Theory of Probability Flashcards

These are flashcards made in preparation for oral exams involving the topics in probability: Random walks, Martingales, and Markov Chains. Textbook used: "Probability: Theory and Examples," Durrett.

Random Walks

Random Walk	Let $X_1, X_2,$ be iid taking values in \mathbb{R}^d and let $S_n = X_1 + + X_n$. S_n is a random walk.
Stopping Time	$(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \ge 0}, \mathbb{P})$ a filtered prob space. Stopping time $T : \Omega \to \mathbb{Z}_+ \cup \{+\infty\}$ is r.v. s.t. $\{T \le n\} \in \mathcal{F}_n$ $\forall n \ge 0$, or equivalently, $\{T = n\} \in \mathcal{F}_n$ for all $n \ge 0$.
Stopping Time Examples	Constant times (e.g., $T \equiv 10$) are always stopping times. X_n an adapted process. Fix $A \in \mathcal{B}_{\mathbb{R}}$. Then first entry time into A , $T_A := \inf\{n \ge 0 : X_n \in A\}$, w/inf $\emptyset := +\infty$ is stopping time
Stopping Times Closure Lemma	If S, T, T_n are stopping times on $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \ge 0}, \mathbb{P})$. Then so are: $S + T, S \land T := \min(S, T), S \lor T := \max(S, T)$ $\liminf_n T_n \text{ and } \inf_n T_n, \limsup_n T_n \text{ and } \sup_n T_n$
Permutable Event	Given random seq. <i>S</i> and state space $\Omega := \{(\omega_1, \omega_2,) : \omega_i \in S\}$ Event $A \in \mathcal{F}$ is permutable if $\pi^{-1}A = \{\omega : \pi\omega \in A\} = A$, for any finite permutation π . $\varepsilon := \{A : A \text{ is permutable}\}$
Symmetric Function	$f: \mathbb{R}^n \to \mathbb{R} \text{ is symmetric if } f(x_1, x_2, \dots, x_n) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$ for each $(x_1, \dots, x_n) \in \mathbb{R}^n$ and for each permutation $\pi \in \{1, 2, \dots, n\}$
Exchangeable σ -field	X_1, X_2, \dots r.v.s on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $F_n := \{f : \mathbb{R}^n \to \mathbb{R} \text{ symmetric m'ble}\}$ Let $\varepsilon_n := \sigma(F_n, X_{n+1}, X_{n+2}, \dots)$. Exchangeable σ -field $\varepsilon := \bigcap_{n=1}^{\infty} \varepsilon_n$.
Hewitt Savage 0-1 Law	ε exchagble σ -field of iid $X_1, X_2, \dots, \mathcal{F} = \sigma(X_1, X_2, \dots)$, then $\mathbb{P}(A) \in \{0, 1\}, \forall A \in \varepsilon$
Random Walk Possibilities on \mathbb{R}	RWs on \mathbb{R} , 4 possibilities, one w/prob = 1. $S_n = 0 \forall n, S_n \to \pm \infty, \text{ or } -\infty = \liminf S_n < \limsup S_n = \infty$

RW Conv/Transients Thm	Convergence (divergence) of $\Sigma_n \mathbb{P}(S_n < \varepsilon) \ \forall \varepsilon > 0$ is sufficient to determine transience (recurrence) of S_n
RW Recurrence on \mathbb{R}^d	$S_n \text{ recurrent in } d = 1 \text{ if } S_n/n \xrightarrow{p} 0. \text{ (or SSRW)}$ $S_n \text{ recurrent in } d = 2 \text{ if } S_n/\sqrt{n} \Rightarrow \text{non-deg. norm. dist. (or SSRW)}$ $S_n \text{ transient in } d \ge 3 \text{ if is "truly three-dimensional"}$
Recurrence Thm for RWs	{recurrent values}= \emptyset or is closed subgroup of \mathbb{R}^d . If closed subgroup, then {recurrent values}={possible values}
RW Equivalencies Thm (Hint: Recurrence)	Let $\tau_0 = 0$ and $\tau_n = \inf\{m > \tau_{n-1} : S_m = 0\}$ be time of <i>n</i> th return to 0 $\mathbb{P}(\tau_1 < \infty) = 1 \iff \mathbb{P}(S_m = 0 \text{ i.o.}) = 1 \iff \sum_{m=0}^{\infty} \mathbb{P}(S_m = 0) = \infty$
Wald's Identity	$ \xi_1, \xi_2, \dots \text{ be iid } w/\mu := \mathbb{E}[\xi_n] < \infty. \text{ Set } \xi_0 \text{ and let } S_n = \xi_1 + \dots + \xi_n $ Let <i>T</i> be stopping time $w/\mathbb{E}[T] < \infty.$ Then, $\mathbb{E}[S_T] = \mu\mathbb{E}[T] $
Recurrent Value	$x \in S$ is recurrent if, $\forall \varepsilon > 0$, we have $\mathbb{P}(S_n - x < \varepsilon \text{ i.o.}) = 1$
Possible Value (of RW)	$S:=\{\text{possible values}\}.$ $x \in S \text{ if for } \forall \varepsilon > 0, \exists n \text{ such that } \mathbb{P}(S_n - x < \varepsilon) > 0.$
Transient/Recurrent (RW)	If {recurrent values}=Ø, RW is transient, otherwise it is recurrent

