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Combinatorial History

In 1999, Jim Propp published an article tracking the progress of 32 problems in the field of
exact enumeration of perfect matchings.

One such problem therein was Blum’s conjecture regarding the number of perfect matchings
in a family of regions known as hexagonal dungeons.
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Blum's Conjecture and Hexagonal Dungeons

Conjecture (Blum, Problem 25 of [Propp ’'99]) The number of perfect matchings of the
22
hexagonal dungeon HD, 5, is 1322°14L% ),

Theorem (Ciucu-Lai 2014) Blum's Conjecture is True.
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Blum's Conjecture and Hexagonal Dungeons

Theorem (Ciucu-Lai 2014) Blum's Conjecture is True.
b

Proof Sketch: Follow the above graph cuts, introduce a new 3-parameter family of graphs,
recursively enumerate their number of perfect matchings, and relate perfect matchings in the
pieces to perfect matchings in the full graph. (All counts are products of powers of 13 and 14.)
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Aztec Dragons

In the same article, Propp introduces another family of graphs.

Theorem (Wieland '99, Ciucu '03) The number of perfect matchings of Aztec Dragons is

given by 2n(n+1),

(d)

FaaVanta

Theorem (Lai '15) Aztec Dragons sit inside a generalized 3-parameter family; each has
D(b—ct1)(2b—a—c)t(a—b)?3 =A== perfect matchings.
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Aztec Diamonds (Fy / Hirzebruch Surface)

1 3

Let Q = 4 > , and mutate periodically at 1,2,3,4,1,2,3.4,....
xﬁ_l + xg_z when n is odd, and
XpnXpn—4 = .
n x2_,+x2_5  when n is even.
By letting x; = x» and x3 = x4, we get xap11 = x2, for all n.

Letting { T} be the sequence {x2,}ncz, we obtain a single recurrence.

TaTno=2T2 ;.

If o= To=1, {T,} = {1,1,2,8,64,1024,32768, ...} = {2("‘”2("‘2) }

For n > 3, T, = # (perfect matchings of the (n — 2)nd Aztec Diamond).
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Aztec Diamonds (Fy / Hirzebruch Surface)

Let Q = 4 2 , and mutate periodically at 1,2,3,4,1,2,3,4,....

214121412142

30131313

2 4adalal2]4]2 ;

s|ufaf1]3|1]3 1 3 5 . D

2]4)1214]12]4)2 13| [2]4]2 113]1]3]1

311|313 )1]3 4 2 2 1 204|2

214121412142 1
2 2 2 2 2 2\2(,,2 2 2 2\2(,2 2
+ - + + + +

X5 = X3x1X4' X = X3X2X4' X7 = (3 )::12)Xz(;<1 Xz), and xg = (3 X42) 2(X1 XQ)_

1%2X3 x| Xy X4
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The Del Pezzo 3 Quiver and Aztec Dragons

R
O e
R Ve aVovoe
FAOTAOTAY.

Mutating 1,2,3,4,5,6,1,2,3,...

I/ Ly
& i i
7/ Vomw: Vs

Introduced by Jim Propp, Ben Wieland, and Mihai Ciucu. Studied further by Cottrell-Young.
Xon47X2n4+1 = X2n43X2n45 + X2naX2nt6 and

X2n4-8X2n+2 = X2n4+3X2n+5 + X2n4+-4X2n+6-
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Toric Mutations and Toric Phases of dPs;

Toric mutations take place at vertices with in-degree and out-degree 2.

4 4 4 4
6 2 6 2 6 2 6 2
1 5 1 5 1 5 1 5
3 3 3 3
Starting with any of these four models of the dPs quiver, any sequence of toric mutations
yields a quiver that is graph isomorphic to, or the of, one of these.

Figure 20 of Eager-Franco (Incidences betweeen these Models):
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Goal: Combinatorial Formula for Toric Cluster Variables

Example from S. Zhang (2012 REU): Periodic mutation 1,2,3,4,5,6,1,2,... yields
for Aztec Dragons (as studied by Ciucu, Cottrell-Young, and Propp) under

appropriate weighted enumeration of perfect matchings.

Ig_f X3X5+X4X6 ﬁX4X6+X3X5
X2
o

A
% ><2><3><52 +X1X3X5X6 +X2X4X5X6+X1X4X62 % ><2><3X52 +X1X3X5X6+X2X4X5X6+X1X4X62
%
X1X2X3 X1X2 X4

(xox5+x1%6) (x1x3 X2 ) (X3X5+ x4 %6)?

(x2x5+x1x6) (x13+x2xa) (X35 +XaX6)°
x12x22X3X4X6

2.2
X{ X5 X3X4 X5
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Goal: Combinatorial Formula for Toric Cluster Variables

Example from M. Leoni, S. Neel, and P. Turner (2013 REU): Mutations at antipodal

vertices of dP3 quiver yield 7-mutation sequences. Resulting correspond
to Aztec Castles under appropriate weighted enumeration of perfect matchings.

e.g. 1,2,3,4,1,2 5,6 yields cluster variable (which is not an Aztec Dragon)
2.3 4 3.2 4 2 3.3 2.2 .3 3. .23 3.3.2 2
(xax3x3x5 + X3 X3 XaXs + 2X1 XoX3 X5 Xo -+ A4X1X0 X3 Xa X5 Xe + 2X3 X3X4 X5 X6 + X1 X3 X5 X5
xf xg x62 + 2)(13 x32 x4x5x§ + 4)(12 X2X3Xf X5xg
2 2
2.3 .3 3. .2 4 2.3 .4y,.2.2 2 2 X1X3 + X2Xa )(XaXe + X3X5)" (X1 X6 + X2X5
+ 2X1X5Xa X5 X5 + XTX3X4 Xg + X1 XoXq X )/ X1 X5 X3 X4 Xe = ( I 555 )( )
XEXEXEXE X6

2.2 .22 2222 3
4+ 5xyXox3Xax5Xg + DXx1X53 X3Xq X5 Xg + X2
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7.3 Parameterization for Toric Cluster Variables

Theorem 1 [Lai-M 2015] Starting from the initial cluster {x1, x2,..., %6}, the set of cluster
variables reachable via toric mutations can be parameterized by Z3.
(Requires consideration of cycles in the toric exhange graph.)

