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Realizing Modularity in λProlog

Gopalan Nadathur Guanshan Tong

28 April 1999

Abstract

The language λProlog incorporates a module notion that permits
the space of names and procedure declarations to be decomposed into
smaller units. Interactions between these units can take place through
either an accumulation or importation process. There are both static
and dynamic effects to such interactions: The parsing of expressions
may require names declared in another module, and executable code
may utilize procedures defined elsewhere. We describe a method for
implementing this feature for modular programming that is based on
the separate compilation of each module into an appropriate frag-
ment of code. The dynamic semantics of module importation involves
enhancing existing program contexts with the procedures defined in
other modules. This effect is achieved through a run-time process for
including the compiler-generated code for such procedures. Our im-
plementation method partitions the code space into distinct chunks
corresponding to the module structure, with the management of the
subparts being realized through a module table. Efficiency of execu-
tion requires the use of uniform structures, such as a common symbol
table, for the code in all subcomponents. To realize this requirement,
we describe a suitable communication between the compilation and
loading processes. The scheme presented here has been used in an
implementation of λProlog.

1 Introduction

Logic programming based solely on the theory of Horn clauses lacks devices
for structuring the space of names and procedure definitions. Although the
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absence of structuring facilities is not problematic in the development of small
programs, it can become an issue in programming-in-the-large. This fact
has stimulated several proposals of mechanisms that support the modular
construction of programs. Bugliesi, Lamma, and Mello [2] classify these
proposals into two kinds: those that retain Horn clauses as the logical core
but endow the framework with metalinguistic mechanisms for composing
separately constructed program fragments, an approach exemplified by [1, 7,
14, 15], and those that extract composition and scoping mechanisms from
an enrichment of the underlying logic, an approach exemplified by [3, 8, 10].
We consider in this paper the implementation of a modularity notion in the
language λProlog [13] that arises from following the latter approach (see [9]).

Programming in a Prolog-like language to a large extent consists of iden-
tifying two kinds of collections: the names of constants, functions and predi-
cates that can be used in constructing well-formed expressions, and procedure
definitions that might be used in solving goals. The module concept that we
consider is relevant to a structuring of programs with respect to both com-
ponents. Modules in λProlog correspond, in a simplistic sense, to named
collections of object identifiers and procedure definitions. The typical use of
a module consists in making its content available in some fashion within an-
other module or in the process of answering a query. This operation has both
static and dynamic effects. The main impact of making the names of objects
declared in a module visible is a static one: These names become relevant to
parsing expressions in the new context. The effect with regard to procedure
definitions is, on the other hand, largely dynamic. The procedure definitions
in the new context might contain invocations of procedures defined in the
“imported” module. To make sense of this notion, it is important to deter-
mine the exact manner in which procedure references are to be resolved in a
situation where the available code is changing dynamically.

In implementing the form of modular programming described above, the
main concern is that of handling the dynamic aspects. In particular, it is
necessary to describe (a) run-time structures that realize changing program
contexts satisfactorily and (b) compilation and loading methods for extract-
ing and setting up the information that is needed during execution. Such
questions have been considered previously in the literature (e.g., [4, 6, 11]).
We expand on prior work in two significant ways. First, we provide a treat-
ment of information hiding and a notion of module accumulation in addition
to a previously considered notion of module importation. Second, in contrast
to earlier discussions, we pay attention here to certain “low-level” details that
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are important to the actual execution model. We present our implementation
ideas in the form of enhancements to an underlying Prolog engine such as the
Warren abstract machine (WAM) (see [16]) serving to realize the dynamic
aspects of the module notion.1 There are several interesting characteristics
to the scheme we ultimately suggest, including the following:

1. Assuming a form of interface definition, it supports the separate com-
pilation of modules.

2. It partitions the active code space into distinct chunks corresponding
to the module structure, and it manages this space through a global
module table.

3. Despite the partitioning of code space, it realizes efficiency in execution
by using uniform structures, such as a common symbol table, for all
relevant code.

The constructs for modular programming in λProlog that are of interest
in this paper derive in significant part from scoping devices already present
in the core language. An appreciation of this relationship and of the method
we have previously proposed (in [11]) for realizing the scoping notions is
useful in understanding the implementation ideas to be presented here. We
therefore begin by providing the necessary background in the next section.
Following this, in Section 3, we describe the important components of the
modules language, and we sketch the compilation and run-time processes
needed to support it. A key ingredient of the scheme we present is a proper
communication between the compiler and the loader. We explain some of
the details of this aspect in Section 4. Section 5 concludes this paper.

