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Motivation and History

There has been a fruitful dialogue between and
mathematicians since the 1990’s:

Seiberg duality (1995) <— Quiver Mutation (2001)

(Seiberg) (Fomin-Zelevinsky)
Zamolodchikov Periodicity (1991) <+— Y-system Periodicity (2003)
(Zamolodchikov) (Fomin-Zelevinsky)

Superpotentials & Moduli Spaces (2002) <+— Quivers with Potentials (2007)

Amplituhedron (2013) <— Positive Grassmannian (2006)

(Arkani-Hamed-Trnka) (Postnikov)

Brane Tilings & Gauge Theories (2005) <— Cluster Integrable Systems (2011)
(Franco-Hanany-Kennaway-Vegh-Wecht) (Goncharov-Kenyon)

This Talk:

Brane Bricks & Hyperbricks (2015-2016) «+— 777777
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Introduction to Cluster Algebras

In the late 1990's: Fomin and were studying total positivity and
canonical bases of algebraic groups. They noticed recurring combinatorial
and algebraic structures.

Let them to define cluster algebras, which have now been linked to quiver
representations, Teichmiiller theory, tilting theory,

, discrete integrable systems, , and many
other topics.

are a certain class of commutative rings which have a
distinguished set of generators that are grouped into overlapping subsets,
called , each having the same cardinality.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1,...,Xn, Xnt1s -+ Xntm)
constructed cluster by cluster by certain exchange relations.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1,...,Xn, Xnt1s -+ Xntm)
constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, {x1,x2, ..., Xn+m}-
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1,...,Xn, Xnt1s -+ Xntm)
constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, {x1,x2, ..., Xn+m}-

Construct the rest via Binomial Exchange Relations:

' dt d-
xaxt = [0+ 140
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1,...,Xn, Xnt1s -+ Xntm)
constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, {x1,x2, ..., Xn+m}-

Construct the rest via Binomial Exchange Relations:

' dt d-
xaxt = [0+ 140

The set of all such generators are known as Cluster Variables, and the
initial pattern of exchange relations (described as a valued e a
directed graph) determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver @, we mutate at vertex j by:

Step 1: Reverse all arrows incident to vertex j.
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver @, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Step 2: For every 2-path k < j < i in Q, add a new arrow
K< i
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver @, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Step 2: For every 2-path k < j < i in Q, add a new arrow
k J i-

Step 3: Delete any 2-cycles created by Steps 1 and 2.

Example:

321 M2 g 5 Ty
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver @, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Step 2: For every 2-path k < j < i in Q, add a new arrow
k J i-

Step 3: Delete any 2-cycles created by Steps 1 and 2.

o v N

321 M2 g 5 Ty 3 2 1

Example:
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Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver @, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Step 2: For every 2-path k < j < i in Q, add a new arrow
k J i-

Step 3: Delete any 2-cycles created by Steps 1 and 2.

o v N

321 M2 g 5 Ty 3 2 1

Example:

=3<—2<—1.
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Cluster Variable Mutation (Fomin-Zelevinsky 2001)

In addition to the mutation of quivers, there is also a complementary
cluster mutation that can be defined.

Cluster mutation yields a sequence of Laurent polynomials in
Q(x1,x2,...,xn) known as cluster variables.

Given a quiver Q and an initial cluster {xi,...,x,}, then mutating at

vertex J yields a cluster variable x/

defined by =1 ] =+ [] x /xj.

k+—jeQ j+ieQ
Example: Q =3 -2+ 1
xlx{ =x+1
ngé =1+ x1x3
X3X§ =x+1
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Cluster Algebras from Surfaces

Theorem (Fomin-Shapiro-Thurston 2006, based on earlier work of
Fock-Goncharov and Gekhtman-Shapiro-Vainshtein): Given a Riemann
surface with marked points (S, M), they define a A(S, M).

Seed <> Triangulation T = {71, 72,...,7n}
Cluster Variable <> Arc v (x; <> 1, € T)

Cluster Mutation (Binomial Exchange Relations) <+ Flipping Diagonals.

Ty Ty, 1N
T r] I5
T\t T
T, ! T, Y= y
T, T, N T
T T
Tﬁ tf)
2
X5+ 2x + 14 x1x
2 2 143 . / " / " "oyoor
Xy = , Via x1x3 = xo+1, xo0x; = X3+X7, X3X3 = X5 +X].

X1X2X3
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Cluster Algebras from Surfaces

Theorem. (M-Schiffler-Williams 2009) Given a cluster algebra arising from
a surface, A(S, M) with initial seed ¥, the Laurent expansion of every

cluster variable with respect to the seed ¥ has coefficients.

Proof via explicit combinatorial formulas in terms of graphs.
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Cluster Algebras from Surfaces

Theorem. (M-Schiffler-Williams 2009) Given a cluster algebra arising from
a surface, A(S, M) with initial seed ¥, the Laurent expansion of every
cluster variable with respect to the seed ¥ has coefficients.

Proof via explicit combinatorial formulas in terms of graphs. Example:
2 3 5

g 117 24 3|6
The graph Gy, = —s 7 =z has five perfect matchings:

I:]:[:I (x9)x1x3(x6), I:I:I:I (xox7Xax6),
]:[:I:l x2(xg)(xaxe), I:I:E[ (xox7)x2(x5),
]:E:[ xo(Xg)x2(Xs5). Xy = xatlie g (with x4 = -+ = x9 = 1)

X1X2X3

A perfect matching is a subset of edges covering every vertex exactly once.
The weight of a matching is the product of the weights of the constituent
edges. The denominator corresponds to the labels of Gy 's tiles.
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Cluster Algebras and Aztec Diamonds

Consider the quiver Q (on the left below). Instead of all cluster variables,
we focus on those obtained by mutating 1,2,3,4,1,2, ... periodically:

1 3

— 4 2 — ...
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Cluster Algebras and Aztec Diamonds

Consider the quiver Q (on the left below). Instead of all cluster variables,
we focus on those obtained by mutating 1,2,3,4,1,2, ... periodically:

1 3

— 4 2 — ...

Yields a sequence of cluster variables, with initial cluster variables
X1, X2, X3, Xa, With x,14 denoting the nth new cluster variable obtained by
this mutation sequence {x1, x2, X3, X4, X5, X6, X7, X8, X0, X105 X11, X12, - - - }-

Because of the periodicity, it follows that the x,'s satisfy the recurrences

X,%,l + X,%,z when n is odd, and

XI‘IXI‘I74 - 2 2 h .
Xn_o + Xp_3 when n 1s even.
2 2 2 2 2 2 2 2
_ X3+ _ x3tx _ XtX5 _ X515
For example, x5 = o X6 = Tt X = e and xg = e
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Cluster Algebras and Aztec Diamonds

1 3

Let Q = 4 2 , and mutate periodically at 1,2,3,4,1,2,3,4,....

X2+ x2 when n is odd, and
_ n—1 n—2
XnXn—4 = .

Xi_o + X5 3 when n is even.

By letting x; = x> and x3 = x4, we get xop4+1 = X2, for all n.

Letting { T} be the sequence {x2,}ncz, We obtain a single recurrence.

TaTpo=2T2 ;.

