
CSci 8980, Fall 2012
Specifying and Reasoning

About Computational Systems

The (Untyped and Typed) Lambda Calculus

Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota

Lectures in Fall 2012

Gopalan Nadathur The Lambda Calculus

Resources

Some books about the lambda calculus:

Introduction to Combinators and λ-Calculus, J. Roger
Hindley and Jonathan P. Seldin, Cambridge University
Press

The Lambda Calculus: Its Syntax and Semantics, Henk
Brendregt, North Holland, Amsterdam

Proofs and Types, J.-Y. Girard, Y. Lafont and P. Taylor,
Cambridge University Press

Introduction to Lambda Calculus, Henk Barendregt and
Erik Barendsen, online notes

Gopalan Nadathur The Lambda Calculus

The Purpose of the Lambda Calculus

A formal system for studying the concept of functionality

Two different views can be taken of functions:
as objects given by sets of ordered pairs

as rules for carrying out a computation
The lambda calculus takes the latter as the primitive notion

Possible applications for the lambda calculus:
device for defining and studying computability

foundation for/formalization of a logic of functions

vehicle for actually carrying out computations

framework for studying programming language questions
The last two applications underlie our interest in the lambda
calculus

Gopalan Nadathur The Lambda Calculus

Varieties of Lambda Calculi

Different versions of the lambda calculus have been studied
and used in programming language research

These versions can be categorized based on
typing

untyped, as underlying Lisp or Scheme
simply typed, as used in languages like C and Pascal
polymorphically typed as in ML and Haskell
second order polymorphically typed
dependently typed

constraints on the use of function arguments
unconstrainted as in typical programming languages
requiring argument to be non-vacuous (λI)
requiring the argument to be used exactly once (linear)

evaluation order: strict versus non-strict lambda calculus

We will look primarily at the unconstrained λ-calculus without
types and with simple types

Gopalan Nadathur The Lambda Calculus

The Starting Point

The lambda calculus arose from making a distinction between
expressions with free variables, and
functions

In common mathematical parlance, there is a confusion
between these notions

For example
“(x2 + x)2 is greater than 1000”
“(x2 + x)2 is a computable function”

This ambiguity causes problems in formal settings

Church proposed notation to distinguish the two uses:
use (x2 + x)2 to denote a (context dependent) value
write λx (x2 + x)2 to denote a function of x

Gopalan Nadathur The Lambda Calculus

Formalizing the Lambda Notation

Treating the “lambda notation” seriously requires attention to a
few surrounding issues:

Argument name must be treated as being unimportant
E.g., λx (x2 + x)2 and λy (y2 + y)2 must be considered
equivalent

Function application must be interpreted properly
In a logical context, (λx (x2 + x)2) (5) and (52 + 5)2 must
be recognized to be equal
In a computational setting, the former should evaluate to
the latter

Substitution during evaluation must pay attention to binding
For example (λx (λy (y2 + x))) (y) should evaluate to
λz (z2 + y) and not to λy (y2 + y)

Defining these operations correctly leads to a surprisingly rich
notion of functions

Gopalan Nadathur The Lambda Calculus

Functions of Multiple Arguments

Is it enough to treat only single argument functions?

Yes, for two different reasons:

Multiple arguments can be treated via encoding and
decoding functions

For example, the function defined by
h(x , y) = x − y

can be given by λz (fst(z)− snd(z))

Moreover, projection and pairing functions can be defined
in the λ-calculus

Functionality based on multiple arguments can be treated
completely by the iterated application of single arguments

For example, h above becomes simply λx λy (x − y)

This device is referred to as “currying”

Gopalan Nadathur The Lambda Calculus

Syntax of the Lambda Calculus

We assume two sets of symbols at the outset

V a countably infinite set of variable symbols
C a countably infinite set of constant symbols

Definition
A lambda term (or term, for short) is defined inductively as
follows:

any symbol in V or C is a term
atomic terms
if t1 and t2 are terms then so is (t1 t2)
application of t1 to t2
if x ∈ V and t is a term, then so is (λx t)
abstraction that binds x and has t as its scope

The formation rules lead naturally to a subterm relation that we
will use in further discussions

Gopalan Nadathur The Lambda Calculus

Some Comments and Conventions

Parentheses in terms may be dropped using the following
conventions

abstraction is right associative
I.e. λxλy M is to be read as (λx (λy M))

application is left associative
I.e. M1 M2 M3 is to be read as ((M1 M2) M3)

application binds stronger than abstraction
I.e. λx M1 M2 is to be read as (λx (M1 M2))