Under this correspondence, the initial cluster bijects to the prism (i.e. zonotope)
[(0,-1,1),(0,-1,0),(-1,0,0),(-1,0,1),(0,0,1),(0,0,0)] and toric mutations transform the
six-tuple in Z3 as we will illustrate.

(s (i-1j+2k) 1

(ij+1.%) 1/,/'\ (ij+1k) 6 et @ Gy 0D ay o

(i=1j+1k) 6 (i=Lj+1k) ; s 6 (i=1j+1k) ‘» R )

3 " 3 3 ’ [ A
. o W - » (ij+1k+1) 20 w10 ©0) @0

4 ' (ij+Lk+1) 4 (i.jk) (ij+Lk+1) Gkl s | AN (H;\
(i=1j+1k+1) (i=1j+1k+1) 4 (2 & 1; o ® 2

L Model 2 Model 1 :
Model 1 2 a2 02 02 @2

Up to symmetry, enough to consider pypopuspia, papapisiie, p1fappspy and pppspiopiefs.

Each induce affine translations of the prism. (Reflection induced by pj 2 illustrated.)
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7.3 Parameterization for Toric Cluster Variables

Each induce affine translations of the prism. (Reflection induced by 71 = pj o illustrated.)

(i=1j+2,k) (i-1j+2k) 1

Lk I e o
(b 10) A (ij+1k) 5 etk
(i=1j+1.6) 6 (i=1,j+1,k) 6 (i=1j+1,k) »
3 3 § 3
4 i,/+l,k+1) 4 (i1 B+l kel) (i=1j+1k+1) 5
(i=1,j+1,k+1) 4

(i=1j+1,k+1)

1 (ijik+1) Model 2 Model 1

Model 1

JERE n
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Parameterizing Toric Exchange Graph for dP, (Gao-Li-Vuong-Yang 2016)

Iy o« e
TRy

Figure: Toric mutation sequences that start from model 1 and return to model 1 the first time.

Definition (p-mutations, Building Blocks of Quiver Modular Group)

p1 = p11 0 (54321), p2 = s o (12345), p3 = o o g o (24),
pa = p2 o g 0 fig 0 (531),  ps = g o s 0 pp o (351),
pe = p2 0 p1 o iz o (531)(24),  p7 = pa o s o g o (135)(24).
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Relations between p—mutations (Gao-Li-Vuong-Yang)

Definition (p-mutations, Building Blocks of Quiver Modular Group)

p1 = p1 0 (54321), p2 = s o (12345), p3 = oo g o (24),
pa = pa o g o pig 0 (531),  ps = g o s o pp o (351),
pe6 = iz © fi1 © pip 0 (531)(24),  p7 = pa o pis © pig © (135)(24).

Proposition for the Cluster Modular Group

|

pa=pips, ps=pap3, P6=pi, P1 =P
prp2 = p2p1 = p3 = L.

pip3 = p3pl,  p3p3 = p3ph,  pipap2 = papapi.

It suffices to consider p1, p2, p3.
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p—mutation sequence: visualization (Gao-Li-Vuong-Yang)

Proposition (Relations between p1, pa, p3 on the level of clusters)

p1p2 = p2p1 = p3 = L.
2 9 2 2 _
P1P3 = P3P1, P2P3 = P3P2, P1P3P2 = P2P3P1.

Figure: A visualization of p—mutations. Toric cluster variables in bijection with Z? (faces) for dP».

p1:—, p2:<, p3:T /). Note:Somos 5 cuts out a specific horizontal two layer slice.
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Mutating Model | to Model Il and Back (Reflection in (i, )-plane)

By applying /11 0 f12, 13 © ji4, OF [i5 O [ig, We (up to graph isomorphism):

4 4 4

3 — 3 — 3

Corresponding action in Z3 (on triangular prisms):

(i=1,j+2)
(ij+1.k) I e

(i=1j+1k) 6 (i=1j+1k)

3 3 )

4 z,/+l,k+n 4@ (i} (ij+Led) (i=1j+1k+1)
(i=Lj+1k+1)

(i=1j+1k+1)
1 (ijk+1)
Model 2 Model 1

(i=1,j+2,k) 1

Model 1

G. Musiker (University of Minnesota) Dungeons and Dragons

(ij+1,k) 6 (ij+1,k)
N 6 (i=1,j+1,k)
I w (ij+1k+1)
5
4
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lllustrating the mutations i puapi1 5041 (Translation in Coordinate k)

(i=1,j+2.6)

(ij+ 1K)

(i=1j+1.k) 6 (i=Lj+1k)
. ‘ \
s (iik, (ij+1k+])
(ij+1k+1) 4 o
(i-Lj+Lk+1)

(ij+1k)
6

5

(i=1j+1k+1)

1 (b l) Model 2
Model 1
4 4 (ijsLk-1)
(i=1j+2,k) (ij+1.k=1)
(ij+1.k) (ij+1,k)
(i-Lj+1k) (i-1j+1k) (i+1j.k)
6 . 6
3 3 1
P 5
(ijk) 2 (ijk) 2 S (ij+Lk+l)
(ij+Lk+1)
Model 3 Model 3
4
4 (ijHlk=1) (ij+1k-1)
(i=1j+Lk-1)
. (ij+1.k)
(i—1j+1k) "*’f“ (i=Lj+1k) <
3 1
ik 2
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Segway: Algebraic Formula for Toric Cluster Variables

X3X5 + X4Xp X1X6 + X2 X5 X1X3 + XoX4
Let A=——— B=—«+—"""— (=—"—"—"
X1X2 X3X4 X5 X6
X1X3Xp + X2X3X5 + X2XaX6 XoX4X5 + X1X3X5 + X1X4X6
D= , and E = .
X1 X4 Xy X2 X3Xp
Let z; j i be the corresponding to (i, j, k) € 73

