
Theory of Probability Flashcards

These are flashcards made in preparation for oral exams involving the topics in probability: Random walks, Martingales,

and Markov Chains. Textbook used: “Probability: Theory and Examples," Durrett.

Random Walks

Random Walk Let X1, X2,� be iid taking values in R
d

and let Sn � X1 ���Xn. Sn is a random walk.

Stopping Time ��,FFFF, �FFFFn�n�0,P� a filtered prob space.

Stopping time T : � � Z� � ���� is r.v. s.t. �T � n� � FFFFn

�n � 0, or equivalently, �T � n� � FFFFn for all n � 0.

Stopping Time Examples Constant times (e.g., T � 10) are always stopping times.

Xn an adapted process. Fix A � BBBBR. Then first entry time into A,

TA :� inf�n � 0 : Xn � A�, w/inf� :� �� is stopping time

Stopping Times Closure Lemma If S, T, Tn are stopping times on ��,FFFF, �FFFFn�n�0,P�. Then so are:

S � T, S 	 T :� min�S, T�, S 
 T :� max�S, T�

lim infn Tn and infn Tn, lim supn Tn and supn Tn

Permutable Event Given random seq. S and state space � :� ���1,�2,� � : �i � S�

Event A � FFFF is permutable if ��1A � �� : �� � A� � A,

for any finite permutation �. � :� A : A is permutable

Symmetric Function f : Rn � R is symmetric if f�x1, x2,� , xn� � f�x��1�, x��2�,� , x��n��

for each �x1,� , xn� � R
n and for each permutation � � �1, 2,� , n�

Exchangeable �-field X1, X2,� r.v.s on ��,FFFF,P�. Let Fn :� f : Rn� R symmetric m’ble

Let �n :� ��Fn, Xn�1, Xn�2,� �. Exchangeable �-field � :� �n�1
� �n.

Hewitt Savage 0-1 Law � exchngble �-field of iid X1, X2,� , FFFF � ��X1, X2� �,

then P�A� � �0, 1�, �A � �

Random Walk Possibilities on R RWs on R, 4 possibilities, one w/prob � 1.

Sn � 0 �n, Sn � ��, or �� � lim infSn � lim sup Sn � �
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RW Conv/Transients Thm Convergence (divergence) of �nP�|Sn | � �� �� 	 0 is sufficient

to determine transience (recurrence) of Sn

RW Recurrence on R
d Sn recurrent in d � 1 if Sn/n

p
� 0. (or SSRW)

Sn recurrent in d � 2 if Sn/ n 
non-deg. norm. dist. (or SSRW)

Sn transient in d � 3 if is “truly three-dimensional"

Recurrence Thm for RWs {recurrent values}�� or is closed subgroup of Rd.

If closed subgroup, then {recurrent values}�{possible values}

RW Equivalencies Thm Let �0 � 0 and �n � inf�m 	 �n�1 : Sm � 0� be time of nth return to 0

(Hint: Recurrence) P��1 � �� � 1 � P Sm � 0 i.o. � 1 � 
m�0

�
P�Sm � 0� � �

Wald’s Identity �1,�2,� be iid w/� :� E��n � � �. Set �0 and let Sn � �1 ����n

Let T be stopping time w/E�T� � �. Then, E�ST � � �E�T�

Recurrent Value x � S is recurrent if, �� 	 0, we have P |Sn � x| � � i.o. � 1

Possible Value (of RW) S:�{possible values}.

x � S if for �� 	 0, �n such that P�|Sn � x| � �� 	 0.

Transient/Recurrent (RW) If {recurrent values}��, RW is transient, otherwise it is recurrent
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Martingales

Conditional Expectation ��,FFFF, P� w/X � L1, G � FFFF, Y:�E�X|G� is unique s.t.

Y is G-measurable and E|Y| � �.

