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Motivation and History

There has been a fruitful dialogue between string theorists and
mathematicians since the 1990’s:

Seiberg duality (1995) ←→ Quiver Mutation (2001)
(Seiberg) (Fomin-Zelevinsky)

Zamolodchikov Periodicity (1991) ←→ Y-system Periodicity (2003)
(Zamolodchikov) (Fomin-Zelevinsky)

Superpotentials & Moduli Spaces (2002) ←→ Quivers with Potentials (2007)
(Berenstein-Douglas) (Derksen-Weyman-Zelevinsky)

Amplituhedron (2013) ←→ Positive Grassmannian (2006)
(Arkani-Hamed-Trnka) (Postnikov)

Brane Tilings & Gauge Theories (2005) ←→ Cluster Integrable Systems (2011)
(Franco-Hanany-Kennaway-Vegh-Wecht) (Goncharov-Kenyon)

This Talk:
Brane Bricks & Hyperbricks (2015-2016) ←→ ??????
(Franco-Lee-Seong-Vafa)
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Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity and
canonical bases of algebraic groups. They noticed recurring combinatorial
and algebraic structures.

Let them to define cluster algebras, which have now been linked to quiver
representations, Poisson geometry Teichmüller theory, tilting theory,
mathematical physics, discrete integrable systems, string theory, and many
other topics.

Cluster algebras are a certain class of commutative rings which have a
distinguished set of generators that are grouped into overlapping subsets,
called clusters, each having the same cardinality.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)
constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx
′
α =

∏
x
d+
i
γi +

∏
x
d−i
γi .

The set of all such generators are known as Cluster Variables, and the
initial pattern of exchange relations (described as a valued quiver, i.e. a
directed graph) determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:

Step 1: Reverse all arrows incident to vertex j .

Step 2: For every 2-path k ← j ← i in Q, add a new arrow

k j i
xx .

Step 3: Delete any 2-cycles created by Steps 1 and 2.

Example:

3← 2← 1
µ2 // 3 2// 1//

xx µ2 // 3
xx

2oo 1oo
��

= 3 oo 2 oo 1 .
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Cluster Variable Mutation (Fomin-Zelevinsky 2001)

In addition to the mutation of quivers, there is also a complementary
cluster mutation that can be defined.

Cluster mutation yields a sequence of Laurent polynomials in
Q(x1, x2, . . . , xn) known as cluster variables.

Given a quiver Q and an initial cluster {x1, . . . , xn}, then mutating at
vertex j yields a new cluster variable x ′j

defined by x ′j =

 ∏
k←j∈Q

xk +
∏

j←i∈Q
xi

/xj .

Example: Q = 3→ 2← 1

x1x
′
1 = x2 + 1

x2x
′
2 = 1 + x1x3

x3x
′
3 = x2 + 1
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Cluster Algebras from Surfaces

Theorem (Fomin-Shapiro-Thurston 2006, based on earlier work of
Fock-Goncharov and Gekhtman-Shapiro-Vainshtein): Given a Riemann
surface with marked points (S ,M), they define a cluster algebra A(S ,M).

Seed ↔ Triangulation T = {τ1, τ2, . . . , τn}

Cluster Variable ↔ Arc γ (xi ↔ τi ∈ T )

Cluster Mutation (Binomial Exchange Relations) ↔ Flipping Diagonals.
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, via x1x

′
1 = x2+1, x2x

′′
2 = x3+x ′1, x3x

′′′
3 = x ′′2 +x ′1.
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Cluster Algebras from Surfaces

Theorem. (M-Schiffler-Williams 2009) Given a cluster algebra arising from
a surface, A(S ,M) with initial seed Σ, the Laurent expansion of every
cluster variable with respect to the seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of graphs.

Example:

The graph GΣ,γ =
7

1

41

8

2 3

2

9

3 5

6

2 has five perfect matchings:

(x9)x1x3(x6), (x9x7x4x6),

x2(x8)(x4x6), (x9x7)x2(x5),

x2(x8)x2(x5). xγ =
x1x3+1+2x2+x2

2
x1x2x3

(with x4 = · · · = x9 = 1)

A perfect matching is a subset of edges covering every vertex exactly once.
The weight of a matching is the product of the weights of the constituent
edges. The denominator corresponds to the labels of GΣ,γ ’s tiles.
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Cluster Algebras and Aztec Diamonds

Consider the quiver Q (on the left below). Instead of all cluster variables,
we focus on those obtained by mutating 1, 2, 3, 4, 1, 2, . . . periodically:

1

4

3

2 →

1

4

3

2 →

1

4

3

2 → . . .

Yields a sequence of cluster variables, with initial cluster variables
x1, x2, x3, x4, with xn+4 denoting the nth new cluster variable obtained by
this mutation sequence {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, . . . }.

Because of the periodicity, it follows that the xn’s satisfy the recurrences

xnxn−4 =

{
x2
n−1 + x2

n−2 when n is odd, and

x2
n−2 + x2

n−3 when n is even.

For example, x5 =
x2

3 +x2
4

x1
, x6 =

x2
3 +x2

4
x2

, x7 =
x2

5 +x2
6

x3
, and x8 =

x2
5 +x2

6
x4

.
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Cluster Algebras and Aztec Diamonds

Let Q =

1

4

3

2 , and mutate periodically at 1, 2, 3, 4, 1, 2, 3, 4, . . . .

xnxn−4 =

{
x2
n−1 + x2

n−2 when n is odd, and

x2
n−2 + x2

n−3 when n is even.

By letting x1 = x2 and x3 = x4, we get x2n+1 = x2n for all n.

Letting {Tn} be the sequence {x2n}n∈Z, we obtain a single recurrence.

TnTn−2 = 2T 2
n−1.

If T1 = T2 = 1, {Tn} = {1, 1, 2, 8, 64, 1024, 32768, . . . } =

{
2

(n−1)(n−2)
2

}
.

For n ≥ 3, Tn = # (perfect matchings of the (n − 2)nd Aztec Diamond).
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Cluster Algebras and Aztec Diamonds

Let Q =

1

4

3

2 , and mutate periodically at 1, 2, 3, 4, 1, 2, 3, 4, . . . .