If To = To = 1, {To} = {1,1,2,8,64,1024,32768, ... } = {2(”2(”2) }

For n > 3, T, = # (perfect matchings of the (n — 2)nd Aztec Diamond).
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Cluster Algebras and Aztec Diamonds

I——o L

Let Q = 4 2 , and mutate periodically at 1,2,3,4,1,2,3,4,....
2042/ 4]2]4|2
3/113J1,13]1]3
2 atol4f2]4]0 1
slnfaif1f3|1f3 1 3 5 . ST
2]4]2]4]2]4]2 tlafi] |2]4]2 113]1]3]1
3/113|1]3]1|3 4 2 2 1 2[4]2
2042/ 4]2]4|2 1

2 2 2 2 2 2\2(,2 2 2 2\2( 2 2
X5 = X3;ZX4, X6 = X3;;X4' X7 = (X3+>)<:112)X22(;<31+X2,), and xg = —(X3+)§?12)X22(2+X2).
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What is a Brane Tiling (in Physics & Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to

Decribe the world volume of both D3 and M, branes, and describe
certain (3 + 1)-dimensional superconformal field theories arising in string
theory (Type Il B).
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What is a Brane Tiling (in Physics & Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to

Decribe the world volume of both D3 and M, branes, and describe
certain (3 + 1)-dimensional superconformal field theories arising in string
theory (Type Il B).

In Algebraic Geometry, they are used to

Probe certain , and relate to
non-commutative crepant resolutions and the 3-dimensional McKay
correspondence.

Certain examples of path algebras with relations (Jacobian Algebras) can
be constructed by a quiver and potential coming from a brane tiling.
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What is a Brane Tiling (Combinatorially)

However, this is a talk, not a physics talk, so | will henceforth
focus on combinatorial motivation instead.

Most simply stated, a Brane Tiling is a Bipartite graph on a torus.

We view such a tiling as a doubly-periodic tiling of its universal cover, the
Euclidean plane.

Examples: S .
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Brane Tilings from a Quiver @ with Potential W

A Brane Tiling can be associated to a pair (Q, W), where Q is a
and W is a potential (called a superpotential in the physics literature).

A Q is a directed graph where each edge is referred to as an arrow,
and multiple edges are allowed.

A potential W is a linear combination of cyclic paths in Q (possibly an
infinite linear combination).

For combinatorial purposes, we assume other conditions on (Q, W), such
as

e Each arrow of @ appears in one term of W with a positive sign, and
one term with a negative sign.

e The number of terms of W with a positive sign the number
with a negative sign. All coefficients in W are £1.
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Example of a Brane Tiling and its Potential

N —
] i 1 3
G—Q—0
S S
4 2

w S E N w N E S
W= XXX XXX

W) 5 (V)

E N w S E S
XX XXX
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Brane Tilings in Physics

Face <+— U(N)
Edge <«— Bifundamental Chiral Fields (Representations)

Vertex <+— Gauge-invariant operator (Term in the Superpotential)
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Brane Tilings in Physics

Face <+— U(N)
Edge <«— Bifundamental Chiral Fields (Representations)
Vertex <+— Gauge-invariant operator (Term in the Superpotential)

Together, this data yields a quiver gauge theory. One can apply
to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.
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To Physics: Seiberg Duality and Quivers w/ Potential

Recall: Quiver Mutation (Fomin-Zelevinsky 2001) at vertex j of Q:
Step 1: Reverse all arrows incident to vertex j.

Step 2: For every 2-path k + j < i in Q, add a new arrow
k J i
Step 3: Delete any 2-cycles created by Steps 1 and 2.

£

321 M2 g 5, Ty 23 2 1

Example:

=3<~—2<——1.
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver @, a potential W is a linear combination of cycles of the
quiver Q.
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver @, a potential W is a linear combination of cycles of the

quiver Q. With the new data of a potential, we mutate the quiver and
potential (Q, W) together (at vertex j):

Step 1: For every arrow Xj = j — k (resp. Xjj = i — j) incident to vertex
J, replace it with its dual X = k — j (resp. Xi=J— 0.
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver @, a potential W is a linear combination of cycles of the
quiver Q. With the new data of a potential, we mutate the quiver and
potential (Q, W) together (at vertex j):

Step 1: For every arrow Xj = j — k (resp. Xjj = i — j) incident to vertex
J, replace it with its dual X = k — j (resp. Xi=J— 0.

Step 2a: For every 2-path, i — j — k in @, add a new arrow i — k to @

and a new degree 3 term to W, namely X,-kX,jj)gf.
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver @, a potential W is a linear combination of cycles of the
quiver Q. With the new data of a potential, we mutate the quiver and
potential (Q, W) together (at vertex j):

Step 1: For every arrow Xj = j — k (resp. Xjj = i — j) incident to vertex
J, replace it with its dual X = k — j (resp. Xi=J— 0.

Step 2a: For every 2-path, i — j — k in @, add a new arrow i — k to @
and a new degree 3 term to W, namely X,-kX,jj)gf.

Step 2b: Replace any instances of XX in W with the new arrow Xj.
Step 3: Letting (Q', W’) be the result after Steps 1 and 2, apply a
right-equivalence to equate

(le W/) ~ ( ;ed7 r/ed) D (Qt/“riw Wt{riv)

where Q! has no 2-cycles and W/, has no terms of degree 2.
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Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Step 1: For every arrow Xj, (resp. Xj;) incident to vertex j, replace it with
its dual Xj; (resp. X7).

Step 2a, 2b: For every 2-path, i — j — kin Q, add i — k to @ and
X,kaJX* to W. Replace instances of Xj;Xj. in W with the new arrow Xj.

Step 3: Letting (Q', W’) be the result after Steps 1 and 2, apply a
right-equivalence to equate (Q', W) ~ (Qloy, Wly) @ (@11 > Wi,
Q!4 has no 2-cycles and W/, has no terms of degree 2.

Example:
, N

) where

3¢ 21 M2 g 5, Ty 23 2 1
W=0 W' = X13X5,X5; W = X13(X31)+X31X12X23
red =0, Wt/r/v X13X31.
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Description of Seiberg Duality (from physics)

From “Brane Dimers and Quiver Gauges Theories (2005) by Franco,
Hanany, Kennaway, Vegh, and Wecht:

After picking a node to dualize at: of all arrows
entering or exiting the dualized node. This is because Seiberg duality
requires that the dual quarks transform in the conjugate flavor
representations to the originals. ...

Next, draw in ... bifundamentals which correspond to composite (mesonic)
operators. ... the Seiberg mesons are promoted to the fields in the
bifundamental representation of the gauge group. ...

It is possible that this will make , in which case the
appropriate fields should then be integrated out.”
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Description of Seiberg Duality (rephrased combinatorially)

Pick a vertex j of the quiver Q (equiv. face of the brane tiling 7g) at
which to mutate. Then, Js
ie. Aj — AJ*, Next, for every two-path i — j — k, “meson”, in @ draw in
a new arrow i — k, “the Seiberg mesons are promoted to the fields”. Let
Q@' denote this new quiver.

We similarly alter the superpotential W to get W’. For every 2-path
i — j — kin Q, we replace any appearance of the product A;Aj in W
with the singleton A;x and add or subtract a new degree 3-term A,kAkJA>k

It is possible, that this will make some of the terms of W’ of ,
“massive”, in which case there should be an associated 2-cycle in the
mutated quiver Q' that can be deleted, “the appropriate fields should then
be integrated out”.

This is in fact Mutation of Quivers with potential from cluster
algebras (as defined by Derksen-Weyman-Zelevinsky).
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Description of Seiberg Duality (on the Brane Tiling)

In the special case, that we are mutating at a vertex with two arrows in

and out, a toric vertex, this corresponds to a Urban Renewal of a square
face in the brane tiling.

Example (Q§2’3)): with potential

W = AAsAn + AAs Al As + AS) AstArs + AsiAusAsz + Azt AraAasAso

—  A16A62A2A41 — A3sAssAsz — A13A§§”A51 — Agr ArsAY) Asy — Aus Asz Ava.

