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Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity and
canonical bases of algebraic groups. They noticed recurring combinatorial
and algebraic structures.

Let them to define cluster algebras, which have now been linked to quiver
representations, Poisson geometry Teichmüller theory, tilting theory,
mathematical physics, discrete integrable systems, string theory, and many
other topics.

Cluster algebras are a certain class of commutative rings which have a
distinguished set of generators that are grouped into overlapping subsets,
called clusters, each having the same cardinality.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)
constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.
Construct the rest via Binomial Exchange Relations:

xαx ′α =
∏

x
d+

i
γi +

∏
x

d−i
γi .

The set of all such generators are known as Cluster Variables, and the
initial pattern of exchange relations (described as a valued quiver, i.e. a
directed graph) determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Example: Rank 2 Cluster Algebras

Let B =

[
0 b
−c 0

]
, b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

A(b, c) of rank 2. (E.g. when b = c , B = B(Q) where Q is a
2-vertex quiver with b arrows from v1 → v2.)

µ1(B) = µ2(B) = −B and x1x ′1 = xc
2 + 1, x2x ′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{
xb
n−1 + 1 if n is odd

xc
n−1 + 1 if n is even

.

Example (b = c = 1): (Finite Type, of Type A2)

x3 =
x2 + 1

x1
. x4 =

x3 + 1

x2
=

x2+1
x1

+ 1

x2
=

x1 + x2 + 1

x1x2
.

x5 =
x4 + 1

x3
=

x1+x2+1
x1x2

+ 1

(x2 + 1)/x1
=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)
=

x1 + 1

x2
. x6 = x1.
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Example: Rank 2 Cluster Algebras

Example (b = c = 2): (Affine Type, of Type Ã1)

x3 =
x2
2 + 1

x1
. x4 =

x2
3 + 1

x2
=

x4
2 + 2x2

2 + 1 + x2
1

x2
1 x2

.

x5 =
x2
4 + 1

x3
=

x6
2 + 3x4

2 + 3x2
2 + 1 + x4

1 + 2x2
1 + 2x2

1 x2
2

x3
1 x2

2

, . . .

If we let x1 = x2 = 1, we obtain {x3, x4, x5, x6} = {2, 5, 13, 34}.

The next number in the sequence is x7 = 342+1
13 = 1157

13 = 89, an integer!
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What is a Brane Tiling (in Physics & Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to

Decribe the world volume of both D3 and M2 branes, and describe
certain (3 + 1)-dimensional superconformal field theories arising in string
theory (Type II B).

In Algebraic Geometry, they are used to

Probe certain toric Calabi-Yau singularities, and relate to
non-commutative crepant resolutions and the 3-dimensional McKay
correspondence.

Certain examples of path algebras with relations (Jacobian Algebras) can
be constructed by a quiver and potential coming from a brane tiling.
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What is a Brane Tiling (Combinatorially)

However, this is a combinatorics talk, not a physics talk, so I will
henceforth focus on combinatorial motivation instead.

Most simply stated, a Brane Tiling is a Bipartite graph on a torus.

We view such a tiling as a doubly-periodic tiling of its universal cover, the
Euclidean plane.

Examples:

3

1

33

1

2 2

3

4

,

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Brane Tilings from a Quiver Q with Potential W

A Brane Tiling can be associated to a pair (Q,W ), where Q is a quiver
and W is a potential (called a superpotential in the physics literature).

A quiver Q is a directed graph where each edge is referred to as an arrow,
and multiple edges are allowed.

A potential W is a linear combination of cyclic paths in Q (possibly an
infinite linear combination).

For combinatorial purposes, we assume other conditions on (Q,W ), such
as

• Each arrow of Q appears in one term of W with a positive sign, and
one term with a negative sign.

• The number of terms of W with a positive sign equals the number
with a negative sign. All coefficients in W are ±1.
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Brane Tilings from a Quiver Q with Potential W

Example (The dP3 Quiver): QdP3 = Q =

4

6

1

3

5

2

,

W = A16A64A42A25A53A31 + A14A45A51 + A23A36A62

− A16A62A25A51 − A36A64A45A53 − A14A42A23A31.

