.
Assume that X_{n} is a martingale and $(H \cdot X)_{n} \in L^{1}, \forall n$.
Then, $H \cdot X$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}-$ martingale.

Submart X_{n} wrt \mathcal{F}_{n} can be uniquely written as sum of mart M_{n} and increasing predictable process A_{n}. Let $D_{0}=X_{0}, D_{j}=X_{j}-E\left[X_{j} \mid \boldsymbol{F}_{j-1}\right]$ $M_{n}=D_{0}+D_{1}+\ldots+D_{n}, A_{0}=0, A_{n}=X_{n}-M_{n}=E\left[X_{n} \mid \boldsymbol{F}_{n-1}\right]-\left(D_{0}+\ldots+D_{n-1}\right)$

If T is a stopping time and $\left(X_{n}\right)_{n \geq 0}$ is a supermart then $\left(X_{T \wedge n}\right)_{n \geq 0}$ is a supermart

If T is a stopping time and $\left(X_{n}\right)_{n \geq 0}$ is a martingale then $\left(X_{T \wedge n}\right)_{n \geq 0}$ is a martingale
$\sum_{i=1}^{\infty} \mathbb{P}(T \geq i)$.

Let $a<b$, and $U_{n}[a, b]$ the \# of upcrossings from $a \rightarrow b$ by n. If X_{n} is submart, then $\mathbb{E}\left[U_{n}[a, b]\right] \leq \frac{\mathbb{E}\left[\left(X_{n}-a\right)^{+}\right]-\mathbb{E}\left[\left(X_{0}-a\right)^{+}\right]}{b-a}$

Suppose that $\left(X_{n}\right)_{n \geq 0}$ is a sub-martingale with $\sup _{n} \mathbb{E}\left[X_{n}^{+}\right]<\infty$ Then for some X, we have $X_{n} \rightarrow X$ a.s., where $\mathbb{E}|X|<\infty$.

If $\left(X_{n}\right)_{n \geq 0}$ is a martingale with $\sup _{n} \mathbb{E}\left|X_{n}\right|<\infty$, then $X_{n} \rightarrow X$ a.s. and $\mathbb{E}|X|<\infty$.

If $\left(X_{n}\right)_{n \geq 0}$ is a super-martingale with $X_{n} \geq 0$, then $X_{n} \rightarrow X$ a.s. and $\mathbb{E}[X] \leq \mathbb{E}\left[X_{0}\right]$

2nd Borel-Cantelli Lemma

Radon-Nikodym Martingale Thm

Galton-Watson Thm

Galton-Watson Conclusions

Stopping Time Submart Ineq.
(or mart)

Doob's Maximal Inequality
$\mathbb{E}\left[X_{n} 1_{A}\right]=\mathbb{E}\left[X_{n-1} 1_{A}\right], \quad \forall A \in \mathcal{F}_{n-1} \Leftrightarrow$

L^{p}-Convergence Thm for Martingales

Uniform Integrability

Sub σ-field UI Lemma

Convergence in Prob Equivalency Thm

Martingale Convergence
in Probability Corollary

If $X_{n} \xrightarrow{p} X$,

$$
\begin{aligned}
& \left(X_{n}\right)_{n \geq 0} \text { is } U I \Leftrightarrow X_{n} \xrightarrow{L^{1}} X . \\
& \left|X_{n}\right| \leq Y \text { for some } Y \in L^{1}, \text { then } X_{n} \xrightarrow{L^{1}} X
\end{aligned}
$$

Sub-martingale Equivalencies Thm

For a submart X_{n}, TFAE:

- $\left(X_{n}\right)_{n \geq 0}$ is UI. X_{n} converges a.s. and in L^{1}.
- X_{n} converges in L^{1}. Also, if $\left(X_{n}\right)_{n \geq 0}$ is a martingale, then
- \exists integrable r.v. X so that $X_{n}=\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]$.