2 Scoping mechanisms in the core language

The higher-order theory of hereditary Harrop formulas underlies the core
language of λProlog. From a practical perspective, this logic differs from
that of Horn clauses in that it incorporates a typing discipline, supports
higher-order programming, and provides for scoping mechanisms.

1In reality, λProlog has many other new features, each of which requires embellishments
to the WAM ([5, 11, 12]). We elide this aspect for simplicity in presentation.

3



The scoping constructs that are of chief interest here result from extending
goals in the Horn clause setting with two new logical primitives, those of
universal quantification and implication. The first allows an expression of
the form ∀xG to be considered as a goal, assuming that G is itself a goal.
Operationally, solving such a goal involves introducing a new constant c,
replacing the variable x everywhere in G with this constant, and then solving
the resulting goal. Viewed differently, the universal quantifier corresponds to
giving a name a scope: In the goal in question, the “name” x has G as its
lexical scope and the duration of the attempt to solve G as its dynamic scope.
The second new primitive permits an expression of the form D ⊃ G to be a
goal, where D is the conjunction of program clauses and G is, once again, a
goal. The operational interpretation of such a goal is that the program is to
be enhanced with the “partial procedure definitions” in D while attempting
to solve G. Implication is, thus, a primitive for giving procedure definitions
a scope.

The programming character of the new primitives is illustrated by
their use in local definitions, a typical application of scoping notions in
programming-in-the-small. The following clause defines the reverse predi-
cate on lists:

reverse (L1, L2) :-
(∀rev aux (( rev aux ([], L2) ∧

(∀X ∀L1 ∀L3 (rev aux ([X|L1], L3) :- rev aux (L1, [X|L3]))))
⊃ rev aux (L1, []))).

The body of this clause contains a universal goal whose body is itself an impli-
cation goal. Notice that universal quantification over a program clause that is
usually left implicit must be made explicit when the clause appears in the an-
tecedent of an implication goal. Suppose now that the goal reverse ([1, 2], L)
is invoked relative to the given procedure definition. This would lead to an
attempt to solve the goal

∀rev aux (( rev aux ([], L) ∧
(∀X ∀L1 ∀L3 (rev aux ([X|L1], L3) :- rev aux (L1, [X|L3]))))

⊃ rev aux ([1, 2], [])).

The semantics of the universal quantifier dictates treating rev aux as a new
name, distinct from everything else in the embedding context. Processing the
body of the universal goal leads to the invocation of the goal rev aux ([1, 2], [])
after the clauses
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rev aux ([], L) and
(∀X ∀L1 ∀L3 (rev aux ([X|L1], L3) :- rev aux (L1, [X|L3])))

have been added to the program. Universal quantifiers have been retained
in the second clause above to distinguish the variables they bind from the
variable L in the first clause, which is really a nonlocal variable bound to a
value occurring in the original query. Notice that the computation described
up to this point has introduced a definition for the procedure rev aux and
that this has to be used in solving a new goal. In fact, in carrying this process
to fruition, the second clause for rev aux is used twice and the first clause
used once, leading eventually to the binding of the query variable L to [2, 1].

New devices are needed for implementing the scoping primitives described
above. It appears at the outset that rather simple machinery might suffice
for universal goals: We merely instantiate universal quantifiers with newly
generated constants. However, this scheme is not quite sufficient, because
universal and existential quantifiers can appear in arbitrary order in goals.
For example, suppose that our program consists solely of the clause ∀x p(x, x)
and that we are interested in solving the goal ∀y p(X, y). The variable X has
existential strength in the given goal in that it might be instantiated as
desired in the course of a search. Notice, however, that the interpretation of
universal goals prohibits the instantiation for X from depending on any value
chosen for the variable y. Now, the suggested treatment would reduce the
given goal to p(X, c), assuming that c is a new constant. At this point, the
usual notion of unification would result in success by incorrectly instantiating
X to c.

