
Cluster Algebras and Brane Tilings

Gregg Musiker (University of Minnesota)

University of Connecticut Colloquium

April 7, 2016

http://math.umn.edu/∼musiker/UCONN16.pdf

Gregg Musiker (University of Minnesota) Cluster Algebras and Brane Tilings April 7, 2016 1 / 50



Outline.

1 Introduction to Cluster Algebras

2 What is a Brane Tiling

3 The Del Pezzo 3 Quiver and Lattice

4 Gale-Robinson Sequences (work of Jeong-M-Zhang)

5 Aztec Castles and Beyond (work of Leoni-Neel-Turner and Lai-M)

Thank you to NSF Grants DMS-1067183, DMS-1148634,
DMS-1362980, and the Institute for Mathematics and its
Applications.

Part of this work done during 2011-2013 REU in Combinatorics at
University of Minnesota, Twin Cities.

Gregg Musiker (University of Minnesota) Cluster Algebras and Brane Tilings April 7, 2016 2 / 50



Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity and
canonical bases of algebraic groups. They noticed recurring combinatorial
and algebraic structures.

Let them to define cluster algebras, which have now been linked to quiver
representations, Poisson geometry Teichmüller theory, tilting theory,
mathematical physics, discrete integrable systems, string theory, and many
other topics.

Cluster algebras are a certain class of commutative rings which have a
distinguished set of generators that are grouped into overlapping subsets,
called clusters, each having the same cardinality.
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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra
A (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)
constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx
′
α =

∏
x
d+
i
γi +

∏
x
d−i
γi .

The set of all such generators are known as Cluster Variables, and the
initial pattern of exchange relations (described as a valued quiver, i.e. a
directed graph) determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Example: Rank 2 Cluster Algebras

Let B =

[
0 b
−c 0

]
, b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

A(b, c) of rank 2.

(E.g. when b = c , B = B(Q) where Q is a
2-vertex quiver with b arrows from v1 → v2.)

µ1(B) = µ2(B) = −B and x1x
′
1 = xc2 + 1, x2x

′
2 = 1 + xb1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{
xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even
.

Example (b = c = 1):

x3 =
x2 + 1

x1
. x4 =

x3 + 1

x2
=

x2+1
x1

+ 1

x2
=

x1 + x2 + 1

x1x2
.

x5 =
x4 + 1

x3
=

x1+x2+1
x1x2

+ 1

(x2 + 1)/x1
=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)
=

x1 + 1

x2
. x6 = x1.
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Example: Rank 2 Cluster Algebras

Example (b = c = 2): (Affine Type, of Type Ã1)

x3 =
x22 + 1

x1
.

x4 =
x23 + 1

x2
=

x42 + 2x22 + 1 + x21
x21x2

.

x5 =
x24 + 1

x3
=

x62 + 3x42 + 3x22 + 1 + x41 + 2x21 + 2x21x
2
2

x31x
2
2

, . . .

If we let x1 = x2 = 1, we obtain {x3, x4, x5, x6} = {2, 5, 13, 34}.

The next number in the sequence is x7 = 342+1
13 = 1157

13 = 89, an integer!
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What is a Brane Tiling (in Physics & Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to

Decribe the world volume of both D3 and M2 branes, and describe
certain (3 + 1)-dimensional superconformal field theories arising in string
theory (Type II B).

In Algebraic Geometry, they are used to

Probe certain toric Calabi-Yau singularities, and relate to
non-commutative crepant resolutions and the 3-dimensional McKay
correspondence.

Certain examples of path algebras with relations (Jacobian Algebras) can
be constructed by a quiver and potential coming from a brane tiling.
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What is a Brane Tiling (Combinatorially)

However, this is a mathematics talk, not a physics talk, so I will henceforth
focus on combinatorial motivation instead.

Most simply stated, a Brane Tiling is a Bipartite graph on a torus.

We view such a tiling as a doubly-periodic tiling of its universal cover, the
Euclidean plane.

Examples:

3

1

33

1

2 2

3

4

,

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Brane Tilings from a Quiver Q with Potential W

A Brane Tiling can be associated to a pair (Q,W ), where Q is a quiver
and W is a potential (called a superpotential in the physics literature).

A quiver Q is a directed graph where each edge is referred to as an arrow,
and multiple edges are allowed.

A potential W is a linear combination of cyclic paths in Q (possibly an
infinite linear combination).

For combinatorial purposes, we assume other conditions on (Q,W ), such
as

• Each arrow of Q appears in one term of W with a positive sign, and
one term with a negative sign.

• The number of terms of W with a positive sign equals the number
with a negative sign. All coefficients in W are ±1.
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Brane Tilings from a Quiver Q with Potential W

Example (The dP3 Quiver): QdP3 = Q =

4

6

1

3

5

2

,

W = A16A64A42A25A53A31 + A14A45A51 + A23A36A62

− A16A62A25A51 − A36A64A45A53 − A14A42A23A31.