Martingales

Conditional Expectation	$(\Omega, \mathcal{F}, P) \le L^1, G \subseteq \mathcal{F}, Y := \mathbb{E}[X G] \text{ is unique s.t.}$ Y is G-measurable and $\mathbb{E}[Y < \infty$. $\mathbb{E}[\mathbb{E}[X G]1_A] = \mathbb{E}[Y1_A] = \mathbb{E}[X1_A], A \in G$
E[X A], where A is an event is:	Expected value of <i>X</i> given that <i>A</i> occurs
E[X Y], where Y is a r.v. is:	r.v whose value at $\omega \in \Omega$ is $\mathbb{E}[X A]$ where <i>A</i> is the event $\{Y = Y(\omega)\}$
$\mathbb{E}[X 1_A]$ is:	The case of $\mathbb{E}[X Y]$, for r.v. $Y = 1_A$, and $1_A(\omega)$ is 1 if $\omega \in A$ and 0 otherwise. It's a r.v that returns $\mathbb{E}[X A]$ if $\omega \in A$ and $\mathbb{E}[X A^c]$ if $\omega \notin A$
Absolute Continuity	Let <i>v</i> and μ be σ -finite measures on (Ω, \mathcal{F}) . $v \ll \mu$, means that $\mu(A) = 0 \Rightarrow v(A) = 0$, for each $A \in \mathcal{F}$
Radon-Nikodym Lemma	Let v and μ be two σ -finite measures on (Ω, \mathcal{F}) . $v \ll \mu \Leftrightarrow$ $\exists \mathcal{F}$ -measurable $f : \Omega \to [0, \infty)$ s.t. $v(B) = \int_B f d\mu, \ \forall B \in \mathcal{F}$
If $X \in G$, then $E[X G] =$	X a.s.
If $G = \{\emptyset, \Omega\}$, then $E[X G] =$	$\mathbb{E}[X]$
If X independent of G, then E[X G] =	$\mathbb{E}[X]$ a.s To prove this, observe that $\mathbb{E}[X]$ is <i>G</i> -measurable and for any $A \in G$ we have: $\mathbb{E}[X1_A] = \mathbb{E}[X]\mathbb{E}[1_A] = \mathbb{E}[\mathbb{E}[X]1_A].$
Pre-Tower Property If $\mathcal{F} \subset \mathcal{G}$ and $\mathbb{E}[X \mathcal{G}] \in \mathcal{F}$, then	$\mathbb{E}[X \mathcal{F}] = \mathbb{E}[X \mathcal{G}]$

Tower Property	Let $H \subseteq G$ be sub- σ -fields of \mathcal{F} . Then: $\mathbb{E}[\mathbb{E}[X G] H] = \mathbb{E}[X H]$ a.s.
Take out what is knownIf X is G-measurable, then for any r.v. $\mathbb{E} Y < \infty$ and $\mathbb{E} XY < \infty$, we have	$\mathbb{E}[XY G] = X\mathbb{E}[Y G] \text{ a.s.}$
Conditional MCT	Let $X, X_n \ge 0$ be integrable r.v.s and $X_n \uparrow X$. Then $\mathbb{E}[X_n G] \uparrow \mathbb{E}[X G]$ a.s.
Conditional Jensen's Inequality	If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, $\mathbb{E} X < \infty$ and $\mathbb{E} \varphi(X) < \infty$, then $\mathbb{E}[\varphi(X) G] \ge \varphi(\mathbb{E}[X G])$ a.s.
L ^p Contraction of Cond. Expectation	n For $p \ge 1$, and $G \in \mathcal{F} \mathbb{E}[\mathbb{E}[X G] ^p] \le \mathbb{E}[X ^p]$. Proof : Jensen's $\Rightarrow \mathbb{E}[X G] ^p \le E[X^p : G]$. Now take the expectation of both sides.
Conditional Fatou's Lemma	Let $X_n \ge 0$ be integrable r.v.s. and $\liminf_n X_n$ be integrable. Then $\mathbb{E}[\liminf_n X_n G] \le \liminf_n \mathbb{E}[X_n G]$ a.s.
Conditional DCT	If $X_n \to X$ a.s. and $ X_n \le Y$ for some integrable r.v. Y. Then $\mathbb{E}[X_n G] \to \mathbb{E}[X G]$ a.s.
Chebyshev's Conditional Inequality	If $a > 0$, then $\mathbb{P}(X \ge a \mathcal{F}) \le a^{-2}\mathbb{E}[X^2 \mathcal{F}]$
Martingale (or sub, or super)	$X_n \text{ on } (\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_n), \text{ s.t.}$ $X_n \text{ is adapted to } \mathcal{F}_n. \mathbb{E} X_n < \infty \text{ for each } n.$ and, $\mathbb{E}[X_{n+1} \mathcal{F}_n] = X_n \text{ a.s.} \forall n. \text{ (or } \geq, \text{ or } \leq \text{ resp.})$
If X_n is a martingale, then for $n > m$, $\mathbb{E}[X_n \mathcal{F}_m] =$	
If X_n is martingale wrt \mathcal{F}_n and φ is convex, then: (or sub)	If $\mathbb{E} \varphi(X_n) < \infty \forall n$, then $\varphi(X_n)$ is a sub-martingale wrt \mathcal{F}_n . Consequently, if $p \ge 1$ and $\mathbb{E} X_n ^p < \infty \forall n$, then $ X_n ^p$ is a sub-martingale wrt \mathcal{F}_n .