Levy's 0-1 Law

Levy's Forward Law

Kolmogorov's 0-1 Law

DCT for Filtered
 Conditional Expectation

Backward Martingale

Suppose that $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}:=\sigma\left(\cup_{n} \mathcal{F}_{n}\right)$.
and $A \in \mathcal{F}_{\infty}$, then $\mathbb{E}\left[1_{A} \mid \mathcal{F}_{n}\right] \rightarrow 1_{A}$ a.s..
From which you can conclude Kolmogorov's 0-1.
Suppose that $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}:=\sigma\left(\cup_{n} \mathcal{F}_{n}\right)$.
If $X \in L^{1}$, then $\mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]$ a.s. and in L^{1}.
ξ_{1}, ξ_{2}, \ldots be independent r.v.s and $\mathcal{F}_{n}=\sigma\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), \forall n$.
Let $\mathcal{T}=\cap_{k=1}^{\infty} \sigma\left(\xi_{k}, \xi_{k+1}, \ldots\right)$ be tail σ-field.
Then $\forall A \in \mathcal{T}, \mathbb{P}(A) \in\{0,1\}$.
Suppose $Y_{n} \rightarrow Y$ a.s. and $\left|Y_{n}\right| \leq Z, \forall n$ where $\mathbb{E}[Z]<\infty$.
If $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}$ then $\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[Y \mid \mathcal{F}_{\infty}\right]$ a.s.
$\mathcal{F}_{\infty}=\sigma\left(\cup_{n} \mathcal{F}\right)$
Let $\left(\mathcal{F}_{-n}\right)_{n \geq 0}$ be sub- σ-fields, $\mathrm{w} / \ldots \subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_{0}$.

- $X_{-n} \in \mathcal{F}_{-n}$ for each $n \in \mathbb{Z}_{+} . \quad X_{-n} \in L^{1}$ for each $n \in \mathbb{Z}_{+}$.
- $\mathbb{E}\left[X_{-n} \mid \mathcal{F}_{-(n+1)}\right]=X_{-(n+1)}$ for each $n \in \mathbb{Z}_{+}$.

Example of UI Martingale

Convergence of Reverse Mart Thm

Levy's Backward Law

For reverse martingale: clearly, $\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-n}\right]=X_{-n}$ for each $n \in \mathbb{Z}_{+}$.
Hence, if $\left(X_{-n}\right)_{n \in \mathbb{Z}_{+}}$is a reverse martingale, then it is UI.
Proof: $\mathbb{E}\left[\left|X_{0}\right|\right]<\infty$, so by Sub σ-field UI Lemma, $\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-n}\right]$ is UI.
Let $\left(X_{-n}\right)_{n \geq 0}$ be reverse mart.
Then $X_{-n} \xrightarrow{n \rightarrow \infty} X_{-\infty}$ a.s. and in L^{1}.
Moreover, $\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]=X_{-\infty}$ where $\mathcal{F}_{-\infty}=\cap_{n \in \mathbb{Z}_{+}} \mathcal{F}_{-n}$.
Let $Y \in L^{1}$. Suppose decreasing σ-fields $\boldsymbol{G}_{0} \supseteq \boldsymbol{G}_{1} \supseteq \boldsymbol{G}_{2} \supseteq \ldots$ and $\boldsymbol{G}_{\infty}=\cap_{n=0}^{\infty} \boldsymbol{G}_{n}$. Then, $\mathbb{E}\left[Y \mid \boldsymbol{G}_{n}\right] \rightarrow \mathbb{E}\left[Y \mid \boldsymbol{G}_{\infty}\right]$ a.s. and in L^{1}

Exchangeable Sequence

de Finetti's Thm

Optional Stopping σ-field \mathcal{F}_{T}

Optional Stopping Proposition

UI SubMart Stopping Time Closure

UI SubMart Stopping Time Ineq.

Optional Stopping Thm for SubMarts

(or mart)
X_{n}, where for each n, $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \stackrel{d}{=}\left(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}\right), \forall$ permutations π.

If X_{n} are exchangeable, then, conditional on ε, we have X_{1}, X_{2}, \ldots are iid.