We now unfold Q onto the plane, letting the three positive (resp. negative)
terms in W depict clockwise (resp. counter-clockwise) cycles on Q̃.
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Brane Tilings from a Quiver Q with Potential W

Example (continued):

Q =

4

6

1

3

5

2

unfolds to Q̃ =

6
6

6

F

A
D

B

A

C

F E F

F

B

D

C

5

3

5

3

3

5

3

1

2

4

4

4

1

2

1

2

4

1

2

W = A16A64A42A25A53A31(A) + A14A45A51 (B) + A23A36A62 (C )

− A16A62A25A51 (D) − A36A64A45A53 (E ) − A14A42A23A31(F ).

Locally, the configurations around vertices of Q and Q̃ are identical.
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Brane Tilings from a Quiver Q with Potential W

Taking the planar dual yields a bipartite graph on a torus (Brane Tiling):

6
6

6

F

A
D

B

A

C

F E F

F

B

D

C

5

3

5

3

3

5

3

1

2

4

4

4

1

2

1

2

4

1

2

Q̃ −→ TQ =

6

4

2

5

3

1

1

3

6

1

6

4

2

5

3

1

3

2

5

2

4

F

A
D

B

A

C

F F

F

B

D

E

B

E

C

B

D

C

Negative Term in W ←→ Counter-Clockwise cycle in Q̃ ←→ • in TQ
Positive Term in W ←→ Clockwise cycle in Q̃ ←→ ◦ in TQ
(To obtain Q̃ from TQ , we dualize edges so that white is on the right.)
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Brane Tilings from a Quiver Q with Potential W

Summarizing the dP3 Example:

Q

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

4
2

5
3

1

6

TQ

Negative Term in W ←→ Counter-Clockwise cycle in Q̃ ←→ • in TQ
Positive Term in W ←→ Clockwise cycle in Q̃ ←→ ◦ in TQ
(To obtain Q̃ from TQ , we dualize edges so that white is on the right.)
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Brane Tilings in Physics

Face ←→ U(N) Gauge Group

Edge ←→ Bifundamental Chiral Fields (Representations)

Vertex ←→ Gauge-invariant operator (Term in the Superpotential)

Together, this data yields a quiver gauge theory. One can apply Seiberg
duality to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.
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Description of Seiberg Duality (from physics)

From “Brane Dimers and Quiver Gauges Theories (2005) by Franco,
Hanany, Kennaway, Wegh, and Wecht:

After picking a node to dualize at: “Reverse the direction of all arrows
entering or exiting the dualized node. This is because Seiberg duality
requires that the dual quarks transform in the conjugate flavor
representations to the originals. ...

Next, draw in ... bifundamentals which correspond to composite (mesonic)
operators. ... the Seiberg mesons are promoted to the fields in the
bifundamental representation of the gauge group. ...

It is possible that this will make some fields massive, in which case the
appropriate fields should then be integrated out.”
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Description of Seiberg Duality (rephrased combinatorially)

Pick a vertex j of the quiver Q (equiv. face of the brane tiling TQ) at
which to mutate. Then, reverse the direction of all arrows incident to j ,
i.e. Aij → A∗ji . Next, for every two-path i → j → k, “meson”, in Q draw in
a new arrow i → k , “the Seiberg mesons are promoted to the fields”. Let
Q ′ denote this new quiver.

We similarly alter the superpotential W to get W ′. For every 2-path
i → j → k in Q, we replace any appearance of the product AijAjk in W
with the singleton Aik , and add or subtract a new degree 3-term, AikA∗kjA

∗
ji .

It is possible, that this will make some of the terms of W ′ of degree two,
“massive”, in which case there should be an associated 2-cycle in the
mutated quiver Q ′ that can be deleted, “the appropriate fields should then
be integrated out”.

This is in fact Mutation of Quivers with potential from cluster
algebras (as defined by Derksen-Weyman-Zelevinsky)!
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Description of Seiberg Duality (on the Brane Tiling)

In the special case, that we are mutating at a vertex with two arrows in
and out, a toric vertex, this corresponds to a Urban Renewal of a square
face in the brane tiling.

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4
with potential

W = A13A34A41 + A16A63A35A51 + A35A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A35A51 − A27A73A35A52 − A45A57A74.