2 4 2 4 2 4 2
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1

1

1

4

4

3 3

2 2

221
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42 211 3

2

2

x5 =
x2

3 +x2
4

x1
, x6 =

x2
3 +x2

4
x2

, x7 =
(x2

3 +x2
4 )2(x2

1 +x2
2 )

x2
1 x

2
2 x3

, and x8 =
(x2

3 +x2
4 )2(x2

1 +x2
2 )

x2
1 x

2
2 x4

.
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What is a Brane Tiling (in Physics & Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to

Decribe the world volume of both D3 and M2 branes, and describe
certain (3 + 1)-dimensional superconformal field theories arising in string
theory (Type II B).

In Algebraic Geometry, they are used to

Probe certain toric Calabi-Yau singularities, and relate to
non-commutative crepant resolutions and the 3-dimensional McKay
correspondence.

Certain examples of path algebras with relations (Jacobian Algebras) can
be constructed by a quiver and potential coming from a brane tiling.
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What is a Brane Tiling (Combinatorially)

However, this is a mathematics talk, not a physics talk, so I will henceforth
focus on combinatorial motivation instead.

Most simply stated, a Brane Tiling is a Bipartite graph on a torus.

We view such a tiling as a doubly-periodic tiling of its universal cover, the
Euclidean plane.

Examples:

3

1

33

1

2 2

3

4

,

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Brane Tilings from a Quiver Q with Potential W

A Brane Tiling can be associated to a pair (Q,W ), where Q is a quiver
and W is a potential (called a superpotential in the physics literature).

A quiver Q is a directed graph where each edge is referred to as an arrow,
and multiple edges are allowed.

A potential W is a linear combination of cyclic paths in Q (possibly an
infinite linear combination).

For combinatorial purposes, we assume other conditions on (Q,W ), such
as

• Each arrow of Q appears in one term of W with a positive sign, and
one term with a negative sign.

• The number of terms of W with a positive sign equals the number
with a negative sign. All coefficients in W are ±1.
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Example of a Brane Tiling and its Potential

3 1 3 

2 4 2 

4 2 2 2 4 2 

3 1 3 

2 4 2 

1

4

3

2

W = X
(W )
13 X

(S)
32 X

(E)
24 X

(N)
41 − X

(W )
13 X

(N)
32 X

(E)
24 X

(S)
41

+ X
(E)
13 X

(N)
32 X

(W )
24 X

(S)
41 − X

(E)
13 X

(S)
32 X

(W )
24 X

(N)
41
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Brane Tilings in Physics

Face ←→ Gauge Group U(N)

Edge ←→ Bifundamental Chiral Fields (Representations)

Vertex ←→ Gauge-invariant operator (Term in the Superpotential)

Together, this data yields a quiver gauge theory. One can apply Seiberg
duality to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.
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To Physics: Seiberg Duality and Quivers w/ Potential

Recall: Quiver Mutation (Fomin-Zelevinsky 2001) at vertex j of Q:

Step 1: Reverse all arrows incident to vertex j .

Step 2: For every 2-path k ← j ← i in Q, add a new arrow

k j i
xx .

Step 3: Delete any 2-cycles created by Steps 1 and 2.

Example:

3← 2← 1
µ2 // 3 2// 1//

xx µ2 // 3
xx

2oo 1oo
��

= 3 oo 2 oo 1 .
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver Q, a potential W is a linear combination of cycles of the
quiver Q.

With the new data of a potential, we mutate the quiver and
potential (Q,W ) together (at vertex j):

Step 1: For every arrow Xjk = j → k (resp. Xij = i → j) incident to vertex
j , replace it with its dual X ∗kj = k → j (resp. X ∗ji = j → i).

Step 2a: For every 2-path, i → j → k in Q, add a new arrow i → k to Q
and a new degree 3 term to W , namely XikX

∗
kjX
∗
ji .

Step 2b: Replace any instances of XijXjk in W with the new arrow Xik .

Step 3: Letting (Q ′,W ′) be the result after Steps 1 and 2, apply a
right-equivalence to equate

(Q ′,W ′) ∼ (Q ′red ,W
′
red)⊕ (Q ′triv ,W

′
triv )

where Q ′red has no 2-cycles and W ′
red has no terms of degree 2.
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red has no terms of degree 2.

Example:

3← 2← 1
µ2 // 3 2// 1//

xx µ2 // 3
xx

2oo 1oo
��

= 3 oo 2 oo 1 .

W = 0 W ′ = X13X
∗
32X

∗
21 W ′′ = X13(X31)+X31X12X23

W ′′
red = 0, W ′′

triv = X13X31.
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Description of Seiberg Duality (from physics)

From “Brane Dimers and Quiver Gauges Theories (2005) by Franco,
Hanany, Kennaway, Vegh, and Wecht:

After picking a node to dualize at: “Reverse the direction of all arrows
entering or exiting the dualized node. This is because Seiberg duality
requires that the dual quarks transform in the conjugate flavor
representations to the originals. ...

Next, draw in ... bifundamentals which correspond to composite (mesonic)
operators. ... the Seiberg mesons are promoted to the fields in the
bifundamental representation of the gauge group. ...

It is possible that this will make some fields massive, in which case the
appropriate fields should then be integrated out.”
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Description of Seiberg Duality (rephrased combinatorially)

Pick a vertex j of the quiver Q (equiv. face of the brane tiling TQ) at
which to mutate. Then, reverse the direction of all arrows incident to j ,
i.e. Aij → A∗ji . Next, for every two-path i → j → k, “meson”, in Q draw in
a new arrow i → k , “the Seiberg mesons are promoted to the fields”. Let
Q ′ denote this new quiver.

We similarly alter the superpotential W to get W ′. For every 2-path
i → j → k in Q, we replace any appearance of the product AijAjk in W
with the singleton Aik and add or subtract a new degree 3-term AikA

∗
kjA
∗
ji .

It is possible, that this will make some of the terms of W ′ of degree two,
“massive”, in which case there should be an associated 2-cycle in the
mutated quiver Q ′ that can be deleted, “the appropriate fields should then
be integrated out”.

This is in fact Mutation of Quivers with potential from cluster
algebras (as defined by Derksen-Weyman-Zelevinsky).
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Description of Seiberg Duality (on the Brane Tiling)

In the special case, that we are mutating at a vertex with two arrows in
and out, a toric vertex, this corresponds to a Urban Renewal of a square
face in the brane tiling.

