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Motivation

April 2021 Talk: Combinatorial formulas for λ-lengths and µ-invariants in
decorated super-Teichmüller spaces associated to polygons, and their
relationship to superfriezes, joint work with N. Ovenhouse and S. Zhang.

The first formula was expressed in terms of Super T-paths while the
second formula (then work-in-progress) was in terms of Double Dimer
Covers. This work provided steps towards super cluster algebras.

Fall 2021: Second combinatorial interpretation and Super Fibonacci
numbers utilizing our formula for the annulus (Kronecker quiver).

Summer 2022: Continued joint work with N. Ovenhouse and S. Zhang
providing Super-Matrix Formulas for not only decorated super-Teichmüller
spaces associated to polygons, but extensions to other surfaces.

February 2025 Talk: Super Markov Numbers and signed enumeration
formulas associated to the once-punctured torus. Leads to new avenues in
algebra, combinatorics, geometry, and number theory, and the like.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001)

A cluster algebra A (of geometric type) is a subalgebra of
k(x1, . . . , xn, xn+1, . . . , xn+m) constructed cluster by cluster by certain
exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx
′
α =

∏
x
d+
i

γi +
∏

x
d−
i

γi .

The set of all such generators are known as Cluster Variables, and the
initial pattern B of exchange relations determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Example: Coordinate Ring of Grassmannian(2, n + 3)

Let Gr2,n+3 = {V |V ⊂ Cn+3, dimV = 2} planes in (n + 3)-space

Elements of Gr2,n+3 represented by 2-by-(n + 3) matrices of full rank.

Plücker coordinates pij(M) = det of 2-by-2 submatrices in columns i and j .

The coordinate ring C[Gr2,n+3] is generated by all the pij ’s for
1 ≤ i < j ≤ n + 3 subject to the Plücker relations given by the 4-tuples

pikpjℓ = pijpkℓ + piℓpjk for i < j < k < ℓ.

Claim. C[Gr2,n+3] has the structure of a cluster algebra. Clusters are each
maximal algebraically independent sets of pij ’s.

Each have size (2n + 3) where (n + 3) of the variables are frozen and n of
them are exchangeable.
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Example: Coordinate Ring of Grassmannian(2, n + 3)

Cluster algebra structure of Gr2,n+3 as a triangulated (n + 3)-gon.

Frozen Variables / Coefficients ←→ sides of the (n + 3)-gon

Cluster Variables ←→ {pij : |i − j | ≠ 1 mod (n + 3)} ←→ diagonals

Seeds ←→ triangulations of the (n + 3)-gon

Clusters ←→ Set of pij ’s corresponding to a triangulation

Can exchange between various clusters by flipping between triangulations.

This is called mutation, and we will present a detailed example later.
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Another Example: Rank 2 Cluster Algebras

Let B =

[
0 b
−c 0

]
, b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

A(b, c) of rank 2.

µ1(B) = µ2(B) = −B and x1x
′
1 = xc2 + 1, x2x

′
2 = 1 + xb1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{
xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even
.

Example (b = c = 1):

x3 =
x2 + 1

x1
. x4 =

x3 + 1

x2
=

x2+1
x1

+ 1

x2
=

x1 + x2 + 1

x1x2
.

x5 =
x4 + 1

x3
=

x1+x2+1
x1x2

+ 1

(x2 + 1)/x1
=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)
=

x1 + 1

x2
. x6 = x1.
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Example (b = c = 2):

x3 =
x22 + 1

x1
. x4 =

x23 + 1

x2
=

x42 + 2x22 + 1 + x21
x21x2

.

x5 =
x24 + 1

x3
=

x62 + 3x42 + 3x22 + 1 + x41 + 2x21 + 2x21x
2
2

x31x
2
2

, . . .
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Another Example: Rank 2 Cluster Algebras

Let B =

[
0 b
−c 0

]
, b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

A(b, c) of rank 2.

µ1(B) = µ2(B) = −B and x1x
′
1 = xc2 + 1, x2x
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2 = 1 + xb1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{
xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even
.

If we let x1 = x2 = 1, we obtain {x3, x4, x5, x6} = {2, 5, 13, 34}.

The next number in the sequence is x7 =
342+1
13 = 1157

13 = 89, an integer!

In fact, the sequence {x1, x2, x3, x4, x5, x6, x7, . . . } ends up being

Every-other Fibonacci Number by Cassini’s identity.
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Teichmüller and Decorated Teichmüller Spaces

Let S = Sn
g be a smooth oriented surface (possibly with boundary) of

genus g equipped with a collection of marked points p1, p2, . . . , pn.

Here n ≥ 0. The marked points either lie on boundary components, or in
the interior of S , in which case they are called punctures.

Roughly speaking, the Teichmüller space of such a surface is

T (S) = the set of hyperbolic structures on S/isotopy.

Definition

Define the Teichmüller space of S to be the quotient space

T (S) = Hom (π1(S),PSL(2,R))
/
PSL(2,R).

Definition (Penner)

When n > 0, any such surface S = Sn
g also admits a decorated Teichmüller

space, which is a trivial Rn
>0-bundle over T (S), denoted T̃ (S).
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Decorated Teichmüller Theory

We will usually let S = Sn
0 be a disk with n marked points on its unique

boundary (i.e. a polygon). Such surfaces admit the Poincaré disk D model
as a hyperbolic structure.

D := {z = x + yi ∈ C : |z | < 1}, with metric ds = 2

√
dx2+dy2

1−|z|2 .