35
We consider the Brane Tiling and mutation of (Q, W) at
the toric vertex labeled 1.
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Description of Seiberg Duality (on the Brane Tiling)

6o

Example (Q§2’3)): H/“/ with potential
W = Ai3AssAy + A16A63Ag¥)/‘\51 + AQE”A57A73 + A24Ass Aso + Ax7 A74Ass A2
— AsAs2AraAs — AsaPusAes — AsAse) Ast — Ao ArsAly) Asy — AusAst Ava.

.
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q§2’3)): eZ— ¢ Rotate potential terms containing 1
W = AsuAizAz + A51A16A63A§§/) + AQE”A57A73 + A2aAss Asy + Arr A7aAseAs
—  AnAieAcAr — AsuAisAes — AsiAsASs) — AxrArsAly) Asy — AusAstAva.

.
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Description of Seiberg Duality (on the Brane Tiling)

" Mutating at 1 yields
W' = ApAyn+ A56A63Ag¥) + AEQ')A57A73 + A23Ass As2 + A7 A7 AssAe2
A§§)A62A24 — A3sAss A6z — AEQ)A%’) — A27A73A55V)A52 — AusAs7Aza
+ ALAD AL + A A AL — AL AsAS — AlsAssAdr.

a
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q§2’3)):

WI

Highlighting Massive terms

AszAzg + A56A63Ag¥) + AEQ')A57A73 + A2aAss Asy + Aor A74Ass As2
Agg)A62A24 — A34As6A63 — A(SZ”AQQ” - A27A73A55V)A52 — AssAs7Aza
+ALAR AL + AAL AL — AL ABAT — AfsAss AL

a
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q§2’3)):
WI

* Highlighting complementary terms

AszAzg + A56A63Ag¥) + Agg’)A57A73 + A23Ass As2 + A27 A7 AssAe2
Agg)A62A24 — A3sAss A6z — Aég”Agg) — A27A73A55V)A52 — A5 As7 A4
+ o ALAR AG + AL AL AT — A AL AT — AfsAss A

a
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Description of Seiberg Duality (on the Brane Tiling)

Reduces the potential to

273)). Sea—9 4

Example (Q§
W = AssAssAly) + AnAusAsy + Axr AraAus Az — Alg) A2 Ao — Aoz ArsAly) Asy
—  AwsAstAn + AI4AS£)A21 — AlsAssAst — AasAszAz1 ATy + Az Als Ast Ars.
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Description of Seiberg Duality (on the Brane Tiling)

Se

S

e 0 3

Example (Q§ If we cyclically permute vertices

w" = A45A52A§4") + A13A31 A4 + A16A63A35As1 — Ag?)AalAla - A16A62A§Z)A41
—  As3AA63 + A§3A(3?)A;7 — Al AusAsy — Ass Asa A AT + A7 A74Ass Asa.
o0 [ ]
[
[]
[ ]
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Description of Seiberg Duality (on the Brane Tiling)

6o

Se& 4

(2.3)y.
Example (Q;77):
The cyclic permutation yields the original Brane Tiling and (Q, W)!

W' = AisA2AY,) + AisAsiAs + AisAssAssAst — AL Asi Atz — AsAcAby) Au
—  A3AsAe3 + A;3A(3€)A§7 — A7 A Asr — Ass As2 Ay A7z + Asr A7, Ass Asz
W = AizAAu + A16A63A(3¥)A51 + Agg’)A57A73 + A2 Aus Asz + Aor AraAssAs2

—  AsAAnAn — AsaAAss — Az AL Asi — Axr ArsAY) Asy — AssAsz Ava.
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Such Cluster Mutations yield the Gale-Robinson Sequences

Example (Q,(Vr’s)): (eg. r=2,5s=3 N=7)

Mutating at 1,2,3,...,N,1,2,... yields the same quiver, up to cyclic
permutation, at each step, hence we obtain the infinite sequence of
XN-1, XN42, - - - satsifying

Xn = (Xn—an7N+r + Xn—an7N+s) /anN for n>N.

Known as the Gale-Robinson Sequence of Laurent polynomials.
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FPSAC Proceedings 2013 (Jeong-M-Zhang)

X8<—>D, X9<—>,

T

X12 <

X15 <7

1 2
5 ‘2 4 6 1‘
L Xz e 1R v X14 £

] , X16 <
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FPSAC Proceedings 2013 (Jeong-M-Zhang)

Obtain pinecone graphs from Bousquet-Mélou, Propp, and West in terms
of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only
use (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

[?
X8<—>D, XQH, X10 < , X11 < :

1 2 ‘1‘ 3 s “7 2
3 5 ‘2 4 6 1‘ 2 4
X12 < : X13 < ]‘ : J

X15 <> j , X16 < I‘ ’
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FPSAC Proceedings 2013 (Jeong-M-Zhang)
Similar (without principal coefficients) also observed in “Brane
tilings and non-commutative geometry” by Richard Eager.

Eager uses physics terminology where he looks at YP9 and L% quiver

gauge theories, and their (i.e. quiver mutations).

[?
X8<—>D, XQH, X10 < , X11 < :

1‘ 3
1 2 ‘1‘ 3 5‘72
X12 < : X13 <> ]‘ ’ J

X15 <> j , X16 < I‘ ’
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Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a
super-symmetric quiver gauge theory.

We next consider a 2-dimensional N = (0,2) SUSY quiver gauge theory.
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Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a
super-symmetric quiver gauge theory.

We next consider a 2-dimensional N = (0,2) SUSY quiver gauge theory.

Gadde, Gukov, and Putrov (2013) introduced dynamics which are
analogues of Seiberg Duality: GGP (0,2) Triality.

Fermis are undirected arrows. Chirals are directed arrows.
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Recent Extensions of Seiberg Duality by Physicists

Corresponding geometric and combinatorial model of Brane Bricks
developed by Franco-Lee-Seong (2015); an extension of Brane Tilings.

Brane Brick Model GaugeTheory
D4-branes ©® Gauge group

NSS-brane © Chiral

Fermi

®© © © @

J- or E-term plaquette

T > ETTTTTE

£
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Recent Extensions of Seiberg Duality by Physicists

il
i

A ﬂf"nzﬂ”é

Example QL11:

iy

R
\5/22»% a

,f}:%»

haN
RS

;

)
N

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 30/ 68



Recent Extensions of Seiberg Duality by Physicists

B

Example QV11/Z, (J-terms and E-terms): k(?[

oty At x—x—xt A=t xtx— A= x—xtxt A= x—xtxt A=yt xtx—
W = Ny1 XisXs6 Xg2 — Na1X15 X5 Xoo + N2 Xoa Xa3Xay — NaXog Xa3 X3 + Ny Xi5 Xs6 Xeo — Moy X15X56 X2

L

FA2Xoa Xaz X1 — NaXog Xg3 Xit + Mg XehXaz Xa7 — NgXaq X3 X7 + Ny X5 X5 Xgg — Nz X7 Xo6Xes
+A7gXea Xa3 X3 — MgXaaXas Xay + Ngy XobXag Xog — N7 X7s Xog Xo5 + Nga' Xa3Xa7 Xg5 X5 — Naa Xaz Xa1 X15 X5
Hhag XeoXoq — /\4767)(64%)(2;2 + Ny X5X3 X5 Xss — Moy Xaz Xg7 XoE X
gt Xe3 Xoq — Nig Xog Xaa + N4~ Xaz X1 X[ Xes — N XahXs7 X75Xso
N X Xy — Mg Xog Xea + Ny Xag X33 X5 Xog — Nog T X35 Xa1 Xi5Xss + Nis Xe2 Xaa — Nis XoXea
N5 X5 Xgs Xoq X3 — M5 Xog Xog Xea Xa3 + Ng3 ™ X XG5 — Agy ™ XGLXG5 + A3 ™ Xe6 Xea Xaa Xaz — M35~ Xog Xeo X34 Xi
G Xg Xos — N X51 X5+ Ngs Xog XeaXes Xa3 — M5 Xe6Xeo XoaXaz + a3 " X3 Xr5 — Ay X30 Xi5

35 Xog XerXog Xis — N5 ' X Xeg Xeh Xaz + N\dy Xa7 X5 — Ady X1 X(5
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Recent Extensions of Seiberg Duality by Physicists
)}/\)
7()

- |,
Example QY11 /Z, After Mutation at 1: ¢ ?