E�E�X|G�1A � � E�Y1A � � E�X1A �, A � G

E�X|A�, where A is an event is: Expected value of X given that A occurs

E�X|Y�, where Y is a r.v. is: r.v whose value at � � � is E�X|A�

where A is the event �Y � Y����

E�X|1A � is: The case of E�X|Y�, for r.v. Y � 1A,

and 1A��� is 1 if � � A and 0 otherwise.

It’s a r.v that returns E�X|A� if � � A and E�X|Ac � if � � A

Absolute Continuity Let � and � be �-finite measures on ��,FFFF�.

� �� �, means that ��A� � 0 
 ��A� � 0, for each A � FFFF

Radon-Nikodym Lemma Let � and � be two �-finite measures on ��,FFFF�. � �� � �

� FFFF-measurable f : � � �0,�� s.t. ��B� � �
B

fd�, �B � FFFF

If X � G, then E�X|G� � X a.s.

If G � ��,��, then E�X|G� � E�X�

If X independent of G, E�X� a.s.. To prove this, observe that E�X�

then E�X|G� � is G-measurable and for any A � G we have:

E�X1A � � E�X�E�1A � � E�E�X�1A �.

Pre-Tower Property E�X|FFFF� � E�X|GGGG�

If FFFF � GGGG and E�X|GGGG� � FFFF, then
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Tower Property Let H � G be sub-�-fields of FFFF.

Then: E�E�X|G�|H� � E�X|H� a.s.

Take out what is known E�XY|G� � XE�Y|G� a.s.

If X is G-measurable, then for any r.v. Y s.t.

E|Y| � � and E|XY| � �, we have:

Conditional MCT Let X, Xn � 0 be integrable r.v.s and Xn � X.

Then E�Xn|G� � E�X|G� a.s.

Conditional Jensen’s Inequality If 	 : � � � is convex, E|X| � � and E|	�X�| � �,

then E�	�X�|G� � 	�E�X|G�� a.s.

Lp Contraction of Cond. Expectation For p � 1, and G � FFFF E�|E�X|G�|p � � E�|X|p �.

Proof: Jensen’s 
 |E�X|G�|p � E�|Xp | : G�.

Now take the expectation of both sides.

Conditional Fatou’s Lemma Let Xn � 0 be integrable r.v.s. and lim infn Xn be integrable.

Then E�lim infn Xn|G� � lim infn E�Xn|G� a.s.

Conditional DCT If Xn � X a.s. and |Xn | � Y for some integrable r.v. Y.

Then E�Xn|G� � E�X|G� a.s.

Chebyshev’s Conditional Inequality If a 	 0, then P�|X| � a|FFFF� � a�2
E�X2|FFFF�

Martingale Xn on ��,FFFF,P,FFFFn�, s.t.

(or sub, or super) Xn is adapted to FFFFn. E|Xn | � � for each n.

and, E�Xn�1|FFFFn � � Xn a.s.�n. (or �, or � resp.)

If Xn is a martingale, Xm

then for n 	 m, E�Xn|FFFFm � �

If Xn is martingale wrt FFFFn If E|	�Xn�| � � �n, then 	�Xn� is a sub-martingale

and 	 is convex, then: wrt FFFFn. Consequently, if p � 1 and E|Xn |p � � �n, then

(or sub) |Xn |p is a sub-martingale wrt FFFFn.
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Predictable Sequence R.v.s Hn are predictible wrt FFFFn if it is

FFFFn�1 measurable for each n � 1.

Doob’s Martingale Transform Let �Xn�n�0 be a �FFFFn�n�0–martingale, and Hn predictible.

Transform is: �H � X�0 � 0, �H � X�n � 
k�1

n
Hk�Xk � Xk�1�.

If �H � X�n integrable, then �H � X�n is a martingale.

Doob’s Mart Transform Lemma Assume that Xn is a martingale and �H � X�n � L1, �n.

Then, H � X is a �FFFFn�n�0-martingale.