We now unfold Q onto the plane, letting the three positive (resp. negative)
terms in W depict clockwise (resp. counter-clockwise) cycles on Q̃.
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Brane Tilings from a Quiver Q with Potential W

Example (continued):

Q =

4

6

1

3

5

2

unfolds to Q̃ =

6
6

6

F

A
D

B

A

C

F E F

F

B

D

C

5

3

5

3

3

5

3

1

2

4

4

4

1

2

1

2

4

1

2

W = A16A64A42A25A53A31(A) + A14A45A51 (B) + A23A36A62 (C )

− A16A62A25A51 (D) − A36A64A45A53 (E ) − A14A42A23A31(F ).

Locally, the configurations around vertices of Q and Q̃ are identical.
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Brane Tilings from a Quiver Q with Potential W

Taking the planar dual yields a bipartite graph on a torus (Brane Tiling):

6
6

6

F

A
D

B

A

C

F E F

F

B

D

C

5

3

5

3

3

5

3

1

2

4

4

4

1

2

1

2

4

1

2

Q̃ −→ TQ =

6

4

2

5

3

1

1

3

6

1

6

4

2

5

3

1

3

2

5

2

4

F

A
D

B

A

C

F F

F

B

D

E

B

E

C

B

D

C

Negative Term in W ←→ Counter-Clockwise cycle in Q̃ ←→ • in TQ
Positive Term in W ←→ Clockwise cycle in Q̃ ←→ ◦ in TQ
(To obtain Q̃ from TQ , we dualize edges so that white is on the right.)
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Brane Tilings from a Quiver Q with Potential W

Summarizing the dP3 Example:

Q

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

4
2

5
3

1

6

TQ

Negative Term in W ←→ Counter-Clockwise cycle in Q̃ ←→ • in TQ
Positive Term in W ←→ Clockwise cycle in Q̃ ←→ ◦ in TQ
(To obtain Q̃ from TQ , we dualize edges so that white is on the right.)
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Brane Tilings in Physics

Face ←→ U(N) Gauge Group

Edge ←→ Bifundamental Chiral Fields (Representations)

Vertex ←→ Gauge-invariant operator (Term in the Superpotential)

Together, this data yields a quiver gauge theory. One can apply Seiberg
duality to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.

Gregg Musiker (University of Minnesota) Cluster Algebras and Brane Tilings April 7, 2016 14 / 50



Brane Tilings in Physics

Face ←→ U(N) Gauge Group

Edge ←→ Bifundamental Chiral Fields (Representations)

Vertex ←→ Gauge-invariant operator (Term in the Superpotential)

Together, this data yields a quiver gauge theory. One can apply Seiberg
duality to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.

Gregg Musiker (University of Minnesota) Cluster Algebras and Brane Tilings April 7, 2016 14 / 50



Description of Seiberg Duality (from physics)

From “Brane Dimers and Quiver Gauges Theories (2005) by Franco,
Hanany, Kennaway, Wegh, and Wecht:

After picking a node to dualize at: “Reverse the direction of all arrows
entering or exiting the dualized node. This is because Seiberg duality
requires that the dual quarks transform in the conjugate flavor
representations to the originals. ...

Next, draw in ... bifundamentals which correspond to composite (mesonic)
operators. ... the Seiberg mesons are promoted to the fields in the
bifundamental representation of the gauge group. ...

It is possible that this will make some fields massive, in which case the
appropriate fields should then be integrated out.”
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Description of Seiberg Duality (rephrased combinatorially)

Pick a vertex j of the quiver Q (equiv. face of the brane tiling TQ) at
which to mutate. Then, reverse the direction of all arrows incident to j ,
i.e. Aij → A∗ji . Next, for every two-path i → j → k, “meson”, in Q draw in
a new arrow i → k , “the Seiberg mesons are promoted to the fields”. Let
Q ′ denote this new quiver.

We similarly alter the superpotential W to get W ′. For every 2-path
i → j → k in Q, we replace any appearance of the product AijAjk in W
with the singleton Aik , and add or subtract a new degree 3-term, AikA

∗
kjA
∗
ji .

It is possible, that this will make some of the terms of W ′ of degree two,
“massive”, in which case there should be an associated 2-cycle in the
mutated quiver Q ′ that can be deleted, “the appropriate fields should then
be integrated out”.

This is in fact Mutation of Quivers with potential from cluster
algebras (as defined by Derksen-Weyman-Zelevinsky)!
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Description of Seiberg Duality (on the Brane Tiling)

In the special case, that we are mutating at a vertex with two arrows in
and out, a toric vertex, this corresponds to a Urban Renewal of a square
face in the brane tiling.

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4
with potential

W = A13A34A41 + A16A63A35A51 + A35A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A35A51 − A27A73A35A52 − A45A57A74.