Predictable Sequence	R.v.s H_n are predictible wrt \mathcal{F}_n if it is \mathcal{F}_{n-1} measurable for each $n \ge 1$.
Doob's Martingale Transform	Let $(X_n)_{n\geq 0}$ be a $(\mathcal{F}_n)_{n\geq 0}$ -martingale, and H_n predictible. Transform is: $(H \cdot X)_0 = 0$, $(H \cdot X)_n = \sum_{k=1}^n H_k(X_k - X_{k-1})$. If $(H \cdot X)_n$ integrable, then $(H \cdot X)_n$ is a martingale.
Doob's Mart Transform Lemma	Assume that X_n is a martingale and $(H \cdot X)_n \in L^1$, $\forall n$. Then, $H \cdot X$ is a $(\mathcal{F}_n)_{n \ge 0}$ -martingale.
Doob's Decomp	Submart X_n wrt \mathcal{F}_n can be uniquely written as sum of mart M_n and increasing predictable process A_n . Let $D_0 = X_0$, $D_j = X_j - E[X_j \mathcal{F}_{j-1}]$ $M_n = D_0 + D_1 + \ldots + D_n$, $A_0 = 0$, $A_n = X_n - M_n = E[X_n \mathcal{F}_{n-1}] - (D_0 + \ldots + D_{n-1})$
Stopping Time SuperMartingale Prop	If <i>T</i> is a stopping time and $(X_n)_{n\geq 0}$ is a supermart then $(X_{T\wedge n})_{n\geq 0}$ is a supermart
Stopped Martingale Corollary	If <i>T</i> is a stopping time and $(X_n)_{n\geq 0}$ is a martingale then $(X_{T\wedge n})_{n\geq 0}$ is a martingale
Let <i>T</i> be a stopping time $w/E[T] < \infty$, then $E[T] =$	$\sum_{i=1}^{\infty} \mathbb{P}(T \ge i).$
Doob's Upcrossing Inequality	Let $a < b$, and $U_n[a,b]$ the # of upcrossings from $a \to b$ by n . If X_n is submart, then $\mathbb{E}[U_n[a,b]] \leq \frac{\mathbb{E}[(X_n-a)^+] - \mathbb{E}[(X_0-a)^+]}{b-a}$
Martingale Convergence	Suppose that $(X_n)_{n\geq 0}$ is a sub-martingale with $\sup_n \mathbb{E}[X_n^+] < \infty$ Then for some <i>X</i> , we have $X_n \to X$ a.s., where $\mathbb{E} X < \infty$.
L ¹ -Bounded Martingale Convergence	If $(X_n)_{n\geq 0}$ is a martingale with $\sup_n \mathbb{E} X_n < \infty$, then $X_n \to X$ a.s. and $\mathbb{E} X < \infty$.
Non-negative Super-Mart Convergence	If $(X_n)_{n\geq 0}$ is a super-martingale with $X_n \geq 0$, then $X_n \to X$ a.s. and $\mathbb{E}[X] \leq \mathbb{E}[X_0]$

4/22/2020 Jodin Morey

2nd Borel-Cantelli Lemma	Let \mathcal{F}_n be filtration $w/\mathcal{F}_0 = \{\emptyset, \Omega\}$ and A_n events $w/A_n \in \mathcal{F}_n$. Then, $\{A_n \text{ i.o.}\} = \{\sum_{n=1}^{\infty} \mathbb{P}(A_n \mathcal{F}_{n-1}) = \infty\}$. If $A_n = X_n < \varepsilon \implies A_n \xrightarrow{a.s.} 0$. If $A_n = X_n > \varepsilon \implies X_n \xrightarrow{a.s.} 0$.
Radon-Nikodym Martingale Thm	Let μ be finite, ν a prob. measure, $\mathcal{F}_n \uparrow \mathcal{F}$ be σ -fields, and μ_n , ν_n be restrictions of μ , ν to \mathcal{F}_n . If $\mu_n \ll \nu_n$, $\forall n$, and we let $X_n = d\mu_n/d\nu_n$. Then, X_n is a martingale wrt \mathcal{F}_n .
Galton-Watson Thm	$\begin{aligned} \xi_i^n \text{ iid nonnegative integer r.v.s } w/\mu &:= \mathbb{E}[\xi_i^n] \in (0,\infty). \\ \text{Let } Z_0 &:= 1, Z_{n+1} &:= \{\xi_1^n + \ldots + \xi_{Z_n}^n, \text{ if } Z_n > 0; \text{ or } 0 \text{ otherwise.} \\ \text{Then, } \frac{Z_n}{\mu^n} \text{ is a mart wrt } \mathcal{F}_n &= \sigma(\xi_i^m : i \ge 1, 0 \le m < n). \end{aligned}$
Galton-Watson Conclusions	If $\mu < 1$, then $Z_n = 0 \forall n$ sufficiently large, so $Z_n/\mu^n \to 0$ If $\mu = 1$ and $\mathbb{P}(\xi_i^m = 1) < 1$, then $Z_n = 0$, $\forall n$ sufficiently large. If $\mu > 1$, then $\rho < 1$, that is, $\mathbb{P}(Z_n > 0 \text{ for all } n) > 0$.
Stopping Time Submart Ineq. (or mart)	If X_m is submart & <i>T</i> is stopping time w/ $\mathbb{P}(T \le k) = 1$, for some $k \in \mathbb{Z}_+$, then $\mathbb{E}[X_0] \le \mathbb{E}[X_T] \le \mathbb{E}[X_k]$. (or $\mathbb{E}[X_0] = \mathbb{E}[X_T] = \mathbb{E}[X_k]$ for mart)
Doob's Maximal Inequality	Let X_m be nonnegative submart, $X_n^* = \max_{0 \le m \le n} X_m$, $\lambda > 0$, and $A = \{X_n^* \ge \lambda\}$. Then, $\mathbb{P}(A) \le \frac{1}{\lambda} \mathbb{E}[X_n 1_A] \le \frac{1}{\lambda} \mathbb{E}[X_n]$.
$\boxed{\mathbb{E}[X_n 1_A] = \mathbb{E}[X_{n-1} 1_A], \ \forall A \in \mathcal{F}_{n-1} \Leftrightarrow}$	$\mathbb{E}[X_n \mathcal{F}_{n-1}] = X_{n-1}.$
<i>L^p</i> -Convergence Thm for Martingales	Suppose X_n is mart w/sup $\mathbb{E}[X_n ^p] < \infty$ for some $p > 1$. Then, $X_n \to X$ a.s. and in L^p .
Uniform Integrability	Family of r.v.s $(X_{\alpha})_{\alpha \in \Lambda}$ is uniformly integrable (<i>UI</i>) if $\sup_{\alpha \in \Lambda} \mathbb{E}[X_{\alpha} _{\{ X_{\alpha} > M\}}] \to 0$ as $M \to \infty$. Remrk: Since $\mathbb{E} X_{\alpha} \leq M + \mathbb{E}[X_{\alpha} _{\{ X_{\alpha} > M\}}]$, then $UI \Rightarrow L^{1}$ -bounded
Sub σ-field UI Lemma	Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Then, $\{\mathbb{E}[X \mathcal{G}] : \mathcal{G} \text{ a } \sigma$ -field $\subset \mathcal{F}\}$ is uniformly integrable.
Convergence in Prob Equivalency Thm	If $X_n \to X$ in probability, then $TFAE : \blacklozenge \{X_n : n \ge 0\}$ is uniformly integrable $\blacklozenge X_n \to X$ in L^1 ($\mathbb{E} X_n - X \to 0$) $\blacklozenge \mathbb{E} X_n \to \mathbb{E} X < \infty$. [Note: L^1 convergence \Rightarrow convergent in probability and UI]