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4
with potential

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

We consider the corresponding Brane Tiling and mutation of (Q,W ) at
the toric vertex labeled 1.
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 with potential

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 Rotate potential terms containing 1

W = A41A13A34 + A51A16A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A41A16A62A24 − A34A46A63 − A51A13A
(H)
35 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Mutating at 1 yields

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting Massive terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting complementary terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A

(H)
53 A∗31A

∗
15 − A43A

∗
31A
∗
14 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Reduces the potential to

W ′′ = A56A63A
(V )
35 + A24A45A52 + A27A74A46A62 − A

(D)
46 A62A24 − A27A73A

(V )
35 A52

− A45A57A74 + A∗14A
(D)
46 A∗61 − A∗15A56A

∗
61 − A46A63A

∗
31A
∗
14 + A∗31A

∗
15A57A73.

2 4

2 4

5

2

5 7

4

7 2 4

5

5 7

7

3

3

3

16

16

13

6 1

6 3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34

If we cyclically permute vertices

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34 ←−

7

1

2

3
6

5 4

The cyclic permutation yields the original Brane Tiling and (Q,W )!

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2

←−

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Such Cluster Mutations yield the Gale-Robinson Sequences

Example (Q
(r ,s)
N ): (e.g. r = 2, s = 3, N = 7)

7

1

2

3
6

5 4 →

7

1

2

3
6

45 ∼=

5

6

7

1

2

34

Mutating at 1, 2, 3, . . . ,N, 1, 2, . . . yields the same quiver, up to cyclic
permutation, at each step, hence we obtain the infinite sequence of
xN+1, xN+2, . . . satsifying

xn = (xn−rxn−N+r + xn−sxn−N+s) /xn−N for n > N.

Known as the Gale-Robinson Sequence of Laurent polynomials.
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FPSAC Proceedings 2013 (Jeong-M-Zhang)

Q =

7

1

2

3
6

5 4 TQ =

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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FPSAC Proceedings 2013 (Jeong-M-Zhang)

Obtain pinecone graphs from Bousquet-Mélou, Propp, and West in terms
of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only
use weights (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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FPSAC Proceedings 2013 (Jeong-M-Zhang)

Similar connections (without principal coefficients) also observed in “Brane
tilings and non-commutative geometry” by Richard Eager.

Eager uses physics terminology where he looks at Y p,q and La,b,c quiver
gauge theories, and their periodic Seiberg duality (i.e. quiver mutations).

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a 4-dimensional N = 1
super-symmetric quiver gauge theory.

We next consider a 2-dimensional N = (0, 2) SUSY quiver gauge theory.

Gadde, Gukov, and Putrov (2013) introduced dynamics which are
analogues of Seiberg Duality: GGP (0, 2) Triality.

Fermis are undirected arrows. Chirals are directed arrows.
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Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a 4-dimensional N = 1
super-symmetric quiver gauge theory.

We next consider a 2-dimensional N = (0, 2) SUSY quiver gauge theory.

Gadde, Gukov, and Putrov (2013) introduced dynamics which are
analogues of Seiberg Duality: GGP (0, 2) Triality.

Fermis are undirected arrows. Chirals are directed arrows.
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Recent Extensions of Seiberg Duality by Physicists

Corresponding geometric and combinatorial model of Brane Bricks
developed by Franco-Lee-Seong (2015); an extension of Brane Tilings.
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Recent Extensions of Seiberg Duality by Physicists

Example Q1,1,1:

4

3

2 4

1

3 1

2

1

3

2

4

4

131

4 2

4

3 1

2

1

2

1

13

4

3

2 4

1

3

2

1

31

4 2

1

3

2

4

4

1

4

3 1

2

1

2

1

13

4

3

2 4

1

3

2

1

31

4 2

1

3

2

4

4

1

4

3 1

2

1

2

1

13

x

y

z
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Recent Extensions of Seiberg Duality by Physicists

Example Q1,1,1/Z2 (J-terms and E-terms):

4

3

7 5

1

6 8

2

8

3

7

4

4

868

4 2

5

6 8

7

8

7

8

86

x

y

z

W = Λ+
21X

+
15X
−
56 X
−
62 − Λ+

21X
−
15 X
−
56 X

+
62 + Λ−12X

+
24X

+
43X
−
31 − Λ−12X

−
24 X

+
43X

+
31 + Λ−21X

−
15 X

+
56X

+
62 − Λ−21X

+
15X

+
56X
−
62

+Λ+
12X

+
24X
−
43 X
−
31 − Λ+

12X
−
24 X
−
43 X

+
31 + Λ+

78X
+
84X
−
43 X
−
37 − Λ+

78X
−
84 X
−
43 X

+
37 + Λ−87X

+
75X

+
56X
−
68 − Λ−87X

−
75 X

+
56X

+
68

+Λ−78X
−
84 X

+
43X

+
37 − Λ−78X

+
84X

+
43X
−
37 + Λ+

87X
+
75X
−
56 X
−
68 − Λ+

87X
−
75 X
−
56 X

+
68 + Λ++

64 X+
43X
−
37 X
−
75 X
−
56 − Λ++

64 X−43 X
−
31 X
−
15 X

+
56

+Λ−−46 X+
62X

+
24 − Λ−−46 X+

68X
+
84 + Λ−−64 X+

43X
+
31X

+
15X
−
56 − Λ−−64 X−43 X

+
37X

+
75X

+
56

+Λ++
46 X−62 X

−
24 − Λ++

46 X−68 X
−
84 + Λ+−

64 X−43 X
+
31X
−
15 X

+
56 − Λ+−

64 X+
43X
−
37 X

+
75X
−
56

+Λ−+
46 X+

62X
−
24 − Λ−+

46 X−68 X
+
84 + Λ−+

64 X−43 X
+
37X
−
75 X

+
56 − Λ−+

64 X+
43X
−
31 X

+
15X
−
56 + Λ+−

46 X−62 X
+
24 − Λ+−

46 X+
68X
−
84

+Λ++
35 X+

56X
−
62 X
−
24 X
−
43 − Λ++

35 X−56 X
−
68 X
−
84 X

+
43 + Λ−−53 X+

37X
+
75 − Λ−−53 X+

31X
+
15 + Λ−−35 X+

56X
+
68X

+
84X
−
43 − Λ−−35 X−56 X

+
62X

+
24X

+
43

+Λ++
53 X−37 X

−
75 − Λ++

53 X−31 X
−
15 + Λ+−

35 X−56 X
+
68X
−
84 X

+
43 − Λ+−

35 X+
56X
−
62 X

+
24X
−
43 + Λ−+

53 X+
37X
−
75 − Λ−+

53 X−31 X
+
15

+Λ−+
35 X−56 X

+
62X
−
24 X

+
43 − Λ−+

35 X+
56X
−
68 X

+
84X
−
43 + Λ+−

53 X−37 X
+
75 − Λ+−

53 X+
31X
−
15
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Recent Extensions of Seiberg Duality by Physicists

Example Q1,1,1/Z2 After Mutation at 1:

4

3

7 5

1

6 8

2

8

3

7

4

4

868

4 2

6 8

7

8

8

8

5

6

7

x

y

z

W ′ = X+
21Λ+

15X
−
56 X
−
62 − X+

21Λ−15X
−
56 X

+
62 + X+

24X
+
43Λ−−32 − X−24 X

+
43Λ+−

32 + Λ−+
23 X+

37X
+
75X
−
56 X
−
62

+Λ++
23 X+

37X
−
75X
−
56 X
−
62 − Λ−+

23 X−37X
+
75X
−
56 X

+
62 − Λ++

23 X−37X
−
75X
−
56 X

+
62 + Λ−−32 X+

21X
+
13 + Λ+−

32 X+
21X
−
13 + X−21 Λ−15X

+
56X

+
62

−X−21 Λ+
15X

+
56X
−
62 + X+

24X
−
43 Λ−+

32 − X−24 X
−
43 Λ++

32 + Λ−−23 X−37X
+
75X

+
56X

+
62 + Λ+−

23 X−37X
−
75X

+
56X

+
62 − Λ−−23 X+

37X
+
75X

+
56X
−
62

−Λ+−
23 X+

37X
−
75X

+
56X
−
62 + Λ−+

32 X−21X
+
13 + Λ++

32 X−21X
−
13 + Λ+

78X
+
84X
−
43 X
−
37 −Λ+

78X
−
84 X
−
43 X

+
37 + Λ−87X

+
75X

+
56X
−
68 −Λ−87X

−
75 X

+
56X

+
68

+Λ−78X
−
84 X

+
43X

+
37 − Λ−78X

+
84X

+
43X
−
37 + Λ+

87X
+
75X
−
56 X
−
68 − Λ+

87X
−
75 X
−
56 X

+
68 + Λ++

64 X+
43X
−
37 X
−
75 X
−
56 − Λ++

64 X−43 X
−
37X

+
75X

+
56

+Λ−−46 X+
62X

+
24−Λ−−46 X+

68X
+
84 +X−37X

+
75Λ+

51X
+
13 +Λ−−64 X+

43X
+
37X
−
75X
−
56 −Λ−−64 X−43 X

+
37X

+
75X

+
56 +Λ++

46 X−62 X
−
24 −Λ++

46 X−68 X
−
84

−X+
37X
−
75Λ−51X

−
13 + Λ+−

64 X−43 X
−
37X
−
75X

+
56 − Λ+−

64 X+
43X
−
37 X

+
75X
−
56 + Λ−+

46 X+
62X
−
24 − Λ−+

46 X−68 X
+
84

−X−37X
−
75Λ+

51X
−
13 + Λ−+

64 X−43 X
+
37X
−
75 X

+
56 − Λ−+

64 X+
43X

+
37X

+
75X
−
56 + Λ+−

46 X−62 X
+
24 − Λ+−

46 X+
68X
−
84 + X+

37X
+
75Λ−51X

+
13
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Recent Extensions of Seiberg Duality by Physicists

Franco-Lee-Seong-Vafa (2016) then developed an (N = 1) 0-dimensional
super-symmetric quiver gauge theory and a mutation known as Quadrality.

Fermis and Chirals are both directed arrows in this case.

Notice the new Fermi from N3 → N1 after the initial Quadrality.

Question: Mathematical Model for Mutations and associated Relations?
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Path Algebra (Example for An Quivers)

The An quiver Q is n n − 1oo . . .oo 2oo 1oo .

The path algebra kQ has elements given by the paths
pji : j j − 1oo . . .oo i + 1oo ioo for 1 ≤ i < j ≤ n,

and the idempotents ei . Note pji · p`k =

{
pjk if i = `

0 otherwise
.

As an algebra,

kQ ∼= { lower triangular n × n matrices over k}.

pji corresponds to Eji which has a 1 in column i , row j and 0 elsewhere.

ei corresponds to Eii .
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Path Algebra (Example for A2 Quiver)

The A2 quiver Q is 2← 1 with path algebra kQ given by

{e1, e2, p21 : e2 · p21 = p21, p21 · e1 = p21, e
2
1 = e1, e

2
2 = e2}

with all other products equal to zero.

Under the isomorphism with lower triangular 2× 2 matrices,

e1 ↔
[

1 0
0 0

]
, e2 ↔

[
0 0
0 1

]
, and p21 ↔

[
0 0
1 0

]
.
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From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category Db(kQ) has indecomposable objects of
the form M[i ] (M indecomposable of kQ and i ∈ Z with shift functor [1]).

Example (A2 Quiver): 2← 1 admits three indecomposable modules

P1 = 〈e1, p21〉 = I2, P2 = 〈e2〉, I1 = 〈e1〉.

The indecomposables of Db(k(2← 1)) can be arranged as

. . . P1 = I2<< P2[1]== I1[1]<< P1[2]<<

P2 I1
""

P1[1]
""

P2[2]
""

. . .
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From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category Db(kQ) has indecomposable objects of
the form M[i ] (M indecomposable of kQ and i ∈ Z with shift functor [1]).

Db(kQ) is also a triangulated category meaning there are certain
distinguished short exact sequences 0→ A→ B → C → 0 known as
almost split sequences. (Correspond to triangles A→ B → C → A[1])

An almost split exact sequence is not split, i.e. B 6∼= A⊕ C be is
irreducible (i.e. as close to being split without being split).

Given an indecomposable module C , there is a unique almost split
sequence of the form 0→ → → C → 0.

The Auslander-Reiten translation τC of indecomposable C is the
unique indecomposable such that 0→ τC → → C → 0 is almost split.
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Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique
indecomposable such that 0→ τC → → C → 0 is almost split.