Vi S N v g — ot at— A=ttt = x—
W' = Xy N5 X5 Xoo — Xa1M5Xee Xe2 + Xoa Xgz\zp — Xog X33y + Mgz X357 X75 %56 X

!

b
“&&

{Li
ANy

i
|

1

N

)

HAJSE X X 75 Xe5 Xey — Moy X3y X35 Xeg Xeo — N33" Xy X75Xes Xep + Mo~ X51 XT3 + N5y~ X31X 13 + X5y A5 X6 Xes
X5 MsXseXes + XaaXaz Agp ™ — Xog Xaz A + Mg ™ X5 XTs X Xeh + N33~ Xz X7sXehXeo — Ny~ X371 X75Xds Xz
N33 X3 X75Xe6 X + N3y Xy XT3 + Ao X1 XT3 + Mg Xgla Xaz Xs7 — N Xaa Xz X3l + Nz Xes Xsis Xag — Mgz X7 Xoh X
+A7g Xgq XasXalh — Mg X Xi3Xar + Nz X5 Xss Xog — N7 Xos Xog Xes + Nga' XahXay Xg5 Xog — Nga' X3 X37X75 Xet
+/\4_6_X6§X2*;7/\4_6_X6'gxi;2+X3_7X9'5/\;1X'1"3+A6_4_XI;X§'7X7_5X5€ 7/\6_4_X4§X?:;X7-EXSE+AIS+X6;X2 —Ng" Xog Xsa

— X3 X751 X1z + Ny~ Xag X7 X35 X565 — Mg~ X5 Xay XobXag + Nag " XehXoq — Mg Xog Xela

+ + + =yt y— + 3t A= xF
— X3 X75 M1 X 13 + Ny Xag Xt Xos Xeg — Naa " XX XT5Xss + Mg Xz Xda — Mg XeaXea + X37X75/\51 X1
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Recent Extensions of Seiberg Duality by Physicists

Franco-Lee-Seong-Vafa (2016) then developed an (N = 1) 0-dimensional
super-symmetric quiver gauge theory and a mutation known as Quadrality.

My N I N

My Ny Tm M

-)

My T

Fermis and Chirals are both directed arrows in this case.
Notice the new Fermi from N3 — N; after the initial Quadrality.
Question: Mathematical Model for Mutations and associated Relations?
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Path Algebra (Example for A, Quivers)

The A, quiver Qis n<=—n—1 2 1.

The path algebra k@ has elements given by the paths
pji: J Jj—1 i+1 i forl<i<j<n,

. Pjk ifi=¢
and the idempotents e;. Note p;ji - pyx = .
0 otherwise

As an algebra,
k@ = { lower triangular n X n matrices over k}.
pji corresponds to Ej; which has a 1 in column i/, row j and O elsewhere.

e; corresponds to Ej.
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Path Algebra (Example for A; Quiver)

The Az quiver Q is 2 + 1 with path algebra kQ given by

{e1, €, p21 : € - p21 = po1, po1- €1 = poi, ef = €1, e% = e}
with all other products equal to zero.
Under the isomorphism with lower triangular 2 x 2 matrices,

e<—>10e<—>00 and <—>00
1 0072 0 1|’ P21 1 ol-
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From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category D?(kQ®) has indecomposable objects of
the form M([i] (M indecomposable of kQ and i € Z with shift functor [1]).

Example (A Quiver): 2 «— 1 admits three indecomposable modules
P1=(e1,p21) = b, P>=(e2), h=el).
The indecomposables of D?(k(2 < 1)) can be arranged as

Pi=bh P[1] h[1]

NSNS

P>[2]

P1[2]

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 36 / 68



From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category D?(kQ®) has indecomposable objects of
the form M[i] (M indecomposable of kQ and i € Z with shift functor [1]).

DP(kQ) is also a triangulated category meaning there are certain
distinguished short exact sequences 0 -+ A — B — C — 0 known as
almost split sequences. (Correspond to A— B — C— AL

An almost split exact sequence is not split, i.e. B2 A® C be is
irreducible (i.e. as close to being split without being split).
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From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category D?(kQ®) has indecomposable objects of
the form M[i] (M indecomposable of kQ and i € Z with shift functor [1]).

DP(kQ) is also a triangulated category meaning there are certain
distinguished short exact sequences 0 -+ A — B — C — 0 known as
almost split sequences. (Correspond to A— B — C— AL

An almost split exact sequence is not split, i.e. B2 A® C be is
irreducible (i.e. as close to being split without being split).

Given an indecomposable module C, there is a unique almost split
sequence of the foom 0 —» - — _— C — 0.
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From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category D?(kQ®) has indecomposable objects of
the form M[i] (M indecomposable of kQ and i € Z with shift functor [1]).

DP(kQ) is also a triangulated category meaning there are certain
distinguished short exact sequences 0 -+ A — B — C — 0 known as
almost split sequences. (Correspond to A— B — C— AL

An almost split exact sequence is not split, i.e. B2 A® C be is
irreducible (i.e. as close to being split without being split).

Given an indecomposable module C, there is a unique almost split
sequence of the foom 0 —» - — _— C — 0.

The Auslander-Reiten translation 7C of indecomposable C is the
unique indecomposable such that 0 - 7C — _ — C — 0 is almost split.
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Cluster Categories (Acyclic Case)
(The Auslander-Reiten translation 7C of indecomposable C is the unique
indecomposable such that 0 - 7C — _ — C — 0 is almost split.

7 has the property that it sends indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as D?(kQ)/(7~ ! o [1]) where 7 is
Auslander-Reiten translation and [1] is the shift functor .
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Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation 7C of indecomposable C is the unique
indecomposable such that 0 - 7C — _ — C — 0 is almost split.

7 has the property that it sends indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as D?(kQ)/(7~ ! o [1]) where 7 is

Auslander-Reiten translation and [1] is the shift functor .

In this quotient, 7P; = P;[1] rather than zero. Furthermore, 7P;[1] = ;.

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 38 / 68



Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation 7C of indecomposable C is the unique
indecomposable such that 0 - 7C — _ — C — 0 is almost split.

7 has the property that it sends indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as D?(kQ)/(7~ ! o [1]) where 7 is
Auslander-Reiten translation and [1] is the shift functor .

In this quotient, 7P; = P;[1] rather than zero. Furthermore, 7P;[1] = ;.

Example (A> quiver):
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Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation 7C of indecomposable C is the unique
indecomposable such that 0 - 7C — _ — C — 0 is almost split.

7 has the property that it sends indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as D?(kQ)/(7~ ! o [1]) where 7 is
Auslander-Reiten translation and [1] is the shift functor .

In this quotient, 7P; = P;[1] rather than zero. Furthermore, 7P;[1] = ;.
Example (A> quiver):

=lh<—-—-—-—-—- - Pll<—-—-——————Pr<— — — — — —

******* Pill] < — - - - — -
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Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation 7C of indecomposable C is the unique
indecomposable such that 0 - 7C — _ — C — 0 is almost split.

7 has the property that it sends indecomposable objects to zero
and otherwise sends non-projective indecomposables to indecomposables. )

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster
Category C1(kQ) is defined as D?(kQ)/(7~ ! o [1]) where 7 is
Auslander-Reiten translation and [1] is the shift functor .