Consider the corresponding Brane Tiling T (2,3)
7 and mutation of (Q,W )

at the toric vertex labeled 1. (Associated to Gale-Robinson Sequence)
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 with potential

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 Rotate potential terms containing 1

W = A41A13A34 + A51A16A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A41A16A62A24 − A34A46A63 − A51A13A
(H)
35 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Mutating at 1 yields

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting Massive terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting complementary terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A

(H)
53 A∗31A

∗
15 − A43A

∗
31A
∗
14 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Reduces the potential to

W ′′ = A56A63A
(V )
35 + A24A45A52 + A27A74A46A62 − A

(D)
46 A62A24 − A27A73A

(V )
35 A52

− A45A57A74 + A∗14A
(D)
46 A∗61 − A∗15A56A

∗
61 − A46A63A

∗
31A
∗
14 + A∗31A

∗
15A57A73.

2 4

2 4

5

2

5 7

4

7 2 4

5

5 7

7

3

3

3

16

16

13

6 1

6 3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34

If we cyclically permute vertices

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34 ←−

7

1

2

3
6

5 4

The cyclic permutation yields the original Brane Tiling and (Q,W )!

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2

←−

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Enter Combinatorics

The quiver QdP3 has a similar periodicity property.

4

6

1

3

5

2

∼=

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

µ1 µ2

If we mutate QdP3 by 1, 2, 3, 4, 5, 6, 1, 2, . . . , after the first two mutations,
we obtain same quiver back up to cyclically permuting the vertex labels.

Point: Mutating once in the Q
(r ,s)
N case, or twice in the QdP3 case, yields

a quiver with potential that is equivalent up to cyclic rotation.
Such quivers are called periodic in the Fordy-Marsh sense.
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Cluster Variable Mutation

In addition to the mutation of quivers, there is also a complementary
cluster mutation that can be defined.

Cluster mutation yields a sequence of Laurent polynomials in
Q(x1, x2, . . . , xn) known as cluster variables.

Given a quiver Q (the potential is irrelevant here) and an initial cluster
{x1, . . . , xN}, then mutating at vertex 1 yields a new cluster variable xN+1

defined by xN+1 =

 ∏
1→i∈Q

xi +
∏

i→1∈Q

xi

/x1.

Example (Q
(r ,s)
N ): In Q, 1→ r + 1, N − r + 1 and 1← s + 1, N − s + 1.

7

1

2

3
6

5 4 For r = 2, s = 3,N = 7, we get x8 = (x3x6 + x4x5) /x1.
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The Gale-Robinson Sequence

Example (Q
(r ,s)
N ): (e.g. r = 2, s = 3, N = 7)

7

1

2

3
6

5 4 →

7

1

2

3
6

45 ∼=

5

6

7

1

2

34

Mutating at 1, 2, 3, . . . ,N, 1, 2, . . . yields the same quiver, up to cyclic
permutation, at each step, hence we obtain the infinite sequence of
xN+1, xN+2, . . . satsifying

xn = (xn−r xn−N+r + xn−sxn−N+s) /xn−N for n > N.

Known as the Gale-Robinson Sequence of Laurent polynomials.
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The Gale-Robinson Sequence (with coefficients)

Example (Q
(r ,s)
N ): (e.g. r = 2, s = 3, N = 7)

5

3

2

7

1’

1 2’

3’

4’5’

7’

6’
6

4

We add N frozen vertices to Q
(r ,s)
N with incoming

arrows. Let yi denote the cluster variable corresponding to vertex i ′.

Mutating again at 1, 2, 3, . . . ,N, 1, 2, . . . (never at frozen vertices) yields a
infinite sequence of cluster variables with a more complicated recurrence:

xnxn−N = xn−rxn−N+r +
nY

i=1

y
d(N−n−i,s,n−s)
i xn−sxn−N+s for n > N.

where d(M, s, s ′) = # ways to write M as A · s + B · s ′ with A, B ∈ Z≥0
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Gale-Robinson Sequence Example

For Q
(2,3)
7 , x8 = x4x5y1+x3x6

x1
, x9 = x5x6y2+x4x7

x2
, x10 =

x1x6x7y1y3+x4x2
5 y1+x3x5x6

x1x3
,

x11 =
x2x4x5x7y1y2y4+x2x3x6x7y2y4+x1x5x2

6 y2+x1x4x6x7

x1x2x4
, . . .