τ has the property that it sends projective indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as Db(kQ)/(τ−1 ◦ [1]) where τ is
Auslander-Reiten translation and [1] is the shift functor .

In this quotient, τPi = Pi [1] rather than zero. Furthermore, τPi [1] = Ii .
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Category C1(kQ) is defined as Db(kQ)/(τ−1 ◦ [1]) where τ is
Auslander-Reiten translation and [1] is the shift functor .

In this quotient, τPi = Pi [1] rather than zero. Furthermore, τPi [1] = Ii .

Example (A2 quiver):

. . . P1 = I2<< P2[1]==τ
oo I1[1]<<τ

oo P1[2]<<τ
oo

P2 I1
""

τ
oo P1[1]

""
τ

oo P2[2]
""

τ
oo . . .
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Tilting Objects in a Cluster Category

Given an acyclic quiver Q and the associated cluster algebra A(Q), then
clusters correspond to Tilting Objects in the Cluster Category C1(kQ).

Tilting Objects T = M1 ⊕M2 ⊕ · · · ⊕Mn satisfy

1) Ext(Mi ,Mj) = Ext(Mj ,Mj) = 0 for i 6= j and Ext(Mi ,Mi ) = 0 for all i .

2) The value of n equals the number of vertices in Q.

Equivalently, 1’) Hom(Mi ,Mj [1]) = 0 for all i , j .

Letting T = T \Mj , there is a unique M ′j 6∼= Mj such that

Mj → ⊕iB
(0)
i → M ′j → Mj [1]

M ′j → ⊕iB
(1)
i → Mj → M ′j [1]

are distinguished triangles (analogues of almost split sequences) in C1(kQ).

Corresponds to cluster mutation as xjx
′
j =

∏
i xB(1)

i

+
∏

k xB(0)
i

.
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Cluster Algebra and Cluster Category of Type A2

Tilting Object M1 ⊕M2 satisfies Hom(Mi ,Mj [1]) = 0 for i , j ∈ {1, 2}.

The cluster algebra of type A2 (associated to 2← 1) has clusters

{x1, x2}
µ1 // {x3, x2}

µ2 // {x3, x4}
µ1

��
{x2, x1}

∼=

{x5, x1}µ1

oo {x5, x4}µ2

oo

where

x3 =
x2 + 1

x1
, x4 =

x1 + x2 + 1

x1x2
, and x5 =

x1 + 1

x2
.

Compared with C1(k(2← 1)), we have
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x1x2
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. . . P1 = I2>> P2[1]
??

P2>> I1AA

P2 I1

  
P1[1]

""
P1

��
. . .
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x1
, x4 =

x1 + x2 + 1

x1x2
, and x5 =

x1 + 1
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.

Compared with C1(k(2← 1)), we have {x5, x1} ←→ P2 ⊕ P1[1].

. . . P1 = I2>> P2[1]@@ P2
==

I1AA

P2 I1

  
P1[1]

!!
P1

��
. . .
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Cluster Algebra and Cluster Category of Type A2

Observe we have the correpondence

x1 ←→ P1[1]

x2 ←→ P2[1]

x3 =
x2 + 1

x1
←→ I1 = 〈e1〉

x4 =
x1 + x2 + 1

x1x2
←→ P1 = 〈e1, p21〉

x5 =
x1 + 1

x2
←→ P2 = 〈e2〉

There is a general map (Caledro-Chapton’s Cluster Character) from rigid
indecomposable modules of C1(kQ) to cluster variables by M → xM .
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Reading off the Quiver from a Tilting Object

Given a tilting module T = M1 ⊕M2 ⊕ · · · ⊕Mn, we build the quiver QT

by starting with n disconnected vertices.

If there exists the distinguished triangle

A→ B → Mj → A[1] where B contains M
bij
i as a direct summand

then we adjoin bij copies of the arrow i → j to our quiver QT .

Similarly, if there exists the distinguished triangle

Mj → B → C → Mj [1] where B contains M
bjk
k as a direct summand,

then we then adjoin bjk copies of the arrow j → k to QT .

Cluster variable mutation of QT , i.e. xjx
′
j =

∏
i→j∈QT

x
bij
i +

∏
j→k∈QT

x
bkj
k

agrees with the relation xjx
′
j =

∏
i xB(1)

i

+
∏

i xB(0)
i

coming from the distinguished triangles

M ′j → ⊕iB
(1)
i → Mj → M ′j [1] and Mj → ⊕iB

(0)
i → M ′j → Mj [1].
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

(Thomas 2006) generalizes the cluster category C1(kQ) = Db(kQ)/τ−1[1]:

Given an acyclic quiver Q, define the m-Cluster Category as the quotient
category

Cm(kQ) = Db(kQ)/τ−1[m].

Indecomposable Objects of Cm(kQ) are{
M : M indec.

}
∪
{
M[1] : M indec.

}
∪ · · · ∪

{
M[m − 1] : M indec.

}

∪
{
P1[m],P2[m], . . . ,Pn[m]

}
where P1,P2, . . . ,Pn are the projective indecomposables of kQ.

(n is the number of vertices of Q)
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A2 quiver): The 2-cluster category C2(k(2← 1)) has
indecomposables

. . . P1 = I2<< P2[1]== I1[1]<< P1[2];;

P2 I1

""
P1[1]
##

P2[2]
""

. . .

where we get periodicity with P1[2]→ P2.

There are 12 higher tilting objects in C2(k(2← 1)):
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��
P1[1]
  

P2[2]
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. . .
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

We can get a Colored Quiver from a Higher Tilting Object T since there

are (m + 1) ways to complete T = T \Mj in Cm(kQ) = Db(kQ)/τ−1[m]:

T = T (0) = T ⊕M
(0)
j , T (1) = T ⊕M

(1)
j , T (2) = T ⊕M

(2)
j , . . . , T (m) = T ⊕M

(m)
j .

These fit together in distinguished triangles (using M
(m+1)
j = M

(0)
j = Mj)

Mj → ⊕i B
(0)
i → M

(1)
j → Mj [1]

M
(1)
j → ⊕i B

(1)
i → M

(2)
j → M

(1)
j [1]

M
(2)
j → ⊕i B

(2)
i → M

(3)
j → M

(2)
j [1]

...