Often we assume C is ∅ to get what is called the pure
lambda calculus

We sometimes assume symbols in C with special
conventions
E.g. in λx (x2 + x)2

However, these symbols are typically uninterpreted

Gopalan Nadathur The Lambda Calculus

Some Comments and Conventions (Continued)

The language is higher-order

Arguments can be functions: (λx x) (λx x)

Results can be functions: (λx λy (x + y)) 2

The language is currently typeless

(λx (x2 + x)2) 2 and (λx (x2 + x)2) (λx x) are both fine

Later we may add types to rule out some expressions

Self application is permitted

(2 2) is also a term

can also be meaningful: (λx (x x)) (λy y)

However, we need the “function-as-a-rule” idea to make
sense of this

Gopalan Nadathur The Lambda Calculus

Recap: Syntax of the Lambda Calculus

The language is parameterized by the sets V and C of variable
and constant symbols

Definition
The collection of lambda terms is the smallest set such that

any symbol in V or C is a term
atomic terms

if t1 and t2 are terms then so is (t1 t2)
application of t1 to t2

if x ∈ V and t is a term, then so is (λx t)
abstraction that binds x and has t as its scope

Several conventions in place for reducing the number of
parentheses

Gopalan Nadathur The Lambda Calculus

Some Observations about the Language

The language is higher-order

Arguments can be functions: (λx x) (λx x)

Results can be functions: (λx λy (x + y)) 2

The language is currently typeless

(λx (x2 + x)2) 2 and (λx (x2 + x)2) (λx x) are both fine

Later we may add types to rule out some expressions

Self application is permitted

(2 2) is also a term

can also be meaningful: (λx (x x)) (λy y)

However, we need the “function-as-a-rule” idea to make
sense of this

Gopalan Nadathur The Lambda Calculus

Free and Bound Variables

Based on the construction rules for terms, we can talk about
occurrences of variables

Definition

An occurrence of a variable x in a term is said to be bound
if it appears within a subpart of the form (λx t)

The occurrence is free if it is not bound

A variable is free in a term if it has a free occurrence and it
is bound if it has a bound occurrence

We use the following notation

BV(t) the set of bound variables of t
FV(t) the set of free variables of t

Note that BV(t) and FV(t) need not be disjoint
Gopalan Nadathur The Lambda Calculus

Substitution Into Lambda Terms

Definition
N[x := M], the logically correct substitution of M for x into N, is
defined by induction on N as follows:

If N ∈ V then
if N is x then N[x := M] is M
otherwise N[x := M] is N

If N ∈ C then N[x := M] is N

If N = (N1 N2) then N[x := M] = (N1[x := M] N2[x := M])

If N = λy N1 then
if y = x then N[x := M] = N
if y 6= x and either y /∈ FV(M) or x /∈ FV(N) then
N[x := M] = λy (N1[x := M])

otherwise N[x := M] = λz (N1[y := z][x := M]) where z is
the first variable such that z /∈ FV(N1) and z /∈ FV(M)

Gopalan Nadathur The Lambda Calculus

Alpha Conversion

A relation between terms that formalizes the inconsequentiality
of name choices for bound variables

Definition
Let λx P be a subterm of N and let y ∈ V be such that
y /∈ FV(P)

Then M results from N by an α-step if M is obtained by
replacing λx P in N by λy (P[x := y])

Definition
N α-converts to M if M can be obtained from N by a finite
sequence of α-steps
Notation N ≡α M

Proposition: ≡α is an equivalence relation
Proof left as exercise; only nontrivial part is showing symmetry

Gopalan Nadathur The Lambda Calculus

Beta Conversion

A relation between terms that formalizes function evaluation

Definition

A term of the form ((λx M) N) is called a β-redex

A term P β-contracts to Q if
P contains a β-redex (λx M) N

Q is obtained by replacing this redex with the term
M[x := N]

Notation: P B1β Q

P β-reduces to Q if Q results from P by a finite sequence
of β-contractions and α-steps

Notation: P Bβ Q

P β-converts to Q if Q results from P by a finite sequence
of β-contractions, inverse β-contractions and α-steps

Notation: P ≡β Q
Gopalan Nadathur The Lambda Calculus

Examples

(λx (x2 + x)2) 2 B1β (22 + 2)2

(λx λy (y x)) y B1β λw (w y)

(λx (x x y)) (λx (x x y))

B1β (λx (x x y)) (λx (x x y)) y
B1β (λx (x x y)) (λx (x x y)) y y
B1β . . .