In this quotient, 7P; = P;[1] rather than zero. Furthermore, 7P;[1] = ;.
Example (A> quiver):

P2[1]

/\/\/\/

P1[1]
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Tilting Objects in a Cluster Category

Given an acyclic quiver @ and the associated cluster algebra A(Q), then
clusters correspond to Tilting Objects in the Cluster Category C1(kQ).
Tilting Objects T = My & M> @ - - - & M, satisfy

1) Ext(M;, M;) = Ext(M;, M;) =0 for i # j and Ext(M;, M;) = 0 for all i.

2) The value of n equals the number of vertices in Q.
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Tilting Objects in a Cluster Category

Given an acyclic quiver @ and the associated cluster algebra A(Q), then
clusters correspond to Tilting Objects in the Cluster Category C1(kQ).

Tilting Objects T = My & M> @ - - - & M, satisfy
1) Ext(M;, M;) = Ext(M;, M;) =0 for i # j and Ext(M;, M;) = 0 for all i.

2) The value of n equals the number of vertices in Q.

Equivalently, 1) Hom(M;, M;[1]) = 0 for all i, ;.
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Tilting Objects in a Cluster Category

Given an acyclic quiver @ and the associated cluster algebra A(Q), then
clusters correspond to Tilting Objects in the Cluster Category C1(kQ).

Tilting Objects T = My & M> @ - - - & M, satisfy
1) Ext(M;, M;) = Ext(M;, M;) =0 for i # j and Ext(M;, M;) = 0 for all i.
2) The value of n equals the number of vertices in Q.
Equivalently, 1) Hom(M;, M;[1]) = 0 for all i, ;.
Letting T = T \ M;, there is a unique /\/IJ{ ¥ M; such that
Mj = @B — M/ — M[1]

/ (1) /
are distinguished triangles (analogues of almost split sequences) in C1(kQ).
Corresponds to cluster mutation as XJXJ’ = iXBlgl) + 11k XB,-(O)'
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

H1
{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 =
X1

X1X2 X2
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

I
I H1
|

{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 = .
X1 X1X2 X2

Compared with C1(k(2 < 1)), we have {x1,x2} «— Pi[1] & P[1].

Pr=1 Pz[l

/\/\/\/
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

I
I H1
|

{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 = .
X1 X1X2 X2

Compared with C1(k(2 <— 1)), we have {x3,x2} «— h & P;[1].
Pi=1 Pz[l

/\/\/\/

P1[1]
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

I
I H1
|

{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 = .
X1 X1X2 X2

Compared with C1(k(2 <— 1)), we have {x3,xa} +— h & P1.

Plflz

/\/\/\/

P1[1]
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

I
I H1
|

{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 = .
X1 X1X2 X2

Compared with C1(k(2 <— 1)), we have  {xs5,xa} <— P2 & P1.
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Cluster Algebra and Cluster Category of Type A,

Tilting Object My @ M, satisfies Hom(M;, M;[1]) = 0 for i, € {1,2}.

The cluster algebra of type A, (associated to 2 < 1) has clusters

{x1, 2}~ {x3, %0} —2> {x3, x4}

14

I
I H1
|

{x2, 1} < {6, xa} <— {5, xa}
where
x2+1 x1+x+1 x1+1
X3 = , Xg= ————, and x5 = .
X1 X1X2 X2

Compared with C1(k(2 < 1)), we have {xs5,x1} «— P2 ® P1[1].

Pi=1 P,[1]

/\/\/\/

P1[1
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Cluster Algebra and Cluster Category of Type A,

Observe we have the correpondence

x1 «— Pi[1]

xp < Pp[1]

_xxt+1
=

X3 —— I = <e1)

_ox1txe+1
a X1X2

X4 P1 = (e1, po1)

_X1—|—1
=

X5 < P2 = <62>

There is a general map (Caledro-Chapton's Cluster Character) from rigid
indecomposable modules of C1(kQ) to by M — xp.
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Reading off the Quiver from a Tilting Object

Given a tilting module T = My & M> & - - - & M,,, we build the quiver Qt
by starting with n disconnected vertices.
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Reading off the Quiver from a Tilting Object
Given a tilting module T = My & M> & - - - & M,,, we build the quiver Qt
by starting with n disconnected vertices.

If there exists the distinguished triangle

A— B — M; — A[l] where B contains /\/I,-b” as a direct summand

then we adjoin b;; copies of the arrow i — j to our quiver Q.
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Reading off the Quiver from a Tilting Object

Given a tilting module T = My & M> & - - - & M,,, we build the quiver Qt
by starting with n disconnected vertices.

If there exists the distinguished triangle

A— B — M; — A[l] where B contains /\/I,-b” as a direct summand
then we adjoin b;; copies of the arrow i — j to our quiver Q.
Similarly, if there exists the distinguished triangle

M; - B — C — M;[1] where B contains ijk as a direct summand,

then we then adjoin bj copies of the arrow j — k to Q.
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Reading off the Quiver from a Tilting Object
Given a tilting module T = My & M> & - - - & M,,, we build the quiver Qt
by starting with n disconnected vertices.
If there exists the distinguished triangle
A— B — M; — A[l] where B contains /\/I,-b” as a direct summand

then we adjoin b;; copies of the arrow i — j to our quiver Q.

Similarly, if there exists the distinguished triangle

M; - B — C — M;[1] where B contains ijk as a direct summand,

then we then adjoin bj copies of the arrow j — k to Q.

. . . b;; by
! — ij kj
Cluster variable mutation of Q7, i.e. XjX; = [1; jeQr Xi T [ |j keQr Xk

. . ! __
agrees with the relation Xjx| = HiXB,-(l) + HiXB,(O)

coming from the distinguished triangles

M= @BM = My M[1] and M — ;89 — M/ - Mj[1].

i i
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)
(Thomas 2006) generalizes the cluster category C1(kQ) = D?(kQ)/7[1]:

Given an acyclic quiver @, define the m-Cluster Category as the quotient
category

Cm(kQ) = DP(kQ) /7 [m].
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

(Thomas 2006) generalizes the cluster category C1(kQ) = D?(kQ)/7[1]:

Given an acyclic quiver @, define the m-Cluster Category as the quotient
category

Cm(kQ) = DP(kQ) /7 [m].

Indecomposable Objects of Cp,(kQ) are

{I\/I M indec.} U {I\/I[l] M indec.} U--U {I\/I[m —1]: M indec.}

U {Pl[m],Pg[m],...,P,,[m]}

where Py, Ps, ..., P, are the projective indecomposables of kQ.
(n is the number of vertices of Q)
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pi=1 P,[1] 11[1] P1[2]

NN N

P1[1] Py[2]
where we get periodicity with P1[2] — P».
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pi=1 P,[1] 11[1] P1[2]

NN

P2[2]
where we get periodicity with P1[2] — P».
There are 12 higher tilting objects in Co(k(2 < 1)): P1[2] & P>[2]

P2[1] 11[1] Pl[2

/\/\/\/

Py [2
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pi=1 P,[1] 11[1] P1[2]

NN

P2[2]
where we get periodicity with P1[2] — P».
There are 12 higher tilting objects in Co(k(2 < 1)): h[1] & P2[2]

Pa[1] P1[2]

/\/\/*\/

P> [2
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P(1] (1] P1[2]

/\/\/\/

Pi(1] P2([2]

where we get periodicity with P1[2] — P».
There are 12 higher tilting objects in Co(k(2 <— 1)): L & P»[2]

Pa[1] h[1] P1[2]

/\/\/\/

Pi(1] Pz[2
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pi=1 P,[1] 11[1] P1[2]