The solution to this problem is to modify unification to respect quantifier
order. There is a simple way to achieve this that is based on tagging variables
and constants with (small) positive integers. We sketch this scheme here, re-
ferring the reader to [11] for details. The key step is to think of the collection
of all terms as being arranged in an increasing hierarchy of universes. The
level-1 universe consists of all the constant symbols that appear in the pro-
gram clauses and the original goal. These symbols are tagged by the number
1 to indicate their position in the hierarchy. Each time a universal quantifier
is processed, a new constant is introduced, giving rise to the next universe
in the hierarchy. This requirement is accounted for by increasing a running
“universe index” counter by 1 and generating a new constant tagged with
this index. The collection of constants at the new level consists of all those
constants tagged with a number less than or equal to that level. When an
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essential existential quantifier is encountered, it is instantiated by a logic
variable. This variable is tagged with the current value of the universe index
counter to indicate that it may be instantiated only by terms in the universe
at that level. The actual use of the tags occurs when an attempt is made to
bind a variable X with a tag i to a term t. This binding is permitted only if
t does not contain any constants with a tag value greater than i.

The main issue in implementing implication goals is to provide an effi-
cient realization of changing program contexts. The essence of the scheme
described in [11] is in viewing a program as a composite of compiled code and
a layered access function to this code, with each implication goal causing a
new layer to be added to an existing access function. Thus, consider a goal of
the form (C1∧· · ·∧Cn) ⊃ G where, for 1 ≤ i ≤ n, Ci is a program clause with
no free variables.2 Solving this goal requires adding the clauses C1, . . . , Cn to
the front of the program and then attempting to solve G. These clauses can
be treated as an independent program fragment and compiled as such. Let
us suppose that the clauses define the predicates p1, . . . , pr. The compilation
process then results in a segment of code with r entry points, each indexed
with the name of a predicate. In our context, we require compilation to also
produce a procedure, which we call find code, that performs the following
function: Given a predicate name, it returns the appropriate entry point in
the code segment if the name is one of p1, . . . , pr and fails otherwise. The
execution of the implication goal results in a new access function that be-
haves as follows. Given a predicate name, find code is invoked with it. If this
function succeeds, then the code location that it produces is the desired re-
sult. Otherwise the code location is determined by using the access function
in existence earlier.

The process of enhancing a context described above is incomplete in one
respect: The new clauses provided for p1, . . . , pr may in fact add to earlier
existing definitions for these predicates. To deal with this situation, the
compilation process produces code for each of these predicates that does not
fail eventually but instead looks for code for the relevant predicate using the
access function existing earlier. To realize this function, we associate a vector
of size r with the implication goal, the ith entry in this vector corresponding
to the predicate pi. The compilation of the body of the implication goal then
creates a procedure called link code, which serves to fill in this vector when

2The attentive reader will observe that this is not the most general situation that needs
to be treated. We discuss the fully general case shortly.
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the implication goal is executed. This procedure essentially uses the name of
each of the predicates and the earlier existing access function to compute an
entry point to available code or, in the case when the predicate is previously
undefined, to return the address of a failing procedure.

In the framework of a WAM-like implementation, the layers in the access
function described above are realized by using a data structure called an
implication point record that is allocated on the local stack. The components
of such a record are the following:

1. the address of the find code procedure corresponding to the antecedent
of the implication goal,

2. a positive integer r indicating the number of predicates defined by the
program clauses in the antecedent,

3. a pointer to an enclosing implication point record and, thereby, to the
previous layer in the access function, and

4. a vector of size r that indicates the next clause to try for each of the
predicates defined in the antecedent of the implication goal.

The program context existing at a particular stage is indicated by a pointer
to a relevant implication point record, which is contained in a register called
I. Now, a goal such as (C1 ∧ · · · ∧ Cn) ⊃ G is compiled into code of the form

push impl point t
{ Compiled code for G }

pop impl point

In this code, t is the address of a statically created table for the antecedent of
the goal that indicates the address of its find code and link code procedures
and the number of predicates defined. The push impl point instruction causes
a new implication point record to be allocated. The first three components
of this record are determined immediately from the table parameter and the
I register. The last component is determined by running link code relative
to the access function provided by the I register. The final action of the
instruction is to set the I register to point to the newly created implication
point record. The complementary pop impl point instruction restores the old
program context by setting the I register to the address of the enclosing
implication point record.
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An important operation is the resurrection of an old program context
upon backtracking. In the scheme described, the program context at each
point is encapsulated in the contents of the I register. Saving the contents
of this register in a WAM-like choice-point record and retaining implication
point records embedded under choice points therefore suffice for achieving
the necessary context switching.