Consider the corresponding Brane Tiling T (2,3)
7 and mutation of (Q,W )

at the toric vertex labeled 1. (Associated to Gale-Robinson Sequence)
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 with potential

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

5 4 Rotate potential terms containing 1

W = A41A13A34 + A51A16A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A41A16A62A24 − A34A46A63 − A51A13A
(H)
35 − A27A73A

(V )
35 A52 − A45A57A74.

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Mutating at 1 yields

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting Massive terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A∗15A

(H)
53 A∗31 − A∗14A43A

∗
31 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Highlighting complementary terms

W ′ = A43A34 + A56A63A
(V )
35 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A
(D)
46 A62A24 − A34A46A63 − A

(H)
53 A

(H)
35 − A27A73A

(V )
35 A52 − A45A57A74

+ A∗14A
(D)
46 A∗61 + A

(H)
53 A∗31A

∗
15 − A43A

∗
31A
∗
14 − A∗15A56A

∗
61.

2 4 6 3

2 4

3 5

2

6

5 7 6

4

7 2 4

5

5 73 6

3

7

3

1

1

1

1
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

7

1

2

3
6

45

Reduces the potential to

W ′′ = A56A63A
(V )
35 + A24A45A52 + A27A74A46A62 − A

(D)
46 A62A24 − A27A73A

(V )
35 A52

− A45A57A74 + A∗14A
(D)
46 A∗61 − A∗15A56A

∗
61 − A46A63A

∗
31A
∗
14 + A∗31A

∗
15A57A73.

2 4

2 4

5

2

5 7

4

7 2 4

5

5 7

7

3

3

3

16

16

13

6 1

6 3
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34

If we cyclically permute vertices

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2
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Description of Seiberg Duality (on the Brane Tiling)

Example (Q
(2,3)
7 ):

5

6

7

1

2

34 ←−

7

1

2

3
6

5 4

The cyclic permutation yields the original Brane Tiling and (Q,W )!

W ′′ = A45A52A
(V )
24 + A13A34A41 + A16A63A35A51 − A

(D)
35 A51A13 − A16A62A

(V )
24 A41

− A34A46A63 + A∗73A
(D)
35 A∗57 − A∗74A45A

∗
57 − A35A52A

∗
27A
∗
73 + A∗27A

∗
74A46A62

W = A13A34A41 + A16A63A
(V )
35 A51 + A

(H)
35 A57A73 + A24A45A52 + A27A74A46A62

− A16A62A24A41 − A34A46A63 − A13A
(H)
35 A51 − A27A73A

(V )
35 A52 − A45A57A74.

4 6 1 3 5 7 2

1 3 5 7 2 4 6

3164275

2 4 6 1 3 5 7 2

←−

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3
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Enter Combinatorics

The quiver QdP3 has a similar periodicity property.

4

6

1

3

5

2

∼=

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

µ1 µ2

If we mutate QdP3 by 1, 2, 3, 4, 5, 6, 1, 2, . . . , after the first two mutations,
we obtain same quiver back up to cyclically permuting the vertex labels.

Point: Mutating once in the Q
(r ,s)
N case, or twice in the QdP3 case, yields

a quiver with potential that is equivalent up to cyclic rotation.
Such quivers are called periodic in the Fordy-Marsh sense.
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Cluster Variable Mutation

In addition to the mutation of quivers, there is also a complementary
cluster mutation that can be defined.

Cluster mutation yields a sequence of Laurent polynomials in
Q(x1, x2, . . . , xn) known as cluster variables.

Given a quiver Q (the potential is irrelevant here) and an initial cluster
{x1, . . . , xN}, then mutating at vertex 1 yields a new cluster variable xN+1

defined by xN+1 =

 ∏
1→i∈Q

xi +
∏

i→1∈Q
xi

/x1.

Example (Q
(r ,s)
N ): In Q, 1→ r + 1, N − r + 1 and 1← s + 1, N − s + 1.

7

1

2

3
6

5 4 For r = 2, s = 3,N = 7, we get x8 = (x3x6 + x4x5) /x1.
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The Gale-Robinson Sequence

Example (Q
(r ,s)
N ): (e.g. r = 2, s = 3, N = 7)

7

1

2

3
6

5 4 →

7

1

2

3
6

45 ∼=

5

6

7

1

2

34

Mutating at 1, 2, 3, . . . ,N, 1, 2, . . . yields the same quiver, up to cyclic
permutation, at each step, hence we obtain the infinite sequence of
xN+1, xN+2, . . . satsifying

xn = (xn−rxn−N+r + xn−sxn−N+s) /xn−N for n > N.

Known as the Gale-Robinson Sequence of Laurent polynomials.
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The Gale-Robinson Sequence (with coefficients)

Example (Q
(r ,s)
N ): (e.g. r = 2, s = 3, N = 7)

5

3

2

7

1’

1 2’

3’

4’5’

7’

6’
6

4

We add N frozen vertices to Q
(r ,s)
N with incoming

arrows. Let yi denote the cluster variable corresponding to vertex i ′.