Definition (λ-length via horocycles)

h1

h2
δ

A horocycle is a smooth curve in the hyperbolic
plane with constant geodesic curvature 1. In D, it is
a Euclidean circle tangent to an infinite point, which
is the center.

For a pair of horocycles h1, h2, the λ-length between
them is

λ(h1, h2) = eδ/2

where δ is the hyperbolic distance between the two
intersections.
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as a hyperbolic structure.

D := {z = x + yi ∈ C : |z | < 1}, with metric ds = 2

√
dx2+dy2

1−|z|2 .

Definition (λ-length via horocycles)

h1

h2
δ

A horocycle is a smooth curve in the hyperbolic
plane with constant geodesic curvature 1. In D, it is
a Euclidean circle tangent to an infinite point, which
is the center.

For a pair of horocycles h1, h2, the λ-length between
them is

λ(h1, h2) = eδ/2

where δ is the hyperbolic distance between the two
intersections.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 10 / 71



Ptolemy Relations

Given a quadruple of horocycles with distinct centers (a decorated ideal
quadrilateral), one has the Ptolemy transformation induced by flipping
the diagonal of the quadrilateral.

a b

cd

e

a b

cd

f

At the level of λ-lengths, this induces the identity

λ(e)λ(f ) = λ(a)λ(c) + λ(b)λ(d).

Note that we will often abbreviate this as ef = ac + bd .
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Structural Theorems for Cluster Algebras

Theorem (Fomin-Zelevinsky 2001, The Laurent Phenomenon)

For any cluster algebra defined by initial seed ({x1, x2, . . . , xn+m},B), all
cluster variables of A(B) are Laurent polynomials in {x1, x2, . . . , xn+m}

(with no coefficient xn+1, . . . , xn+m in the denominator).

Because of the Laurent Phenomenon, any cluster variable xα can be
expressed as Pα(x1,...,xn+m)

x
α1
1 ···xαn

n
where Pα ∈ Z[x1, . . . , xn+m] and the αi ’s ∈ Z.

Theorem (Lee-Schiffler 2014, Gross-Hacking-Keel-Kontsevich 2015,
Prooof of the Positivity Conjecture)

For any cluster variable xα and any initial seed (i.e. initial cluster
{x1, . . . , xn+m} and initial exchange pattern B), the polynomial
Pα(x1, . . . , xn) has nonnegative integer coefficients.
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Cluster Algebras from Surfaces

Theorem (Fomin-Shapiro-Thurston 2006)

Given a Riemann surface with marked points (S ,M), one can define a
corresponding cluster algebra A(S ,M).

Seed ↔ Triangulation T = {τ1, τ2, . . . , τn}

Cluster Variable ↔ Arc γ (xi ↔ τi ∈ T )

Cluster Mutation (Binomial Exchange Relations) ↔ Flipping Diagonals.

(Based on earlier work of Gekhtman-Shapiro-Vainshtein and
Fock-Goncharov.)

From the perspective of hyperbolic geometry, Laurent expansions of
cluster variables may be expressed as λ-lengths of arcs, which can be
measured by choosing a point in Penner’s decorated Teichmüller space.
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Positivity of Cluster Algebras from Surfaces

Theorem (Schiffler 2006)

Let A be any cluster algebra of type An, i.e. with a seed Σ defined by a
triangulation T of an (n + 3)-gon.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of T-paths.

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

λ25 =
x23x15
x13

+
x12x34x15
x13x14

+
x12x45
x14

=
x23x14x15 + x12x34x15 + x12x13x45

x13x14
.
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Positivity of Cluster Algebras from Surfaces

Theorem (Schiffler-Thomas 2007, Schiffler 2008)

Let A(S ,M) be any cluster algebra arising from an unpunctured surface S
with marked points M, with principal coefficients, and let Σ be any initial
seed. Here Σ correponds to a triangulation of S with respect to the
marked points M.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of T-paths.

x1 2x

x
3

x2

x4

x3

1

τ3

τ4

τ

ττ τ
8 5 7τ6

γ

τ2
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Positivity of Cluster Algebras from Surfaces

Theorem (M-Schiffler 2008)

Let A(S ,M) be any cluster algebra arising from an unpunctured surface,
with principal coefficients, and let Σ be any initial seed.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of snake graphs.

1

τ3

τ4

τ

ττ τ
8 5 7τ6

γ

τ2

2

1 2 3

4

1
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Positivity of Cluster Algebras from Surfaces

Theorem (M-Schiffler-Williams 2009)

Let A(S ,M) be any cluster algebra arising from a surface (with or without
punctures), where the coefficient system is of geometric type, and let Σ be
any initial seed.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of snake graphs.

8

γτ τ

τ

τ

τ
4

1
2

5

6

7

τ9

τ

3τ

τ

7

1

41

8

2 3

2

9

3 5

6

2
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Superalgebras (and towards Superspace)

A super algebra is a Z2-graded algebra.

i.e. A = A0 ⊕ A1, (the “even” and “odd” parts) and

AiAj ⊆ Ai+j for i , j ∈ {0, 1} mod 2

The algebra A generated by x1, · · · , xn, θ1, · · · , θm, subject to the
following relations

xixj = xjxi xiθj = θjxi θiθj = −θjθi
is a superalgebra. In particular θ2i = 0.

Here A0 is spanned by monomials with an even number of θ’s and A1 is
spanned by monomials with an odd number of θ’s.