Gopalan Nadathur The Lambda Calculus

Beta Conversion as an Equality Notion

That this is a good notion is a consequence of the following
proposition

Proposition
≡β is an equivalence relation

Proof Sketch
By adding a few extra α-steps, we can eliminate renaming in
substitution

Then the invertibility of β-contractions depends only on the
invertibility of α-steps

This we have already seen to be true

Gopalan Nadathur The Lambda Calculus

Beta Normal Forms

We can think of β-reduction as function evaluation

Then we can think of terms to which this operation can no more
be applied as the values produced

Definition

A term containing no β-redexes is called a β-normal form

If P Bβ Q and Q is a β-normal form, then Q is called a
β-normal form of P

Examples
(λw w y) is a β-normal form
Further, it is a β-normal form of (λx λy (y x)) y

Similarly, (22 + 2)2 is a β-normal form of λx (x2 + x)2 2

(λx x x) (λx x x) has no β-normal form; the λ-calculus can
support non-terminating computations

Gopalan Nadathur The Lambda Calculus

Uniqueness of Beta Normal Forms

There can be many reduction paths from a given term

For example, consider︷ ︸︸ ︷
(λx ((λy y x) z)︸ ︷︷ ︸) v

(λy y v) z (λx (z x)) v

In this case we can “close” the diagram but is this possible in
general?

A source of complexity: contraction can duplicate redexes

A possible solution: generalize to sequences of contractions

Unfortunately, this gets a bit complicated because contraction
can create redexes
E.g. consider (λx (λy (y x)) (λx x))

Gopalan Nadathur The Lambda Calculus

Confluence and the Church Rosser Property

Let R be a relation on terms and let R∗ be its reflexive and
transitive closure

R satisfies the diamond property if

∀M, N, P(〈M, N〉 ∈ R and 〈M, P〉 ∈ R
⇒ ∃T (〈N, T 〉 ∈ R and 〈P, T 〉 ∈ R))

Pictorially,
M

R R

N P

R R
T

A relation R is said to be confluent or Church-Rosser just in the
case that R∗ satisfies the diamond property

Gopalan Nadathur The Lambda Calculus

The Church-Rosser Theorem

Theorem: B1β ∪ α-step is confluent

The proof is non-trivial and yields many deep insights into the
lambda calculus

Corollary (Uniqueness of Normal Forms)
If P has M and N as β-normal forms then M ≡α N

Proof
By the Church-Rosser property,

∃T such that M Bβ T and N Bβ T

Since there are no β-redexes in M and N, in fact

M ≡α T and N ≡α T

But then, since ≡α is an equivalence relation, M ≡α N

Gopalan Nadathur The Lambda Calculus

Finding Normal Forms

There are untyped lambda terms that lead to
non-terminating β-reductions

For example, consider (λx x x) (λx x x)

How we choose β-redexes in normalization can make a
difference in finding normal forms

For example consider︷ ︸︸ ︷
(λx λy y) ((λx x x) (λx x x)︸ ︷︷ ︸)

This term has a β-normal form and also an infinite
reduction sequence

There is a strategy—the leftmost outermost or normal
reduction strategy—that will always produce a normal form
when it exists

Gopalan Nadathur The Lambda Calculus

A Calculus for Formalizing Normal Reduction

Evaluation strategies can be characterized by an inference
system

t t atom, t ∈ C ∪ V t t ′
λx t λx t ′ abs

t1 w t ′1 t [x := t2] t ′

(t1 t2) t ′
red, t ′1 ≡α λx t

t1 w t ′1 t2 t ′2
(t1 t2) (t ′1 t ′2)

app, t ′1 6≡α λx t

t w t w-atom, t ∈ C ∪ V
λx t w λx t w-abs

t1 w t ′1 t [x := t2] w t ′

(t1 t2) w t ′
w-red, t ′1 ≡α λx t

t1 w t ′1 t2 t ′2
(t1 t2) w (t ′1 t ′2)

w-app, t ′1 6≡α λx t

Gopalan Nadathur The Lambda Calculus

Representing Mathematical Operations

In expressions such as λx (x2 + x)2 arithmetic operations are
represented by uninterpreted constant symbols

In real programming languages such as Scheme, ML or
Haskell, these become interpreted or builtin operations

Our present question: Can these be defined in the pure
λ-calculus?