x8 ↔
1

, x9 ↔
2

, x10 ↔
1 3

,

x11 ↔

2 4

1

, x12 ↔

1 3 5

2

1

, . . .
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Gale-Robinson Sequence Example (continued)

With Minimal Matchings Highlighted:

For Q
(2,3)
7 , x8 = x4x5y1+x3x6

x1
, x9 = x5x6y2+x4x7

x2
, x10 =

x1x6x7y1y3+x4x2
5 y1+x3x5x6

x1x3
,

x11 =
x2x4x5x7y1y2y4+x2x3x6x7y2y4+x1x5x2

6 y2+x1x4x6x7

x1x2x4
, . . .

x8 ↔
1

, x9 ↔
2

, x10 ↔
1 3

,

x11 ↔

2 4

1

, x12 ↔

1 3 5

2

1

, . . .
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Main Theorem (Jeong-M-Zhang)

For certain periodic quivers Q, which include the Gale-Robison quiver
family, the dP3 quiver, and some other 2-periodic quivers, we can use the
Brane Tiling TQ to obtain combinatorial formulas for an infinite sequence
of cluster variables in AQ .

For n > N, xn = cm(Gn)
∑

M= perfect matching of Gn

x(M)y(M), where

{Gn : n > N}’s are a collection of subgraphs of TQ , x(M) =
∏

edge e∈M
1

xixj

(for edge e straddling faces i and j), y(M) = height of M (recording what
faces need to be twisted to obtain matching M starting from the minimal
matching, and cm(Gn) = the covering monomial of the graph Gn (which
records what face labels are contained in Gn and along its boundary).

Remark: This weighting scheme is a reformulation of schemes appearing
in works of Speyer (“Octahedron Recurrence”) and Goncharov-Kenyon.
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Q =

7

1

2

3
6

5 4 TQ =

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Obtain pinecone graphs from Bousquet-Mélou, Propp, and West in terms
of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only
use weights (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Similar connections (without principal coefficients) also observed in
“Brane tilings and non-commutative geometry” by Richard Eager.

Eager uses physics terminology where he looks at Y p,q and La,b,c quiver
gauge theories, and their periodic Seiberg duality (i.e. quiver mutations).

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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dP3 Example (Mutating 1, 2, 3, 4, 5, 6, 1, 2, . . . )

Q −→ TQ :

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

4
2

5
3

1

6

5 1

4
2

1

3
1

2

4
2

1

3
1

2

3
1

2

3
1

26

5

4

5

6

3
4

2

1

4
2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

5 1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

3
1

2

1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

5

6

3

5

6

3

4
2

1

4
2

1

4
2

1

5 1

D2

D 3
2

D 1
2

D2

D 5
2

D3

1

3

2

1

4

2

5

3

6

5

4

6

1

4

2

5

3

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

1

4

2

5

3

6

1

3

2

5

3

6

5

3

6

5

3

6

1

4

2

1

4

2

5

3

6

5

4

6

5

4

6

5

4

6

1

3

2

1

3

2

5

4

6

1

3

2

1

3

2

1

3

2

1

4

2

5

3

6

5

4

6

1

4

2

5

3

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

5

3

6

1

4

2

1

4

2

5

3

6

1

3

2

5

3

6

5

3

6

5

3

6

1

4

2

1

4

2

5

3

6

5

4

6

5

4

6

5

4

6

1

3

2

1

3

2

5

4

6

1

3

2

1

3

2

s0

s1

s2

s3

s−1

s−2

1

3

2

5

4

6

1

4

2

5

3

6
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dP3 Example (Mutating 1, 2, 3, 4, 5, 6, 1, 2, . . . )

These subgraphs appear in work by Cottrell-Young and a subsequence of
them appear in M. Ciucu’s work “Perfect matchings and perfect
powers”, where they are called Aztec Dragons.

More on Aztec Dragons and the dP3 lattice shortly.

5 1

4
2

1

3
1

2

4
2

1

3
1

2

3
1

2

3
1

26

5

4

5

6

3
4

2

1

4
2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

5 1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26
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2

1

4
2

1

6

5

4

3
1
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1
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26
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4
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6
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3
1
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1
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26
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4
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6

3

5
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4
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1

4
2

1

4
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5 1
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D 3
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D 1
2

D2

D 5
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4
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4
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1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

3

2

5

4

6

1

4
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Hirzebruch Quiver F0: Aztec Diamonds and Fortresses

The quiver Q below is 2-periodic, as illustrated by mutating in order
1, 2, 3, 4, 1, 2, . . .