E.g. x1x2 + x1θ1θ3 + x2θ1θ2θ3θ4 ∈ A0, x1θ1θ2θ3 + x1x4θ2 + θ4 ∈ A1
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i.e. A = A0 ⊕ A1, (the “even” and “odd” parts) and

AiAj ⊆ Ai+j for i , j ∈ {0, 1} mod 2

The algebra A generated by x1, · · · , xn, θ1, · · · , θm, subject to the
following relations

xixj = xjxi xiθj = θjxi θiθj = −θjθi
is a superalgebra. In particular θ2i = 0.

Here A0 is spanned by monomials with an even number of θ’s and A1 is
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Decorated Super-Teichmüller Spaces [PZ19]

By replacing PSL(2,R) with OSp(1|2), Penner and Zeitlin
define the super-Teichmüller space of a surface S to be

ST (S) = Hom(π1(S),OSp(1|2))/OSp(1|2)

Similar to the bosonic case, the decorated space is encoded by a
collection of horocycles centered at each ideal point, which leads to
the definition of super λ-length.

But unlike the bosonic case, we need additional invariants to
accommodate for the extra degree of freedom coming from the odd
dimension.

They associate an odd variable to each triangle (triple of ideal
points), and call them the µ-invariants.
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Spin Structures

Components of ST (S) are indexed by the set of spin structures on S .

Cimasoni-Reshetikhin formulated the set of spin structures of S in terms of
the set of isomorphism classes of Kasteleyn orientations of a fatgraph
spine of S .

Dual to this formulation, we consider the set of spin structures on S to be
the set of equivalence classes of orientations on triangulations of S of the
following equivalence relation.

ϵa

ϵbϵc θ ∼

−ϵa

−ϵb−ϵc −θ

where ϵa, ϵb, ϵc are orientations on the edges, and θ is the µ-invariant
associated to the triangle.
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Super Ptolemy Relation

The Ptolemy transformation on super λ-length coordinates is given as
follows.

a b

cd

e

θ

σ

a b

cd

f

θ′ σ′

ef = (ac + bd)

(
1 +

σθ
√
χ

1 + χ

)
, χ =

ac

bd

σ′ =
σ −√χθ
√
1 + χ

and θ′ =
θ +
√
χσ

√
1 + χ

where χ = ac
bd and σθ = σ′θ′.G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 21 / 71



Super Ptolemy Relation

The Ptolemy transformation on super λ-length coordinates is given as
follows.

a b

cd

e

θ

σ

a b

cd

f

θ′ σ′

ef = ac + bd +
√
abcd σθ

σ′ =
σ
√
bd − θ

√
ac√

ac + bd
and θ′ =

θ
√
bd + σ

√
ac√

ac + bd

σθ = σ′θ′
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Super Ptolemy Relation

Super-flip also reverses the orientation of the edge b.

ϵa ϵb

ϵcϵd

θ

σ

ϵa −ϵb

ϵcϵd

θ′ σ′

Remark

Super Ptolemy moves are not involutions: µ8
i = I .

The even-degree-0 terms of a super λ-length are exactly the
(ordinary) λ-length in the bosonic decorated space.
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Super Ptolemy Relation

If we flip a diagonal twice

ϵa ϵb

ϵcϵd

θ

σ

ϵa −ϵb

ϵcϵd

θ′ σ′

−ϵa −ϵb

ϵcϵd

−θ

σ

the orientations of the triangle θ are reversed and θ is changed to −θ.

θ

−

− −
−θ

This orientation is equivalent to the original one, i.e. both the first and
third pictures represent the same spin structure.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x1 x2
θ1

θ2
θ3

Start with a Pentagon with given
orientation.

The boundary orientations are ignored,
because they are irrelevant in the
calculations.

What are λ24, λ25, and λ35?

We first flip the edge x1.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x3 x2

θ4

θ5
θ3

After flipping x1 to x3, we get:

x3 =
ad + ex2

x1
+

√
adex2
x1

θ1θ2

θ4 =

√
ad θ1 −

√
ex2 θ2√

x1x3

θ5 =

√
ad θ2 +

√
ex2 θ1√

x1x3

Here the red color indicates that the orientation
on the boundary edge has been reversed.

Next we flip x2.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x3

x4

θ4

θ7

θ6

After flipping x2 to x4, we have:

x4 =
ac + bx3

x2
+

√
acbx3
x2

θ5θ3

x4 =
acx1 + abd + bex2

x1x2
+

b
√
adex2
x1x2

θ1θ2+

x4 =

√
acb

(
ad+ex2

x1
+

√
adex2
x1

θ1θ2

)
x2

(√
ad θ2 +

√
ex2 θ1√

x1x3

)
θ3

x4 =
acx1
x1x2

+
abd

x1x2
+

bex2
x1x2

+
b
√
ade

x1
√
x2

θ1θ2+

x4 =
a
√
bcd

√
x1x2

θ2θ3 +

√
abce
√
x1x2

θ1θ3

Question: If we now flip x3 to x5, what do we
expect x5 to look like?
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Main Question

In a cluster algebra A, any cluster variable can be expressed as a positive
Laurent polynomial in the initial cluster, i.e.

A ⊂ R[x±1
1 , · · · , x±1

n ].

Questions

Does the super λ-length satisfy some Laurent phenomenon?

Is there a “positivity” for terms with anti-commuting variables?