M
(m−1)
j → ⊕iB

(m−1)
i → M

(m)
j → M

(m−1)
j [1]

M
(m)
j → ⊕i B

(m)
i → Mj → M

(m)
j [1]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Mj → ⊕i B
(0)
i → M

(1)
j → Mj [1]

M
(1)
j → ⊕i B

(1)
i → M

(2)
j → M

(1)
j [1]

M
(2)
j → ⊕i B

(2)
i → M

(3)
j → M

(2)
j [1]

...

M
(m−1)
j → ⊕iB

(m−1)
i → M

(m)
j → M

(m−1)
j [1]

M
(m)
j → ⊕i B

(m)
i → Mj → M

(m)
j [1]

Notice that in the special case m = 1, we let M
(1)
j = M ′j and we get

M ′j → ⊕iB
(1)
i → Mj → M ′j [1] and Mj → ⊕iB

(0)
i → M ′j → Mj [1]

as desired.
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Mj → ⊕i B
(0)
i → M

(1)
j → Mj [1]

M
(1)
j → ⊕i B

(1)
i → M

(2)
j → M

(1)
j [1]

M
(2)
j → ⊕i B

(2)
i → M

(3)
j → M

(2)
j [1]

...

M
(m−1)
j → ⊕iB

(m−1)
i → M

(m)
j → M

(m−1)
j [1]

M
(m)
j → ⊕i B

(m)
i → Mj → M

(m)
j [1]

We build a colored quiver QT from T a tilting object of Cm(kQ) by

adjoining b
(c)
ij colored arrows i j

(c)
oo for every summand Mi in ⊕iB

(c)
i .
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Mj → ⊕i B
(0)
i → M

(1)
j → Mj [1]

M
(1)
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(2)
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(3)
j → M

(2)
j [1]

...

M
(m−1)
j → ⊕iB

(m−1)
i → M

(m)
j → M

(m−1)
j [1]

M
(m)
j → ⊕i B

(m)
i → Mj → M

(m)
j [1]

Because we can build the same tower of distinguished triangles using

M
(c)
i ’s in place of M

(c)
j , it follows that

colored arrows come in pairs i
(c)
''
j

(m−c)

gg . (For m = 1, i → j = i
(0)
''
j

(1)

gg .)
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Example of C2(k(2← 1))

. . . P1AA P2[1]@@ I1[1]>> P1[2]
<<

P2 I1

��
P1[1]
  

P2[2]

!!
. . .

P1[2]⊕ P2[2] ←→ 2
(2)
((
1

(0)

hh = 2 oo 1
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Example of C2(k(2← 1))

. . . P1AA P2[1]@@ I1[1]
==

P1[2]==

P2 I1

��
P1[1]
  

P2[2]

""
. . .

P1[2]⊕ P2[2] ←→ 2
(2)
((
1

(0)

hh = 2 oo 1

Mutating by µ1 yields

I1[1]⊕ P2[2] ←→ 2
(0)
((
1

(2)

hh = 2 // 1 .
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. . .

Mutating a third time in a row by µ1 yields again

P1[2]⊕ P2[2] ←→ 2
(2)
((
1

(0)

hh = 2 oo 1 .

i.e. µ3
i = 1.

(In general µm+1
i = 1, which agrees with µ2 = 1

for the ordinary m = 1 case.)
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. . .
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��
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Notice, on the other hand mutating P1[2]⊕ P2[2] by µ2 yields

P1[2]⊕ P2[1] ←→ 2
(1)
((
1

(1)

hh = 2 1 .

And a second mutation by µ2 in a row yields
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1
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Example of C2(k(2← 1))

Such higher tilting objects can also be associated to quadrangulations
(more generally (m + 2)-angulations) of a polygon (in the type An case).

1

2

P1[2]⊕ P2[2] ←→ 2
(2)
((
1

(0)

hh = 2 oo 1

1

2

I1[1]⊕ P2[2] ←→ 2
(0)
((
1

(2)

hh = 2 // 1

1

2

I1 ⊕ P2[2] ←→ 2
(1)
((
1

(1)

hh = 2 1
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Colored Quiver Mutation (Buan-Thomas 2008)

A Colored Quiver Q = (Q0,Q1) = (Q0,Q
(0)
1 ⊕Q

(1)
1 ⊕Q

(2)
1 ⊕ · · · ⊕Q

(m)
1 )

is a collection of vertices and arrows where arrows can have one of (m + 1)
colors, which we label as (0), (1), . . . , (m), satisfying three properties:

(i) No loops: There are no arrows which have i ∈ Q0 as both its starting
and ending point.

(ii) Monochromaticity: If there is an arrow i oo
(c)

j of color (c) between

vertices i , j ∈ Q0, then there are no arrows i oo
(c ′)

j of any other color

(c ′), although multiple arrows of the same color are possible.

(iii) Skew-symmetry: If there are q
(c)
ij arrows i oo

(c)
j of color (c), then

there are also q
(c)
ij arrows i

(m−c)// j of color (m − c).
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Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on
them called Colored Quiver Mutation (at vertex j):

Step 1a: Replace every incoming arrow j oo
(c)

i with the arrow j oo
(c−1)

i .

Step 1b: Replace every outgoing arrow k oo
(c)

j with an arrow k oo
(c+1)

j .

Both of these values are taken modulo (m + 1). As special cases,

j
(m)

88 i
(0)
ww mutates to j

(0)

88 i
(m)
ww and k

(1)

77 j
(m−1)
vv mutates to k

(0)

77 j
(m)
vv .

Step 2: For every 2-path k oo
(c)

j oo
(0)

i in Q, where the color of the

outgoing arrow is (0), and c 6= m, add a new arrow k tt
(c)

j i .

Step 3: Delete two arrows of colors i rr
(c−1)

k
(c)

ll as a pair until

monochromaticity is achieved again. (Massive terms)
Colored Quiver Mutation is of order (m + 1).
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Colored Quivers and their mutations motivated by the the Higher Cluster
Category, the triangulated (m + 1)-Calabi-Yau category obtained by the
quotient Db(kQ)/(τ−1 ◦ [m])

Recall the Higher Tilting Objects are maximally dimensional direct sums of
indecomposables which have no self-extensions.

Example of C2(k(2← 1)) from above:

P1[2]⊕ P2[2] ←→ 2
(2)
((
1

(0)

hh = 2 oo 1

I1[1]⊕ P2[2] ←→ 2
(0)
((
1

(2)

hh = 2 // 1

I1 ⊕ P2[2] ←→ 2
(1)
((
1

(1)

hh = 2 1
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

When Q is of type A, the Higher Cluster-Tilting Objects in bijection with
(m + 2)-angulations of polygons. (Draw a colored arrow for number of
sides between labeled diagonals counter-clockwise.)