Doob’s Decomp Submart Xn wrt FFFFn can be uniquely written as sum of mart Mn

and increasing predictable process An. Let D0� X0, D j� Xj�E�Xj |FFFF j�1 �

Mn� D0�D1���Dn, A0� 0, An� Xn�Mn� E�Xn |FFFFn�1 ���D0���Dn�1�

Stopping Time SuperMartingale Prop If T is a stopping time and �Xn�n�0 is a supermart

then �XT	n�n�0 is a supermart

Stopped Martingale Corollary If T is a stopping time and �Xn�n�0 is a martingale

then �XT	n�n�0 is a martingale

Let T be a stopping time 
i�1

�
P�T � i�.

w/E�T� � �, then E�T� �

Doob’s Upcrossing Inequality Let a � b, and Un�a, b� the # of upcrossings from a � b by n.

If Xn is submart, then E�Un�a, b�� � E��Xn�a�� ��E��X0�a�� �
b�a

Martingale Convergence Suppose that �Xn�n�0 is a sub-martingale with supn E�Xn
� � � �

Then for some X, we have Xn � X a.s., where E|X| � �.

L1-Bounded Martingale Convergence If �Xn�n�0 is a martingale with supn E|Xn | � �,

then Xn � X a.s. and E|X| � �.

Non-negative Super-Mart Convergence If �Xn�n�0 is a super-martingale with Xn � 0,

then Xn � X a.s. and E�X� � E�X0 �
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2nd Borel-Cantelli Lemma Let FFFFn be filtration w/FFFF0 � ��,�� and An events w/An � FFFFn.

Then, An i.o. � 
n�1

�
P�An|FFFFn�1� � � .

If An � Xn � � 
 An

a.s.
� 0. If An � Xn 	 � 
 Xn

a.s.
 0.

Radon-Nikodym Martingale Thm Let � be finite, � a prob. measure, FFFFn � FFFF be �-fields,

and �n, �n be restrictions of �, � to FFFFn. If �n �� �n, �n,

and we let Xn � d�n/d�n. Then, Xn is a martingale wrt FFFFn.

Galton-Watson Thm �i
n iid nonnegative integer r.v.s w/� :� E��i

n � � �0,��.

Let Z0 :� 1 , Zn�1 :� ��1
n ����Zn

n , if Zn 	 0; or 0 otherwise.

Then, Zn

�n is a mart wrt FFFFn � ���i
m : i � 1, 0 � m � n�.

Galton-Watson Conclusions If � � 1, then Zn � 0 �n sufficiently large, so Zn/�n � 0

If � � 1 and P��i
m � 1� � 1, then Zn � 0, �n sufficiently large.

If � 	 1, then 
 � 1, that is, P Zn 	 0 for all n 	 0.

Stopping Time Submart Ineq. If Xm is submart & T is stopping time w/

(or mart) P�T � k� � 1, for some k � Z�, then E�X0 � � E�XT � � E�Xk �.

(or E�X0 � � E�XT � � E�Xk � for mart)

Doob’s Maximal Inequality Let Xm be nonnegative submart, Xn
� � max0�m�n Xm, � 	 0,

and A � �Xn
� � ��. Then, P�A� � 1

� E�Xn1A � � 1
� E�Xn �.

E�Xn1A � � E�Xn�11A �, �A � FFFFn�1 	 E�Xn|FFFFn�1 � � Xn�1.

Lp-Convergence Thm for Martingales Suppose Xn is mart w/supE�|Xn |p � � � for some p 	 1.

Then, Xn � X a.s. and in Lp.

Uniform Integrability Family of r.v.s �X����� is uniformly integrable (UI) if

sup���E�|X� |1�|X� |	M� � � 0 as M � �. Remrk: Since

E|X� | � M � E�|X� |1�|X� |	M� �, then UI 
 L1-bounded

Sub �-field UI Lemma Let X � L1��,FFFF,P�.

Then, E�X|GGGG� : GGGG a �-field � FFFF is uniformly integrable.