Answers (Spoiler Alert)

Super λ-lengths live in R[x±
1
2

1 , · · · , x±
1
2

1 |θ1, · · · , θn+1].

For the case of polygons, there exists an ordering on the odd
variables, called positive ordering, such that if we multiply θ’s in the
positive ordering then the coefficients are positive.
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Super Ptolemy Relation - Example Continued

1

2

3 4

5

a b

c

d

e

x3

x4

θ4

θ7

θ6

1

2

3 4

5

a b

c

d

e θ8

x4

x5

θ9

θ6

Before giving the general answer, we illustrate
the result of flipping x3 to x5:

We first recall

that θ4 =

√
ad θ1 −

√
ex2 θ2√

x1x3
and note that

θ7 =

√
ac θ5 −

√
bx3 θ3√

x2x4
=

1
√
cx3x4

(
c

√
ae

x1
θ1+ac

√
d

x1x2
θ2−x3

√
bc

x2
θ3

)
.

We then proceed to obtain

x5 =
ce + dx4

x3
+

√
cdex4
x3

θ4θ7 = · · · =

bd + cx1
x2

+

√
bcdx1
x2

θ2θ3.

Continuing with super-flips of x4 and x5, in
order, yields x1 and x2, respectively.
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A Combinatorial Interpretation using Snake Graphs

A snake graph is a planar graph consisting of a sequence of square tiles,
each connected to either the top or right side of the previous tile.

Given a snake graph G , the word of G , denoted W (G ), is a string in the
alphabet {R,U} (standing for “right” and “up”) indicating how each tile is
connected to the previous.

W (G ) = ∅ W (G ) = RR W (G ) = UR W (G ) = RUR
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A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1

y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3

θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2
θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 30 / 71



A Combinatorial Interpretation using Snake Graphs

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

x

y

za

b c

d

ef

weight = xyz
√
abcdef θ1θ3

A double dimer cover of a graph is the union of two dimer covers. It is
composed of cycles and doubled edges.

Dimer covers will be drawn as wavy orange lines, and double dimer covers
will be drawn as straight blue lines.

The weight of a double dimer cover is the product of the square roots of
the edge weights, times the odd variables at the beginning and end of
cycles.
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A Combinatorial Interpretation using Snake Graphs

Theorem (M-Ovenhouse-Zhang [MOZ22])

Consider a triangulation where f is the longest edge, we follow the
construction of [MSW11] to build the snake graph G corresponding to the
arc f .

Then the super λ-length for f is given as follows:

1
cross(f )

∑
M∈DD(G)wt(M) where DD(G ) is the set of double dimer covers

on G .

Here, cross(f ) denotes the monomial given by the product of the edges
crossed by the arc f , and wt decomposes into an even and odd part,
wt = wtxwtθ.

The value of wtx is the product of the weights of the edges in M with
multiplicity, but the weight of each individual edge is given by a
square-root.

Additionally each cycle around tiles appearing in M contributes a weight of
θiθj to wtθ, where θi and θj label the first and last triangles of that cycle
in G , respectively.
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A Combinatorial Interpretation using Snake Graphs

1

2

3 4

5

a b
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e

x1 x2
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θ2
θ3

Recall λ2,5 =
acx1
x1x2

+
abd

x1x2
+

bex2
x1x2

+

x4 =
b
√
ade

x1
√
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θ1θ2+
a
√
bcd

√
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√
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√
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Lattice Structure in Dimer Case

1 3

1 3

1 2 3

Superimpose the minimal dimer cover (but do not draw doubled edges) to
see this is isomorphic to a lattice of subsets ordered under inclusion.
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Lattice Structure in Dimer Case

Lattice isomorphism

There is a poset isomorphism L(G ) ∼= J(P(G )), between the set of dimer
covers on G and the lattice of lower order ideals in P(G ), the fence poset
corresponding to the snake graph G .
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Application: Lattice Structure in Double Dimer Case

1 3

1 1 3 3

1 3 1 2 3 31

1 2 3 1 3 1 2 3

1 2 3

1 2 3
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Application: Lattice Structure in Double Dimer Case

Theorem

There is a poset isomorphism L(G ) ∼= J(P(G )), between double dimer
covers on G and lower order ideals in P(G ) := P(G )× {0, 1}.
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Related Work: Super Caldero-Chapoton Map for Type A

Recent work by Canakci, Fedele, Garcia-Elsner, and Serhiyenko [ÇFES24]
provide a homological interpretation of these combinatorial formulas.

They let Λ be a finite dimensional algebra over an algebraically closed field
K , and then define Λ̃ as Λ⊗K K [ϵ]/(ϵ2) ∼= Λ⊕ Λϵ.

In the special case that Λ is the path algebra KQ of an acyclic type An

quiver, then Λ̃ is that path algebra (with relations) of the quiver with a
loop ϵi at every vertex and relations ϵ2i = 0 and ϵiα = αϵj for arrows i → j .

Motivated by how indecomposable rigid modules MG of Λ in the ordinary
type A case correspond to cluster variables and hence snake graphs G :

Theorem 5.18 of [ÇFES24]: The lattice of double dimer covers of snake

graph G is in bijection with the submodule lattice of module M̃G of Λ̃.

Theorem 6.6 of [ÇFES24]: The Caldero-Chapoton Formula CC (̃(MG )
adapted to involve square-root weights and odd elements associated to
sectional paths (AR-triangles) matches the super lambda length formulas.
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Features of Polygons: Fan Decomposition

a

b

c2

c4

c1

c3

For a triangulation T , we will define a canonical
fan decomposition.