Mutating again at 1, 2, 3, . . . ,N, 1, 2, . . . (never at frozen vertices) yields a
infinite sequence of cluster variables with a more complicated recurrence:

xnxn−N = xn−rxn−N+r +
n∏

i=1

y
d(N−n−i,s,n−s)
i xn−sxn−N+s for n > N.

where d(M, s, s ′) = # ways to write M as A · s + B · s ′ with A,B ∈ Z≥0
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Gale-Robinson Sequence Example

For Q
(2,3)
7 , x8 = x4x5y1+x3x6

x1
, x9 = x5x6y2+x4x7

x2
, x10 =

x1x6x7y1y3+x4x25 y1+x3x5x6
x1x3

,

x11 =
x2x4x5x7y1y2y4+x2x3x6x7y2y4+x1x5x26 y2+x1x4x6x7

x1x2x4
, . . .

x8 ↔
1

, x9 ↔
2

, x10 ↔
1 3

,

x11 ↔

2 4

1

, x12 ↔

1 3 5

2

1

, . . .
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Gale-Robinson Sequence Example (continued)

With Minimal Matchings Highlighted:

For Q
(2,3)
7 , x8 = x4x5y1+x3x6

x1
, x9 = x5x6y2+x4x7

x2
, x10 =

x1x6x7y1y3+x4x25 y1+x3x5x6
x1x3

,

x11 =
x2x4x5x7y1y2y4+x2x3x6x7y2y4+x1x5x26 y2+x1x4x6x7

x1x2x4
, . . .

x8 ↔
1

, x9 ↔
2

, x10 ↔
1 3

,

x11 ↔

2 4

1

, x12 ↔

1 3 5

2

1

, . . .
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Theorem (Jeong-M-Zhang) (FPSAC Proceedings 2013)

For certain periodic quivers Q, which include the Gale-Robison quiver
family, the dP3 quiver, and some other 2-periodic quivers, we can use the
Brane Tiling TQ to obtain combinatorial formulas for an infinite sequence
of cluster variables in AQ .

For n > N, xn = cm(Gn)
∑

M= perfect matching of Gn

x(M)y(M), where

{Gn : n > N}’s are a collection of subgraphs of TQ , x(M) =
∏

edge e∈M
1

xixj

(for edge e straddling faces i and j), y(M) = height of M (recording what
faces need to be twisted to obtain matching M starting from the minimal
matching, and cm(Gn) = the covering monomial of the graph Gn (which
records what face labels are contained in Gn and along its boundary).

Remark: This weighting scheme is a reformulation of schemes appearing
in works of Speyer (“Octahedron Recurrence”) and Goncharov-Kenyon.
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Q =

7

1

2

3
6

5 4 TQ =

2 4 6 1 3

2 4

1 3 5

2

6

5 7 6 1

4

7 2 4

5

5 73 6 1

3

7

3

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Obtain pinecone graphs from Bousquet-Mélou, Propp, and West in terms
of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only
use weights (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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Gale-Robinson Example (Q
(2,3)
7 , Mutating 1, 2, . . . , 7, . . . )

Similar connections (without principal coefficients) also observed in “Brane
tilings and non-commutative geometry” by Richard Eager.

Eager uses physics terminology where he looks at Y p,q and La,b,c quiver
gauge theories, and their periodic Seiberg duality (i.e. quiver mutations).

x8 ↔ 1 , x9 ↔ 2 , x10 ↔ 1 3 , x11 ↔
2 4

1

,

x12 ↔
1 3 5

2

1

, x13 ↔
2 4 6 1

2

1 3

, x14 ↔

1 3 5 7 2

2 4

1

1 3

,

x15 ↔

2 4 6 1 3

2 4

1 3 5

2

, x16 ↔

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

, . . .
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dP3 Example (Mutating 1, 2, 3, 4, 5, 6, 1, 2, . . . )

Q −→ TQ :

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

6
4

2

5
3

1

4
2

5
3

1

6

5 1

4
2

1

3
1

2

4
2

1

3
1

2

3
1

2

3
1

26

5

4

5

6

3
4

2

1

4
2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

5 1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

3
1

2

1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

5

6

3

5

6

3

4
2

1

4
2

1

4
2

1

5 1

D2

D 3
2

D 1
2

D2

D 5
2

D3
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dP3 Example (Mutating 1, 2, 3, 4, 5, 6, 1, 2, . . . )

These subgraphs appear in work by Cottrell-Young and a subsequence of
them appear in M. Ciucu’s work “Perfect matchings and perfect powers”,
where they are called Aztec Dragons.