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{n}\right)_{n \geq 0}, \mathbb{P}\right)$ and T be stopping time.
Denote by \mathcal{F}_{T}, the σ-field of "events which occur prior to time T."
In symbols: $\mathcal{F}_{T}:=\left\{A \in \mathcal{F}: A \cap\{T \leq n\} \in \mathcal{F}_{n}, \forall n \geq 0\right\}$.
If T is stopping time, then \mathcal{F}_{T} is σ-field \& T is \mathcal{F}_{T}-measble
If $S \leq T$ is stopping time, then $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$.
Let T be stopping time w $\mathbb{P}(T<\infty)=1 \& X_{n}$ be adapted, then $X_{T} \in \mathcal{F}_{T}$
If $\left(X_{n}\right)_{n \geq 0}$ is $U I$ sub-mart, then for any stopping time T,

$$
\left(X_{T \wedge n}\right)_{n \geq 0} \text { is } U I
$$

If X_{n} is UI submart, then \forall stopping time $T \leq \infty$, we have:

$$
\mathbb{E}\left[X_{0}\right] \leq \mathbb{E}\left[X_{T}\right] \leq \mathbb{E}\left[X_{\infty}\right], \text { where } X_{\infty}=\lim X_{n}
$$

If S, T are stopping times $\mathrm{w} / \mathbb{P}(S \leq T<\infty)=1$, and $\left(X_{T \wedge n}\right)_{n \geq 0}$ is UI submart, then $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right] \geq X_{S}$ a.s. Consequently, $\mathbb{E}\left[X_{S}\right] \leq \mathbb{E}\left[X_{T}\right]$. (switch to $=$'s for mart)

Finite Differences
Submartingale w/Stopping Times

Suppose X_{n} is a submart and $\mathbb{E}\left[\left|X_{n+1}-X_{n}\right|: \mathcal{F}_{n}\right] \leq B$ a.s
If T is a stopping time $\mathrm{w} \mathbb{E}[T]<\infty$, then
$X_{T \wedge n}$ is uniformly integrable and hence $\mathbb{E}\left[X_{T}\right] \geq \mathbb{E}\left[X_{0}\right]$

Nonneg SuperMart
Stopping Time Thm

Asymmetric Simple RW

 w/generating fnct $\varphi(x):=$ $\Sigma_{k \geq 0} p_{k} x^{k} \mathrm{w} / p_{k}:=\mathbb{P}\left(\xi_{i}=k\right)$$X_{n}$ is nonnegative supermart and $T \leq \infty$ is stopping time, then $\mathbb{E}\left[X_{0}\right] \geq \mathbb{E}\left[X_{T}\right]$ where $X_{\infty}=\lim X_{n}$

$$
\begin{aligned}
& \xi_{1}, \xi_{2}, \ldots \text { iid, } S_{n}:=\xi_{1}+\ldots+\xi_{n}, \mathbb{P}\left(\xi_{i}=1\right)=p, \mathbb{P}\left(\xi_{i}=-1\right)=q \equiv 1-p, \text { with } \frac{1}{2}>p<1 \\
& \varphi(x):=\left(\frac{q}{p}\right)^{x} \Rightarrow \varphi\left(S_{n}\right) \text { is mart. } T_{x}=\inf \left\{n: S_{n}=x\right\}, a<0<b \Rightarrow \mathbb{P}\left(T_{a}<T_{b}\right)=\frac{\varphi(b)-\varphi(0)}{\varphi(b)-\varphi(a)} \\
& a<0 \Rightarrow \mathbb{P}\left(\min _{n} S_{n} \leq a\right)=\mathbb{P}\left(T_{a}<\infty\right)=\left(\frac{1-p}{p}\right)^{-a} . b>0 \Rightarrow \mathbb{P}\left(T_{b}<\infty\right)=1 \& \mathbb{E}\left[T_{b}\right]=\frac{b}{2 p-1}
\end{aligned}
$$

Let X_{1}, X_{2}, \ldots be a martingale with $\left|X_{n+1}-X_{n}\right| \leq M<\infty$.
Let $C:=\left\{\lim X_{n}\right.$ exists and finite $\}$,
and $D:=\left\{\lim \sup X_{n}=+\infty\right.$ and $\left.\lim \inf X_{n}=-\infty\right\}$. Then, $P(C \cup D)=1$

Markov Chains

Example such that $\sup _{\mathbf{n} \geq 1} \mathbb{E}\left\|X_{\mathbf{n}}\right\|<\infty$ but $\left(X_{n}\right)_{n \geq 1}$ are not uniformly integrable Convergence in Probability

Convergence in Distribution (Weak Convergence):

Convergence Almost Surely

Markov Chain

Markov Chain Transition Probability

Transition Matrix

Time Homogeneous Markov Chain

(finite dimensional, continuous state space)

Markov Chain Distributions

Strengthened Markov Prop.