The arc (a, b) intersect with internal diagonals,
and create smaller triangles (colored yellow).

Vertices of these yellow triangles are called fan
centers, denoted c1, · · · , cn, ordered by their
distance from a. And we further denote a = c0
and b = cn+1.

The sub-triangulation bounded by ci−1, ci , ci+1 is
called the i-th fan segment of T .
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Features: Default Orientation and Positive Ordering

c0

c2

c4 c5

c3

c1

α1
α2

α3

β1

β2

γ1

γ2

γ3

δ1
δ2

We define a default orientation on the interior
diagonals.

Edges inside each fan segment are directed
away from the center.

Others are oriented as c1 → c2 → · · · → cn.

We define a positive ordering on µ-invariants.

µ-invariants in a fan are ordered
counterclockwise around the center.

“Alternate” across the fans.

α1 > α2 > α3 > γ1 > γ2 > γ3 > δ2 > δ1 > β2 > β1
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Application: Super Fibonacci Numbers

Given a triangulation of an annulus, we consider the periodic mutation
sequence a, b, a, b, a, b, . . . in the universal cover. (Arrows indicate default
orientation and · · · > σ > σ > θ > θ > · · · in positive ordering)

b

a

σ θ

θ

σ

θ

σ

θ

σ
· · · · · ·b

a
b

a
b

a
b

+ + +

+ + +

θ′

σ′

θ′

σ′

θ′

σ′

· · · · · ·b
a′

b
a′

b
a′

b

− − −

+ + +

θ′′

σ′′

θ′′

σ′′

θ′′

σ′′
· · · · · ·b′

a′
b′

a′
b′

a′
b′

− − −

− − −

θ′′

σ′′

Since σθ = σ′θ′ = σ′′θ′′ = . . . , if we let ϵ = σθ, the Super Ptolemy
Relation will always have the form ef = a2 + b2 + abϵ. Thus letting
Z1 = a, Z2 = b, we get the recurrence ZmZm−2 = Z 2

m−1 + Zm−1ϵ+ 1 for
the resulting infinite sequence of super λ-lengths.
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Application: Super Fibonacci Numbers

Letting Gm denote the snake graph for the word W (G ) = RR . . .R, i.e.
with m tiles in a horizontal row, where all edges have weight 1, and all
tiles alternate between the same two µ-invariants σ and θ

· · ·
σ

θ

θ

σ

σ

θ

we obtain that the Zm’s are the double dimer partition functions for the
snake graphs G2m−5.

Further, when we initialize Z1 = a = 1 and Z2 = b = 1, we get for m ≥ 3

Zm = F2m−3 +

(
m−3∑
k=0

(2k + 1)

(
m + k − 1

2k + 2

))
ϵ,

where Fk is the kth Fibonacci number such that F1 = F2 = 1.
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Further, when we initialize Z1 = a = 1 and Z2 = b = 1, we get for m ≥ 3

Zm = F2m−3 +

(
m−3∑
k=0

(2k + 1)

(
m + k − 1

2k + 2

))
ϵ,

where Fk is the kth Fibonacci number such that F1 = F2 = 1.

We also can let Wm = F2m−2 +
(∑m−3

k=0 (2k)
(m+k−2

2k+1

))
ϵ, which is the

double dimer partition function for G2m−4.

Examples:

https://oeis.org/A054454

Z3 = 2 + ϵ

W3 = 3 + 2ϵ

Z4 = 5 + 6ϵ

W4 = 8 + 12ϵ

Z5 = 13 + 26ϵ

W5 = 21 + 50ϵ

Z6 = 34 + 97ϵ
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Application: Super Fibonacci Numbers

Question

If we let W1 = W2 = 1 (or if we let W1 = a and W2 = b), and set Wm to
be the double dimer partition function of G2m−4, then what does Wm

correspond to in the context of the decorated super-Teichmüller space?

We will demonstrate that the Wm’s are the super λ-lengths of a peripheral
arc in an annulus that wind around (m − 2) times, see [MOZ23, Remark
6.3], but this will utilize a description using super matrices.

Related Work: V. Ovsienko [Ovs23] defines shadow sequences including
Shadow Fibonacci Numbers of the form Fm + Gmϵ where

{Gm} = {2, 5, 10, 20, 38, 71, 130, . . . }.

We note that if we write our Super Fibonacci Numbers as Xm + Ymϵ, e.g.

2 + ϵ, 3 + 2ϵ, 5 + 6ϵ, 8 + 12ϵ, 13 + 26ϵ, 21 + 50ϵ, 34 + 97ϵ,

then his Gm’s equal our (Xm + Ym − 1) or (Xm + Ym), up to parity.
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Super Markov Numbers

Given an oriented triangulation of the once-punctured torus, and allowing
flips in all three directions, the resulting λ-lengths of such arcs correspond
to the Markov numbers, which are the integer solutions to the Diophantine
equation x2 + y2 + z2 = 3xyz .

Such numbers, and their triples (x , y , z) are of interest in number theory
including in the theory of quadratic forms. Markov numbers also count
dimer covers in snake graphs as described in [Pro05, Sec. 7] or [RS20].

In [HPZ19], Huang, Penner, and Zeitlin studied Super Decorated
Teichmüller space associated to the once-punctured torus and showed that
super lambda lengths on this surface satisfy

x2 + y2 + z2 + (xy + yz + xz)σθ = 3(1 + σθ)xyz .