Theorem 2 [Lai-M 2015] (Extension of [LMNT 2013] and [Lai 2014]):

Zijk =% L(i2+ij+j23+1)+i+2jj BL(i2+ij+123+1)+2i+jJ CLI2+U;J'2+1J DL(k—41)2J EL%J .

where, working modulo 6, we have (cyclically around the dP3 Quiver)
r=6if2(i—j)+3k=0 r=4if2(i—j)+3k=1,
r=2if2(i—j)+3k=2 r=5if2(i—j)+3k=3,
r=3if2(i—j)+3k=4, r=1if2(i—j)+3k=5.

i.e. we determine x, by looking at (/ — j) modulo 3 and

G. Musiker (University of Minnesota) Dungeons and Dragons June 21, 2019 20 / 82
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Towards a Combinatorial Formula for Toric Cluster Variables

Theorem 3 [Lai-M 2015] (Extension of [Leoni-M-Neel-Turner 2014]):
Let Z° = [z1, 23, ..., 2] be the to
the initial cluster {x1,x2,..., X6}
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Towards a Combinatorial Formula for Toric Cluster Variables

Theorem 3 [Lai-M 2015] (Extension of [Leoni-M-Neel-Turner 2014]):
Let Z° = [z1, 23, ..., 2] be the to
the initial cluster {x1,x2,..., X6}

Then Z5 = [w(G(CS),w(G(CS),...,w(G(C§)] where we construct G(C;) as a subgraph cut out
by the contour C;, w(G) is the partition function >/ . erfect matching of ¢ X(M), and the
contours C1,C*2, ..., C are contours are defined as follows:
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Towards a Combinatorial Formula for Toric Cluster Variables

Theorem 3 [Lai-M 2015] (Extension of [Leoni-M-Neel-Turner 2014]):
Let Z° = [z1, 23, ..., 2] be the to
the initial cluster {x1,x2,..., X6}

Then Z5 = [w(G(CS),w(G(CS),...,w(G(C§)] where we construct G(C;) as a subgraph cut out
by the contour C;, w(G) is the partition function >/ . erfect matching of ¢ X(M), and the
contours C1,C*2, ..., C are contours are defined as follows:
1) Start with the six-tuple [(0, —1,1), (0, —1,0), (—1,0,0), (—1,0,1),(0,0,1),(0,0,0)] in Z3.
2) Toric Mutations transform this six-tuple as illustrated earlier.
3) Map from Z3 to Z°:

(i7j7k) — (a7b7cvdue7f) = (J+k7_I_J_ k7l+k7j_k+17_’_1+k_17l_k+1)

and use these six six-tuples to define contours C1,C, ..., C%.

Note: The entries of the resulting 6-tuple sum to one, and satisfy the linear relations
at+b=d+e b+c=e+f,and c+d="f+ a (two out of three of these imply the third),
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Towards a Combinatorial Formula for Toric Cluster Variables: Contours

073 = 70 by o(i,j, k) — (a,b,c,d, e, f) = (j+k, —i—j—k, i+k, j—k+1,—i—j+k—1,i—k-+1)

Note: The entries of the resulting 6-tuple sum to one, and satisfy the linear relations
at+b=d+e b+c=e+f,and c+d ="+ a (two out of three of these imply the third).

The contours C1,C*2,...,C> are defined as: (Linear relations ensure they close up.)

4

o A2 SR
NP PR TAOR SIAOUAD
S Ao g
Sign determines direction of the sides. determinesC
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Towards a Combinatorial Formula for Toric Cluster Variables: Subgraphs

1) Draw the contour C on top of the dPs lattice starting from a degree 6 white vertex.

2) For all sides of , we erase all the black vertices.

3) For all sides of “negative” length, we erase all the white vertices.

For sides of “zero length” (between two sides of positive length), we erase the white corner or
keep it depending on convexity.

4) After removing “dangling” edges and their incident faces, the remaining

is Q()
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Towards a Combinatorial Formula for Toric Cluster Variables: Subgraphs

1) Draw the contour C on top of the dPs lattice starting from a degree 6 white vertex.
2) For all sides of , we erase all the black vertices.
3) For all sides of “negative” length, we erase all the white vertices.

For sides of “zero length” (between two sides of positive length), we erase the white corner or
keep it depending on convexity.

4) After removing “dangling” edges and their incident faces, the remaining

is Q()
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Towards a Combinatorial Formula for Toric Cluster Variables: x(M)-weight

G — cm(G) Z X(M), where
M = a perfect matching of G
(M) = Tleage ecm i (for edge e straddling faces i and j),
cm(G) = the of the graph G (which records what face labels are contained
in G and along its boundary). (Note: x(M) =cm(G)xX(M) )

Remark: This is a reformulation of weighting schemes appearing in works such as Speyer
(“Perfect Matchings and the Octahedron Recurrence”), Goncharov-Kenyon (“Dimers and
cluster integrable systems”), and Di Francesco (“T-systems, networks and dimers").

Alternative definition of cm(G): We record all the face labels inside the contour and then
divide by the face labels straddling
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Initial cluster {x1,xo,..., X} in terms of contours

Consider the (initial prism [(0, -1,1),(0, ~1,0),(~1,0,0),(~1,0,1),(0,0,1),(0,0,0)])
¢ =(0,0,1,-1,1,0), G =(-1,1,0,0,0,1), C3 =(0,1,-1, 1,0 0),
¢ =(1,0,0,0,1,-1), G =(1,-1,1,0,0,0), =(0,0,0,1,-1,1).
fma=b=0 b= +1 a—-l
““ c=d=e= Of—+1
Applying our general algorithm, G(C;)'s correspond to graphs consisting of a single edge and a

triangle of faces.