Let X_{n} be Markov w/init dist μ. X_{n} coordinate maps on $\left(S^{\mathbb{Z}_{+}}, S^{\mathbb{Z}_{+}}, P_{\mu}\right)$

Let $\Omega=[0,1]$ with Lebesgue measure, and $X_{n}=n \cdot 1_{\left[0, \frac{1}{n}\right]}$. Then the X_{n} are bounded in L^{1}, but not uniformly integrable.

A sequence $\left\{X_{n}\right\}$ of random variables converges in probability towards the random variable X if for all $\varepsilon>0$, we have:
$\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)=0$.
Let X_{n}, X be r.v.s w/CDFs $F_{n} \& F$ resp. We say that $X_{n} \xrightarrow{d} X$ or $X_{n} \Rightarrow X$ if $F_{n}(x) \rightarrow F(x) \forall x$ where F continuous at $x\left(C_{F}\right)$. If above holds, then $\pi_{n} \xrightarrow{d} \pi$, where π_{n} and π are distributions of X_{n} / X resp.

To say that the sequence X_{n} converges a.s., almost everywhere, with probability 1 , or strongly towards X means that $\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1$.

An $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-adapted stochastic process $\left(X_{n}\right)_{n \geq 0}$ taking values in (S, S) is called a Markov chain if it has the Markov Property:
$\mathbb{P}\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=\mathbb{P}\left(X_{n+1} \in B \mid X_{n}\right)$ a.s. for each $B \in S, n \geq 0$.
We define a Markov chain's $\left(X_{n}\right)_{n \geq 0}$ transition probabilities $\left(p_{n}\right)_{n \geq 0}$ as $\mathbb{P}\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=: p_{n}\left(X_{n}, B\right)$ almost surely for each $n \geq 0$ and $B \in S$.
probability of moving from i to j in one time step is $\mathbb{P}(j \mid i)=: p_{i j}$, if we put these into a matrix, we have the transition matrix $p=\left[p_{i j}\right]$.

A Markov chain in which the transition probabilities are all the same $p_{n}=p$ for all time $n \geq 0$.
X_{n} is Markov w/trans. prob. $\left(p_{n}\right)_{n \geq 0} \&$ init. dist. μ, then finite dimensional dist. are given by $\mathbb{P}\left(X_{0} \in A_{0}, X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right)$

$$
=\int_{A_{0}} \mu\left(d x_{0}\right) \int_{A_{1}} p_{0}\left(x_{0}, d x_{1}\right) \ldots \int_{A_{k}} p_{k}\left(x_{k-1}, d x_{k}\right)
$$

$\mathcal{F}_{n}:=\sigma\left(X_{0}, \ldots, X_{n}\right) \cdot \theta: S^{\mathbb{Z}_{+}} \rightarrow S^{\mathbb{Z}_{+}}$where $\theta\left(x_{0}, x_{1}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right)$ For any bounded measurable function $f: S^{\mathbb{Z}_{+}} \rightarrow \mathbb{R}$,
and any $k \geq 0, \mathbb{E}_{\mu}\left[f \circ \theta^{k} \mid \mathcal{F}_{k}\right]=\mathbb{E}_{X_{k}}[f] \mathbb{P}_{\mu^{-}}$a.s.

Chapman-Kolmogorov Equation

$\mathbb{P}_{x}\left(X_{m+n}=z\right)=\Sigma_{y} \mathbb{P}_{x}\left(X_{m}=y\right) \mathbb{P}_{y}\left(X_{n}=z\right)$
for each $m, n \in \mathbb{Z}^{+}$.

Absorbing

Strong Markov Property

Reflection Principle

k th Return to y
$\rho_{y z} \quad$,

Finite kth Return Prob. to z starting at y :

Recurrent

(for Markov)

If y is recurrent, then

$$
P_{y}\left(X_{n}=y \text { i.o. }\right)=
$$

If y is transient, then $P_{y}\left(X_{n}=y\right.$ i.o. $)$

Total number of visits to y by the Markov chain X_{n} is notated as $N(y):=$

A state a is called absorbing if $\mathbb{P}_{a}\left(X_{1}=a\right)=1$.