S. Zhang proved weighted enumerations of perfect matchings in Aztec
Dragons yield the Laurent expansions of cluster variables. (REU 2012)

5 1

4
2

1

3
1

2

4
2

1

3
1

2

3
1

2

3
1

26

5

4

5

6

3
4

2

1

4
2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

5 1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

3
1

2

1

5

6

3
4

2

1

3
1

2

3
1

2

3
1

26

5

4

4
2

1

4
2

1

6

5

4

3
1

2

3
1

2

3
1

26

5

4

5

6

3

5

6

3

4
2

1

4
2

1

4
2

1

5 1

D2

D 3
2

D 1
2

D2

D 5
2

D3
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Non-periodic mutation sequences in the dP3 Lattice

Toric mutations take place at vertices with in-degree and out-degree 2.

Starting with any of these four models of the dP3 quiver, any sequence of
toric mutations yields a quiver that is graph isomorphic to one of these.

Figure 20 of Eager-Franco (Incidences betweeen these Models):

3

3

2

3

2

11 2

22

3

3

3 3

2

3

1

4

2

422
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Goal: Combinatorial Formula for Toric Cluster Variables

Example from M. Leoni, S. Neel, and P. Turner (2013 REU):
Mutations at antipodal vertices of dP3 quiver yield τ -mutation sequences.
Resulting Laurent polynomials correspond to Aztec Castles under
appropriate weighted enumeration of perfect matchings.

e.g. 1, 2, 3, 4, 1, 2, 5, 6 yields cluster variable

(x1x
2
2 x

3
3 x

4
5 + x32 x

2
3 x4x

4
5 + 2x21 x2x

3
3 x

3
5 x6 + 4x1x

2
2 x

2
3 x4x

3
5 x6 + 2x32 x3x

2
4 x

3
5 x6 + x31 x

3
3 x

2
5 x

2
6

+ 5x21 x2x
2
3 x4x

2
5 x

2
6 + 5x1x

2
2 x3x

2
4 x

2
5 x

2
6 + x32 x

3
4 x

2
5 x

2
6 + 2x31 x

2
3 x4x5x

3
6 + 4x21 x2x3x

2
4 x5x

3
6

+ 2x1x
2
2 x

3
4 x5x

3
6 + x31 x3x

2
4 x

4
6 + x21 x2x

3
4 x

4
6 )/x

2
1 x

2
2 x

2
3 x

2
4 x6 =

(x1x3 + x2x4)(x4x6 + x3x5)
2(x1x6 + x2x5)

2

x21 x
2
2 x

2
3 x

2
4 x6

1

1

1
3 3

5

4

4 4

2

2
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Segway: Z3 Parameterization for Toric Cluster Variables

Theorem 1 [Lai-M 2015] Starting from the initial cluster
{x1, x2, . . . , x6}, the set of cluster variables reachable via toric mutations
can be parameterized by Z3.

Under this correspondence, the initial cluster bijects to

[(0,−1, 1), (0,−1, 0), (−1, 0, 0), (−1, 0, 0), (−1, 0, 1), (0, 0, 1), (0, 0, 0)]

and toric mutations transform the six-tuple in Z3 as we will illustrate.

Up to symmetry, enough to consider µ1µ2, µ1µ4µ1µ5µ1, and µ1µ4µ3.

3

3

2

3

2

11 2

22

3

3

3 3

2

3

1

4

2

422
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Algebraic Formula for Toric Cluster Variables for dP3

Let A =
x3x5 + x4x6

x1x2
, B =

x1x6 + x2x5
x3x4

, C =
x1x3 + x2x4

x5x6
,

D =
x1x3x6 + x2x3x5 + x2x4x6

x1x4x5
, and E =

x2x4x5 + x1x3x5 + x1x4x6
x2x3x6

.

Let z j ,ki be the cluster variable corresponding to (i , j , k) ∈ Z3

Theorem 2 [Lai-M 2015] (Extension of [LMNT 2013] and [Lai 2014]):

z j ,ki = xr Ab
(i2+ij+j2+1)+i+2j

3
c Bb

(i2+ij+j2+1)+2i+j
3

c C b
i2+ij+j2+1

3
c Db

(k−1)2

4
c E b

k2

4
c

where, working modulo 6, we have (cyclically around the dP3 Quiver)
r = 6 if 2(i − j) + 3k ≡ 0, r = 4 if 2(i − j) + 3k ≡ 1,
r = 2 if 2(i − j) + 3k ≡ 2, r = 5 if 2(i − j) + 3k ≡ 3,
r = 3 if 2(i − j) + 3k ≡ 4, r = 1 if 2(i − j) + 3k ≡ 5.

i.e. we determine xr by looking at (i − j) modulo 3 and k modulo 2.
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Mutating Model I to Model II and back to Model I

By applying µ1 ◦ µ2, µ3 ◦ µ4, or µ5 ◦ µ6, we mutate the quiver (up to
graph isomorphism):

−→ −→

Corresponding action in Z3 (on triangular prisms):

Model 1

Model 2
Model 1

1

4

5

(i−1,j+1,k+1)

(i,j+1,k+1)

3

6

2

(i−1,j+1,k)

1

23

4

6

5

(i,j+1,k)

(i,j,k)

3 2

6

5

1

4

(i,j,k+1)

(i,j+1,k+1)