This conveys some information about the strength of the
lambda calculus

Gopalan Nadathur The Lambda Calculus

What Would Representation Mean?

We would first have to think of encodings of natural numbers

Let us write m to denote the encoding of m

Then we would say that, for example, we can represent or
define addition on natural numbers

if we can write a λ-term f such that

∀m, n ∈ N (f m n)Bβ m + n

Gopalan Nadathur The Lambda Calculus

Church Numerals and Lambda Definability

Church proposed encoding the natural number n as the
n-fold product forming function:

0 = λf λx x
1 = λf λx f x

. . .
n = λf λx f (f . . . (f︸ ︷︷ ︸

n

x) . . .)= λf λx f n(x)

Lambda definability then is the correlate of representation
A term M lambda defines an n-place partial function ϕ on
natural numbers if

(M m1 · · · mn)Bβ ϕ(m1, . . . , mn) whenever ϕ(m1, . . . , mn)
is defined, and
(M m1 · · · mn) does not have a β-normal form if
ϕ(m1, . . . , mn) is not defined

Note that nothing is said of M ’s behaviour on terms that do
not encode natural numbers

Gopalan Nadathur The Lambda Calculus

Encoding Common Arithmetic Functions

Successor
succ = λn λf λx f (n f x)

Addition
plus = λm λn λf λx m f (n f x)

Multiplication
mult = λm λn λf m (n f)

Exponentiation
exp = λm λn (m n)

For example,
((exp 3 2) f x) = (λx (2

3
) x) f x

= (2
3
) f x = f 8(x)

Gopalan Nadathur The Lambda Calculus

Encoding Pairs

We want three lambda terms pair, fst and snd such that

fst (pair x y) = x
snd (pair x y) = y

Here is a possible choice:

pair = λx λy λf (f x y)
fst = λz z (λx λy x)
snd = λz z (λx λy y)

Gopalan Nadathur The Lambda Calculus

Encoding the Predecessor Function

The function to be represented

f (k) =

{
0 if k = 0
k − 1 otherwise (i.e. if k > 0)

Here is a way to construct a representation:
Start with the pair 〈0, 0〉
zz = (λx λy λf (f x y)) (λf λx x) (λf λx x)

Apply to this k times the function
f (〈m, n〉) = 〈m + 1, m〉

Given by the λ-term
F = λm pair (succ (fst m)) (fst m)

Pick out the second element at the end

Combining all these we get

pred = λk (snd (k F zz))

Gopalan Nadathur The Lambda Calculus

Encoding Some Other Standard Functions

Boolean Values and Operations
true = λx λy x

false = λx λy y

cond = λb b

and = λu λv cond u v false

or = λu λv cond u true v

Exercises
zerop, monus, equality over natural numbers

Fact: The lambda definable functions are exactly the ones that
can be described by Turing machines

Gopalan Nadathur The Lambda Calculus

Fixed Point Theorem

Theorem
There is a closed term Y such that for any f

Y f Bβ f (Y f)

In other words, Y yields a fixed point of f

Proof
Let Z = λf λx (x (f f x))

Then define Y to be (Z Z)

Now consider

Y f = (Z Z f) Bβ λx (x (Z Z x)) f
Bβ f (Z Z f)
= f (Y f)

Gopalan Nadathur The Lambda Calculus

Fixed Point Theorem (Continued)

Corollary
In the λ-calculus, we can solve any equation of the form

x y1 · · · yn = t

in the sense that there is a term X such that

X y1 · · · yn = t [x := X]

Proof
Let X = (Y λx λy1 . . . λyn t)
Then we have

X Bβ (λx λy1 . . . λyn t) X
Bβ λy1 . . . λyn t [x := X]

But then

X y1 . . . yn Bβ t [x := X]

Corollary justifies recursion in programming languages
Gopalan Nadathur The Lambda Calculus

Recursive Definitions in Programming Languages

The corollary justifies definitions like the following

fact n = if (n = 0) then 1 else (n * (fact (n - 1)))

The problem here is that fact is used in its own definition

But this is solved by the corollary:

fact = Y (λf λn (cond (= n 0) 1 (* n (f (- n 1)))))