The discussion above of the method for realizing implication goals im-
plicitly utilizes a simplification. In the most general case, a goal of the form
(C1 ∧· · ·∧Cn) ⊃ G may appear within the scope of universal quantifiers, and
the Ci’s may contain free, nonlocal variables. Both possibilities are illustrated
in the definition of the reverse program discussed earlier. Nonlocal variables
can be treated by viewing a program clause as a combination of compiled
code and a binding environment in the scheme described and leaving other
details unchanged. Universal quantification over procedure names can lead
to two different improvements in this scheme. First, it may be possible to
translate calls to such procedures from within G into a transfer of control
to a fixed address, rather than to one that is determined dynamically by
the procedure find code . Second, the definitions of such procedures within
(C1 ∧ · · · ∧ Cn) cannot be extended, leading to a determinism that can be
exploited in compiling these definitions and obviating entries for such proce-
dures in the next clause vector stored in implication points. Both benefits
can be significant in practice, as the reader may verify by considering their
effects in the context of the reverse program.

3 The structure of modules and their inter-
actions

At the lowest level, the module feature allows a name to be associated with
collections of names and program clauses. An example of the use of this
construct is provided by the following code, which attaches the name lists to
the predicate names append and member and the procedures defining them:3

module lists.
append([], L, L).

3In reality, λProlog is a typed language, and so named objects are identified explic-
itly through type declarations in modules. However, we suppress types in the present
discussion.
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append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).
member(H, [H|L]).
member(X, [H|L]) :- member(X, L).

The module declaration above may be thought of as the declaration of a
list “data type.” This data type can be made available in relevant contexts
by using the name lists in specific ways. One possibility is to use the names
of modules in a new kind of goal called a module implication. These are ex-
pressions of the form M ==> G, where M is a module name. The static effect
of such a goal is that the names associated with M become available in inter-
preting the goal G. Of greater interest from an implementation perspective
is the effect with regard to procedure definitions. This aspect is explained
by a translation into the core language. We first interpret a module as the
conjunction of the program clauses appearing in it. For example, the lists
module corresponds to the conjunction of the clauses for append and member.
Now, if module M corresponds to the formula D, then the query M ==> G is
to be thought of as the goal D ⊃ G. The run-time treatment of the goal M
==> G thus calls for solving the goal G after adding the predicate definitions
in the module M to the existing program.

The modules language incorporates the possibility of hiding data struc-
tures. In particular, a declaration of the form

local 〈constant-name〉, . . . , 〈constant-name〉.
can be placed within a module to achieve this effect. The names of the
constants listed then become unavailable outside the module. The static ef-
fect of the local construct is obvious. From a dynamic perspective, another
issue arises: The constants defined to be local should not become visible out-
side through computed answers. This effect can be achieved by interpreting
local constants as variables quantified existentially over the conjunction of
program clauses in the module. For example, consider the following module:

module store.
local emp,stk.
initialize(emp).
enter(X, S, stk(X, S)).
remove(X, stk(X, S), S).

This module implements a store data type with initializing, adding, and
removing operations. At a level of detail, the store is implemented as a
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stack. However, the intention of the local declarations is to hide the actual
representation of the store. Now, from the perspective of dynamic effects,
the module can be interpreted as the formula

∃Emp∃Stk(
initialize(Emp) ∧
∀X∀S enter(X, S, enter(X, S)) ∧
∀X∀S remove(X, Stk(X, S), S)).

If we call this formula EStore, then solving a goal of the form (store ==> G(X))
amounts to solving the goal (Estore ⊃ G(X)). Operationally, the existential
quantifiers at the head of EStore can be translated into universal quantifiers
over the implication to produce a legitimate goal in our core language. Notice,
however, that these quantifiers are scoped within the (implicit) quantification
over X and so the constants supplied for Emp and Stk may not appear in
instantiations of X.