Question: Do they have combinatorial interpretations using double dimer
covers of the snake graphs appearing in Section 7 of [Propp 2005] in the
presence of appropriately specialized µ-invariants?
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flips in all three directions, the resulting λ-lengths of such arcs correspond
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equation x2 + y2 + z2 = 3xyz .

Such numbers, and their triples (x , y , z) are of interest in number theory
including in the theory of quadratic forms. Markov numbers also count
dimer covers in snake graphs as described in [Pro05, Sec. 7] or [RS20].

In [HPZ19], Huang, Penner, and Zeitlin studied Super Decorated
Teichmüller space associated to the once-punctured torus and showed that
super lambda lengths on this surface satisfy

x2 + y2 + z2 + (xy + yz + xz)σθ = 3(1 + σθ)xyz .

Note also that if we fix z = 1, the triples (x , y , 1) involve Super-Fibonacci
numbers as previously studied, but we also get other triples such as:

(2 + σθ, 5 + 6σθ, 29 + 74σθ), (2 + σθ, 29 + 74σθ, 169 + 668σθ),
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The Supergroup OSp(1|2)
Consider the set of 2|1× 2|1 super matrix over R:

M =

 a b γ
c d δ

α β e


Let J denote the following matrix

J =

 0 1 0
−1 0 0

0 0 1

 ,

then elements in the group OSp(1|2) can be realized as 2|1× 2|1
supermatrices g with Ber(g) = 1 satisfying the relation

g stJg = J

where g st denotes the super-transpose of g and Ber(g) is the Berezinian,
a super-analogue of the determinant.
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The Supergroup OSp(1|2)

M =

 a b γ
c d δ

α β e


These constraints Ber(g) = 1 and g stJg = J can also be written down
explicitly as the following system of equations.

e = 1 + αβ (1)

e−1 = ad − bc (2)

α = cγ − aδ (3)

β = dγ − bδ (4)

γ = aβ − bα (5)

δ = cβ − dα (6)
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Flat OSp(1|2) Connection

Given a triangulation T , we build a planar graph ΓT on top of it and then
define a flat connection on ΓT using these super matrices.

1 A(hijk |θ) = 1 0 0

−h 1
√
hθ

−
√
hθ 0 1

 where

h = hijk =
λjk

λijλik
.

2 E (λij) =

 0 −λij 0

λ−1
ij 0 0

0 0 1

.
3 ρ =

 −1 0 0
0 −1 0

0 0 1

.
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Flat OSp(1|2) Connection

Type (i)

i

k

j

θ
A
(
hijk |θ

)−1

i

k

j

θ
A
(
hijk |θ

)

Type (ii)

i

k

j

θ
E (λij)

−1

i

k

j

θ
E (λij)

Type (iii)
i j ρ

i j id
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Matrix Interpretations of super λ-lengths and µ-invariants

Theorem 4.3 of [MOZ23]: Let T be a generic triangulation endowed
with an orientation (spin structure) and fan centers labeled as
c0, c1, . . . , cN+1, with a = c0 and b = cN+1. Then the holonomy matrix
for the connection from a to b is Ha,b =

−λc1,cN+1

λc0,c1
(−1)ϵaλc0,cN+1

▽cN+1
c0,c1

(−1)ϵb λc1cN
λc0,c1λcN cN+1

(−1)ϵa+ϵb−1 λc0cN
λcN cN+1

(−1)ϵb−1 1
λcN cN+1

▽cN
c0,c1

1
λc0,c1

▽c1
cN ,cN+1

(−1)ϵa−1▽c0
cN ,cN+1

1 + ⋆


Here the formula for the (3, 3)-entry (i.e. 1 + ⋆) can be given as

1+⋆ = 1+(−1)ϵa−1 1

λc0,c1

▽c1
cN ,cN+1

▽c0
cN ,cN+1

= 1+(−1)ϵb−1 1

λcNcN+1

▽cN+1
c0,c1▽cN

c0,c1

and the signs (−1)ϵa and (−1)ϵb depend on the orientations of initial and
final triangles (c0, c1, c2) and (cN−1, cN , cN+1).
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Applications to Super Fibonacci Numbers

The Holonomy Matrix Hn =
(
E−1A−1

θ ρEAσρ
)n−2

E−1 for the bridging arc
winding around the annulus equals Hn = −Wn−1 Zn (Zn − 1)σ +Wn−1θ

−Zn−1 Wn−1 (Zn−1 − 1)θ +Wn−1σ

(Zn−1 − 1)σ −Wn−1θ (Zn − 1)θ −Wn−1σ 1− (ℓ2n−4 − 2)σθ


· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

where ℓk denotes the kth Lucas number defined by ℓ1 = 1, ℓ2 = 3, and
ℓk = ℓk−1 + ℓk−2 for k ≥ 3.

This quantity ℓ2n−4 − 2 also equals κ(Wn−2), the number of spanning
trees on the wheel graph with (n − 1) vertices.
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Applications to Super Markov Numbers

We can also define holonomy matrices for arcs on the once-punctured
torus to directly compute Super Markov Numbers.

Lifting the torus to its universal cover (the Euclidean plane), arcs on the
torus correspond to lines of rational slope, plus the vertical line of slope 1

0 .

We start with the standard initial triangulation with lines of slope 0
1 ,

1
0 ,

−1
1

and then apply a sequence of diagonal flips (w.l.o.g. we assume our first
two flips are at −1

1 →
1
1 , and then 1

0 →
1
2).