Convergence in Prob Equivalency Thm If Xn � X in probability, then TFAE : � �Xn : n � 0� is uniformly integrable

� Xn � X in L1 (E|Xn � X| � 0) � E|Xn | � E|X| � �.

[Note: L1 convergence 
 convergent in probability and UI ]
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Martingale Convergence If Xn

p
� X,

in Probability Corollary �Xn�n�0 is UI � Xn

L1

� X.

|Xn | � Y for some Y � L1, then Xn

L1

� X

Sub-martingale Equivalencies Thm � �Xn�n�0 is UI. � Xn converges a.s. and in L1.

For a submart Xn, TFAE: � Xn converges in L1. Also, if �Xn�n�0 is a martingale, then

� � integrable r.v. X so that Xn � E�X|FFFFn �.

Levy’s 0-1 Law Suppose that FFFFn � FFFF� :� ���n FFFFn�.

and A � FFFF�, then E�1A|FFFFn � � 1A a.s..

From which you can conclude Kolmogorov’s 0-1.

Levy’s Forward Law Suppose that FFFFn � FFFF� :� ���n FFFFn�.

If X � L1, then E�X|FFFFn � � E�X|FFFF� � a.s. and in L1.

Kolmogorov’s 0-1 Law �1,�2,� be independent r.v.s and FFFFn � ���1,�2,� ,�n�, �n.

Let TTTT � �k�1
� ���k,�k�1,� � be tail �-field.

Then �A � TTTT, P�A� � �0, 1�.

DCT for Filtered Suppose Yn � Y a.s. and |Yn | � Z, �n where E�Z� � �.

Conditional Expectation If FFFFn � FFFF� then E�Yn|FFFFn � � E�Y|FFFF� � a.s.

FFFF� � ���n FFFF�

Backward Martingale Let �FFFF�n�n�0 be sub-�-fields, w/ �� FFFF�2 � FFFF�1 � FFFF0.

� X�n � FFFF�n for each n � Z�. � X�n � L1 for each n � Z�.

� E�X�n|FFFF��n�1� � � X��n�1� for each n � Z�.

Example of UI Martingale For reverse martingale: clearly, E�X0|FFFF�n � � X�n for each n � Z�.

Hence, if �X�n�n�Z�
is a reverse martingale, then it is UI.

Proof: E�|X0 |� � �, so by Sub �-field UI Lemma, E�X0|FFFF�n � is UI.

Convergence of Reverse Mart Thm Let �X�n�n�0 be reverse mart.

Then X�n

n��
� X�� a.s. and in L1.

Moreover, E�X0|FFFF�� � � X�� where FFFF�� � �n�Z� FFFF�n.

Levy’s Backward Law Let Y � L1. Suppose decreasing �-fields GGGG0 � GGGG1 � GGGG2 ��

and GGGG� � �n�0
� GGGGn. Then, E�Y|GGGGn � � E�Y|GGGG� � a.s. and in L1
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Exchangeable Sequence Xn, where for each n,

�X1, X2,� , Xn�
d
� �X��1�, X��2�,� , X��n��, � permutations �.

de Finetti’s Thm If Xn are exchangeable, then, conditional on �,

we have X1, X2,� are iid.

Optional Stopping �-field FFFFT Let ��,FFFF, �FFFFn�n�0,P� and T be stopping time.

Denote by FFFFT, the �-field of "events which occur prior to time T. "

In symbols: FFFFT :� A � FFFF : A � �T � n� � FFFFn, �n � 0 .

Optional Stopping Proposition If T is stopping time, then FFFFT is �-field & T is FFFFT-measble

If S � T is stopping time, then FFFFS � FFFFT.

Let T be stopping time w/P�T � �� � 1 & Xn be adapted, then XT � FFFFT

UI SubMart Stopping Time Closure If �Xn�n�0 is UI sub-mart, then for any stopping time T,

�XT	n�n�0 is UI

UI SubMart Stopping Time Ineq. If Xn is UI submart, then � stopping time T � �, we have:

E�X0 � � E�XT � � E�X� �, where X� � lim Xn

Optional Stopping Thm If S,T are stopping times w/P�S � T � �� � 1,

for SubMarts and �XT	n�n�0 is UI submart, then E�XT|FFFFS � � XS a.s.