A module may interact with others in λProlog by importing the definitions
appearing in them. A declaration of the form

import M1, . . . , Mk.

is utilized for this purpose. In such a declaration, M1, . . . , Mk must be names
of other modules, referred to as the imported modules. This declaration
has, once again, a static and a dynamic effect on the module in which it
is placed, that is, on the importing module. The intended dynamic effect
is to make the procedure definitions in the imported modules available for
solving the goals in the bodies of program clauses that appear in the importing
module. The exact effect can be clarified by using module implication (see
[8]). Suppose that the clause P :- G appears in a module that imports
the modules M1, . . . , Mk. The dynamic semantics involves interpreting this
clause as the following one instead:

P :- (M1 ==> · · · (Mk ==> G)).

Using this clause requires solving the goal (M1 ==> · · · (Mk ==> G)),
which ultimately causes the program to be enhanced with the clauses in
M1, . . . , Mk before solving G.

The translation of import and local declarations into the core language
indicates a first approach to their implementation. Suppose that a module
M imports the modules M1 and M2. At a conceptual level, the (separate)
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compilation of M1 and M2 should associate with these modules the following
components:

1. the number of local constants and, if this is nonzero, the names of these
constants,

2. the number and names of predicates defined in this module that could
extend previously existing definitions,

3. analogous to the antecedents of implication goals, the find code and
link code routines for the module.

Let the addresses of these “tables” of information for M1 and M2 be t1 and
t2, respectively. Then the compilation of the body of the clause P :- G in
M would produce the following code:

push import point t1
push import point t2

{Compiled code for invoking goal G}
pop import point 2

Using its table argument, the push import point instruction first determines
if there are local constants for the module in question. If so, it increments
the universe index counter and tags the local constants with the new counter
value. It then sets up an import point record, a structure similar to an
implication point record, to register the addition of the code in the module.
The pop import point instruction complements these operations by removing
the number of import point records indicated by its argument and decreasing
the universe index as needed.

Recalling the discussion of universal quantification over implication goals,
we observe a possibility for improvement within the scheme outlined above.
If it is known that the definition of a given procedure within M1 (M2) can-
not be extended by the code in modules imported by it or by the code in the
antecedent of implication goals contained in it, then calls to this procedure
within M1 (M2) can be translated into a transfer of control to an absolute ad-
dress. Similarly, if the clauses for a predicate in M1 (M2) cannot be extended
on a definition already present in the importing context, then the code gen-
erated for the clauses can reflect this (static) determinacy information. Our
modules language includes devices for identifying procedures whose defini-
tions cannot be extended by importing or imported modules even when these
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module m1. module m2. module m3.
import m2. import m3.

local r.

q :- p. p :- w. w :- s.
s :- r. r.

Figure 1: Interactions between local and import

procedure definitions are visible there, and our notion of signature matching
allows the compatibility of interacting modules to be checked in the presence
of such declarations without compromising separate compilation. The com-
piler that has been implemented for the language also attempts to deduce
such information if it is not explicitly provided and, in any case, it uses all
information along these lines that is available to it in generating improved
code. This feature of the compiler is likely to have a significant impact on
performance since, in practice, we anticipate that most procedures defined
in a module will be local ones or ones whose definitions are “complete.” We
note, however, that the use of this kind of information is relatively straight-
forward and also does not call for any new run-time devices. For this reason,
we do not discuss this matter any further here, focusing rather on those
aspects that do need special treatment during compilation and run-time.

The method for implementing module importation described up to this
point is naive in a fundamental respect: If clauses from an importing module
are used more than once, it repeats the addition of code for the imported
modules, and this is shown to be redundant in [4]. To avoid this, we augment
import point records with a new cell, called a backchained cell, that indicates
whether or not a clause from the module has previously been used. Further,
we add two new instructions, add imports and remove imports, that use the
value stored in this cell to condition the pushing and popping of import point
records.

There is an interaction between local and import declarations that needs
to be considered carefully in implementing the scheme described. The partic-
ular problem arises from the fact that a module may use a local declaration
to hide a (predicate) name defined in a module imported by it. The collec-
tion of module definitions shown in Figure 1 serves to illustrate this point.
Suppose that the goal q is invoked in a program context in which the code
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module m1. module m2.
accumulate m1.

local a.

q(a). p(b) :- q(a).
r(b) :- q(X).