NN

P2[2]
where we get periodicity with P1[2] — P».
There are 12 higher tilting objects in Co(k(2 <— 1)):  Py[1] & h[1]

Pa[1] P1[2]

/\/\/”\/
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P(1] (1] P1[2]

/\/\/\/

Pi(1] P2([2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 < 1)): P & h[1]

P2[1] |1[1] P1[2]

/\/\/\/

P1[1] P2[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pi=1 P,[1] 11[1] P1[2]

NN

P>[2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 + 1)): Pi[1] ® P;[1]
P2[1 (1] P1[2]
/ P1[1
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P(1] (1] P1[2]

/\/\/\/

Pi(1] P2([2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 < 1)): Pi[1] & P»
P[1] hh[1] P1[2]
P1[1 P3[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pa[1] (1] P1[2]

/\/\/\/

P1(1] P2[2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 < 1)): L & Py[1]
/ \ Pz[l (1] P1[2]
P1[1] P2[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P(1] (1] P1[2]

/\/\/\/

Pi(1] P2([2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Ca(k(2 < 1)): P1[2] @ P»[1]
P2[1 (1] P1[2
P1[1] P2[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P1=1 Py[1] 11[1] P1[2]

NN N

P1(1] P2[2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 < 1)): Pi@h
1h[1] P1[2]
P1[1] P2[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

P1=1 Py[1] 11[1] P1[2]

NN N

P1(1] P2[2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Co(k(2 < 1)): P& Py
(1] P1[2]
P1(1] P2[2]
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (Ax quiver): The 2-cluster category C2(k(2 < 1)) has
indecomposables

Pa[1] (1] P1[2]

/\/\/\/

P1(1] P2[2]

where we get periodicity with P1[2] — P».

There are 12 higher tilting objects in Ca(k(2 < 1)): Pi[2] & P>
/ \ P>[1] 1] P1[2
P1[1] P2[2]

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 44 / 68



Higher Cluster Categories/Colored Quivers (Buan-Thomas)

We can get a from a Higher Tilting Object T since there
are (m+ 1) ways to complete T = T\ M; in Cn(kQ) = DP(kQ) /771 [m]:

T=T0=TaeM? TO=TeoM?, TO=ToM?, ..., T"=TaomM".

J J
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

We can get a from a Higher Tilting Object T since there

are (m+ 1) ways to complete T = T\ M; in Cn(kQ) = DP(kQ) /771 [m]:

These fit together in distinguished triangles (using I\/I( m+1) — M(O)
M = @ BY = MY - M

(
MY @B M MM
(

MP @ B8P M - M

Mj(m_l) — @®;B (m 1 — I\/I(m) — M(m_l)[l]

/\/IJ(’”) - @ BI.( )—>M —>M [1]
G. Musiker (University of Minnesota)
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

0)

M, — @B~ — M.(l) — M;[1]

mM® - e B8P

(

MY @B M - MM
(

J i

— M = M)

e I e/ S b1
MM @ B = My — M

J i
) —

Notice that in the special case m =1, we let Mj( I\/IJf and we get

M = ©BY = My — MI1] and M; — @8 — M/ — Mj[1]

as desired.
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

@ MmaM[H

I\/IJ.(’"*l) — @,-Bfmfl) — I\/Ij(m) — Mg’"*l)[l]

MM @ B My - M

We build a colored quiver Q7 from T a tilting object of Cr,(kQ) by

adjoining b,(jc) colored arrows /i <—— for every summand M; in @,-B,-(C).

()
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Higher Cluster Categories/Colored Quivers (Buan-Thomas)

M = @ BY = MY M
MY @B M MM
M}z) - @ B,(z) = MP I\/Ij(z)[l]

M @,-B.()—>M—>M 1]

]

Because we can build the same tower of distinguished triangles using
I\/I,.(C)’s in place of MJ.(C), it follows that

() (0)
iZ ~j.(Form=1i—j=i__"j))
(m—c) (1)
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Example of Cy(k(2 < 1))

P2[1] [Pi2]
P2[2
¢
Pi2l® P2] «— 2 =1 =2<—1
)
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Example of Cy(k(2 < 1))
P2[1]
P2[2

Pi2l® Pa2] +— 2 ~1 =2<—1
Mutating by u1 yields

W1l @ Pf2] +— 27 ~1=2—>1.

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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Example of Cy(k(2 < 1))

Pa1] h(1]

P1[1] Pz[2
(2)
P2l @& Pp2] «— 2 1 =2<—1
(0)
Mutating by p1 yields
(0)
hl]@Pp2] «— 2 ~1 =2—>1.
()
And mutating by u1 a second time in a row yields
(1)
h®&Pp2] «— 2 -1 =2---1.
(1)

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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Example of Cy(k(2 < 1))

Pa[1] Py [2

/\/\/\/

P> [2

Mutatlng a third time in a row by p; ylelds again
(2)

Pi2l@Pp2] «— 2 -1 =2<—1.
(0)

i.e. u? =1
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Example of Cy(k(2 < 1))

P2[1]

/\/\/\/

P> [2

Mutatlng a third time in a row by p; ylelds again
(2)

Pi2l@Pp2] «— 2 -1 =2<—1.
(0)

e pud=1 (In general M,’."H = 1, which agrees with ;2 =1
for the ordinary m =1 case.)

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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Example of Cy(k(2 < 1))

Pz[1] (1] P1[2

/\/ NN

P»[2]
Notice, on the other hand mutating P;[2] @& P»[2] by p2 yields

M
P2l @ Pfl] +— 27 S1=2---1.

1)
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Example of Cy(k(2 < 1))

P2[1] h(1]

P [2

NSNS

P1[1] P2[2]
Notice, on the other hand mutating P;1[2] & P»[2] by p» yields

(1)
Pi2]® Po[l] +— 2 1 =2---1.

~——

(1)
And a second mutation by uy in a row yields

(0)
2 1

(2)

=2—>1.

Pi[2] ® P, +—

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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Example of Cy(k(2 < 1))

Such higher tilting objects can also be associated to quadrangulations

(more generally (m + 2)-angulations) of a polygon (in the type A, case).

Pi2l® Pp2] «— 2 -1 =2<—1
hll@ P2l «— 2 -1 =2—>1
heP2] «— 2 -1 =2---1

1)
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Colored Quiver Mutation (Buan-Thomas 2008)

A Colored Quiver Q = (Qo, Q1) = (Qu, ng) ® Qfl) ® Q{z) RN Q§m))
is a collection of vertices and arrows where arrows can have one of (m+ 1)
colors, which we label as (0),(1),...,(m), satisfying three properties:

(i) No loops: There are no arrows which have i € Qp as both its starting
and ending point.

(i) Monochromaticity: If there is an arrow j (9 : of color (c) between

!
vertices i, j € Qp, then there are no arrows ,-g i of any other color

(c¢’), although multiple arrows of the same color are possible.