σ

θ

x

x

y yz

σ′
θ′

x

x

y yz ′

σ′′
σ′′

θ′′
θ′′

x

x

x

x

y ′′z ′ z ′

From the triple of arcs of slopes {01 ,
1
1 ,

1
2}, assuming we never backtrack,

we use the Farey fraction rule{
a

b
,
c

d
,
e

f

}
→
{
a

b
,
a+ e

b + f
,
e

f

}
or →

{
c + e

d + f
,
c

d
,
e

f

}
.
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Applications to Super Markov Numbers

Given 0 < p
q ≤ 1 with gcd(p, q) = 1, we draw γ of slope p/q on the

universal cover of the torus.

The sequence of residues an = nq
mod (p + q) for 0 ≤ n ≤ p + q determines the upper Christoffel word,
equiv. a lattice path of north and east steps that lies just above line γ.

Example: If p/q = 3/5, we get (a0, a1, . . . , a8) = (0, 5, 2, 7, 4, 1, 6, 3, 0)
and hence the upper Christoffel word is 10100100, corresponding to the
lattice path given by NENEENEE , lying just above the arc γ of slope 3/5.

σ1
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x

x

y yz
σ2

θ2

x

x

yz

σ3
θ3

x

y yz
σ4

θ4

x

x
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x

x

yz
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x
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Applications to Super Markov Numbers

The upper Christoffel word of length (p + q) is w1w2 · · ·wp+q via the
characteristic function wn = χ(an−1 < an).

This determines a lattice path from (0, 0) to (p, q) so that the nth step is
a north step N (resp. east step E ) whenever an−1 < an (resp. an−1 > an),
using the residues an = nq mod (p + q) for 0 ≤ n ≤ p + q.

Example: If p/q = 3/5, we get (a0, a1, . . . , a8) = (0, 5, 2, 7, 4, 1, 6, 3, 0)
and hence the upper Christoffel word is 10100100, corresponding to the
lattice path given by NENEENEE , lying just above the arc γ of slope 3/5.
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Application to Super Markov Numbers

σ

θ

x

x

y y
z

σ

θ

x

x

y
z

σ

θ

x

x

y y
z

σ

θ

x

y y
z

σ

θ

x

x

y y
z

Following a canonical path based on the upper Christoffel word yields
holonomy matrix H p

q
so that the Super Markov Number is the (1, 2)-entry.

The first (resp. second) path corresponds to wi = 0 (resp. wi = 1), while
the third is the canonical path in the final quadrilateral.
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Application to Super Markov Numbers

If p/q = 1/2, the Upper Christoffel word is 100 and the corresponding
Holonomy matrix is[

1 2 + σθ −σ + θ
−1 −1 σ
−σ −σ − θ 1− σθ

][
0 −1 0
−1 3 + 2σθ θ
0 θ 1

]
=

[
2 + σθ 5 + 6σθ −σ + 3θ
−1 −2− σθ σ − θ
−σ − θ −3σ − θ 1− 2σθ

]

which has (1, 2)-entry 5 + 6σθ = SM1/2.

If p/q = 2/3, the Upper Christoffel word is 10100 and the corresponding
Holonomy matrix is[

1 2 + σθ −σ + θ
−1 −1 σ
−σ −σ − θ 1− σθ

] [
0 −1 0
−1 3 + 2σθ θ
0 θ 1

] [
1 1 −σ
1 2 + σθ −σ + θ
−θ −σ − θ 1− σθ

] [
0 −1 0
−1 3 + 2σθ θ
0 θ 1

]

=

[
12 + 22σθ 29 + 74σθ −8σ + 20θ
−5− 6σθ −12− 22σθ 4σ − 8θ
−8σ − 4θ −20σ − 8θ 1− 16σθ

]
with (1, 2)-entry 29 + 74σθ = SM2/3.
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Application to Super Markov Numbers

For our running example of p/q = 3/5, we get truncated Christoffel word
010010 and holonomy matrix179 + 706σθ 433 + 2032σθ −112σ + 303θ

−74− 237σθ −179− 706σθ 47σ − 125θ
−125σ − 47θ −303σ − 112θ 1− 241σθ

 .

The (1, 2)-entry is SM3/5 = 433 + 2032σθ.

We next give new combinatorial interpretations for these values!

SMp/q = Mp/q + M̂p/qσθ, where Mp/q is the number of dimer covers on
snake graph Gp/q (equiv. double dimer covers with only doubled edges),

and M̂p/q is the signed enumeration of double dimer covers on Gp/q with
exactly one cycle, necessarily of odd length.
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Combinatorics of Super Markov Numbers

Use the upper Christoffel word to build Gγ corresponding to the arc γ
cutting through the universal cover of the once-punctured torus.
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x
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Combinatorics of Super Markov Numbers

Theorem in Progress (Musiker 2025): SMp/q = Mp/q + M̂p/qσθ, where

M̂p/q is the signed enumeration of double dimer covers on Gp/q containing
a single cycle of odd length as follows:

(# containing a single cycle whose leftmost tile is X and whose rightmost
tile is also X )

+ (# containing a single cycle whose leftmost tile is Y and whose
rightmost tile is also Y )

+ (# containing a single cycle whose leftmost tile is Z and whose
rightmost tile is also Z )

- (# containing a single cycle whose leftmost tile is X but whose
rightmost tile is Y )

- (# containing a single cycle whose leftmost tile is Y but whose
rightmost tile is X ).
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Combinatorics of Super Markov Numbers

Example of double dimer covers contributing positively to
SM2/3 = M2/3 + M̂2/3σθ = 29 + 74σθ = 29 + (78− 4)σθ, which up to
flips of doubled edges, break into classes as
78σθ = (4 + 5 + 5 + 12 + 12 + 10 + 10 + 1 + 5 + 4 + 5 + 2 + 2 + 1)σθ.