Figure 2: Interactions between local and accumulate

from module m1 is available. This goal ultimately fails. This situation is to
be contrasted with one in which the predicate r is not defined to be local in
module m2; in this case, the same goal succeeds. Thus, the interpretation of
a constant in module m3 depends on the context into which it is imported,
raising the spectre of having to predicate compilation on usage. Fortunately,
there is a solution to this problem: We compile each module separately, but
in a way that allows the loading process to relativize it to the context of
use. In the example being considered, the module m3 is compiled as though
the constant r that appears in it is a global constant. However, loading this
module through m2 causes this global constant to be “renamed” to a local
one. The actual implementation of this idea is discussed further in the next
section.

There is one additional method for composing modules: Several indepen-
dently defined components can be accumulated into one larger unit. This
effect is achieved by using a declaration of the form

accumulate M1, . . . , Mk.

where M1, . . . , Mk are module names. Such a declaration can, for the most
part, be treated by inlining the contents of the accumulated modules prior to
the compilation of the module in question.4 However, there are a few subtle
points relating to the scopes of local and import declarations that must be
borne in mind. To understand this matter, we first consider the set of module
definitions shown in Figure 2. The semantics of accumulate requires us to

4Some care is needed in this inlining, since accumulate declarations might generate
cycles. The language definition deems such cycles as illegal and the implemented compiler
detects any violations of this rule. Cycles generated through import declarations are also
illegal, but, in contrast, illegalities of this kind can only be detected at module loading
time.
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module m1. module m2. module m3. module m4.
import m1. accumulate m2, m3.

w. p :- w. t :- w. q :- p.
r :- t.
s :- w.

Figure 3: Interactions between import and accumulate

treat module m2 as a composite of the clauses for p and r that appear in it
and the code in m1. However, the quantificational force of local requires us
to distinguish between the constants of name a that appear in m1 and m2.
Thus the goal p(b) posed in the context of module m2 should not succeed.
We note, nevertheless, that the scope of the local declaration in m1 should
be raised to that of all of m2 by the composition process. As a particular
example, the goal r(b) should succeed relative to the module m2.

A similar point concerning the scope of an import declaration is brought
out by the modules defined in Figure 3. The accumulation of m2 and m3
into m4 results in the clauses in these modules being added to those already
present in m4. However, this accumulation is to be done after the “desugar-
ing” of syntax corresponding to import declarations. Thus, different sets of
modules are to be imported for the purpose of solving the bodies of clauses
arising from m2, m3, and m4. As specific examples, the goal q should succeed
relative to the module m4, whereas both r and s should fail. The reason for
this is that the code in module m1 should be added to the program context
only when the clause p :- w in module m4 that originates from module m2
is used, and the (sub)goal w fails without this addition.

The run-time machinery that we have already presented suffices for han-
dling most of the scoping aspects discussed above, and the main requirement
is to account for them satisfactorily in the compilation process. We explain
how this is done in the next section. However, some modification to the imple-
mentation scheme is needed for importing different sets of modules based on
the clause being used. Fortunately, a simple generalization of existing devices
suffices for this: Instead of a single backchained cell, we associate a vector of
such cells with each import point record. The instructions add imports and
remove imports acquire an index into this vector and use the cell determined
by it to decide whether or not to execute a sequence of push import point
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instructions or a pop import point instruction, respectively.

4 Compilation and loading of modules

In this section, we discuss the manner in which modules are to be compiled
and loaded. Before going into detail, we give a general description of what
should be produced in loading a module and how such information is used
subsequently. A user asks for a module to be loaded by typing in a directive
of the form:5

#load 〈module name〉.
The outcome of carrying out this directive is an association between the
named module and (a) the global constants of this module and (b) a table
created by the loader for adding the code from this module to the program
context when the module is assumed. This association is realized through a
global module table. Both items get used after the user issues a directive of
the following form:

#query 〈module name〉.
After such a directive, the system is ready for user queries. The first item
associated with the module is used in parsing these queries, and upon success-
ful parsing, the module relevant code is used in answering them. Thus, this
directive corresponds to relativizing queries through a module implication.

4.1 Separate compilation of modules

There are interactions between modules that require the sharing of infor-
mation such as the names (and types) of constants at compile time. These
interactions are typically handled by associating interface or signature decla-
rations with modules, and our version of λProlog incorporates such a notion.
Armed with such information, our implementation scheme supports the in-
dependent generation of the code needed at run-time for each module.