Using G — Cm(G) ZM = a perfect matching of GX(M)' we see

1
cm(G(C1)) = x1xaxs and x(M) = —, hence G — Xaxs _ x1
X4Xp X4 X5
Similar calculations show G(C;)) «— x; for i € {1,2,...,6}.
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Example: S = mmymmimom30m174

We reach the prism after applying
TIToT3T1TaT3ToT1 (T1 = pip2, 7o = papia, and 73 = pspe) and then use 74 = pug papir pis i1

to reach {(1,3,-1),(1,3,0),(1,2,0),(1,2,-1),(0,3,-1),(0,3,0)}, which yields
C° =1(2,-3,0,5,—6,3),(3,—4,1,4,-5,2),(2,-3,1,3,—4,2),
(1a 727 0743 757 3)7 (27 727 71; 5> 753 2)7 (37 733 0747 743 1)]

G. Musiker (University of Minnesota)
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Example: S = mmymmimom30m174

We reach the prism after applying

TIToT3T1TaT3ToT1 (T1 = pip2, 7o = papia, and 73 = pspe) and then use 74 = pug papir pis i1

to reach {(1,3,-1),(1,3,0),(1,2,0),(1,2,-1),(0,3,-1),(0,3,0)}, which yields
C° =1(2,-3,0,5,—6,3),(3,—4,1,4,-5,2),(2,-3,1,3,—4,2),
(1a 727 0743 757 3)7 (27 727 71; 5> 753 2)7 (37 733 0747 743 1)]

o d=4

fnaVa ooty
D TAD AN
'g?gi?ég?g
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Possible Shapes of Aztec Castles

(= h=) (==#——) (= h—ht) (=#==+-) (H4—++-) (+,==+=-)

(+,-+mm) (+ - H) [EE— (#7445 +) (+mmm e (+-t+40)
f f
b e
a b d
d f c a °
e
e d b
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Cross-section when k positive (the case when k is negative is analogous)

24

(4= 44,-)

(himcbobimit)

k=1

(Uni

Dungeons and Dragons

D
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Comparing Enumerative Formulas to Cluster Variables

Recall Lai's enumeration of perfect matchings in Generalized Aztec Dragon Regions:

o(b—c+1)(2b—a—c)+(a—b)?gle=bralli=bre=t).
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Comparing Enumerative Formulas to Cluster Variables

Recall Lai's enumeration of perfect matchings in Generalized Aztec Dragon Regions:

o(b—c+1)(2b—a—c)+(a—b)?gle=bralli=bre=t).

Algebraic formula for Cluster Variables for dP3 quiver:

Ptij+ +1 )+i+2j (Pij+2 1) 42t P2rij+2 41 (k=1) K2
Zijk =X ALY I Bl 3 I cl=5—1 pl=—=—1 El%]

where
X3X5 + X4Xp X1X6 + X2 X5 X1X3 + XoXg
A=——— B=—+—"— (=——""—
X1X2 X3X4 X5 X6
X1X3X6 1 X2X3X5 + X2X4Xp X2X4X5 4 X1X3X5 + X1X4X6
D= , and E = .
X1 X4 Xy X2 X3Xp
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Proof by Multiple Versions of Kuo Condensation: z; 1z 100 ="""4...

‘ P
oY 7 N6 ; o 26 B

IeaVaovaoVaoVo ?a-a%n%-@

AV 00 0. ol & ORISR

ARPTLEESEE T SNENENEE
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T = Zi1j41,0Zi 411 T

€ vévaABVA ;

L A A JAn s v

b aVaavaovoaos

ESESROR T  SSESENER
SRPRANLIASS o Y
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cr= ot Zil1j41,17 41,0

7.
VROl o CEERA o

B s o g

SN ﬁ?ﬁ’ﬁ?v' RV AV AAY A VG

G. Musiker (University of Minnesota) Dungeons and Dragons June 21, 2019

33 /82



Self-intersecting Contours

Algebraic formula

(PHij+P+1)+i+2) (PHij+i2+1)+2i+)j Pt
Zijk =X L 3 I Bl 3 I cl=5—]

pL ) p12)

still works for (a, b, c, d, e, f) when alternating in signs but combinatorial formula for such
cases open.

(+,=+,—+,—)

7 f

a \/ v
e a

b b

Work in progress (with David Speyer): Promising calculations for conjectural

Double-Dimer combinatorial interpretation for self-intersecting contours.
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What if Initial Cluster corresponds to Model I, IlI, or IV?

4 4 4 4
6 2 6 2 6 2 6 2
1 5 1 5 1 5 1 5
3 3 3 3
By mutating according to the sequence p1 o 4 o u3 to get from Model | to Model I, from
Model Il to Model Ill, and from Model Il to Model IV, the initial cluster {x1, x2, X3, xa, X5, X6 }

also mutated accordingly.

G. Musiker (University of Minnesota) Dungeons and Dragons June 21, 2019 35 /82



What if Initial Cluster corresponds to Model I, IlI, or IV?

4 4 4 4
6 2 6 2 6 2 6 2
1 5 1 5 1 5 1 5
3 3 3 3
By mutating according to the sequence p1 o 4 o u3 to get from Model | to Model I, from
Model Il to Model Ill, and from Model Il to Model IV, the initial cluster {x1, x2, X3, xa, X5, X6 }

also mutated accordingly.

Let 2(2) (3)k, and z(J)k denote the cluster variable parameterized by (i, j, k) starting from

Model II I, or IV respectively.