Martingale Convergence	If $X_n \xrightarrow{p} X$,
in Probability Corollary	$(X_n)_{n\geq 0}$ is $UI \Leftrightarrow X_n \stackrel{L^1}{\rightarrow} X.$
	$ X_n \leq Y$ for some $Y \in L^1$, then $X_n \xrightarrow{L^1} X$
Sub-martingale Equivalencies Thm	$(X_n)_{n\geq 0}$ is UI. $(X_n)_{n\geq 0}$ is UI.
For a submart X_n , TFAE:	• X_n converges in L^1 . Also, if $(X_n)_{n\geq 0}$ is a martingale, then
	$\blacklozenge \exists \text{ integrable r.v. } X \text{ so that } X_n = \mathbb{E}[X \mathcal{F}_n].$
Levy's 0-1 Law	Suppose that $\mathcal{F}_n \uparrow \mathcal{F}_\infty := \sigma(\cup_n \mathcal{F}_n).$
	and $A \in \mathcal{F}_{\infty}$, then $\mathbb{E}[1_A \mathcal{F}_n] \rightarrow 1_A$ a.s
	From which you can conclude Kolmogorov's 0-1.
Levy's Forward Law	Suppose that $\mathcal{F}_n \uparrow \mathcal{F}_\infty := \sigma(\bigcup_n \mathcal{F}_n).$
	If $X \in L^1$, then $\mathbb{E}[X \mathcal{F}_n] \to \mathbb{E}[X \mathcal{F}_\infty]$ a.s. and in L^1 .
Kolmogorov's 0-1 Law	ξ_1, ξ_2, \dots be independent r.v.s and $\mathcal{F}_n = \sigma(\xi_1, \xi_2, \dots, \xi_n), \forall n$.
	Let $\mathbf{T} = \bigcap_{k=1}^{\infty} \sigma(\xi_k, \xi_{k+1},)$ be tail σ -field.
	Then $\forall A \in \mathcal{T}, \mathbb{P}(A) \in \{0,1\}.$
DCT for Filtered	Suppose $Y_n \to Y$ a.s. and $ Y_n \le Z$, $\forall n$ where $\mathbb{E}[Z] < \infty$.
Conditional Expectation	If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$ then $\mathbb{E}[Y_n \mathcal{F}_n] \to \mathbb{E}[Y \mathcal{F}_\infty]$ a.s.
	$\mathcal{F}_{\infty} = \sigma(\cup_n \mathcal{F})$
Backward Martingale	Let $(\mathcal{F}_{-n})_{n>0}$ be sub- σ -fields, w/ $\subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_{0}$.
	$\blacklozenge X_{-n} \in \mathcal{F}_{-n} \text{ for each } n \in \mathbb{Z}_+. \blacklozenge X_{-n} \in L^1 \text{ for each } n \in \mathbb{Z}_+.$
	$\bullet \mathbb{E}[X_{-n} \mathcal{F}_{-(n+1)}] = X_{-(n+1)} \text{ for each } n \in \mathbb{Z}_+.$
Example of UI Martingale	For reverse martingale: clearly $\mathbb{E}[X_0 \mathcal{F}_n] = X_n$ for each $n \in \mathbb{Z}_+$
	Hence, if (X_{-n}) , is a reverse martingale, then it is UI.
	Proof: $\mathbb{E}[X_0] < \infty$, so by Sub σ -field UI Lemma, $\mathbb{E}[X_0 \mathcal{F}_{-n}]$ is UI.
Convoyance of Deverse Most Thm	$\mathbf{I} \text{ at } (\mathbf{V}_{\mathbf{v}}) \text{ he reverse ment}$
Convergence of Reverse Mart 1 mm	Let $(X_{-n})_{n \ge 0}$ be reverse mart.
	Then $X_{-n} \rightarrow X_{-\infty}$ a.s. and in L^{\perp} .
	Moreover, $\mathbb{E}[X_0 \mathcal{F}_{-\infty}] = X_{-\infty}$ where $\mathcal{F}_{-\infty} = \bigcap_{n \in \mathbb{Z}_+} \mathcal{F}_{-n}$.
Levy's Backward Law	Let $Y \in L^1$. Suppose decreasing σ -fields $\mathcal{G}_0 \supseteq \mathcal{G}_1 \supseteq \mathcal{G}_2 \supseteq$
	and $\mathcal{G}_{\infty} = \bigcap_{n=0}^{\infty} \mathcal{G}_n$. Then, $\mathbb{E}[Y \mathcal{G}_n] \to \mathbb{E}[Y \mathcal{G}_{\infty}]$ a.s. and in L^1