(i,j+1,k)

(i−1,j+1,k)

(i−1,j+1,k+1)

(i,j,k)

(i−1,j+1,k+1)

(i−1,j+1,k)

(i−1,j+2,k)
(i−1,j+2,k)

(i,j+1,k)

(i,j+1,k+1)
(i−1,j+2,k+1)
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Illustrating the mutation sequence µ1µ4µ1µ5µ1

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������

������
������
������

Model 1

Model 2

Model 3 Model 3

Model 2 Model 1

3 2

6

5

1

4

(i,j,k+1)

(i,j+1,k+1)

(i,j+1,k)

(i−1,j+1,k)

(i−1,j+1,k+1)

(i,j,k)

1

4

5

(i−1,j+1,k+1)

(i,j+1,k+1)

3

6

2

(i−1,j+1,k)

(i−1,j+2,k)

(i,j+1,k)

(i,j,k)

3

2

6

5

1

(i,j+1,k+1)

(i,j+1,k)

(i,j,k)

(i−1,j+2,k)

4

(i,j+1,k−1)

(i−1,j+1,k)

2 5

6

4

3 1

(i−1,j+1,k)

(i,j,k) (i,j+1,k+1)

(i,j+1,k)

(i,j+1,k−1)

(i+1,j,k)

2

3

6

(i,j+1,k)

4 (i,j+1,k−1)

1

(i+1,j,k)

5
(i,j,k−1)

(i,j,k)

(i−1,j+1,k) 6

4

2

5

1

3

(i,j,k−1)
(i,j+1,k)

(i,j+1,k−1)

(i−1,j+1,k)

(i,j,k)

(i−1,j+1,k−1)
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Illustrating the mutation sequence µ1µ4µ3

������
������
������
������

������
������
������
������

������
������
������
������
������

������
������
������
������
������

3

2

6

5

1

(i,j+1,k+1)

(i,j+1,k)

(i,j,k)

(i−1,j+2,k)

4

(i,j+1,k−1)

(i−1,j+1,k)

1

4

5

(i−1,j+1,k+1)

(i,j+1,k+1)

3

6

2

(i−1,j+1,k)

(i−1,j+2,k)

(i,j+1,k)

(i,j,k)

3 2

6

5

1

4

(i,j,k+1)

(i,j+1,k+1)

(i,j+1,k)

(i−1,j+1,k)

(i−1,j+1,k+1)

(i,j,k)

3

2

6

5

1

(i,j+1,k+1)

(i,j+1,k)

(i,j,k)

(i−1,j+2,k)

4
(i,j+1,k−1)

(i+1,j+1,k)

Model 1

Model 2

Model 3
Model 4
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Theorem 3 [Lai-M 2015]

Theorem (Reformulation of [Leoni-M-Neel-Turner 2014]): Let
ZS = [z1, z2, . . . , z6] be the cluster obtained after applying a toric
mutation sequence S to the initial cluster {x1, x2, . . . , x6}.

Let w(G ) = cm(G )
∑

M a perfect matching of G x(M).

Let G(Ci ) be the subgraph cut out by the contour Ci .

Then ZS = [w(G(CS
1 ),w(G(CS

2 ), . . . ,w(G(CS
6 )] where CS1 , CS2 , . . . , CS6 are

defined as follows:

1) Start with the six-tuple
[(0,−1, 1), (0,−1, 0), (−1, 0, 0), (−1, 0, 0), (−1, 0, 1), (0, 0, 1), (0, 0, 0)] in Z3.
2) Toric Mutations transform this six-tuple as illustrated earlier.
3) Map from Z3 to Z6:

(i , j , k)→ (a, b, c, d , e, f ) = (j + k,−i − j − k, i + k, j − k +1,−i − j + k − 1, i − k +1)

and use these six six-tuples to define the contours CS1 , CS2 , . . . , CS6 .
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Example 1: mutation sequence µ1µ2µ3µ4µ5µ6

We start at the initial prism C1,C2, . . .C6. Applying the mutation
sequence µ1, µ2, µ3µ4µ5µ6 corresponds to the transformations

C1 = (0, 0, 1,−1, 1, 0), C2 = (−1, 1, 0, 0, 0, 1), C3 = (0, 1,−1, 1, 0, 0),
C4 = (1, 0, 0, 0, 1,−1), C5 = (1,−1, 1, 0, 0, 0), C6 = (0, 0, 0, 1,−1, 1).

−→
C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C3 = (0, 1,−1, 1, 0, 0),

C4 = (1, 0, 0, 0, 1,−1),C5 = (1,−1, 1, 0, 0, 0),C6 = (0, 0, 0, 1,−1, 1).

−→

C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C ′3 = (1,−1, 0, 2,−2, 1),
C ′4 = (2,−2, 1, 1,−1, 0),C5 = (1,−1, 1, 0, 0, 0),C6 = (0, 0, 0, 1,−1, 1).