Note: In the following, Y, (resp. Y/ or Y/') is determined by the values of (i — j) modulo 3
and k modulo 2 (i.e. cycles through 6,4,2,5,3,1 modulo 6).
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lllustrating the mutation sequence p1 4103 (Reaching Model 1V)

(i,j+1,k)

(i-Lj+1k) 6
3
s
4 i,j+l,k+l)

(i=1j+1k+1)
| (ijik+1)

Model 1

(i=1,j+2,k) (bj+1k=1)
(ij+1,k)
(i=1,j+1,k)
6
3
(ijk) 2 J
(ij+1,k+1)

Model 3
Resulting cluster variables still reachable by mutation sequences associated. to Z3-geometry.
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(i=1,j+2,k)
1
. (ij+1,k)
6
5
(ij.k) (i,j+1,k+1)
Model 2
4 (ij+1,k=1)

(ij+1,k)
(i+1,j+1,k)

5 5
(ij+1,k+1)
Model 4



Formula for Model | (Revisited)

X3X5 + X4Xp X1X6 + X2 X5 X1X3 + XoX4
Let A=——— B=—«+—"""— (=—"—"—"
X1X2 X3X4 X5 X6
X1X3Xp + X2X3X5 + X2XaX6 XoX4X5 + X1X3X5 + X1X4X6
D= , and E = .
X1 X4 Xy X2 X3Xp
Let z; j i be the corresponding to (i, j, k) € 73

Theorem 2 [Lai-M 2015] (Extension of [LMNT 2013] and [Lai 2014]):

i2 4 ij+2 i+2j 24 ij+j2 itj 2 pij4+j? —1)2 2
L( +j+J3+1)++2jJ BL( +1+13+1)+2+1J CL +H3—J +1J DL(k41)J LkTJ 4

Zjjk = Xr
where, working modulo 6, we have (cyclically around the dP3 Quiver)
r=6if2(i—j)+3k=0 r=4if2(i—j)+3k=1,
r=2if2(i—j)+3k=2 r=5if2(i—j)+3k=3,
r=3if2(i—j)+3k=4, r=1if2(i—j)+3k=5.
i.e. we determine x, by looking at (/ — j) modulo 3 and . }
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Formula for Model 1l

Xl X4X6 —+X1 X2 X5+ X3X4 X5 X1 X0 Xa+X3X4 X6 +X3 X5
Theorem (Lai-M "17+4) Let A= B = S , C= XLX5 %G ,
2

D = X1X2+X3Xp E = X4X6+X1X2X4X5+2X3X4X5X6+X3X5
e .

X4X5 X1X2X3X6
2 .2 oA 2 .2 L 2. >
z'(2')k _ Y,AL(, +ij+) 3+1)+/+2]J BL(, +ij+ 3+1)+21+JJ cl +J+J Sy DL JELk [
I’_l7

where Y] = %IXW Y; = x; for 2 < j < 6. (Powers of 2’s, 3's and 5's)
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Formula for Model Il

4
6 2
1 5
3
. ’ X4X5+X6 X1 X5 +2X1X2X3X6+X3 +x32X4X5 _ xa
Theorem (Lai-M '17+) Let A= 3L, B==", C= oy D=2
(POWGI’S of 2’ s, 5’s and 11’ S) E— X1X2X6+2X1X2X3X6+X3X6+x1X2X4X5+3X1x2X3X4X5X6+2X3X4X5X6 +X3X4X§.

X1X2X3 xf X6

24 ijj? i+2j i2 4 ij4+j2 i+j 2 4ijj? —1)2 2
Z,-(j)k _ Y,/AL( +J+J3+1)++2JJBL( +ij+j 3+1)+2+JJCL +j<:i;j HJDL(k 41) JELLJ

! _ X1X2X6+X3X§+X3X4X5 ! _ x1xX0+X3Xg I .. .
where Y] = oo Yy =8 Y = for j € {2,3,5,6}.
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Formula for Model 1V

Theorem (Lai-M '17+) Let A= 31, B =22

x1'
C — Xg+2X1X2X3X63+X12X22X§+3X4X5X6 +2X1X2X3X4X5X6+3X4X5X —l—)<4x5 _x
x1X3 X4X5X6 X5 '
E— Xg +2X1X2X3X6 +X1X2X +3X4X5X6 +3X1X2X3X4X5X6+3X4X5X6 +X4X5
- X1X2X3X4X6
(R4ij+2 " 2 .2 2
Ptij+j +1 +i+2j TG H1) 4204 +i+i7+1 k— 1 k
(,)k— v/ Al PEd) | p (R A2 | o EHL | | D | | |
bt
Where Y// _ X6+X1X2X3X6+2X4X5X62+X§x5 Y,/ ><4X5+X6 Y x1X2X3+X4X5X6+X63 Y// — x: fOI’
1 — - X3X4 U Y|
Jj€1{2,5,6}. (Powers of 13’s and 14 s)
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Back to Combinatorics: Applying Urban Renewal (as in [Speyer '08])

6 6
’ ' 6
e
5 ! or 3 1 5
3 3 3
4 4 4
6

6
5 >
5
3 3
4 4
6
6 6
3 5
3 5 3 or 3
) — 3
4 4
5
5
R
4 4
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Review of Model | Combinatorics

Note: Countour illustrated assuming all side lengths are positive.

We apply urban renewal to all quadrilaterals labeled with a 1.
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Model | /Il Combinatorics (after urban renewal at 1's)




Model Il Combinatorics (after collapsing 2-valent vertices)




Model Il Combinatorics
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Model Il Combinatorics (Revisited)




Model II/Ill (after urban renewal at 4's)




However, we have a problem: The contour runs through 2-valent vertices!




Model Il /Il (correcting contour as 2-valent vertices are collapsed)

Side b positive or negative. @ ® Side e is analogous.
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Model Il Combinatorics (after collapsing 2-valent vertices)

i

a9
0 o
T
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Model Ill Combinat. (Aztec Trimmed Rectangles, Lai '15)

:
o

8909

ol
o.o.

T

8
S

.eéo.
5 .%.

:
<
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Aztec trimmed rectangles as Model Ill (Rotate and Straighten) Agi’l, Agg,z

268

)0 C
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Aztec trimmed rectangles as Model Il (Rotate and Straighten) F5(,28),4

)ilil

2514
3] 6
ne
.