It is also illustrative to see how this would be evaluated:

fact 2 = (

fact︷ ︸︸ ︷
(Y (λf λn (cond (= n 0) 1 (* n (f (- n 1))))) 2)

Bβ (λn cond (= n 0) 1 (* n ((Y . . .) (- n 1)))) 2
Bβ cond (= 2 0) 1 (* 2 ((Y . . .) (- 2 1)))
Bβ (* 2 ((Y . . .) (- 2 1)) Bβ(* 2 (* 1 (* ((Y . . .) (- 1 1)))))
Bβ (* 2 (* 1 1))

Notice that normal reduction is needed to make this work!
Gopalan Nadathur The Lambda Calculus

Church-Rosser Theorem for Beta Conversion

β-conversion is intended to provide a notion of equality
between terms

But how do we determine if two terms are equal?

A thought: How about reducing both to a normal form and
comparing?

This would be possible only if we know that the normal forms
must be the same for “equal” terms

Theorem (Church Rosser Theorem for β-conversion)
If P ≡β Q then there is a T such that P Bβ T and Q Bβ T

Consequences of the theorem:

The equality notion is consistent (e.g. λx λy x 6≡β λx λy y)
When normal forms are guaranteed to exist, we get a
decision procedure for β-equality

Gopalan Nadathur The Lambda Calculus

A Deductive Calculus for β-Equality

We shall call the formal system λβ

Its formulas are M = N where M and N are λ-terms

Its rules are the following

λx M = λy M[x := y]
α, y /∈ FV(M)

(λx M) N = M[x := N]
β

M = M ′

(N M) = (N M ′)
µ N = N ′

(N M) = (N ′ M)
ν

M = M ′

λx M = λx M ′ ξ
M = M

ρ

M = N N = P
M = P

τ M = N
N = M

σ

If M = N is derivable using these rules we write `λβ M = N

Proposition: M ≡β N if and only if `λβ M = N

Gopalan Nadathur The Lambda Calculus

Extensionality for Functions

There is a natural extensionality property that might be
expected of a logic of functions:

(∀x(f x) = (g x)) ⇒ f = g

This property is not true for ≡β: e.g. y 6≡β λx (y x)

We can get a richer notion of equality by adding the following
rule to β-conversion:

Replacing a subterm λx (M x) by M or
vice versa provided x /∈ FV(M)

The two directions of this rule are known as η-contraction and
η-expansion, respectively

The resulting equality notion is called βη-conversion and is
written ≡βη

Gopalan Nadathur The Lambda Calculus

Capturing Extensionality in a Deductive Calculus

An alternative approach to formalizing extensionality is to add
the following rule to the λβ calculus:

λx (M x) = M
η, x /∈ FV(M)

The resulting calculus is called λβη and we write `λβη M = N if
M = N is derivable in it

Proposition:
M ≡βη N if and only if `βη M = N

The extensionality property holds of the λβη calculus

Proof Sketch
The first part is proved by induction in both directions

For the second, let `λβη (M x) = (N x) for any x

Pick x such that x /∈ FV(M) ∪ FV(N) and use the ξ, η,
symmetry and transitivity rules to conclude `λβη M = N

Gopalan Nadathur The Lambda Calculus

Types and the Lambda Calculus

Untyped terms may, in some senses, be a bit too general:
From an evaluation perspective, terms are eventually typed
and not paying attention to this can lead to run-time errors

From a logical perspective, lack of types leads to an
inconsistent logic of functions

However, adding types can also lead to problems
Types can disallow terms that have meaningful
computational content, leading to loss of expressivity

Types may also require you to encode the same
computation in more complicated ways

These problems can be alleviated by adding a few well-chosen
combinators and using more flexible typing schemes

Moreover, from a representational perspective the reduction in
computational power can actually be an advantage

Gopalan Nadathur The Lambda Calculus

The Simply Typed Lambda Calculus

Here the types and terms are kept distinct and the former
mainly classifies the latter

Moreover, types correspond to fixed, primitive sets of objects
and functions over such sets

Formally, we first assume a nonempty set S of sorts and a set
T C of type constructors, each of specified arity

Then the collection of all types T is the smallest set such that
every sort is included in it atomic types

if c ∈ T C has arity n and t1, . . . , tn ∈ T then
(c t1 . . . tn) ∈ T constructed atomic types

if t1 ∈ T and t2 ∈ T then t1 → t2 ∈ T function types

Convention: → is right associative and constructor application
binds tighter than →