Example (mutating at vertex 2 in m = 2 case). We omit arrows of

color (2) since i
(c) // j = i j

(m−c)oo .

2

3

1 2

3

1
2

3

1

1
(1)

2 oo
(0)

3 1

(1)

2//
(0)

3//
(0)

1 oo
(0)

2
(1)

3

(1)

��

(0)

= 1 oo
(0)

2
(1)

3
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in m = 3 case). We omit arrows of

color (1), (3) and set i
(c) // j = i j

(m−c)oo .

2

3

1

2

3

1

2

3

1

2

3

1

1 oo
(2)

2 oo
(0)

3 1
xx

(2)

2//
(0)

3//
(0)

1 oo
(0)

xx

(2)

��

(0)

2 oo
(2)

3 1 2//
(2)

3//
(2)

= 1 oo
(0)

2 oo
(2)

3
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in m = 3 case). We omit arrows of

color (1), (3) and set i
(c) // j = i j

(m−c)oo .

2
3

1

23

1

23

1

23

1

1 oo
(2)

2 3//
(0)

1 2//
(0)

oo
(2)

3 1
xx

(2)

oo
(0)

2 3//
(2)

1
xx

(2)

2//
(2)

oo
(0)

3

Fourth mutation at vertex 2 yields arrow 1 3//
(2) that cancels with

1 oo
(2)

3 and we obtain the first colored quiver again.

Also relates to the Generalized Associahedra of Fomin-Reading (2006).
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Triality corresponds to m = 2 colored quiver mutation.

Draw Fermis as i
(1)
''
j

(1)

gg and Chirals as i
(0)
''
j

(2)

gg .

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.

We wish to deduce J-term and E -term Relations from Potentials for
Colored Quivers.
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Quadrality corresponds to m = 3 colored quiver mutation.

Draw Directed Fermis as i
(2)
''
j

(1)

gg and Chirals as i
(0)
''
j

(3)

gg .

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.

We wish to deduce J-term Relations from Potentials for Colored Quivers.

Physics also has H-term Relations. What is the Mathematics behind
them?
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(Franco-M 2017) Potentials for Colored Quivers

Based on the examples of (m + 2)-angulations and brane bricks, we
constructed a combinatorial theory of potentials for colored quivers.

We define a potential W for a colored quiver Q to be a linear combination
of terms α1α2 · · ·αk of the path algebra, each satisfying

(1) The starting point of αi+1 is the ending point of αi for 1 ≤ i ≤ k − 1;
also the starting point of α1 is the ending point of αk .

(2) Letting ci ∈ {0, 1, 2, . . . ,m} be the color of arrow αi , we have

c1 + c2 + · · ·+ ck = m − 1.

Theorem: There are simple combinatorial rules so that mutation of
potentials is compatible with assignment of potentials to a brane brick
model or to an (m + 2)-angulation of a polygon.
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 1: For every incoming arrow α
(c)
ij = i

(c) // j (resp. outgoing arrow

α
(c)
jk = j

(c) // k ), replace it with α
(c−1)
ij = i

(c−1) // j (resp.

α
(c−1)
jk = j

(c−1) // k ) in Q. Values taken in {0, 1, 2, . . . ,m} mod (m + 1).

Step 2a: For every 2-path, i
(0) // j

(c) // k in Q, where the color of the

outgoing arrow is (0), add the new arrow i
(c) // k in Q and the new

degree 3 term α
(c)
ik α

(m)
ij α

(c+1)
jk = α

(c)
ik α

(m−c−1)
kj α

(0)
ji to W .

i

(c)

&&
(m)
// j

(c+1)
// k = i

(c)

&&
j

(0)
oo k

(m−c−1)
oo
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 2b: Replace instances of α
(0)
ij α

(c)
jk in W with α

(c)
ik .

Step 2c: Replace instances of α
(c)
ij α

(d)
jk in W with α

(c−1)
ij α

(d+1)
jk

when c 6= 0.

Step 2d: For a local configuration i0 i1//
(0)

(c1)
))
i2

(ck−2)

...
(c2)		

ik

(ck−1)

II

ik−1(ck )ii

where

α
(c1)
i1,i2
· · ·α(ck−1)

ik−1,ik
α

(ck )
ik ,i1

is in W , then add a new term to the potential

α
(c1)
i0,i2
· · ·α(ck−1)

ik−1,ik
α

(ck )
ik ,i0 i0

(c1)
++i1 i2

(ck−2)

...
(c2)		

ik
(ck−1)

WW

ik−1(ck )ii

replacing i1 with i0.
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 3: Apply reductions of massive terms to get an equivalent colored
quiver with potential. (Generically, delete massive terms as well as terms
sharing an arrow with massive term. In special cases, more complicated.)

Example (m=2): We omit arrows of color (2) and set α
(c)
ij = α

(m−c)
ji .

1 oo
(0)

2 oo
(0)

(1)

3OO

(0)

4
��

(0)

5//
(0)

6//
(0)

W = X
(0)
21 X

(0)
14 X

(0)
45 X

(0)
56 Λ

(1)
62 + Λ

(1)
26 X

(0)
63 X

(0)
32 .
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): We omit arrows of color (2) and set α
(c)
ij = α

(m−c)
ji .

1 oo
(0)

2 oo
(0)

(1)

3OO

(0)

4
��

(0)

5//
(0)

6//
(0)

W = X
(0)
21 X

(0)
14 X

(0)
45 X

(0)
56 Λ

(1)
62 + Λ

(1)
26 X

(0)
63 X

(0)
32 .