25|14
3] e
DE
b

[+]

1la]z2]s]1]4
6 3 o
De
S
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Aztec trimmed rectangles as Model Il - Comparing Coordinate Systems
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Model Il Combinatorics (Revisited)
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Model IV Combinatorics (after urban renewal at 3's & no 2-valent vertices)
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Model IV Combinatorics (Hexagonal Dungeon Pieces) [Ciucu-Lai '14]
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Hexagonal Dungeon Pieces (D- and E- regions) as Model IV Summary

(Uni

Dungeons and Dragonsl :
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Model IV Combinatorics (Hexahedron Recurrence)

We now compare our Combinatorial Formulas for Model IV to the work of Kenyon-Pemantle

on the Hexahedron Recurrence. Starting with the infinite set of initial variables

- . A D
To ={A(i,j k) : 0<it+j+k=2} U {A(i+5,j+ 5,k i+j+k=0}

A 1, . . o1 1. . .
the hexahedron recurrence yields a family of Laurent polynomials

{A(a, b,c) : a,b,c € Z/2 such that a+ b+ c € Z}
in terms of Z,.
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Model IV Combinatorics (Hexahedron Recurrence)

We now compare our Combinatorial Formulas for Model IV to the work of Kenyon-Pemantle
on the Hexahedron Recurrence. Starting with the infinite set of initial variables

- . A D
To ={A(i,j k) : 0<it+j+k=2} U {A(i+5,j+ 5,k i+j+k=0}

A 1, . . o1 1. . .
the hexahedron recurrence yields a family of Laurent polynomials
{A(a, b,c) : a,b,c € Z/2 such that a+ b+ c € Z}

in terms of Zp. For i,j, k € Z, we use Kenyon-Pemantle's notation:

1 1 1 1 1 1
h=A(i,j, k), K = A(i,j+ =, k+2), ) = A(i+5,j,k+3), and i) = A(i+ 5, j+ 5, k),

2 2 2 2 2 2

h(l) = A(I +1,J, k)v h(12) = A(I +1,j+1, k)a h(123) = A(I +1,j+ L k+ 1)7

with h(s) defined analogously for S C {1,2,3}.
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Hexahedron Recurrence [Kenyon-Pemantle '16]

For i,j, k € Z, we use Kenyon—PemantIe’s notation:

1 1 1 1
h= Ai,j, k), h) =A(u+ kS ) W) = A(i+ 5. k+5), and b2 = A(i+ = j+ 2. k)
hay = A(i +1,J, k), h(12) =A(i+1,j+1,k), hiaozy = A(i + 1,j + 1,k + 1).

Hexahedron Recurrence:

iy hOh = KONV - by by sy -+ by

(v) x z
hegy B0 h = hCYRIRE) 4 hyy higyhs) + hha) has)
(Z) z _ X z
he) WD h = ORI 4 hiyhiayhay + hhayhao)
h123yP*h R AP = (h X)h VWD) + (hayhy + hhaoy)(hayh) + hhasy)(heyha) + hhes)

“rh(x) AW h [2/7(1) h(2) h(3) + hh(l)h(zg) + hh(g)h(13) + hh(3)h(12)].
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Hexahedron Recurrence (Figure 7 of [Kenyon-Pemantle '16])

Initial Variables Z, can be arranged as (H = 3). We can reach other A(a, b, ¢)'s by iterating
Super Urban Renewal Transformations. (Corresponds to adding/removing cubes in dual.)
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Project from Z, to {x1, %2, X3, X4, X5, Xs } in Model IV Brane Tiling
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lllustrating the mutation sequence p1 4103 (Reaching Model 1V)

(i,j+1,k)

(i-Lj+1k) 6
3
s
4 i,j+l,k+l)

(i=1j+1k+1)
| (ijik+1)

Model 1

(i=1,j+2,k) (bj+1k=1)
(ij+1,k)
(i=1,j+1,k)
6
3
(ijk) 2 J
(ij+1,k+1)

Model 3
Resulting cluster variables still reachable by mutation sequences associated. to Z3-geometry.
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(i=1,j+2,k)
1
. (ij+1,k)
6
5
(ij.k) (i,j+1,k+1)
Model 2
4 (ij+1,k=1)

(ij+1,k)
(i+1,j+1,k)

5 5
(ij+1,k+1)
Model 4



lllustrating the mutation sequence i1 pigfipfi1 434t starting from Model 1V

6 (i, j, k)
1 (-1, j+1, k) 60,0 K 5 (i, j, k+1)
Sl 5 (i, J, k+1)
N 4(|'Jv k.l) . "
4 (i, j, k-1) ( 3 (i+1,j, k)
36415, 0 (Cmn BT
[
26, -1, k) 1 (i+1,j-1, k)
(a) M4 26,1, 10 (b) M3 2610 1anivw (c) M2 4.(i+1, -1, k+1)
10, j+1, k+1) 10, j+1, k+1)
6(ij k)
5(i, j, k+1)
o -y 3 (i, j, k+2) —
2 (i+1, j, k+1) 60 K 2 (i+1, j, k+1) nk! 2 (i+1, j, k+1)
3 (i+1, ], k) 5 ((.' I k)ﬂ) 3 (i+1., k) g?:f IE-)t-l)

(d) M1 H:ﬂﬁt)u) (e) M2 4 (i+1, -1, k+1) (f) M3 4 (i+1, -1, k+1)

1(,j+1, k+1)

3 (i, j, k+2)
6 (i, ), k)

2 (i-1, j, k+1)
5(,j, k+1)

Using a Projection to the (7, j)-plane

(g) M4 4041, 1, k+1)
June 21, 2019
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Model IV Combinatorics (Hexahedron Recurrence)

1 (-1, j+1, k)

6 (i, j, k)

5 (i, k+1)
40, k-1)

3(i+1,j, k)

2(i,j-1, k)

6 (i, j, k)
5 (i, j, k+1)

2 (i+1, j, k+1)
3 (i+1, ), k)

1 (i+1, -1, k)
4(i+1, 51, k+1)

1(,j+1, k+1)

3 (i, j, k+2)
6 (i, J, k)