For any bounded measurable function $f: S^{\mathbb{Z}_{+}} \rightarrow \mathbb{R}$
and for any stopping time T,
$\mathbb{E}_{\mu}\left[f \circ \theta^{T} \mid \mathcal{F}_{T}\right]=\mathbb{E}_{X_{T}}[f]$ on $\{T<\infty\} \mathbb{P}_{\mu^{-}}$a.s.
Let ξ_{1}, ξ_{2}, \ldots be iid w/distribution symmetric about 0 .
Let $S_{n}=\xi_{1}+\ldots+\xi_{n}$.
If $a>0$, then $\mathbb{P}\left(\sup _{m \leq n} S_{m}>a\right) \leq 2 \mathbb{P}\left(S_{n}>a\right)$.
Let $T_{y}^{0}:=0$, and for $k \geq 1$,
let $T_{y}^{k}:=\inf \left\{n>T_{y}^{k-1}: X_{n}=y\right\}$, the time of the k th return to y.
$\mathbb{P}_{y}\left(T_{z}<\infty\right)$

For $k \geq 1, \mathbb{P}_{y}\left(T_{z}^{k}<\infty\right)=\rho_{y z} \rho_{z z}^{k-1}$.

A state $y \in S$ is called recurrent if $\rho_{y y}=1$
and is called transient if $\rho_{y y}<1$.
$\lim _{k \rightarrow \infty} \mathbb{P}_{y}\left(T_{y}^{k}<\infty\right)=\lim _{k} \rho_{y y}^{k}=1$.
$=\lim _{k} \rho_{y y}^{k}=0$.

$$
\sum_{n=1}^{\infty} 1_{\left\{X_{n}=y\right\}} .
$$

A state x leads to, or is accessible from another state $y \neq x$, denoted by $x \rightarrow y$, if:

Communicating Class

Irreducible Subset

Irreducible Markov Chain

Properties when x is recurrent
and $\rho_{x y}>0$

Closed Subset of States

Is a recurrent class C

closed, open, neither?

In a finite state Markov chain, a class is recurrent (respectively transient)

if and only if:
Birth \& Death Chains X_{n} on $\{0,1,2, \ldots\}$.
$p_{i}:=p(i, i+1), q_{i}:=p(i, i-1), r_{i}:=p(i, i)$
Let: $\varphi(0):=0, \varphi(1):=1$, and $\varphi(k+1)=$?

Birth Death Chain:

the state 0 is recurrent if and only if
$\rho_{x y}>0$ (or equivalently, for some $n \geq 1, p^{n}(x, y)>0$).
Formally, $x \rightarrow y$ if $\exists n_{x y} \geq 0$ such that $\mathbb{P}\left(X_{n_{x y}}=y \mid X_{0}=x\right)=p_{x y}^{\left(n_{x y}\right)}>0$
" \leftrightarrow " is an equivalence relation.
Therefore, there is a partition C_{1}, C_{2} of S,
with each block C_{i} being referred to as a communicating class.
A closed subset $A \subseteq S$ is called irreducible if $x \leftrightarrow y$ for all $x, y \in A$. By definition, each class is irreducible.

Markov chain is irreducible if it is possible to get to any state from any state. Formally, Markov chain is irreducible if its state space is a single communicating class, i.e., $x \leftrightarrow y, \forall x, y \in S$
i) $\rho_{y x}=1$,
ii) y is recurrent,
iii) $\rho_{x y}=1$.

We call a subset of states $A \subseteq S$ closed if

$$
\rho_{x y}=0 \text { for all } x \in A \text { and } y \notin A
$$

Closed.

:-)
it is closed (respectively not closed).

For $X_{n}=k \geq 1, \varphi(k+1)=\varphi(k)+\frac{q_{k}}{p_{k}}(\varphi(k)-\varphi(k-1))$.
For irreducible: $\varphi(m+1)=\varphi(m)+\prod_{j=1}^{m} \frac{q_{j}}{p_{j}}$ for $m \geq 1$, and $\varphi(n)=\sum_{m=0}^{n-1} \prod_{j=1}^{m} \frac{q_{j}}{p_{j}}$ for $n \geq 1$.
$\varphi(M) \rightarrow \infty$ as $M \rightarrow \infty$, that is:
$\varphi(\infty) \equiv \sum_{m=0}^{\infty} \prod_{j=1}^{m} \frac{q_{j}}{p_{j}}=\infty$.
If $\varphi(\infty)<\infty$, then $\mathbb{P}_{x}\left(T_{0}=\infty\right)=\frac{\varphi(x)}{\varphi(\infty)}$.