Q =

1

4

3

2 →

1

4

3

2 →

1

4

3

2 → . . .

2 4 2 4 2 4 2

13 13 313

2 4 2 4 2 4 2

13 13 313

2 4 2 4 2 4 2

13 13 313

2 4 2 4 2 4 2

1

1 3

4 2

2 11

1

1

1

4

4

3 3

2 2

221

1

42 211 3

2

2
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Hirzebruch Quiver F0: Aztec Diamonds and Fortresses

The quiver Q ′ below is 2-periodic, as illustrated by mutating in order
1, 2, 3, 4, 1, 2, . . .

Q ′ =

1

4

3

2 →

1

4

3

2 → . . .

3

1

33

1

2 2

3

4

Fortresses from M. Ciucu’s work “Perfect matchings and perfect
powers”.
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Non-periodic mutation sequences in F0

Q =

1

4

3

2 →

1

4

3

2 →

1

4

3

2 → . . .

If we instead mutate by 1, 2, 3, 2, 3, . . . or 1, 3, 2, 3, 2, . . . , we obtain
quivers where the number of arrows grows without bound.

Nonetheless, a combinatorial interpretation for the cluster variables is

1 2

11 3

2

2

11

11 3

2

3

2

2

11

11

11

2

3

2

3

2

3

2

. . . or 1 1 13

1 1

11

3

2

3

1 1

11

11 3

2

3

2

3

. . . .
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Non-periodic mutation sequences in the dP3 Lattice

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

4
2

5
3

1

6

Mutating at a vertex of dP3 and its antipode commute so a mutation such
as 1, 2, 1, 2 can be reordered to 1, 1, 2, 2, and hence is the identity.

Letting τ1 = µ1 ◦ µ2, τ2 = µ3 ◦ µ4, τ3 = µ5 ◦ µ6, the above can be written
as τ2

1 = τ2
2 = τ2

3 = 1.

As discussed with Pylyavskyy, we see the further relations
(τ1τ2)3 = (τ1τ3)3 = (τ2τ3)3 = 1, and it can be shown that there are no
other relations. Thus 〈τ1, τ2, τ3〉 ∼= Ã2.
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τ -Mutation-Sequences

We call a mutation sequence built out of a concatenation of τ1, τ2, and τ3
a τ -mutation sequence.

As an example, the periodic sequences 1, 2, 3, 4, 5, 6, 1, 2, . . . yielding the
Aztec Dragons, were examples of τ -mutation sequences given by
τ1, τ2, τ3, τ1, . . . .

Up to the Ã2 relations and relabeling vertices, other τ -mutation sequences
do not necessarily give new cluster variables.

First non-trivial τ -mutation sequence: τ1, τ2, τ1, τ3 = 1, 2, 3, 4, 1, 2, 5, 6
yields the following as the last cluster variable:

(x1x
2
2 x3

3 x4
5 + x3

2 x2
3 x4x

4
5 + 2x2

1 x2x
3
3 x3

5 x6 + 4x1x
2
2 x2

3 x4x
3
5 x6 + 2x3

2 x3x
2
4 x3

5 x6 + x3
1 x3

3 x2
5 x2

6

+ 5x2
1 x2x

2
3 x4x

2
5 x2

6 + 5x1x
2
2 x3x

2
4 x2

5 x2
6 + x3

2 x3
4 x2

5 x2
6 + 2x3

1 x2
3 x4x5x

3
6 + 4x2

1 x2x3x
2
4 x5x

3
6

+ 2x1x
2
2 x3

4 x5x
3
6 + x3

1 x3x
2
4 x4

6 + x2
1 x2x

3
4 x4

6 )/x2
1 x2

2 x2
3 x2

4 x6

What is a combinatorial interpretation of this Laurent polynomial?
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Aztec Castles

UMN 2013 REU Students Megan Leoni, Seth Neel, and Paxton Turner
investigated these non-periodic mutation sequences in the dP3 Lattice.