(or mart� Consequently, E�XS � � E�XT �. (switch to �’s for mart)

Finite Differences Suppose Xn is a submart and E�|Xn�1 � Xn | : FFFFn � � B a.s

Submartingale If T is a stopping time w/E�T� � �, then

w/Stopping Times XT	n is uniformly integrable and hence E�XT � � E�X0 �

Nonneg SuperMart Xn is nonnegative supermart and T � � is stopping time,

Stopping Time Thm then E�X0 � � E�XT � where X� � lim Xn

Asymmetric Simple RW �1, �2,� iid, Sn:� �1����n, P��i� 1�� p, P��i� �1�� q � 1 � p, with 1
2
	 p � 1

w/generating fnct 	�x� :� 	�x� : �� q
p �

x

 	�Sn� is mart. Tx� inf�n : Sn� x�, a � 0 � b 
P�Ta� Tb��

	�b��	�0�
	�b��	�a�

�k�0pkx
k w/pk :� P��i � k� a � 0 
P�minn Sn� a��P�Ta� ��� 1�p

p

�a
. b 	 0 
P�Tb� ��� 1 & E�Tb �� b

2p�1
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Mart Bounded Increments Let X1, X2,�be a martingale with |Xn�1 � Xn | � M � �.

Let C :� lim Xn exists and finite ,

and D :� lim sup Xn� �� and lim inf Xn� �� . Then, P�C � D�� 1

4/22/2020 Jodin Morey 9



Markov Chains

Example such that supn�1E|Xn|�� Let Ω � �0, 1� with Lebesgue measure,

but �Xn�n�1 are not uniformly integrable and Xn � n � 1 0, 1
n

. Then the Xn are bounded in L1,

but not uniformly integrable.

Convergence in Probability A sequence �Xn� of random variables converges in probability

towards the random variable X if for all ε 	 0, we have:

n��
lim P�|Xn � X| 	 �� � 0.

Convergence in Distribution Let Xn, X be r.v.s w/CDFs Fn & F resp. We say that Xn

d
� X or Xn 
 X

(Weak Convergence): if Fn�x� � F�x� �x where F continuous at x (CF). If above holds,

then �n

d
� �, where �n and � are distributions of Xn/X resp.

Convergence Almost Surely To say that the sequence Xn converges a.s., almost everywhere,

with probability 1, or strongly towards X means that

P
n��
lim Xn � X � 1.

Markov Chain An �FFFFn�n�0-adapted stochastic process �Xn�n�0 taking values in �S,SSSS�

is called a Markov chain if it has the Markov Property:

P�Xn�1 � B|FFFFn� � P�Xn�1 � B|Xn� a.s. for each B � SSSS, n � 0.

Markov Chain Transition Probability We define a Markov chain’s �Xn�n�0 transition probabilities �pn�n�0 as

P�Xn�1 � B|FFFFn� �: pn�Xn, B� almost surely for each n � 0 and B � SSSS.

Transition Matrix probability of moving from i to j in one time step is P�j|i� �: pij,

if we put these into a matrix, we have the transition matrix p � �pij �.

Time Homogeneous Markov Chain A Markov chain in which the transition probabilities

(finite dimensional, continuous state space) are all the same pn � p for all time n � 0.

Markov Chain Distributions Xn is Markov w/trans. prob. �pn�n�0 & init. dist. �, then finite

dimensional dist. are given by P�X0 � A0, X1 � A1,� , Xk � Ak�

� �
A0

��dx0� �
A1

p0�x0, dx1�� �
Ak

pk�xk�1, dxk�

Strengthened Markov Prop. FFFFn :� � X0,� , Xn .  : SZ� � SZ� where �x0, x1,� � � �x1, x2,� �

Let Xn be Markov w/init dist �. For any bounded measurable function f : SZ� � R,

Xn coordinate maps on S
Z�, S

Z�, P� and any k � 0, E��f � k|FFFFk � � EXk�f� P�- a.s.
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Chapman-Kolmogorov Equation Px�Xm�n � z� � �yPx�Xm � y�Py�Xn � z�

for each m, n � Z
�.