Stationary/Invariant Measure
μ

Stationary/Invariant Distribution

π

Suppose p is irreducible. A necessary and sufficient condition for the existence of a reversible measure is

Recurrent Time in y
$\mu_{x}(y):=$

Positive Recurrent

Null-Recurrent

If a chain is finite and irreducible, then there exists:

If $\left\{X_{n}\right\}$ is positive recurrent,
then for every $x, y \in S$:

For an irreducible, positive recurrent Markov chain, what quality does the stat./invariant distribution π have?

For an irreducible and recurrent chain,

 the following are true.
If π is a stat/invariant distribution of a Markov chain and $\pi(x)>0$, then

$\mu P=\mu: \mu(y)=\Sigma_{x \in S} \mu(x) p(x, y) .(\mu$ is left eigenvector of $p)$. The last equation says $\mathbb{P}_{\mu}\left(X_{1}=y\right)=\mu(y)$. Using the Markov property and induction, we have $\mathbb{P}_{\mu}\left(X_{n}=y\right)=\mu(y) \forall n \geq 1$.

Stationary/invariant measure that is a probability measure. $\pi p=\pi: \pi(y)=\Sigma_{x \in S} \pi(x) p(x, y)$, and $\Sigma_{x \in S} \pi(x)=1$.
It represents a possible equilibrium for the chain.
i) $p(x, y)>0$ implies $p(y, x)>0$, and
ii) for any loop $x_{0}, \ldots, x_{n}=x_{0}$

$$
\text { with } \prod_{1 \leq i \leq n} p\left(x_{i}, x_{i-1}\right)>0, \prod_{i=1}^{n} \frac{p\left(x_{i-1}, x_{i}\right)}{p\left(x_{i}, x_{i-1}\right)}=1 .
$$

Define $\mu_{x}(y)$ as the expected time spent in y between visits to x.
$\mathbb{E}_{x}\left[T_{x}\right]=\sum_{n=1}^{\infty} n \mathbb{P}\left(T_{x}=n\right)=\sum_{y \in S} \mu_{x}(y)<\infty$,
and $\mathbb{P}_{x}\left(T_{x}<\infty\right)=1$.
Positive Recurrent \Rightarrow Recurrent
$x \in S$ is said to be null recurrent if $\mathbb{P}_{x}\left(T_{x}<\infty\right)=1$, but $\mathbb{E}_{x}\left[T_{x}\right]=\infty$. If $\left\{X_{n}\right\}$ is recurrent but not null recurrent then it is called positive recurrent. X_{n} is null recurrent if all X_{i} are null recurrent.

A unique stationary/invariant distribution π, and it is positive recurrent.

```
\mp@subsup{\operatorname{lim}}{n->\infty}{}\mp@subsup{p}{}{n}(x,y)=\pi(y)>0 where \pi:S->[0,1]
```

is the stationary/invariant distribution.
$p^{n}(x, y):=\frac{1}{n} \Sigma_{n}\left(X_{n}=y \mid X_{0}=x\right)$
It's unique!

- Stat. measures are unique up to constant multiples.
- μ a stat. measure $\Rightarrow \mu(x)>0, \forall x$. Stat. dist. π, if exists, is unique \bullet Stat. measure has infinite mass \Rightarrow Stat. dist. π cannot exist.
then x is recurrent.

For an irreducible Markov chain, the following are equivalent.

If p irreducible and has stat. dist. π, then any other stationary measure is

Doubly Stochastic

Stationary Sequence

Reversible Measure

Aperiodic Markov Chain

What could cause $d_{x}=d_{y}$?

If $d_{x}=1$, then $\exists n_{0} \geq 1$ such that:

An irreducible aperiodic Markov chain has the following property: for each $x, y \in S$, there exists:

Irreducible Aperiodic Markov X_{n}
 is Null Recurrent if:

Markov Chain Convergence Theorem

i) There exists $x \in S$ that is positive recurrent.
ii) There exists a stationary distribution π.
iii) Every state is positive recurrent.
a multiple of π.