Gopalan Nadathur The Lambda Calculus

Simply Typed Lambda Terms

Let

Γ be an environment assigning types to variables
Σ be a context assigning types to constants

We write x : τ ∈ Γ and c : τ ∈ Σ to show these assignments

Then, a λ-term t is typeable if a judgment of the form Γ `Σ t : τ
can be derived using the following rules

c : τ ∈ Σ
Γ `Σ c : τ

const x : τ ∈ Γ
Γ `Σ x : τ

var

Γ `Σ t1 : σ → τ Γ `Σ t2 : σ

Γ `Σ (t1 t2) : τ
app

x : σ ∈ Γ Γ `Σ t : τ

Γ `Σ λx t : σ → τ
abs

Also, t has type τ if Γ `Σ t : τ is derivable
Gopalan Nadathur The Lambda Calculus

Types and Lambda Terms

Typeability adds a constraint to well-formedness

As a result of types, many “useful” terms are disallowed,
e.g., exp, self application, the Y combinator

However, we can add such terms through constants and
rules for defining them
For example,

B true L V
cond B L R V condL B false R V

cond B L R V condR

(F (fix F)) V
fix F V fix

In fact, this is what is done in actual typed programming
languages

The types are “simple” like in Pascal and C, i.e. no
polymorphism is present

Gopalan Nadathur The Lambda Calculus

Deciding Equality in the Simply Typed Language

Our focus is on the simply typed calculus without any
interpreted constants where

Every reduction sequence terminates, hence every term
has a “normal form”
Normal forms are unique up to α-conversion

This yields a simple algorithm for comparing terms

A normal form has the structure

λx1 . . . λxn(@ t1 . . . tn)

where @ is a constant, in {x1, . . . xn} or a free variable

The term is flexible in the last case and rigid otherwise

Terminology: binder, argument and head of the term

Compare also with the structure of a first-order term

Also note: βη-normal form, βη-long normal form
Gopalan Nadathur The Lambda Calculus

Parameterizing Lambda Terms with Types

The types of certain λ-terms can be parameterized so that
they are well-typed no matter what type is picked for the
parameter
For example, the term λx x has the type α → α for any
choice of type for α

Similarly, list constructors nil and :: and functions like
append, map etc can all be parameterized by types

At a logical level, we can realize such parameterization as
follows:

Introduce a new type that represents parameterization
Let terms have such parameterized types
Let terms (of suitable types) be applied to types to generate
a particular “typed version” of the term

This is exactly what System F or the second-order lambda
calculus does

Gopalan Nadathur The Lambda Calculus

The Types of System F

We assume a collection of type variables T V in addition to the
sorts S and type constructors T C

Then the types are the smallest collection satisfying the
following

any element of T V ∪ S is a type

if c ∈ T C has arity n and t1, . . . , tn are types then
(c t1 . . . tn) is a type

if σ and τ are types then so is (σ → τ)

for any X ∈ T V and any type τ , (ΠX τ) is a type

Gopalan Nadathur The Lambda Calculus

The Terms of System F

We again define terms and their associated types via
judgments of the form Γ `Σ t : τ

The rules for deriving such judgments

c : τ ∈ Σ
Γ `Σ c : τ

const x : τ ∈ Γ
Γ `Σ x : τ

var

x : σ ∈ Γ Γ `Σ t : τ

Γ `Σ λx t : σ → τ
abs

Γ `Σ t1 : σ → τ Γ `Σ t2 : σ

Γ `Σ (t1 t2) : τ
app

Γ `Σ t : τ

Γ `Σ ΛX t : ΠX τ
typabs

provided X is not free in the type of any x ∈ FV(t)

Γ `Σ t : ΠX ρ τ ≡ ρ[X := σ]

Γ `Σ (t σ) : τ
typapp

with suitable definitions of substitution and alpha equality for types

Gopalan Nadathur The Lambda Calculus

Odds and Ends

Typically, constants and variables will start out with
quantified types in new setting

For example, we would expect the following of ::
:: : ΠX X → list X → list X

We would then have to supply these types as arguments to
construct concrete terms, e.g.

(:: int 1 (nil int))

Exercise: try to show that this term is well-formed

ML uses a restricted version of this kind of typing
type quantification only permitted at the outermost level

type application is implicit

System F (and hence also STLT) have the property that
every reduction sequence (defined in the obvious way)
must terminate

Gopalan Nadathur The Lambda Calculus