The interactions between local, import, and accumulate declarations dis-
cussed in Section 3 require the preprocessing of the code in modules prior to

5The syntax we use here is modeled closely on that of Terzo, an interpreter for λProlog
that has been implemented in the language SML; see [17].
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module m1. module m2
. . . . . .

module m3. module m4. module m5.
import m1. import m2. accumulate m3, m4.
local r. local r, w. local q.
[clauses in m3] [clauses in m4] [clauses in m5]

Figure 4: A module collection illustrating preprocessing

module m5.
local q, r[1], w, r[2].

{ import m2[q → first local, r → second local, w → third local]
[clauses from m4] with constant references suitably resolved }

{ import m1[q → first local, r → fourth local]
[clauses from m3] with constant references suitably resolved }

[clauses from m5] with constant references suitably resolved

Figure 5: Preprocessed form of the definition of module m5

compilation. Figure 4 contains a schematic presentation of a set of module
definitions that serve to illustrate all the significant aspects of the prepro-
cessing phase. Based on these declarations, module m5 is transformed into
the form shown in Figure 5. Some explanations are in order with Figure 5.
Module m5 eventually has four local constants: q coming from the explicit
local declaration in m5, r and w coming from the declaration in m4, and r
coming from the declaration in m3. This is reflected in the local declaration
in the preprocessed form, with r[1] and r[2] indicating the “versions” of r
arising from the declarations in m4 and m3, respectively. The clauses in the
composite form of m5 can be partitioned into three sets, depending on the
import statements that are scoped over them. This structure is made ex-
plicit in Figure 5. When the imported modules are loaded into core, some of
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their global constants have to be “captured” by the local declarations in m5.
The loading process realizes this effect, as we explain shortly. However, the
compiler must supply information to the loader for constructing a renaming
function reflecting such captures for each imported module. The fragments
of this function determined by the declarations in m5 are indicated within
square brackets adjacent to each import declaration. A final aspect relates
to avoiding inappropriate capture of global constants in clauses arising from
different sources by the (expanded set of) local declarations. For example,
the clauses in the original presentation of m5 may use the names r and w. In
this case, some renaming must be done to distinguish these constants from
those appearing in the local declaration in the composite form. This form of
renaming is indicated schematically adjacent to each set of clauses in Figure 5
and is typically be built into the compilation phase.

The compilation of the preprocessed form of a module eventually produces
the following components of information:

1. a list of the global constants that are defined or used in this module;

2. a list of the local constants that are identified in this module;

3. a count of the segments of clauses that have different importations
scoped over them;

4. a list of imported modules, each paired with a partial renaming function
for its global constants (as illustrated through Figure 5, each of these
renaming functions is realized as a list of pairs of names and offsets
into the local constant list of the present module);

5. the number and names of predicates (represented as offsets into the
list of global constants) in the module that could extend previously
existing definitions;

6. the find code function for the module (the link code function is com-
pletely determined by the previous component);

7. The byte-code for the clauses in the module (constant references in this
code are provided as offsets into the global and local constant lists).
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4.2 Loading modules

The process of loading a module at the top level also involves loading im-
ported modules, possibly triggering further nested loads. There is a difference
in final effect between a top-level load and nested loads, since nested loads
do not produce a module name that is visible at the top level, that is, one
having an entry in the global module table. As discussed in Section 4.1,
constants in a module loaded in a nested fashion may need to be renamed
in a way that depends on the context of importation. The loading process
realizes this requirement by, in effect, loading specialized copies of modules.
The relevant copy that is to be created at any point is determined by an
incoming renaming function and the addition to this function that is made
by the module from where the one being loaded is imported. The renaming
function starts out being empty for top-level loads.

The idea of loading a specialized copy of an imported module finds a
correspondence in other languages. For example, in C++, templates allow
generic functions to be defined once for a family of types, and the implemen-
tation generates versions of such generic functions for each argument type
supplied to the template.

4.2.1 Translation into absolute addresses

The structure of the loading process leads to a distinct code space for each
module. References to instruction addresses within the byte-code generated
for a module are relativized to a starting location for this code that is to be
determined at loading time. The loader translates such addresses into abso-
lute addresses. This translation process affects the byte-code that is loaded
for clauses, the find code function generated for the module, and, ultimately,
the vector stored in import and implication point records for determining the
next clause to try for each predicate whose previously existing definition is
being extended.