They developed a two-parameter family of graphs, Aztec Castles, to
encode cluster variables arising from τ -mutation sequences.

Example: xτ1,τ2,τ1,τ3 corresponds to

0!

0!

0!
2! 2!

4!

3!

3! 3!

1!

1! SE

N

NENW

W
SW .

(Up to a shift in indexing on faces by one.)
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Aztec Castles (cont.)

For a general τ -mutation sequence, due to Ã2 symmetry, the last cluster
variable can be associated to an alcove in the Ã2 Coxeter Lattice, i.e.
indexed by a pair (k, `).

More precisely, they cut the lattice into twelve “cones” and by symmetry it
suffices to describe the families of graphs for two adjacent cones.

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

(−1,−2)
(−1,−3)

(0,−2)(0,−1)
(0,−2)

(1,−1)
(1,−1)

(0,−3)

(1,−2)
(1,−2)

(2, 0)
(2, 0)

(2,−1)
(2,−1)

(1,−3)

(3, 1)
(3, 1)

(3, 0)
(3, 0)

(3,−1)
(3,−1)

(2,−3)

(3,−2)
(3,−2)

(4, 2)
(4, 2)

(4, 1)
(4, 1)

(4, 0)
(4, 0)

(4,−1)
(4,−1)

(4,−2)
(4,−2)

(3,−3)

(5, 3)
(5, 3)

(5, 2)
(5, 2)

(5, 1)
(5, 1)

(5, 0)
(5, 0)

(5,−1)
(5,−1)

(5,−2)
(5,−2)

(4,−3)

(6, 4)
(6, 4)

(6, 3)
(6, 3)

(6, 2)
(6, 2)

(6, 1)
(6, 1)

(6, 0)
(6, 0)

σ

σσ

σ

(2,−2)
(2,−2)

σ

σ σ σ

σ σ σ σ

σ σ σ σ σ

σ

σ

σ σ σ σ

σ σ σ σ

(2, 1)

(1, 0)

(3, 2)

(4, 3)

(5, 4)

D0

D1

D2

D3

D4

D5

D6

D7

D8

(6, 5)

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ
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Aztec Castles (cont.)

For a general τ -mutation sequence, due to Ã2 symmetry, the last cluster
variable can be associated to an alcove in the Ã2 Coxeter Lattice, i.e.
indexed by a pair (k, `).

More precisely, they cut the lattice into twelve “cones” and by symmetry it
suffices to describe the families of graphs for two adjacent cones.

Example (k = 2, ` = −2):

2!

2!

3!

3!

5!

6!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

1!

1!

1!
3!3!3!3!

2! 2! 2!0!

0!

0!

0!
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Open Problems and Work in Progress

• τ -mutation sequences and the periodic mutation sequences discussed are
examples of toric mutation sequences. Mutation only performed at
vertices with at most two incoming and two outgoing arrows.

“Colored BPS Pyramid Partition Functions, Quivers, and Cluster
Transformations” by Richard Eager and Sebastian Franco gives a recipe
for getting combinatorial interpretations for toric mutation sequences but
there is a gap for examples like τ1τ2τ1τ3.

Current work in progress with S. Franco to resolve this issue using their
formulation involving Jacobian algebras to find a general working recipe.

• Extend definition of heights to other cases to obtain cluster variables
with principal coefficients.

• Obtain more combinatorial interpretations for non-toric mutation
sequences (like the F0 case).
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Thank You For Listening

In-Jee Jeong, Bipartite Graphs, Quivers, and Cluster Variables, REU
Report, http://www.math.umn.edu/∼reiner/REU/Jeong2011.pdf

Sicong Zhang, Cluster Variables and Perfect Matchings of Subgraphs of
the dP3 Lattice, REU Report,
http://www.math.umn.edu/∼reiner/REU/Zhang2012.pdf

I. Jeong, G. Musiker, and S. Zhang. Gale-Robinson Sequences and Brane
Tilings. Discrete Mathematics and Theoretical Computer Science Proc.
AS (2013), 737-748. (Longer version in preparation.)

Megan Leoni, Seth Neel, and Paxton Turner, Aztec Castles and the dP3
Quiver, arXiv:1308.3926.

Slides Available at http//math.umn.edu/∼musiker/Brane.pdf
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