−→
C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C ′3 = (1,−1, 0, 2,−2, 1),

C ′4 = (2,−2, 1, 1,−1, 0),C ′5 = (3,−2, 0, 2,−1,−1),C ′6 = (2,−1,−1, 3,−2, 0).
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Example 1: mutation sequence µ1µ2µ3µ4µ5µ6

We start at the initial prism C1,C2, . . .C6. Applying the mutation
sequence µ1, µ2, µ3µ4µ5µ6 corresponds to the transformations

C1 = (0, 0, 1,−1, 1, 0), C2 = (−1, 1, 0, 0, 0, 1), C3 = (0, 1,−1, 1, 0, 0),
C4 = (1, 0, 0, 0, 1,−1), C5 = (1,−1, 1, 0, 0, 0), C6 = (0, 0, 0, 1,−1, 1).

−→
C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C3 = (0, 1,−1, 1, 0, 0),

C4 = (1, 0, 0, 0, 1,−1),C5 = (1,−1, 1, 0, 0, 0),C6 = (0, 0, 0, 1,−1, 1).

−→

C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C ′3 = (1,−1, 0, 2,−2, 1),
C ′4 = (2,−2, 1, 1,−1, 0),C5 = (1,−1, 1, 0, 0, 0),C6 = (0, 0, 0, 1,−1, 1).

−→
C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C ′3 = (1,−1, 0, 2,−2, 1),

C ′4 = (2,−2, 1, 1,−1, 0),C ′5 = (3,−2, 0, 2,−1,−1),C ′6 = (2,−1,−1, 3,−2, 0).
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Example 1: mutation sequence µ1µ2µ3µ4µ5µ6

We start at the initial prism C1,C2, . . .C6. Applying the mutation
sequence µ1, µ2, µ3µ4µ5µ6 corresponds to the transformations

C1 = (0, 0, 1,−1, 1, 0), C2 = (−1, 1, 0, 0, 0, 1), C3 = (0, 1,−1, 1, 0, 0),
C4 = (1, 0, 0, 0, 1,−1), C5 = (1,−1, 1, 0, 0, 0), C6 = (0, 0, 0, 1,−1, 1).

−→
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C ′4 = (2,−2, 1, 1,−1, 0),C5 = (1,−1, 1, 0, 0, 0),C6 = (0, 0, 0, 1,−1, 1).
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Example 1: mutation sequence µ1µ2µ3µ4µ5µ6

C ′1 = (2,−1, 0, 1, 0,−1),C ′2 = (1, 0,−1, 2,−1, 0),C ′3 = (1,−1, 0, 2,−2, 1),

C ′4 = (2,−2, 1, 1,−1, 0),C ′5 = (3,−2, 0, 2,−1,−1),C ′6 = (2,−1,−1, 3,−2, 0).

2 x4x6+x3x5
x2

1 x3x5+x4x6
x1

4
2

1

x2x3x25+x1x3x5x6+x2x4x5x6+x1x4x26
x1x2x4

2

31

x2x3x25+x1x3x5x6+x2x4x5x6+x1x4x26
x1x2x3

2

3

6
4

2

5

1

1

(x2x5+x1x6)(x1x3+x2x4)(x3x5+x4x6)2

x21 x
2
2 x3x4x6

2

3

4
2

5

1

1 1

(x2x5+x1x6)(x1x3+x2x4)(x3x5+x4x6)2

x21 x
2
2 x3x4x5

2
4

5

2
4

6

1
3

5

2
4

6

1
3

5

2
4

6

1
3

5

2
4

6

1
3

5

2
4

6

1
3

5

2
4

3
5

2 6

1
3

5

2
4

3
5

2

3

6

1
3

6

1
3

6

1
3

5 1

6

1

4

6

1

4

6

1

4

4

6

1
3

5

2
4

6

1
3

5

2
4

6

1
3

5

2
4

6

1

4

6

1

2
4

6

1
3

6

6

1
3

3

6

1
33

5

2

6

1
3

5

2
4

3
5

2

5

2

5

2
4

5

2
4

4
4

6

1

4

5

2
4

5

2
4

5

2 6

1
3

5

2
4

6

1
3

5

2
4

6

1

4

1

6

1
3

5

6

1
33

5

2

3

6

1

2
4

6

6

1
3

6

5

3

3

3
5

2

6

1
3

5

2
4

5

2

1 5

2
4

44

5

2

5

2
4

1

3

6

1
3

5

6

1

4

2
4

5

5

2

5

4
2

1

D1/2 1 3/2

2 5/2 3

D D

D D D

a=1

b=0 c= -1

d=2

e= -1

f=0
a=2

b= -2

c=1
d=1e= -1

f=0

a=2

b= -1

c= -1

d=3

e= -2

f=0

a=3 b= -3

c=1

d=2e= -2

f=0

a=3

b= -2

c= -1

d=4
e= -3

f=0

a=4

b= -4

c=1

d=3
e= -3

f=0

3
1

6

3

2

Gregg Musiker (University of Minnesota) Cluster Algebras and Brane Tilings April 7, 2016 40 / 50