Absorbing A state a is called absorbing if Pa�X1 � a� � 1.

Strong Markov Property For any bounded measurable function f : SZ� � R

and for any stopping time T,

E��f � T|FFFFT � � EXT�f� on �T � �� P�- a.s.

Reflection Principle Let �1,�2,� be iid w/distribution symmetric about 0.

Let Sn � �1 ����n.

If a 	 0, then P�supm�n Sm 	 a� � 2P�Sn 	 a�.

kth Return to y Let Ty
0 :� 0, and for k � 1,

let Ty
k :� inf�n 	 Ty

k�1 : Xn � y�, the time of the kth return to y.


yz Py�Tz � ��

Finite kth Return Prob. to z starting at y : For k � 1, Py�Tz
k � �� � 
yz
zz

k�1.

Recurrent A state y � S is called recurrent if 
yy � 1

(for Markov) and is called transient if 
yy � 1.

If y is recurrent, then
k��
lim Py�Ty

k � �� � limk 
yy
k � 1.

Py Xn � y i.o. �

If y is transient, then Py Xn � y i.o. � limk 
yy
k � 0.

Total number of visits to y 
n�1

�
1�Xn�y�.

by the Markov chain Xn

is notated as N�y� :�
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A state x leads to, or is accessible from 
xy 	 0 (or equivalently, for some n � 1, pn�x, y� 	 0).

another state y � x, denoted by x � y, if: Formally, x � y if �nxy � 0 such that P�Xnxy � y|X0 � x� � pxy
�nxy � 	 0

Communicating Class "�" is an equivalence relation.

Therefore, there is a partition C1, C2 of S,

with each block Ci being referred to as a communicating class.

Irreducible Subset A closed subset A � S is called irreducible if x � y for all x, y � A.

By definition, each class is irreducible.

Irreducible Markov Chain Markov chain is irreducible if it is possible to get to any state

from any state. Formally, Markov chain is irreducible if its

state space is a single communicating class, i.e., x � y, �x, y � S

Properties when x is recurrent i) 
yx � 1, ii) y is recurrent, iii) 
xy � 1.

and 
xy 	 0

Closed Subset of States We call a subset of states A � S closed if


xy � 0 for all x � A and y � A

Is a recurrent class C Closed.

closed, open, neither?

:-)

In a finite state Markov chain, a class is it is closed (respectively not closed).

recurrent (respectively transient)

if and only if:

Birth & Death Chains Xn on �0, 1, 2, . . .�. For Xn � k � 1, 	�k � 1� � 	�k� � qk

pk
�	�k� � 	�k � 1��.

pi :� p�i, i � 1�, qi :� p�i, i � 1� , ri :� p�i, i� For irreducible: 	�m � 1� � 	�m� ��
j�1

m q j

p j
for m � 1,

Let: 	�0� :� 0, 	�1� :� 1, and 	�k � 1� � ? and 	�n� � 
m�0

n�1 �
j�1

m q j

p j
for n � 1.

Birth Death Chain: 	�M� � � as M � �, that is:

the state 0 is recurrent if and only if 	��� � 
m�0

� �
j�1

m q j

p j
� �.

If 	��� � �, then Px�T0 � �� � 	�x�
	���

.
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Stationary/Invariant Measure �P � � : ��y� � �x�S��x�p�x, y�. (� is left eigenvector of p).

� The last equation says P��X1 � y� � ��y�. Using the Markov

property and induction, we have P��Xn � y� � ��y� �n � 1.

Stationary/Invariant Distribution Stationary/invariant measure that is a probability measure.