(<) (¢)

(iii) . If there are g;;” arrows j = ; of color (c), then

(c) . (m—c)

there are also g;;” arrows jX"% j of color (m — c).
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Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on
them called Colored Quiver Mutation (at vertex j):
Step la: Replace every incoming arrow j(i j with the arrow j<(c;1) i
Step 1b: Replace every outgoing arrow JC) jwith an arrow (<C+1) j-
Both of these values are taken modulo (m + 1). As special cases,

(0) (m) (m—1) (m)

i i mutates to i i and kS mutates to kS -

(m) (0) (1) (0)
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Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on
them called Colored Quiver Mutation (at vertex j):

. (c—-1)

Step la: Replace every incoming arrow j(i j with the arrow j~—"1-

Step 1b: Replace every outgoing arrow g(c) jwith an arrow (c+1)

L j-

Both of these values are taken modulo (m + 1). As special cases,

(0) (m) (m—1) (m)
jC,' mutates to J'C,' and ij mutates to 4“7 > ;.
(m) (0) (1) (0)
Step 2: For every 2-path j &j & jin Q, where the c(o)lor of the
Cc
outgoing arrow is (0), and ¢ # m, k<" —i-
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Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on
them called Colored Quiver Mutation (at vertex j):

Step la: Replace every incoming arrow j(i j with the arrow j<(c;1) i

Step 1b: Replace every outgoing arrow g(c) jwith an arrow (:—H) j-

Both of these values are taken modulo (m + 1). As special cases,
(0) (m) (m—1) (m)

i i mutates to i i and kS mutates to kS -

(m) (0) (1) (0)
Step 2: For every 2-path j &j & jin Q, where the c((C))Ior of the
outgoing arrow is (0), and ¢ # m, k<" —i-
Step 3: Delete two arrows of colors ,'g—:\i) k as a pair until

monochromaticity is achieved again.  (€) (Massive terms)
Colored Quiver Mutation is of order (m + 1).
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Colored Quivers and their mutations motivated by the the Higher Cluster

Category, the triangulated (m + 1)-Calabi-Yau category obtained by the
quotient D2(kQ) /(771 o [m])

Recall the are maximally dimensional direct sums of
indecomposables which have no self-extensions.

Example of Co(k(2 < 1)) from above:

(2)
Pi2l®Pa2] +— 27 1 =2~<~—1

~——

(0)

(0)
hl]@ P2l «— 2 -1 =2—>1

()

(1)
he P2 +— 27 1 =2---1

~—

(1)
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

When Q is of type A, the in bijection with
(m + 2)-angulations of polygons. (Draw a colored arrow for number of
sides between labeled diagonals counter-clockwise.)

Example (mutating at vertex 2 in m = 2 case). We omit arrows of
color (2) since j _(°) j= ,_(mfc)j

)
- ~™
1-— -2« 3 12292 >3 12— 92 _=3
o 0 © <0 0) (1)
1< 23
(0) (1)
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in m = 3 case). We omit arrows of

color (1), (3) and set ; _(9)_ .= ;(m=9)

J J-
1 1 1
0)
@ —@
2«3 12 -2 >3 12 2-_=3

1<-
@ ° © ° (© © @

=]1=—2<--3
(0) (2)

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs
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October 4, 2019
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Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in m = 3 case). We omit arrows of

color (1), (3) and set ii] ((LC) .

2
1<=--2——3 1]—2<--3 1@2773 1f72 3
@ 7O © @ © @ @ “~O

Fourth mutation at vertex 2 yields arrow 1 _@_ 3 that cancels with

1 <(E), 3 and we obtain the first colored quiver again.

Also relates to the

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 54 / 68



Triality corresponds to m = 2 colored quiver mutation.

» Conifold xC

J
Ay X Xip- Yo — Yo - Xip- Xy =0
A;l: X!'l'}/'il')’)z_},lz'}’ﬂ'x)'l =0
J\?g: Yor - Yio - Xop — Xo - Y32 Yoy =0
i\gli Yio- Xog - Xip — Xyp- Xoy - Vi =0

Py
P

Py -

Py

Yo Y2 @ =0
X — Xp @1 =0
Xi2—Xi2- P2 =0
Yo =Y @y =0

1) (0)
Draw Fermis as j— ~ * jand Chirals as ; — ;.
N - - ~—
1 (2)

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.

We wish to deduce J-term and E-term Relations from Potentials for

Colored Quivers.

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs

October 4, 2019
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Quadrality corresponds to m = 3 colored quiver mutation.

o Ny Mo Ny N Ny N N3
— @ — ® j— &
] T Ny N T N Ny T e W " e
_ _ ) . (0)
Draw Directed Fermis as ;- ~ = jand Chirals as ; — ;.
~ _ — ~——
1) ®3)

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.
We wish to deduce J-term Relations from Potentials for Colored Quivers.

Physics also has H-term Relations. What is the Mathematics behind

them?
G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 56 / 68



(Franco-M 2017) Potentials for Colored Quivers

Based on the examples of (m + 2)-angulations and brane bricks, we
constructed a combinatorial theory of potentials for colored quivers.
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(Franco-M 2017) Potentials for Colored Quivers

Based on the examples of (m + 2)-angulations and brane bricks, we
constructed a combinatorial theory of potentials for colored quivers.

We define a potential W for a colored quiver @ to be a linear combination
of terms ajay - - - a of the path algebra, each satisfying

(1) The of ajiq is the of aj for1 < i< k—1,;
also the starting point of « is the ending point of .

(2) Letting ¢; € {0,1,2,..., m} be the color of arrow «;, we have
at+co+--+cag=m-1

Theorem: There are simple combinatorial rules so that mutation of
potentials is compatible with assignment of potentials to a brane brick
model or to an (m + 2)-angulation of a polygon.
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 1: For every incoming arrow a(.jc) = iﬂaj (resp. outgoing arrow
-1
J(,f) =J 9, k), replace it with a(c D= iLlj (resp.

ot = i kY in Q. Values taken in {0,1,2,..., m} mod (m+1).
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 1: For every incoming arrow a(.jc) = iﬂaj (resp. outgoing arrow

oo (c) (c—1)

oy’ = j—= k), replace it with a(c D= i——=j (resp.

ot = i kY in Q. Values taken in {0,1,2,..., m} mod (m+1).

Step 2a: For every 2-path, ,'ﬂ)j ﬂ) k in Q, where the color of the
outgoing arrow is (0), add the new arrow ; /. () k in Q and the new

degree 3 term afk)a(m) J(,fH) = a,(-,f)aff DO o W,

(c) ()

i ——j——=k i=—j<—k
(m) = (c+1) (0) “(m—c-1)

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019 58 / 68



(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 2b: Replace instances of agp)aj(.;) in W with oz,(.,f).

Step 2c: Replace instances of a,(.jc)aj(.:) in W with agsfl)aj(.fﬂ)
when ¢ # 0.

G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 2b: Replace instances of agp)aj(.,f) in W with oz,(.,f).

Step 2c: Replace instances of a,(.jc)aj(.:) in W with agsfl)aj(.fﬂ)
when ¢ # 0.

(c1)
Step 2d: For a local configuration ;i . j — >~ where
(0) \ (ck—2)
(Ckl)< / :
. . (c2)
e (k) i1
Ck— . i
a,(-cl-) %D (%) s in W, then add a new term to the potential
1,02 Ik—151k 1k,
(c1)
(c1) (ck—1) (cx) S
Qg pag i i replacing i1 with ip.
\ (ck—2)
(ck:)\ ) . v (@)
e () k-1
G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 3: Apply reductions of massive terms to get an equivalent colored
quiver with potential. (Generically, delete massive terms as well as terms
sharing an arrow with massive term. In special cases, more complicated.)
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(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).

Step 3: Apply reductions of massive terms to get an equivalent colored
quiver with potential. (Generically, delete massive terms as well as terms
sharing an arrow with massive term. In special cases, more complicated.)

Example (m=2): We omit arrows of color (2) and set al?) = olm=e),

JI
(0) 5 (0)
RS
(O)l A T(O)
AN
4 O 5 O ¢ W = XOXxOx O xOND 1 AL x O x (O
G. Musiker (University of Minnesota) Higher Cluster Categories and QFTs October 4, 2019
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(Franco-M 2017) Potentials for Colored Quivers
Example (m=2): We omit arrows of color (2) and set a( ) = aj(-imfc).