Example 2: S = τ1τ2τ3τ1τ2τ3τ2τ1τ4

We reach {(1, 3), (1, 2), (0, 3)} from applying τ1τ2τ3τ1τ2τ3τ2τ1
(τ1 = µ1µ2, τ2 = µ3µ4, and τ3 = µ5µ6) and then τ4 = µ1µ4µ1µ5µ1

yields CS = [σ−1C31 , C31 , C21 , σ−1C21 , σ−1C30 , C30 ] =

[(2,−3, 0, 5,−6, 3), (3,−4, 1, 4,−5, 2), (2,−3, 1, 3,−4, 2),

(1,−2, 0, 4,−5, 3), (2,−2,−1, 5,−5, 2), (3,−3, 0, 4,−4, 1)].
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Example 2: S = τ1τ2τ3τ1τ2τ3τ2τ1τ4

We reach {(1, 3), (1, 2), (0, 3)} from applying τ1τ2τ3τ1τ2τ3τ2τ1
(τ1 = µ1µ2, τ2 = µ3µ4, and τ3 = µ5µ6) and then τ4 = µ1µ4µ1µ5µ1

yields CS = [σ−1C31 , C31 , C21 , σ−1C21 , σ−1C30 , C30 ] =

[(2,−3, 0, 5,−6, 3), (3,−4, 1, 4,−5, 2), (2,−3, 1, 3,−4, 2),

(1,−2, 0, 4,−5, 3), (2,−2,−1, 5,−5, 2), (3,−3, 0, 4,−4, 1)].
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Example 3: S = τ1τ2τ3τ1τ3τ2τ1τ4τ5

[(0,−2, 1, 3,−5, 4), (−1,−1, 0, 4,−6, 5), (0,−1,−1, 5,−6, 4),

(1,−2, 0, 4,−5, 3), (0,−1, 0, 3,−4, 3), (−1, 0,−1, 4,−5, 4)].
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Example 3: S = τ1τ2τ3τ1τ3τ2τ1τ4τ5

[(0,−2, 1, 3,−5, 4), (−1,−1, 0, 4,−6, 5), (0,−1,−1, 5,−6, 4),

(1,−2, 0, 4,−5, 3), (0,−1, 0, 3,−4, 3), (−1, 0,−1, 4,−5, 4)].
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Possible Shapes of Aztec Castles
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Cross-section when k positive
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Cross-section when k negative
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Future Work: Self-intersecting Contours

Algebraic formula

z j ,ki = xr Ab
(i2+ij+j2+1)+i+2j

3
c Bb

(i2+ij+j2+1)+2i+j
3

c C b
i2+ij+j2+1

3
c Db

(k−1)2

4
c E b

k2

4
c

still works for (a, b, c , d , e, f ) when alternating in signs but combinatorial
formula for such cases open.
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Work in progress (with David Speyer): Conjectural Double-Dimer
combinatorial interpretation for self-intersecting contours.
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Additional Open Questions

Question: Work of Di Francesco and Soto-Garrido studied arctic curves
from T-systems. Can we adapt these methods to obtain Limit Shapes for
the graphs arising from toric mutations sequences for the dP3 quiver?

Question: There are many other quivers that arise in the physics
literature or admit brane tilings. Can we obtain analogous combinatorial
interpretations of toric cluster variables in these cases as well?

Question: Finally, we focused on cluster expansions assuming the initial
cluster was Model I. What if we start from a different model. It appears
that it the initial cluster is of Model IV that one gets Hexagonal dungeons.
T. Lai and I plan to do further work on Dungeons and Dragons.
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Thanks for Coming (Slides at http://math.umn.edu/∼musiker/UCONN16.pdf)

• Richard Eager and Sebastian Franco, Colored BPS Pyramid Partition
Functions, Quivers and Cluster Transformations, arXiv:1112.1132.
• Eric Kuo, Applications of Graphical Condensation for Enumerating
Matchings and Tilings, Theoretical Computer Science, 319:29–57.

• Sicong Zhang, Cluster Variables and Perfect Matchings of Subgraphs of
the dP3 Lattice, 2012 REU Report, arXiv:1511.06055.

• Tri Lai, A Generalization of Aztec Dragons, arXiv:1504.00303, to
appear in Graphs and Combinatorics.

• Gale-Robinson Sequences and Brane Tilings (with In-Jee Jeong and and
Sicong Zhang), Discrete Mathematics and Theoretical Computer Science
Proc. AS (2013), 737-748.

• Aztec Castles and the dP3 Quiver (with Megan Leoni, Seth Neel, and
Paxton Turner), Journal of Physics A: Math. Theor. 47 474011,
arXiv:1308.3926.

• Beyond Aztec Castles: Toric Cascades in the dP3 Quiver (with Tri Lai),
arXiv:1512.00507.
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