Prob. transition matrix $p_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$
is doubly stochastic if $\Sigma_{i} p_{i j}=1 \forall j$ and $\Sigma_{j} p_{i j}=1 \forall i$.
Uniform distribution is stat. dist. of $p \Leftrightarrow p_{i j}$ is doubly stochastic
$\left(X_{n}\right)_{n \geq 0}$ is stationary if $\left(X_{n}, X_{n+1}, \ldots\right) \stackrel{d}{=}\left(X_{0}, X_{1}, \ldots\right), \forall n \geq 0$ or equivalently, $\left(X_{n}, X_{n+1}, \ldots, X_{n+m}\right) \stackrel{d}{=}\left(X_{0}, X_{1}, \ldots, X_{m}\right), \forall n, m \geq 0$
Exchangeable sequences are stationary.
measure μ such that $\mu(x) p(x, y)=\mu(y) p(y, x)$.
Is always stationary since $\Sigma_{x \in S} \mu(x) p(x, y)=\Sigma_{x \in S} \mu(y) p(y, x)=\mu(y)$, i.e., it is invariant under multiplication by p.

For $x, I_{x}:=\left\{n \geq 1: p_{n}(x, x)>0\right\}$. Let d_{x} be the GCD of I_{x} x has period d_{x}. If every state of a Markov chain has period 1 , then we call the chain aperiodic.

If $x \leftrightarrow y$.
In other words, if $\rho_{x y}>0$ and $\rho_{y x}>0$.
$p^{n}(x, x)>0$ for all $n \geq n_{0}$.
e.g., if $I_{x}=\{5,7\}$.
$n_{0}=n_{0}(x, y) \geq 1$ such that $p^{n}(x, y)>0$ for all $n \geq n_{0}$.
$\left\{X_{n}\right\}$ is recurrent and $\lim _{n \rightarrow \infty} p_{n}(x, y)=0$ for all $x, y \in S$.

Consider irreducible, aperiodic Markov with stat. dist. π Then, $p^{n}(x, y) \rightarrow \pi(y)$ as $n \rightarrow \infty$, for all $x, y \in S$.

Total Variation Distance

Coupled Markov Chain.

Let μ, v be prob. measures on countable S, \& $\left(X_{n}, Y_{n}\right)_{n \geq 0}$ on product space $S \times S$.

Markov Recurrent Corollary

A state X is Recurrent \Leftrightarrow

Asymptotic Density of Returns

where $N_{n}(y):=\sum_{m=1}^{n} 1_{\left\{X_{m}=y\right\}}$, is \# visits to y by n. Let $y \in S$ recurrent. Then $\lim _{n \rightarrow \infty} \frac{N_{n}(y)}{n}=$

For a Markov chain and any $x, y \in S$,
if $N(y):=\sum_{n=1}^{\infty} 1_{\left\{X_{n}=y\right\}}$ is total \# visits
to y, then we have $\mathbb{E}_{x}[N(y)]=$

Markov Prob Calculations
 on Countable Space

To test whether a recurrent state is postive-recurent or null-recurrent, we compute the mean return time:

For a Markov chain and any $x, y \in S$, if $N(y):=\sum_{n=1}^{\infty} 1_{\left\{X_{n}=y\right\}}$ is total \# visits to y, then we have $P_{x}(N(y)=k)=$

Consider Markov X_{n} started from

stat. dist. π \& trans. matrix p. Fix $N \geq 1$ $\& Y_{n}:=X_{N-n}$ for $n=0,1, \ldots, N$. Then:

Birth Death Chain:

For any $c \in R$, let $T_{c}=\inf \left\{n \geq 1: X_{n}=c\right\}$,
If $a<x<b$, then: $\mathbb{P}_{x}\left(T_{a}<T_{b}\right)=$

For two probability measures μ, v on S their total variation distance is given by:
$d_{T v}(\mu, v):=1 / 2 \sum_{x=S}|\mu(x)-v(x)|=\sup _{A \subseteq S}|\mu(A)-v(A)|$
Chain is coupled if:
i) marginals $X_{n} \& Y_{n}$ are Markov w/same $p \&$ init. dist. μ, v resp.
ii) $X_{n}=Y_{n}$ for $n \geq T$, where $T:=\inf \left\{n \geq 0: X_{n}=Y_{n}\right\}$.