4.2.2 Resolution of global and local constants

A common symbol table is used for all the modules that are loaded during
an interactive session. The benefit of doing this is a significant simplification
in the run-time manipulation of constants. For example, equality testing of
constants is reduced to a comparison of symbol table indices.
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An important part of realizing this particular treatment of constants is
their translation to symbol table indices. The method for doing this for local
constants is simple: When a module is loaded either at the top-level or due
to importation, each of its local constants is inserted as a new entry into the
symbol table. The symbol table index that is determined by this process
is used in loading the code for the clauses in the module and also in the
renaming function that affects the loading of modules imported by it.

It only remains to describe the translation of global constants to symbol
table indices. For a top-level module this is straightforward: Each of its global
constants is mapped onto a fresh cell in the symbol table. For an imported
module, it is necessary also to use the renaming information generated by
the compiler. This information is transformed into a partial map from the
global constants in the imported module to symbol table indices for the local
constant declarations by which these are captured. This map can be managed
in a stack fashion, with the addition made to it, in the course of loading an
imported module, being popped off after the loading is completed. Now,
when a non-top-level module is loaded, the incoming renaming function is
used relative to each of its global constants to see if it can be resolved with
a local constant of one of the “ancestor” modules. If this is the case, the
function yields the symbol table index to be used for the constant. If not,
the incoming collection of global constants is searched to determine if an
index has already been assigned to the constant. If so, once again, we have
the index that is to be used. If neither of these processes yields an index,
then a new entry is created in the symbol table for the constant and the
index so generated is used for the constant.

For efficiency in parsing user queries and in the loading process, the col-
lection of global constants is organized into a binary tree. A pointer to the
root of this tree is retained in the global module table entry for each top-level
module.

4.2.3 Creation of tables needed for adding module code to the
program context

When a module is loaded, it is necessary also to generate a table of infor-
mation of the kind needed by a push import point instruction for creating an
import point record that represents the addition of code in this module to
an existing program context. Relativizing earlier discussions to the present
context, this table must contain the following items of information:
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1. a count of the local constants and, if this is nonzero, a (pointer to a)
vector containing the symbol table indices of these constants, to be
used to initialize their universe indices;

2. a count of predicates whose previous definitions might be extended by
the code in this module and, if this count is nonzero, a (pointer to a)
vector containing the symbol table indices for the relevant predicates
(this information is to be used to construct the vector of “next clauses”
for these predicates);

3. a count of the segments of clauses in the module that have different
importations scoped over them (this determines the size of the vector
of backchained cells);

4. a function for finding code for predicates defined in this module and a
table of suitable form yielding the address of code (the precise structure
of this table depends on the kind of function used; for instance, if it is
a hash function, then a hash table with entries containing symbol table
indices for predicates and pointers to code is constructed).

A table containing this information is created in an entirely obvious manner
and is retained in the code space for the module. The loading process even-
tually returns a pointer to this table. For a top-level module, this pointer is
saved in its entry in the global module table, to be utilized in when a query
directive is encountered. For imported modules, this pointer is used to trans-
late the table argument of push import point instructions in the importing
module into an absolute address.

5 Conclusion

We have presented a module notion in the logic programming language
λProlog and have described an approach to its implementation. We have
shown that our implementation ideas support the notion of separate compi-
lation, even in a situation where the context of use determines the run-time
interpretation of modules. We have also discussed some of the details of the
compilation and loading processes used in our approach that are intended to
facilitate efficiency of execution.

The ideas described in this paper have been incorporated into an abstract
machine for λProlog. This abstract machine utilizes the basic structure of
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the WAM in the treatment of nondeterminism and unification. However, it
also represents a considerable enhancement to the WAM, with mechanisms
being added to treat features such as typing (see [5]), scoping over names
and procedure definitions (see [11]), and lambda terms as data structures
with higher-order unification being used as the corresponding destructuring
operation (refer to [12]). At this point, a software implementation of this
abstract machine, as well as implementations of the compiler and the loader
have been completed. Thus a fully functional λProlog system that uses
the ideas presented in this paper for realizing the modularity notion is now
available to us. We plan to use this system in the near future to obtain an
experimental validation for our implementation ideas.
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