Exchangeable Sequence	X_n , where for each n ,	
	$(X_1, X_2, \ldots, X_n) \stackrel{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}), \forall \text{ permutations } \pi.$	
de Finetti's Thm	If X_n are exchangeable, then, conditional on ε ,	
	we have X_1, X_2, \ldots are jid.	
Optional Stopping σ -field \mathcal{F}_T	Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ and <i>T</i> be stopping time.	
	Denote by \mathcal{F}_T , the σ -field of "events which occur prior to time T."	
	In symbols: $\mathcal{F}_T := \left\{ A \in \mathcal{F} : A \cap \{T \leq n\} \in \mathcal{F}_n, \ \forall n \geq 0 \right\}.$	
Optional Stopping Proposition	If <i>I</i> is stopping time, then \mathcal{F}_T is σ -field & <i>I</i> is \mathcal{F}_T -measure If $\mathcal{F}_T = \mathcal{F}_T$	
	If $S \leq T$ is stopping time, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.	
	Let <i>I</i> be stopping time w/ $\mathbb{P}(T < \infty) = 1 \& X_n$ be adapted, then $X_T \in \mathcal{F}_T$	
UI SubMart Stopping Time Closure	If $(X_n)_{n>0}$ is <i>UI</i> sub-mart, then for any stopping time <i>T</i> ,	
	$(X_{T\wedge n})_{n>0}$ is UI	
UI SubMart Stopping Time Ineq.	If X_n is UI submart, then \forall stopping time $T \leq \infty$, we have:	
	$\mathbb{E}[X_0] < \mathbb{E}[X_T] < \mathbb{E}[X_\infty]$, where $X_\infty = \lim X_N$	
Optional Stopping Thm	If S.T are stopping times $w/\mathbb{P}(S \le T \le \infty) = 1$.	
for SubMarts	and $(X_{T \wedge r})$, is UI submart, then $\mathbb{E}[X_T \mathcal{F}_S] > X_S$ a.s.	
(or mart)	Consequently $\mathbb{E}[X_r] < \mathbb{E}[X_r]$ (switch to ='s for mart)	
	$\mathbb{E}_{[X_1]} = \mathbb{E}_{[X_1]} $ (switch to s for matrix)	
Finite Differences Suppose X_n is a submart and $\mathbb{E}[X_{n+1} - X_n : \mathcal{F}_n] \le B$ a.s		
Submartingale If <i>T</i> is a stopping time $w/\mathbb{E}[T] < \infty$, then		
w/Stopping Times $X_{T \wedge n}$ is uniformly integrable and hence $\mathbb{E}[X_T] \ge \mathbb{E}[X_0]$		
Nonneg SuperMart X_n is nonnegative supermart and $T \leq \infty$ is stopping time,		
Stopping Time Thm the	en $\mathbb{E}[X_0] \ge \mathbb{E}[X_T]$ where $X_{\infty} = \lim X_n$	
Agymmetric Cimple DW		
Asymmetric Simple KW ξ_1, ξ_2	$\sum_{j=1}^{n} \lim_{k \to \infty} S_n := \zeta_1 + \dots + \zeta_n, \ \mathbb{P}(\zeta_i = 1) = p, \ \mathbb{P}(\zeta_i = -1) = q = 1 - p, \ \text{with} \ \frac{1}{2} > p < 1$	
w/generating fact $\varphi(x) := \varphi(x) $	$:=(\frac{q}{p}) \Rightarrow \varphi(S_n) \text{ is mart. } T_x = \inf\{n : S_n = x\}, a < 0 < b \Rightarrow \mathbb{P}(T_a < T_b) = \frac{\varphi(b) - \varphi(b)}{\varphi(b) - \varphi(a)}$	
$\left \sum_{k \ge 0} p_k x^k \mathbf{w} / p_k := \mathbb{P}(\xi_i = k) \right a < 0$	$\Rightarrow \mathbb{P}(\min_{n} S_{n} \leq a) = \mathbb{P}(T_{a} < \infty) = \left(\frac{1-p}{p}\right)^{-a}, b > 0 \Rightarrow \mathbb{P}(T_{b} < \infty) = 1 \& \mathbb{E}[T_{b}] = \frac{b}{2p-1}$	

Mart Bounded Increment	ts
------------------------	----

Let X_1, X_2, \ldots be a martingale with $ X_{n+1} - X_n \le M < \infty$.
Let $C := \{\lim X_n \text{ exists and finite}\},\$
and $D := \{ \limsup X_n = +\infty \text{ and } \limsup X_n = -\infty \}$. Then, $P(C \cup D) = 1$

Markov Chains

Example such that $\sup_{n\geq 1} \mathbb{E} \mathbf{X}_n < \infty$ but $(X_n)_{n\geq 1}$ are not uniformly integrable	Let $\Omega = [0, 1]$ with Lebesgue measure, and $X_n = n \cdot 1_{[0, \frac{1}{n}]}$. Then the X_n are bounded in L^1 , but not uniformly integrable.
Convergence in Probability	A sequence $\{X_n\}$ of random variables converges in probability towards the random variable <i>X</i> if for all $\varepsilon > 0$, we have: $\lim_{n \to \infty} P(X_n - X > \varepsilon) = 0.$
Convergence in Distribution (Weak Convergence):	Let X_n, X be r.v.s w/CDFs F_n & F resp. We say that $X_n \xrightarrow{d} X$ or $X_n \Rightarrow X$ if $F_n(x) \to F(x) \forall x$ where F continuous at x (C_F). If above holds, then $\pi_n \xrightarrow{d} \pi$, where π_n and π are distributions of X_n/X resp.
Convergence Almost Surely	To say that the sequence X_n converges a.s., almost everywhere, with probability 1, or strongly towards <i>X</i> means that $\mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1.$
Markov Chain	An $(\mathcal{F}_n)_{n\geq 0}$ -adapted stochastic process $(X_n)_{n\geq 0}$ taking values in (S, S) is called a Markov chain if it has the Markov Property : $\mathbb{P}(X_{n+1} \in B \mathcal{F}_n) = \mathbb{P}(X_{n+1} \in B X_n)$ a.s. for each $B \in S$, $n \geq 0$.
Markov Chain Transition Probability	We define a Markov chain's $(X_n)_{n\geq 0}$ transition probabilities $(p_n)_{n\geq 0}$ as $\mathbb{P}(X_{n+1} \in B \mathcal{F}_n) =: p_n(X_n, B)$ almost surely for each $n \geq 0$ and $B \in \mathcal{S}$.
Transition Matrix	probability of moving from <i>i</i> to <i>j</i> in one time step is $\mathbb{P}(j i) =: p_{ij}$, if we put these into a matrix, we have the transition matrix $p = [p_{ij}]$.
Time Homogeneous Markov Chain	A Markov chain in which the transition probabilities
(finite dimensional, continuous state space)	are all the same $p_n = p$ for all time $n \ge 0$.
Markov Chain Distributions	$X_n \text{ is Markov w/trans. prob. } (p_n)_{n \ge 0} \& \text{ init. dist. } \mu, \text{ then finite}$ dimensional dist. are given by $\mathbb{P}(X_0 \in A_0, X_1 \in A_1, \dots, X_k \in A_k)$ $= \int_{A_0} \mu(dx_0) \int_{A_1} p_0(x_0, dx_1) \dots \int_{A_k} p_k(x_{k-1}, dx_k)$
Strengthened Markov Prop.	$\boldsymbol{\mathcal{F}}_n := \sigma(X_0, \dots, X_n) \cdot \theta : S^{\mathbb{Z}_+} \to S^{\mathbb{Z}_+} \text{ where } \theta(x_0, x_1, \dots) = (x_1, x_2, \dots)$
Let X_n be Markov w/init dist μ .	For any bounded measurable function $f: S^{\mathbb{Z}_+} \to \mathbb{R}$,
X_n coordinate maps on $\left(S^{\mathbb{Z}_+},S^{\mathbb{Z}_+},P_{\mu} ight)$	and any $k \ge 0$, $\mathbb{E}_{\mu}[f \circ \theta^k \mathcal{F}_k] = \mathbb{E}_{X_k}[f] \mathbb{P}_{\mu}$ - a.s.