2 (i-1, j, k+1)
5(,j, k+1)

(g) M4

G. Musiker (University of Minnesota)

4 (i+1, j-1, k+1)

6 (i
5 (i
4(

2 ) k)
L k+1)
2 k-1)

((\\
(b) M3 261w
1, j+1, k+1)
L 2 (i+1
6 j. k) i
5 i . k1) 3 (i+1

(e) M2 4 (i+1

3 (i+1,j, k)

1 (i+1, j-1, k)

Lo k+1)
k)

L -1, k+1)

6 (i, j, k)
5 (i, J, k+1)

( 3(i+1, ], k)

1(i+1,j-1, k)

[
2 (i, j-1, k)
4 (i+1, j-1, k+1)

(c) M2

1(,j+1, k+1)

J k+2) 2 (i+1, ), k+1)

4(i+1, -1, k+1)

(f) M3

Super Urban Renewal = pi1 g 40141 43 042.

Dungeons and Dragons
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Model IV Combinatorics (Hexahedron Recurrence) 2(5,40),4 or As

Self-intersecting contour C(4,—4,4,—3,3,—3) and modified contour C'(3,-3,3,-3,3, —3).
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Model IV Combinatorics (Hexahedron Recurrence) 2(5,40),4 or As

Modified Contour (a—1,b+1,c —1,d, e, f) where the six-tuple sums to 0 (rather than 1) is
more natural in Model IV case, as well as the Model Il case.
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Model IV Combinatorics (Hexahedron Recurrence) zéjlo)A or As
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Model IV Combinatorics (Hexahedron Recurrence) zéjlo)A or As
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4)

Model IV Combinatorics (Hexahedron Recurrence) zéo

4 Or As
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Taut Condition for Double Dimer Configurations [Kenyon-Pemantle '16])

Definition (Kenyon-Pemantle): A double dimer configuration on the infinite graph G is
known as Taut if its connectivity looks like the below asymptotically outside of the center.
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Taut Condition for Double Dimer Configurations [Kenyon-Pemantle '16])

By applying Super Urban Renewal to the center of G, followed by its , and
so on, we get a new graph that looks like intersection of G, and the 4 — 6 — 12 graph.
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Model IV Combinatorics (Hexahedron Recurrence)

Upshot: Hexahedron Recurrence Solutions A(i, j, k) for i,j, k € Z (Apy2 for n+2 =i+ j+ k)
are described via Taut Double Dimer Configurations as in Kenyon-Pemantle.

These can be re-interpreted as from self-intersecting contours on the
Model IV brane tiling, corresponding to the toric cluster variables Z(gfl()),n—&—l'

Laurent monomials in expansion of 2543 at1 correspond to the weight of double dimer
configurations (where a closed cycle of size > 4 come with coefficients of 2).
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Model IV Combinatorics (Hexahedron Recurrence)

Upshot: Hexahedron Recurrence Solutions A(i, j, k) for i,j, k € Z (Apy2 for n+2 =i+ j+ k)
are described via Taut Double Dimer Configurations as in Kenyon-Pemantle.

These can be re-interpreted as from self-intersecting contours on the

(4)

Model IV brane tiling, corresponding to the toric cluster variables z; ;.

Laurent monomials in expansion of 2543 at1 correspond to the weight of double dimer
configurations (where a closed cycle of size > 4 come with coefficients of 2).

Conjecture: Generalization of our method for building subgraphs from contours with
self-intersections can yield combinatorial interpretations for other cluster variables using taut
double dimer configurations (or possibly a mixed region of dimers and double-dimers).

Dovetails with promising calculations with David Speyer for self-intersecting contours for the
Model | brane tiling.
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Model IV Combinatorics with Modified Contour (a—1,b+1,c—1,d,e,f)
For Bs, using the Modified Contour (3,—-3,2,—1,1,—2) rather than (4,—4,3,—1,1, -2).

JED 7]
“"0"0"0 6’0. =

Cyclic symmetry visible in the Modified Contours: (2,—1,1,—2,3, —3) rather than
(3,-2,2,-2,3,—-3) as well as (1,—2,3, 3,2, —1) rather than (2,-3,4,-3,2,—1).
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Model IV Combinatorics (Hexahedron Recurrence) 2(5’421’4 or By

As an example, consider the half-integer solutions A(0,1/2,1/2 + n), i.e. the B, sequence, for
the hexahedron recurrence from Kenyon-Pemantle. They give an algebraic formula but not a
combinatorial model. Modified Contour: (3,-3,4,-4,4,-3)

20200 ".’Q?
o"o RO O 0'100 / 0

0 o 0 14

o'\‘ 'io

'o o o,
03 °§}" 0
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evm\oe'

?/
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: . 4
Model IV Combinatorics (Hexahedron Recurrence) z(g 214 or By

As an example, consider the half-integer solutions A(0,1/2,1/2 + n), i.e. the B, sequence, for
the hexahedron recurrence from Kenyon-Pemantle. They give an algebraic formula but not a
combinatorial model. Modified Contour: (3,-3,4,-4,4,-3)

TR L
N /

‘o. :o f . ?’
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gy
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Model IV Combinatorics (Hexahedron Recurrence) 2(5,41),5 or Bs

As an example, consider the half-integer solutions A(0,1/2,1/2 + n), i.e. the B, sequence, for
the hexahedron recurrence from Kenyon-Pemantle. They give an algebraic formula but not a

combinatorial model. Modified Contour: (5,-5,4,-3,3,-4)
@R GGl / (
S oaE Vo= o"o ea' '
O &

a“e'l
oo f)
. % ..9
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Model IV Combinatorics (Hexahedron Recurrence) 2(5,41),5 or Bs

As an example, consider the half-integer solutions A(0,1/2,1/2 + n), i.e. the B, sequence, for
the hexahedron recurrence from Kenyon-Pemantle. They give an algebraic formula but not a
combinatorial model. Modified Contour: (5,-5,4,-3,3,-4)

N ANV W s G W o V)
ROR G205 0 Ry
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e PP % o,
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The Taut Condition restricting the subset of mixed dimer configurations

The modified contour can be built as two overlapping triangles, such that the innermost
triangle resembles a graph in the family for A, except that it may have vertices of multiplicity
two on its boundary.