Z Y Z
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Z Y Z
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θ3 σ4 θ4
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X
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Combinatorics of Super Markov Numbers

Example of double dimer covers contributing positively to
SM2/3 = M2/3 + M̂2/3σθ = 29 + 74σθ = 29 + (78− 4)σθ, which up to
flips of doubled edges, break into classes as
78σθ = (4 + 5 + 5 + 12 + 12 + 10 + 10 + 1 + 5 + 4 + 5 + 2 + 2 + 1)σθ.
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Combinatorics of Super Markov Numbers

The four double dimer covers contributing negatively to
SM2/3 = M2/3 + M̂2/3σθ = 29 + 74σθ = 29 + (78− 4)σθ.
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Nuances in the Super Markov Proof

Unlike the disk or annulus (Super Fibonacci) examples, we cannot use a
default orientation on the universal cover because it would not be
consistent when we project down to the torus.
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Nuances in the Super Markov Proof

Instead we use cyclic orientation of the two triangles on the torus and lift
that up to the universal cover. Then for a given arc γ, we must apply
equivalences triangle-by-triangle thereby negating some µ-invariants.
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Nuances in the Super Markov Proof

Then for a given arc γ, we must apply equivalences triangle-by-triangle
thereby negating some µ-invariants.
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This also affects the positive ordering. For arc γ = γ3/5, the upper
Christoffel word is 10100100, which has non-initial 1’s in positions 3 and 6.
The positive ordering associated to this default orientation is

σ1 > σ2 > θ2 > σ4 > σ5 > θ5 > σ7 > θ7 > θ6 > (−σ6) > θ4 > θ3 > (−σ3) > θ1.
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Open Questions

Observation: In all examples done thus far, even when plugging in x , y ,
and z , the Super Markov Numbers only seem to have positive coefficients
despite the above signed formulas.

Question: Does this positivity always continue for the super λ-lengths on
the once-punctured torus?

Question: If so, is there an adaptation of the above combinatorial
interpretation via signed enumeration that would require only a positive
expansion formula? In particular, can one further restrict which double
dimer covers contribute to the partition function (similar to how
Lindstrom-Gessel-Viennot often allows one to interpret the signed
expansion formula of a matrix determinant as a positive generating
function for non-intersecting lattice paths) therefore manifesting positivity
with no cancellation of signed terms needed?

Question: What about other surfaces like annuli with more than one
marked point on each of boundary or once-punctured disks?
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Open Questions

Question: What is the relationship between our family of Super Markov
numbers and Ovsienko’s shadow Markov sequence [Ovs23]?

Example:

2 + 4ϵ vs SM1/1 = 2 + σθ

5 + 13ϵ vs SM1/2 = 5 + 6σθ

13 + 40ϵ vs SM1/3 = 13 + 26σθ

34 + 120ϵ vs SM1/4 = 34 + 97σθ

89 + 354ϵ vs SM1/5 = 89 + 332σθ

29 + 117ϵ vs SM2/3 = 29 + 74σθ

169 + 921ϵ vs SM3/4 = 169 + 688σθ

194 + 976ϵ vs SM2/5 = 194 + 801σθ

433 + 2592ϵ vs SM3/5 = 433 + 2032σθ

G. Musiker (University of Minnesota) Super Fibonacci and Markov Numbers Feb 10, 2025 69 / 71



Thanks for Listening! References I
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What about odd variables?

Consider an arc γ as before.

Let φ be a triangle with γ as a side,
and also a boundary side.

Can we express the µ-invariant θφ in
terms of the initial triangulation?

φ
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The Toggle Involution

Recall that snake graphs are labelled with odd variables.

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

If θn is the label on the upper-right of the last tile, define an involution
x 7→ x∗ on monomials which adds/removes θn.

Examples:
(θ1θ2)

∗ = θ1θ2θ6, (θ4θ6)
∗ = θ4
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Formula for Odd Variables

φ
f

d

e

b

Theorem [M-Ovenhouse-Zhang 2021]

√
df θφ =

1

cross(f )

√
e√
b

∑
M∈Dt(Gf )

wt(M)∗

where Dt is the set of double dimer covers using the top edge of the last
tile (as long as the polygon has an odd number of triangles; otherwise use
the right edge on the last tile instead).
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Example of µ-invariant Formula

a

e

d

c

b

x y
θ1 θ2 θ3

γ

φ

e

a

y

d

x

b

c

θ1

θ2

θ2

θ3

Dt(G ) :

∑
M∈Dt(G)

wt(M) = acx +a
√
bcdx θ2θ3+

√
abcexy θ1θ3∑

M∈Dt(G)

wt(M)∗ = acx θ3 + a
√
bcdx θ2 +

√
abcexy θ1

√
y√
c

∑
M∈Dt(G)

wt(M)∗ = ax
√
cy θ3 + a

√
bdxy θ2 + y

√
abex θ1

√
aγ θφ =

1

xy

(
ax
√
cy θ3 + a

√
bdxy θ2 + y

√
abex θ1

)
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