Chapman-Kolmogorov Equation	$\mathbb{P}_{x}(X_{m+n} = z) = \Sigma_{y}\mathbb{P}_{x}(X_{m} = y)\mathbb{P}_{y}(X_{n} = z)$ for each $m, n \in \mathbb{Z}^{+}$.
Absorbing	A state <i>a</i> is called absorbing if $\mathbb{P}_a(X_1 = a) = 1$.
Strong Markov Property	For any bounded measurable function $f : S^{\mathbb{Z}_+} \to \mathbb{R}$ and for any stopping time T , $\mathbb{E}_{\mu}[f \circ \theta^T \mathcal{F}_T] = \mathbb{E}_{X_T}[f] \text{ on } \{T < \infty\} \mathbb{P}_{\mu}\text{- a.s.}$
Reflection Principle	Let $\xi_1, \xi_2,$ be iid w/distribution symmetric about 0. Let $S_n = \xi_1 + + \xi_n$. If $a > 0$, then $\mathbb{P}(\sup_{m \le n} S_m > a) \le 2\mathbb{P}(S_n > a)$.
kth Return to y	Let $T_y^0 := 0$, and for $k \ge 1$, let $T_y^k := \inf\{n > T_y^{k-1} : X_n = y\}$, the time of the <i>k</i> th return to <i>y</i> .
ρ _{yz}	$\mathbb{P}_{y}(T_{z} < \infty)$
Finite kth Return Prob. to <i>z</i> starting at <i>y</i> :	For $k \ge 1$, $\mathbb{P}_{y}(T_{z}^{k} < \infty) = \rho_{yz}\rho_{zz}^{k-1}$.
Recurrent	A state $v \in S$ is called recurrent if $\rho_{vv} = 1$
(for Markov)	and is called transient if $\rho_{yy} < 1$.
If y is recurrent, then $P_y(X_n = y \text{ i.o.}) =$	$\lim_{k\to\infty} \mathbb{P}_y(T_y^k < \infty) = \lim_k \rho_{yy}^k = 1.$
If y is transient, then $P_y(X_n = y \text{ i.o.})$	$=\lim_{k}\rho_{yy}^{k}=0.$
Total number of visits to y by the Markov chain X_n is notated as $N(y) :=$	$\sum_{n=1}^{\infty} 1_{\{X_n=y\}}.$
4/22/2020 Jodin Morey	11

A state *x* leads to, or is accessible from another state $y \neq x$, denoted by $x \rightarrow y$, if:

Communicating Class

Irreducible Subset

Irreducible Markov Chain

Properties when *x* **is recurrent**

and $\rho_{xy} > 0$

Closed Subset of States

Is a recurrent class *C* closed, open, neither?

In a finite state Markov chain, a class is recurrent (respectively transient) if and only if:

Birth & Death Chains X_n on $\{0, 1, 2, ...\}$. $p_i := p(i, i + 1), q_i := p(i, i - 1), r_i := p(i, i)$ Let: $\varphi(0) := 0, \varphi(1) := 1$, and $\varphi(k + 1) = ?$

Birth Death Chain: the state 0 is recurrent if and only if $\rho_{xy} > 0$ (or equivalently, for some $n \ge 1$, $p^n(x,y) > 0$). Formally, $x \to y$ if $\exists n_{xy} \ge 0$ such that $\mathbb{P}(X_{n_{xy}} = y|X_0 = x) = p_{xy}^{(n_{xy})} > 0$

" \leftrightarrow " is an equivalence relation. Therefore, there is a partition C_1, C_2 of S,

with each block C_i being referred to as a communicating class.

A closed subset $A \subseteq S$ is called irreducible if $x \leftrightarrow y$ for all $x, y \in A$. By definition, each class is irreducible.

Markov *chain* is **irreducible** if it is possible to get to any state from any state. Formally, Markov chain is **irreducible** if its state space is a single communicating class, i.e., $x \leftrightarrow y$, $\forall x, y \in S$

i) $\rho_{yx} = 1$, ii) y is recurrent, iii) $\rho_{xy} = 1$.

We call a subset of states $A \subseteq S$ closed if $\rho_{xy} = 0$ for all $x \in A$ and $y \notin A$

Closed.

:-)

it is closed (respectively not closed).