In fact, one of its three boundaries will again have all of its vertices of multiplicity one, and it
follows from the construction that this boundary will have an even number of such vertices.

We define the Taut Condition analogously to the above for A, so that the multiplicity one
vertices along this special boundary are always connected to the multiplicity one vertices on
the side nearer to it and in a non-crossing connectivity pattern.
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Examples of Forbidden Mixed Dimer Configurations for B;

g g
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Further Examples of Forbidden Mixed Dimer Configurations for Bj

These two configurations and those like it are (conjecturally) disallowed since the path
crossing from left to right (or vice-versa).

Note the paths connect different sides of the innermost triangle, but this necessary but not
sufficientcondition for a configuration to contribute to the partition function.
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Thanks for Coming (Slides at http://math.umn.edu/~musiker/RIMS19.pdf)
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(Berkeley, CA, 1996-97), 255-291, MSRI Publ., 38, Cambridge Univ. Press, Cambridge, 1999,
http://faculty.uml.edu/jpropp/matchings.pdf.

e Richard Eager and Sebastian Franco, Colored BPS Pyramid Partition Functions, Quivers and Cluster
Transformations, JHEP 2012, no. 9, 038, arXiv:1112.1132.

e Sicong Zhang, Cluster Variables and Perfect Matchings of Subgraphs of the dPs Lattice, 2012 REU Report,
arXiv:1511.06055.
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e Tri Lai and Gregg Musiker, Dungeons and Dragons: Combinatorics for the dP3; Quiver, to appear in Annals of
Comb., arXiv:1805.09280.
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Epilogue: The Del Pezzo 2 (dP,) Case

REU 2016: Yibo Gao, Zhaogi Li, Thuy-Dong Vuong, and Lisa Yang

Toric Mutations in the dP> Quiver and Subgraphs of the dP, Brane Tiling
https://arxiv.org/abs/1611.05320

Won an MAA Outstanding Poster Award at 2017 JMM.
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The dP, Quiver and its Brane Tiling (Gao-Li-Vuong-Yang)

The second Del Pezzo Surface (dP>) is first introduced in the physics literature.

Figure: dP, quiver and its corresponding brane tiling from Hanany-Seong
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Two Models of the dP, Quiver (Gao-Li-Vuong-Yang)

Figure: Model 1 (left) and Model 2 (right) of the dP, quiver
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Periodicity in certain mutation directions

Xo X5 + X3X4
X1

(X17X27X35X47X5) — ( = X67X25X37X4>X5) — (X27X37X47X57X6)
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Explicit Formula for Cluster Variables (Gao-Li-Vuong-Yang)

Definition (Laurent Polynomial for Somos-5 Sequence)

Let x1, X2, X3, X4, X5 be our initial variables. Define x, for each n € Z by

XnXp—5 = Xp—1Xn—4 + Xp—2Xp—3.

Notice that {x},>1 is the Somos-5 sequence if x; = xo = x3 = x4 = x5 = 1.
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Explicit Formula for Cluster Variables (Gao-Li-Vuong-Yang)

Definition (Laurent Polynomial for Somos-5 Sequence)

Let x1, X2, X3, X4, X5 be our initial variables. Define x, for each n € Z by

XnXp—5 = Xp—1Xn—4 + Xp—2Xp—3.

Notice that {x},>1 is the Somos-5 sequence if x; = xo = x3 = x4 = x5 = 1.

Definition (Some Constants)

B— XoXe + XZ ( . Xle + XoX3Xq + X22X5 )

Xoxa ' X3X5 X1X3X5
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Explicit Formula for Cluster Variables (Gao-Li-Vuong-Yang)

Define g(s, k) := L%J L%J if k is even and g(s, k) := L%J L%J if k is odd. Then we have,
for k € Z and s € Z>o,

plf(p3p1)s{X1,X2,X37X47X5} = {Ag(5+1,k)Bg(5+1,k+1)xk+s+1’ Ag(sjk)Bg(s’k+1)Xk+S+2 )
AB(sTLK) pelstlhktl)y, o A8k Be(sktl)y oy |
Ag(s—‘rl,k) Bg(s+1,k+1)xk+s+5}.

Corollary

All cluster variables generated by toric mutations can be written as either

A" BV, or A”(”_l)B"szm,l for some m, n € Z.
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Contour: Fundamental Shape (Gao-Li-Vuong-Yang)

We get the relations a+ b=d and a+ e =c.
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Countour: Fundamental Shape (Gao-Li-Vuong-Yang)

(-4 +.7)
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From Contour to Subgraph (Gao-Li-Vuong-Yang)

Definition (Rules to Get Subgraph)

@ positive length — keep black points; negative length — keep white points.

@ b=d (mod 2), keep special point; b # d (mod 2), remove special point.

Y2\ 3 Pa\s TN\
\ b /NN L/
v A
Chr S
0.0/ 09,

Figure: Length of Contour. Figure: Example of Subgraph.
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Main Result (Gao-Li-Vuong-Yang)

Theorem (Formula of Contours)

Define the contours as follows:

AnZB"L”X2k: (k—2+n,— P(_A'w'-‘ ,2n— 1, {H'J ,1—|—n—k>

2 2
k—2 k—2—
AR o = <k 24— [ 2+ 5”} 2n, { > 3”J 24n— k>

For any such cluster variable, if G is the subgraph of its corresponding contour, then c(G) is the
Laurent polynomial of the cluster variable.
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Comparison with Somos 5 (Gao-Li-Vuong-Zhang)

AE YA
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Comparison with Somos 5 (Gao-Li-Vuong-Zhang)

The subgraphs corresponding to xig, X11, x12 in the two different brane tilings.
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