� �p � � : ��y� � �x�S��x�p�x, y�, and �x�S��x� � 1.

It represents a possible equilibrium for the chain.

Suppose p is irreducible. A necessary and i) p�x, y� 	 0 implies p�y, x� 	 0, and

sufficient condition for the existence ii) for any loop x0,� , xn � x0

of a reversible measure is with �
1�i�n

p�x i, x i�1� 	 0, �
i�1

n p�xi�1,xi �
p�xi,xi�1 �

� 1.

Recurrent Time in y Define �x�y� as the expected time spent in y between visits to x.

�x�y� :�

Positive Recurrent Ex�Tx � � 
n�1

�
nP�Tx � n� � 

y�S
�x�y� � �,

and Px�Tx � �� � 1.

Positive Recurrent 
 Recurrent

Null-Recurrent x � S is said to be null recurrent if Px�Tx � �� � 1, but Ex�Tx � � �.

If �Xn� is recurrent but not null recurrent then it is called

positive recurrent. Xn is null recurrent if all X i are null recurrent.

If a chain is finite and irreducible, A unique stationary/invariant distribution �,

then there exists: and it is positive recurrent.

If �Xn� is positive recurrent,
n��
lim pn�x, y� � ��y� 	 0 where � : S � �0, 1�

then for every x, y � S : is the stationary/invariant distribution.

pn�x, y� :� 1
n �n�Xn � y|X0 � x�

For an irreducible, positive recurrent It’s unique!

Markov chain, what quality does the

stat./invariant distribution � have?

For an irreducible and recurrent chain, � Stat. measures are unique up to constant multiples.

the following are true. � � a stat. measure
 ��x� 	 0, �x. � Stat. dist. �, if exists, is unique

� Stat. measure has infinite mass
Stat. dist. � cannot exist.

If � is a stat/invariant distribution then x is recurrent.

of a Markov chain and ��x� 	 0, then
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For an irreducible Markov chain, i) There exists x � S that is positive recurrent.

the following are equivalent. ii) There exists a stationary distribution �.

iii) Every state is positive recurrent.

If p irreducible and has stat. dist. �, a multiple of �.

then any other stationary measure is

Doubly Stochastic Prob. transition matrix pij � P�Xn�1 � j|Xn � i�

is doubly stochastic if �ipij � 1 �j and �jpij � 1 �i.

Uniform distribution is stat. dist. of p � pij is doubly stochastic

Stationary Sequence �Xn�n�0 is stationary if �Xn, Xn�1,� �
d
� �X0, X1,� �, �n � 0

or equivalently, �Xn, Xn�1,� , Xn�m�
d
� �X0, X1,� , Xm�, �n, m � 0

Exchangeable sequences are stationary.

Reversible Measure measure � such that ��x�p�x, y� � ��y�p�y, x�.

Is always stationary since �x�S��x�p�x, y� � �x�S��y�p�y, x� � ��y�,

i.e., it is invariant under multiplication by p.

Aperiodic Markov Chain For x, Ix :� �n � 1 : pn�x, x� 	 0�. Let dx be the GCD of Ix

x has period dx. If every state of a Markov chain has period 1,

then we call the chain aperiodic.

What could cause dx � dy? If x � y.

In other words, if 
xy 	 0 and 
yx 	 0 .

If dx � 1, then �n0 � 1 such that: pn�x, x� 	 0 for all n � n0.

e.g., if Ix � �5, 7�.

An irreducible aperiodic Markov chain has n0 � n0�x, y� � 1 such that pn�x, y� 	 0 for all n � n0.

the following property: for each x, y � S,

there exists:

Irreducible Aperiodic Markov Xn �Xn� is recurrent and
n��
lim pn�x, y� � 0 for all x, y � S.

is Null Recurrent if:

Markov Chain Convergence Theorem Consider irreducible, aperiodic Markov with stat. dist. �

Then, pn�x, y� � ��y� as n � �, for all x, y � S.
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Total Variation Distance For two probability measures �,� on S

their total variation distance is given by:

dTV��,�� :� 1/2
x�S

|��x� � ��x�| � supA�S|��A� � ��A�|

Coupled Markov Chain. Chain is coupled if:

Let �, � be prob. measures on countable S, i) marginals Xn & Yn are Markov w/same p & init. dist. �,� resp.