For $X_n = k \ge 1$, $\varphi(k+1) = \varphi(k) + \frac{q_k}{p_k}(\varphi(k) - \varphi(k-1))$. For irreducible: $\varphi(m+1) = \varphi(m) + \prod_{j=1}^m \frac{q_j}{p_j}$ for $m \ge 1$, and $\varphi(n) = \sum_{m=0}^{n-1} \prod_{j=1}^m \frac{q_j}{p_j}$ for $n \ge 1$.

$$\begin{split} \varphi(M) &\to \infty \text{ as } M \to \infty, \text{ that is:} \\ \varphi(\infty) &\equiv \sum_{m=0}^{\infty} \prod_{j=1}^{m} \frac{q_j}{p_j} = \infty. \\ \text{If } \varphi(\infty) < \infty, \text{ then } \mathbb{P}_x(T_0 = \infty) = \frac{\varphi(x)}{\varphi(\infty)}. \end{split}$$

Stationary/Invariant Measure μ

Stationary/Invariant Distribution π

Suppose p is irreducible. A necessary and sufficient condition for the existence of a reversible measure is

Recurrent Time in y $\mu_x(y) :=$

Positive Recurrent

Null-Recurrent

If a chain is finite and irreducible, then there exists:

If $\{X_n\}$ is positive recurrent,

then for every $x, y \in S$:

For an irreducible, positive recurrent Markov chain, what quality does the stat./invariant distribution π have?

For an irreducible and recurrent chain, the following are true.

If π is a stat/invariant distribution of a Markov chain and $\pi(x) > 0$, then $\mu P = \mu : \mu(y) = \sum_{x \in S} \mu(x) p(x, y).$ (μ is left eigenvector of p). The last equation says $\mathbb{P}_{\mu}(X_1 = y) = \mu(y)$. Using the Markov property and induction, we have $\mathbb{P}_{\mu}(X_n = y) = \mu(y) \ \forall n \ge 1$.

Stationary/invariant measure that is a probability measure. $\pi p = \pi : \pi(y) = \sum_{x \in S} \pi(x) p(x, y)$, and $\sum_{x \in S} \pi(x) = 1$. It represents a possible equilibrium for the chain.

i) p(x,y) > 0 implies p(y,x) > 0, and ii) for any loop $x_0, ..., x_n = x_0$ with $\prod_{1 \le i \le n} p(x_i, x_{i-1}) > 0$, $\prod_{i=1}^n \frac{p(x_{i-1}, x_i)}{p(x_i, x_{i-1})} = 1$.

Define $\mu_x(y)$ as the expected time spent in *y* between visits to *x*.

 $\mathbb{E}_{x}[T_{x}] = \sum_{n=1}^{\infty} n \mathbb{P}(T_{x} = n) = \sum_{y \in S} \mu_{x}(y) < \infty,$ and $\mathbb{P}_{x}(T_{x} < \infty) = 1.$ **Positive Recurrent** \Rightarrow Recurrent

 $x \in S$ is said to be null recurrent if $\mathbb{P}_x(T_x < \infty) = 1$, but $\mathbb{E}_x[T_x] = \infty$. If $\{X_n\}$ is **recurrent** but not **null recurrent** then it is called **positive recurrent**. X_n is null recurrent if all X_i are null recurrent.

A unique stationary/invariant distribution π , and it is positive recurrent.

 $\lim p^n(x,y) = \pi(y) > 0 \text{ where } \pi : S \to [0,1]$

is the stationary/invariant distribution.

 $p^n(x,y) := \frac{1}{n} \Sigma_n(X_n = y | X_0 = x)$

It's unique!

• Stat. measures are unique up to constant multiples.

• μ a stat. measure $\Rightarrow \mu(x) > 0, \forall x$. • Stat. dist. π , if exists, is unique

• Stat. measure has infinite mass \Rightarrow Stat. dist. π cannot exist.

then *x* is recurrent.

For an irreducible Markov chain, the following are equivalent. If p irreducible and has stat. dist. π , then any other stationary measure is **Doubly Stochastic Stationary Sequence Reversible Measure Aperiodic Markov Chain** What could cause $d_x = d_y$? If $x \leftrightarrow y$. If $d_x = 1$, then $\exists n_0 \ge 1$ such that: An irreducible aperiodic Markov chain has the following property: for each $x, y \in S$, there exists: Irreducible Aperiodic Markov X_n is Null Recurrent if: **Markov Chain Convergence Theorem**

i) There exists $x \in S$ that is positive recurrent.

ii) There exists a stationary distribution π .

iii) Every state is positive recurrent.

a multiple of π .

Prob. transition matrix $p_{ij} = \mathbb{P}(X_{n+1} = j | X_n = i)$ is doubly stochastic if $\Sigma_i p_{ij} = 1 \ \forall j \text{ and } \Sigma_j p_{ij} = 1 \ \forall i$. Uniform distribution is stat. dist. of $p \Leftrightarrow p_{ij}$ is doubly stochastic

 $(X_n)_{n\geq 0}$ is stationary if $(X_n, X_{n+1}, \dots) \stackrel{d}{=} (X_0, X_1, \dots), \forall n \geq 0$ or equivalently, $(X_n, X_{n+1}, \dots, X_{n+m}) \stackrel{d}{=} (X_0, X_1, \dots, X_m), \forall n, m \ge 0$ Exchangeable sequences are stationary.

measure μ such that $\mu(x)p(x, y) = \mu(y)p(y, x)$. Is always stationary since $\sum_{x \in S} \mu(x) p(x, y) = \sum_{x \in S} \mu(y) p(y, x) = \mu(y)$, i.e., it is invariant under multiplication by *p*.

For $x, I_x := \{n \ge 1 : p_n(x, x) > 0\}$. Let d_x be the GCD of I_x x has period d_x . If every state of a Markov chain has period 1, then we call the chain aperiodic.

In other words, if $\rho_{xy} > 0$ and $\rho_{yx} > 0$.

 $p^n(x,x) > 0$ for all $n \ge n_0$. e.g., if $I_x = \{5, 7\}$.

 $n_0 = n_0(x, y) \ge 1$ such that $p^n(x, y) > 0$ for all $n \ge n_0$.