1 (0) 5 (0) 3

NG
(O)i A T(O)
0 0)\
49 5 O ¢ W = xOXxOxOxOAD | AL x5O
Mutating at vertex 6 via Rules (2a), (2b), (2c), (2d) yields
© ,_©

1<——
le (0)

0) y(0) y(0) 5 (1 0) A (1) y(0
W’ = X2(1)X1(4)Xz£5)/\éz) + X2(6)/\(63)X3(2)

1 0 0 0 1 0 1 0
AKX+ XDAGXD + DX
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 and want new potential to match

new quadrangulation
5 (0) _3 (0) 4
W .- 7
(0) e (0) e
6~ 5

1) ,,(0) y/(0 1) ,,(0) /(0
W = AG XD () A XS XD

1
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 via Rules (2a), (2b), (2¢), (2d)

4 4 (0)
209 5O 4 L W5 O 5y
W, W, © © /w7
ON 7 @O\ 7 B N e)
6 5 6° 5-

1 0 0 1 0 0
0 1 0 1 0 1 0 0
W' = XN XS + AIXS + A XD XS
0 1 0 1 0 0 0 1 0
)ds)/\t(s3)x3(4) + /\516)X6(3)X3E4) + Xﬂfz)/\ga) X3$4)
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(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 and reducing massive terms

6 6

4 4

(0) (0)

m /\/
N j/(l Y/“”/

0)A(1 1 0 1 0

W' = X6(3)A32)X2(6) —I—/\( ) x! )+/\(64)X( X2(6)
0 0 0)A(1 0
X£5)A23)X3(4) AEL6)X€§3)X?E4) XZE2)AE3)X?E4)

0) £ (1) (0 1) (0) (0 1) (0) (0 0) (1) /(0
Wey = Xés)/\gz)xz(s) + Ag4)Xz£2)X2(6) + AEL6)X6(3)X3E4) + Xig)/\§3)x3(4)-
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DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann’s work (thanks to Al Garver), we

were able to prove the above four rules are sufficient assuming conjectural
rule for reduction of massive terms.
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DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann’s work (thanks to Al Garver), we
were able to prove the above four rules are sufficient assuming conjectural
rule for reduction of massive terms.

Oppermann uses Higher Ginzburg algebras can be associated to a
(Colored) Quiver by defining d : kQ — kQ by
0 if o has degree (i.e. color) (0)
d(a) = { Daor W if @ has degree (i.e. color) € {1,2,3,..., m}
ei(X o, agpl)ei if a =¢;, aloop of degree (m+ 1)
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DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann’s work (thanks to Al Garver), we
were able to prove the above four rules are sufficient assuming conjectural
rule for reduction of massive terms.

Oppermann uses Higher Ginzburg algebras can be associated to a
(Colored) Quiver by defining d : kQ — kQ by

0 if o has degree (i.e. color) (0)
d(a) = § Opoe W if « has degree (i.e. color) € {1,2,3,...,m}
ei(X o, agpl)ei if a =¢;, aloop of degree (m+ 1)
For a potential W such that the Kontsevich bracket vanishes, i.e.

{W, W} =0, the Vacuum Moduli Space agrees with the
Jacobian algebra, given as

kQ/ ({8aW : a of color (m —1)}) = HO(T my2(Q, W)).
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Mutations of DG Structures (Oppermann 2017)

In an effort to study , Oppermann gives an
algebraic description of how this differential graded structure mutates

alongside the colored (a.k.a. graded) quiver mutation.
W — W' = deceyc W + >
O . (9)

a >, o ] —>

a dec(ppP)a™.
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Mutations of DG Structures (Oppermann 2017)

In an effort to study , Oppermann gives an
algebraic description of how this differential graded structure mutates
alongside the colored (a.k.a. graded) quiver mutation.

W — W' = deceyc W + Z a dec(ppP)a*.
0) . . (9

a >, o ] —>

Such a compact expression is possible due to the functions dec and
deccyc, which are defined as an action on a cycle v = ¢j, i, Qi i, - - Qipir
and then extended linearly to act on a potential.
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algebraic description of how this differential graded structure mutates
alongside the colored (a.k.a. graded) quiver mutation.
W — W' = deceyc W + Z a dec(ppP)a*.
o) . . (o)

a >, o ] —>

Such a compact expression is possible due to the functions dec and
deccyc, which are defined as an action on a cycle v = ¢j, i, Qi i, - - Qipir
and then extended linearly to act on a potential.

Every 2-path ¢; jp; « in 7y is replaced with

PijPjk — Z © . §0i7j0é_10690j’k . The result is dec('y).
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Mutations of DG Structures (Oppermann 2017)

In an effort to study , Oppermann gives an
algebraic description of how this differential graded structure mutates
alongside the colored (a.k.a. graded) quiver mutation.

W — W' = deceyc W + Z a dec(ppP)a*.
0) . . (9

a >, o ] —>
Such a compact expression is possible due to the functions dec and
deccyc, which are defined as an action on a cycle v = ¢j, i, Qi i, - - Qipir
and then extended linearly to act on a potential.

Every 2-path ¢; jp; « in 7y is replaced with

PijPjk — Z 0) §0i7j0é_10690j’k . The result is dec('y).
a: *>'/

For the case of deccyc(7), this operation is taken cyclically, i.e. we also
consider 2-paths ¢, ; i, i, where i = j.
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Open Questions and Work in Progress

Work in Progress (with Emily Gunawan and Ana Garcia Elsener):
Assigning a potential to general (m + 2)-angulations of a surface (in the
spirt of Daniel Labardini-Fragoso for triangulations) so that this
assignment rule is compatible with mutation and diagonal rotation in an
(m + 2)-gon. Can we better analyze certain gentle algebras and/or
oriented flip graphs of Al Garver and Thomas McConville using the
machinery of colored potentials?
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Work in Progress (with Emily Gunawan and Ana Garcia Elsener):
Assigning a potential to general (m + 2)-angulations of a surface (in the
spirt of Daniel Labardini-Fragoso for triangulations) so that this
assignment rule is compatible with mutation and diagonal rotation in an
(m + 2)-gon. Can we better analyze certain gentle algebras and/or
oriented flip graphs of Al Garver and Thomas McConville using the
machinery of colored potentials?

Big Open Question: Is there an analogue of cluster variables for brane
bricks (m = 2) or in the case of higher m. In the case of A, colored
quivers, such variables would correspond to admissible arcs in an

(m 4+ 2)-gon. Or for toric colured quivers, correspond to brick regions of
brane brick models (instead of faces of brane tilings). We know the
analogue of colored quiver mutation and even colored potential mutation.
But what are the analogues of the binomial exchange relations?

Currently working with S. Franco, R. Kenyon, D. Speyer, and L. Williams
on this and related questions.
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Thank Youl http://www.math.umn.edu/~musiker/Higher19.pdf

Seiberg duality (1995) <+— Quiver Mutation (2001)
(Seiberg) (Fomin-Zelevinsky)

Zamolodchikov Periodicity (1991) <+— Y-system Periodicity (2003)
(Zamolodchikov) (Fomin-Zelevinsky)

Superpotentials & Moduli Spaces (2002) <— Quivers with Potentials (2007)
Amplituhedron (2013) +— Positive Grassmannian (2006)
(Arkani-Hamed-Trnka) (Postnikov)

Brane Tilings & Gauge Theories (2005) <— Cluster Integrable Systems (2011)
(Franco-Hanany-Kennaway-Vegh-Wecht) (Goncharov-Kenyon)

Brane Bricks & Hyperbricks (2015-2016) <= Colored Quiver Mutation (2008)

Higher Calabi-Yau Quiver Theories (2017) <= Quivers for Silting Mutation (2015)
(Franco-M, arXiv:1711.01270) (Oppermann)
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