& �Xn, Yn�n�0 on product space S � S. ii) Xn � Yn for n � T, where T :� inf�n � 0 : Xn � Yn�.

Markov Recurrent Corollary A state x � S is recurrent if and only if

A state X is Recurrent � Ex�N�x�� � 
n�1

�
pn�x, x� � �,

where N�y� :� 
n�1

�
1�Xn�y� is total # visits to y.

Asymptotic Density of Returns

where Nn�y� :� 
m�1

n
1�Xm�y�, is # visits to y 1

Ey�Ty �
1�Ty��� Py- a.s.

by n. Let y � S recurrent. Then
n��
lim

Nn�y�
n �

For a Markov chain and any x, y � S,

xy

1�
yy
� 

n�1

�
pn�x, y�

if N�y� :� 
n�1

�
1�Xn�y� is total # visits (where we interpret 0

0
� 0, c

0
� �� for c 	 0)

to y, then we have Ex�N�y�� �

Markov Prob Calculations Xn be Markov on countable set S w/transition matrix p & init. dist. �

on Countable Space a) P�X0 � i0, X1 � i1,� , Xn � in� � ��i0�p0�i0, i1��pn�1�in�1, in�

b) P�Xn � j|X0 � i� � �pn��i, j�. c) P�Xn � j� � 
i�S

��i��pn��i, j�

To test whether a recurrent state is If Ex�Tx � � 
n�1

�
npn�x, x� � �, is null-recurrent.

postive-recurent or null-recurrent, And if Ex�Tx � � �, is positive recurrent.

we compute the mean return time:

For a Markov chain and any x, y � S, 
xy
yy
k�1�1 � 
yy

k �

if N�y� :� 
n�1

�
1�Xn�y� is total # visits

to y, then we have Px�N�y� � k� �

Consider Markov Xn started from �Yn�0�n�N is a time-homogeneous Markov chain with initial

stat. dist. π & trans. matrix p. Fix N � 1 distribution π and transition matrix q given by q�x, y� � ��y�p�y,x�
��x�

& Yn :� XN�n for n � 0, 1, . . . , N. Then:

Birth Death Chain:
	�b��	�x�
	�b��	�a� , and

For any c � R, let Tc � inf�n � 1 : Xn � c�, Px�Tb � Ta� � 	�x��	�a�
	�b��	�a� .

If a � x � b, then: Px�Ta � Tb� �
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Stationary/Invariant Measure Theorem Ex 
n�0

Tx�1
1�Xn�y� � 

n�0

�
Px�Xn � y, Tx 	 n�,

Let x be a recurrent state. Then: �x�y� :� is a stationary measure

Pairs of states x,y communicate, x � y and y � x.

denoted by x � y, if: In other words, if 
xy 	 0 and 
yx 	 0 .

Suppose Markov irreducible & recurrent. � � c� for some c 	 0.

Let � be stat. measure w/��y� 	 0, �y � S.

If � is another stat. measure, then

Stat./Invariant Distribution �: there exists a unique solution to �p � �

Suppose that S is finite and p is irreducible. with �i�S��i� � 1 and ��i� 	 0 for all i � S.

Then:

On a Markov chain, if C is a finite closed set, at least one recurrent state.

then it contains... In particular, a finite closed class C is recurrent.

Calculating Stat./Invariant Distribution

If p is irreducible and has stat. distribution �, 1

Ex�Tx �
.

then ��x� �

Birth Death Chain: If S irreducible, 	 � 0 The Markov chain Xn is recurrent.

w/Ex�	�X1�� � 	�x� for x � F (finite set),

and
x��
lim 	�x� � � as x � �, then:
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