 $\{X_n\}$ is **recurrent** and $\lim_{n\to\infty} p_n(x,y) = 0$ for all $x, y \in S$.

Consider irreducible, aperiodic Markov with stat. dist. π Then, $p^n(x, y) \to \pi(y)$ as $n \to \infty$, for all $x, y \in S$.

4/22/2020 Jodin Morey **Total Variation Distance**

Coupled Markov Chain. Let μ , ν be prob. measures on countable S, & $(X_n, Y_n)_{n\geq 0}$ on product space $S \times S$.

Markov Recurrent Corollary

A state X is Recurrent \Leftrightarrow

Asymptotic Density of Returns where $N_n(y) := \sum_{m=1}^n 1_{\{X_m = y\}}$, is # visits to y by *n*. Let $y \in S$ recurrent. Then $\lim_{n \to \infty} \frac{N_n(y)}{n} =$

For a Markov chain and any $x, y \in S$, if $N(y) := \sum_{n=1}^{\infty} 1_{\{X_n = y\}}$ is total # visits to y, then we have $\mathbb{E}_x[N(y)] =$

Markov Prob Calculations on Countable Space

To test whether a recurrent state is postive-recurent or null-recurrent, we compute the mean return time:

For a Markov chain and any $x, y \in S$, if $N(y) := \sum_{n=1}^{\infty} 1_{\{X_n=y\}}$ is total # visits to y, then we have $P_x(N(y) = k) =$

Consider Markov X_n started from

stat. dist. π & trans. matrix p. Fix $N \ge 1$ & $Y_n := X_{N-n}$ for $n = 0, 1, \dots, N$. Then:

Birth Death Chain:

For any $c \in R$, let $T_c = \inf\{n \ge 1 : X_n = c\}$,

For two probability measures μ , v on S their total variation distance is given by:

 $d_{TV}(\mu, v) := 1/2 \sum_{x \in S} |\mu(x) - v(x)| = sup_{A \subseteq S} |\mu(A) - v(A)|$

Chain is coupled if: i) marginals $X_n \& Y_n$ are Markov w/same p & init. dist. μ, ν resp.

ii) $X_n = Y_n$ for $n \ge T$, where $T := \inf\{n \ge 0 : X_n = Y_n\}$.

A state $x \in S$ is **recurrent** if and only if $\mathbb{E}_x[N(x)] = \sum_{n=1}^{\infty} p^n(x,x) = \infty,$ where $N(y) := \sum_{n=1}^{\infty} 1_{\{X_n = y\}}$ is total # visits to y.

 $\frac{1}{\mathbb{E}_{y}[T_{y}]} \mathbf{1}_{\{T_{y} < \infty\}} \mathbb{P}_{y}\text{-} \text{ a.s.}$

 $\frac{\rho_{xy}}{1-\rho_{yy}} = \sum_{n=1}^{\infty} p^n(x,y)$ (where we interpret $\frac{0}{0} = 0$, $\frac{c}{0} = +\infty$ for c > 0)

 X_n be Markov on countable set *S* w/transition matrix *p* & init. dist. μ a) $\mathbb{P}(X_0 = i_0, X_1 = i_1, ..., X_n = i_n) = \mu(i_0)p_0(i_0, i_1)...p_{n-1}(i_{n-1}, i_n)$ b) $\mathbb{P}(X_n = j | X_0 = i) = (p^n)(i,j)$. c) $\mathbb{P}(X_n = j) = \sum_{i \in S} \mu(i)(p^n)(i,j)$

If $\mathbb{E}_x[T_x] = \sum_{n=1}^{\infty} np^n(x,x) = \infty$, is null-recurrent. And if $\mathbb{E}_x[T_x] < \infty$, is positive recurrent.

 $\rho_{xy}\rho_{yy}^{k-1}(1-\rho_{yy}^k)$

 $(Y_n)_{0 \le n \le N}$ is a time-homogeneous Markov chain with initial distribution π and transition matrix q given by $q(x, y) = \frac{\pi(y)p(y,x)}{\pi(x)}$

 $\frac{\varphi(b)-\varphi(x)}{\varphi(b)-\varphi(a)}$, and $\mathbb{P}_x(T_b < T_a) = \frac{\varphi(x)-\varphi(a)}{\varphi(b)-\varphi(a)}$

If a < x < b, then: $\mathbb{P}_x(T_a < T_b) =$

Stationary/Invariant Measure Theorem Let *x* be a recurrent state. Then: $\mu_x(y) :=$

Pairs of states x, y communicate, denoted by $x \leftrightarrow y$, if:

Suppose Markov irreducible & recurrent. Let μ be stat. measure w/ $\mu(y) > 0$, $\forall y \in S$. If v is another stat. measure, then

Stat./Invariant Distribution π : Suppose that *S* is finite and *p* is irreducible. Then:

On a Markov chain, if *C* is a finite closed set, then it contains...

Calculating Stat./Invariant Distribution

If *p* is irreducible and has stat. distribution π ,

then $\pi(x) =$

Birth Death Chain: If *S* **irreducible**, $\varphi \ge 0$ **w**/*E*_{*x*}[$\varphi(X_1)$] $\le \varphi(x)$ for $x \notin F$ (finite set), **and** $\lim_{x \to \infty} \varphi(x) \to \infty$ as $x \to \infty$, then: $\mathbb{E}_{x}\left[\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}}\right] = \sum_{n=0}^{\infty} \mathbb{P}_{x}(X_{n}=y, T_{x}>n),$

is a stationary measure

 $x \to y$ and $y \to x$. In other words, if $\rho_{xy} > 0$ and $\rho_{yx} > 0$.

 $\mu = cv$ for some c > 0.

there exists a unique solution to $\pi p = \pi$ with $\sum_{i \in S} \pi(i) = 1$ and $\pi(i) > 0$ for all $i \in S$.

at least one recurrent state. In particular, a finite closed class *C* is recurrent.

 $\frac{1}{\mathbb{E}_x[T_x]}$.

The Markov chain X_n is recurrent.