A state $x \in S$ is recurrent if and only if
$\mathbb{E}_{x}[N(x)]=\sum_{n=1}^{\infty} p^{n}(x, x)=\infty$,
where $N(y):=\sum_{n=1}^{\infty} 1_{\left\{X_{n}=y\right\}}$ is total \# visits to y.
$\frac{1}{\mathbb{E}_{y}\left[T_{y}\right]} 1_{\left\{T_{y}<\infty\right\}} \mathbb{P}_{y^{-}}$a.s.
$\frac{\rho_{x y}}{1-\rho_{y y}}=\sum_{n=1}^{\infty} p^{n}(x, y)$
(where we interpret $\frac{0}{0}=0, \frac{c}{0}=+\infty$ for $c>0$)
X_{n} be Markov on countable set S w/transition matrix $p \&$ init. dist. μ
a) $\mathbb{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=\mu\left(i_{0}\right) p_{0}\left(i_{0}, i_{1}\right) \ldots p_{n-1}\left(i_{n-1}, i_{n}\right)$
b) $\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\left(p^{n}\right)(i, j)$. c) $\mathbb{P}\left(X_{n}=j\right)=\sum_{i \in S} \mu(i)\left(p^{n}\right)(i, j)$

If $\mathbb{E}_{x}\left[T_{x}\right]=\sum_{n=1}^{\infty} n p^{n}(x, x)=\infty$, is null-recurrent.
And if $\mathbb{E}_{x}\left[T_{x}\right]<\infty$, is positive recurrent.
$\rho_{x y} \rho_{y y}^{k-1}\left(1-\rho_{y y}^{k}\right)$
$\left(Y_{n}\right)_{0 \leq n \leq N}$ is a time-homogeneous Markov chain with initial distribution π and transition matrix q given by $q(x, y)=\frac{\pi(y) p(y, x)}{\pi(x)}$

$$
\begin{aligned}
& \frac{\varphi(b)-\varphi(x)}{\varphi(b)-\varphi(a)}, \text { and } \\
& \mathbb{P}_{x}\left(T_{b}<T_{a}\right)=\frac{\varphi(x)-\varphi(a)}{\varphi(b)-\varphi(a)} .
\end{aligned}
$$

Stationary/Invariant Measure Theorem

Let x be a recurrent state. Then: $\mu_{x}(y):=$

Pairs of states x, y communicate, denoted by $x \leftrightarrow y$, if:

Suppose Markov irreducible \& recurrent.
Let μ be stat. measure $\mathbf{w} / \mu(y)>0, \forall y \in S$.
If v is another stat. measure, then
Stat./Invariant Distribution π :
Suppose that S is finite and p is irreducible.
Then:
On a Markov chain, if C is a finite closed set, then it contains...

Calculating Stat./Invariant Distribution

If p is irreducible and has stat. distribution π, then $\pi(x)=$

Birth Death Chain: If S irreducible, $\varphi \geq 0$ $\mathbf{w} / E_{x}\left[\varphi\left(X_{1}\right)\right] \leq \varphi(x)$ for $x \notin F$ (finite set), and $\lim \varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$, then: $x \rightarrow \infty$
$\mathbb{E}_{x}\left[\sum_{n=0}^{T_{x}-1} 1_{\left\{X_{n}=y\right\}}\right]=\sum_{\mathrm{n}=0}^{\infty} \mathbb{P}_{x}\left(X_{n}=y, T_{x}>n\right)$,
is a stationary measure
$x \rightarrow y$ and $y \rightarrow x$.
In other words, if $\rho_{x y}>0$ and $\rho_{y x}>0$.
$\mu=c v$ for some $c>0$.
there exists a unique solution to $\pi p=\pi$
with $\Sigma_{i \in S} \pi(i)=1$ and $\pi(i)>0$ for all $i \in S$.
at least one recurrent state.
In particular, a finite closed class C is recurrent.
\square
$\frac{1}{\mathbb{E}_{x}\left[T_{x}\right]}$.

The Markov chain X_{n} is recurrent.