Mutating at vertex 6 via Rules (2a), (2b), (2c), (2d) yields

1 oo
(0)

2 oo
(0)

3

(1)

AA

(0)

4
��

(0)

5//
(0) oo

(0)
6
��

(0)

W ′ = X
(0)
21 X

(0)
14 X

(0)
45 Λ

(1)
52 + X

(0)
26 Λ

(1)
63 X

(0)
32

+ Λ
(1)
52 X

(0)
26 X

(0)
65 + X

(0)
53 Λ

(1)
36 X

(0)
65 + Λ

(1)
25 X

(0)
53 X

(0)
32
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 and want new potential to match
new quadrangulation

2

3

1

4

5

6

2

3

1

4

5

6

2 oo
(0)

3 oo
(0)

4

6

(1)

''
(0)

5

(1)

&&
(0)

W = Λ
(1)
63 X

(0)
32 X

(0)
26 +Λ

(1)
54 X

(0)
43 X

(0)
35
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 via Rules (2a), (2b), (2c), (2d)

2

3

1

4

5

6

2

3

1

4

5

6

2 oo
(0)

3 oo
(0)

4 → 2
(1)yy

(0)

3@@
(0)

4//
(0)

6

(1)

��(0)

5

(1)

��(0)

6
��

(0)

(1)

5

(1)

(1)��

(0)

W = Λ
(1)
63 X

(0)
32 X

(0)
26 + Λ

(1)
54 X

(0)
43 X

(0)
35

W ′ = X
(0)
63 Λ

(1)
32 X

(0)
26 + Λ

(1)
54 X

(0)
45 + Λ

(1)
64 X

(0)
42 X

(0)
26

+ X
(0)
45 Λ

(1)
53 X

(0)
34 + Λ

(1)
46 X

(0)
63 X

(0)
34 + X

(0)
42 Λ

(1)
23 X

(0)
34
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 and reducing massive terms

2

3

1

4

5

6

2

3

1

4

5

6

2
(1)yy

(0)

3@@
(0)

4//
(0)

= 2
(1)xx

(0)

3@@
(0)

4//
(0)

6
��

(0)

(1)

5

(1)

(1)��

(0)

6
!!

(0)

(1)

5

(1)

W ′ = X
(0)
63 Λ

(1)
32 X

(0)
26 + Λ

(1)
54 X

(0)
45 + Λ

(1)
64 X

(0)
42 X

(0)
26

+ X
(0)
45 Λ

(1)
53 X

(0)
34 + Λ

(1)
46 X

(0)
63 X

(0)
34 + X

(0)
42 Λ

(1)
23 X

(0)
34

W ′
red = X

(0)
63 Λ

(1)
32 X

(0)
26 + Λ

(1)
64 X

(0)
42 X

(0)
26 + Λ

(1)
46 X

(0)
63 X

(0)
34 + X

(0)
42 Λ

(1)
23 X

(0)
34 .
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DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann’s work (thanks to Al Garver), we
were able to prove the above four rules are sufficient assuming conjectural
rule for reduction of massive terms.

Oppermann uses Higher Ginzburg algebras can be associated to a
(Colored) Quiver by defining d : kQ → kQ by

d(α) =


0 if α has degree (i.e. color) (0)

∂αopW if α has degree (i.e. color) ∈ {1, 2, 3, . . . ,m}
ei (
∑

α[α, αop])ei if α = `i , a loop of degree (m + 1)

.

For a potential W such that the Kontsevich bracket vanishes, i.e.
{W ,W } = 0, the Vacuum Moduli Space agrees with the
Jacobian algebra, given as

kQ

/
({∂αW : α of color (m − 1)}) = H0(Γ̂m+2(Q,W )).

In fact, the Vanishing Condition {W ,W } = 0 agrees with
H-terms of physics!
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Mutations of DG Structures (Oppermann 2017)

In an effort to study “Quivers for Silting Mutation”, Oppermann gives an
algebraic description of how this differential graded structure mutates
alongside the colored (a.k.a. graded) quiver mutation.

W →W ′ = deccycW +
∑

α:
(0) // j , ϕ: j

(c) //

α dec(ϕϕop)α∗.

Such a compact expression is possible due to the functions dec and
deccyc, which are defined as an action on a cycle γ = ϕi1,i2ϕi2,i3 · · ·ϕi`,i1

and then extended linearly to act on a potential.

Every 2-path ϕi ,jϕj ,k in γ is replaced withϕi ,jϕj ,k −
∑

α:
(0) // j

ϕi ,jα
−1αϕj ,k

. The result is dec(γ).

For the case of deccyc(γ), this operation is taken cyclically, i.e. we also
consider 2-paths ϕi`,i1ϕi1,i2 where i1 = j .
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Open Questions and Work in Progress

Work in Progress (with Emily Gunawan and Ana Garcia Elsener):
Assigning a potential to general (m + 2)-angulations of a surface (in the
spirt of Daniel Labardini-Fragoso for triangulations) so that this
assignment rule is compatible with mutation and diagonal rotation in an
(m + 2)-gon. Can we better analyze certain gentle algebras and/or
oriented flip graphs of Al Garver and Thomas McConville using the
machinery of colored potentials?

Big Open Question: Is there an analogue of cluster variables for brane
bricks (m = 2) or in the case of higher m. In the case of An colored
quivers, such variables would correspond to admissible arcs in an
(m + 2)-gon. Or for toric colured quivers, correspond to brick regions of
brane brick models (instead of faces of brane tilings). We know the
analogue of colored quiver mutation and even colored potential mutation.
But what are the analogues of the binomial exchange relations?
Currently working with S. Franco, R. Kenyon, D. Speyer, and L. Williams
on this and related questions.
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Thank You! http://www.math.umn.edu/~musiker/Higher19.pdf

Seiberg duality (1995) ←→ Quiver Mutation (2001)
(Seiberg) (Fomin-Zelevinsky)

Zamolodchikov Periodicity (1991) ←→ Y-system Periodicity (2003)
(Zamolodchikov) (Fomin-Zelevinsky)

Superpotentials & Moduli Spaces (2002) ←→ Quivers with Potentials (2007)
(Berenstein-Douglas) (Derksen-Weyman-Zelevinsky)

Amplituhedron (2013) ←→ Positive Grassmannian (2006)
(Arkani-Hamed-Trnka) (Postnikov)

Brane Tilings & Gauge Theories (2005) ←→ Cluster Integrable Systems (2011)
(Franco-Hanany-Kennaway-Vegh-Wecht) (Goncharov-Kenyon)

Brane Bricks & Hyperbricks (2015-2016) ⇐⇒ Colored Quiver Mutation (2008)
(Franco-Lee-Seong-Vafa) (Buan-Thomas)

Higher Calabi-Yau Quiver Theories (2017) ⇐⇒ Quivers for Silting Mutation (2015)
(Franco-M, arXiv:1711.01270) (Oppermann)
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