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Abstract. We present a natural confluence of higher-order hereditary Harrop for-
mulas (HH formulas), Constraint Logic Programming (CLP, [JL87]), and Con-
current Constraint Programming (CCP, [Sar93]) as a fragment of (intuitionis-
tic, higher-order) logic. This combination is motivated by the need for a sim-
ple executable, logical presentation for static and dynamic semantics of modern
programming languages. The power ofHH formulas is needed for higher-order
abstract syntax, and the power of constraints is needed to naturally abstract the
underlying domain of computation. Underpinning the combination is a sound
and complete operational interpretation of a two-sided sequent presentation of (a
large fragment of) intuitionistic logic in terms ofbehavioral testing of concur-
rent systems. Formulas on the left hand side of a sequent style presentation are
viewed as a system of concurrent agents, and formulas on the right hand side
astestsagainst this evolving system. The language permits recursive definitions
of agents and tests, allows tests to augment the system being tested and allows
agents to be contingent on the success of a test. We present a condition on proofs,
operational derivability(OD), and show that the operational semantics generates
only operationally derivable proofs. We show that a sequent in this logic has a
proof iff it has an operationally derivable proof.

1 Introduction

The investigations in this paper are driven by an interest in logical frameworks for
program manipulation. This interest has a twofold motivation.

First, the recent emergence of extremely successful program development environ-
ments such as Eclipse [ecl], has highlighted the power of advanced program manipu-
lation techniques (such as refactorings, [FTK04]), particularly for modern, concurrent,
object-oriented programming languages such as JAVA . At the same time the complexity
of internal programming APIs in Eclipse – and the brittleness in extending them to lan-
guages other than JAVA – has highlighted the importance of developing a coherent con-
ceptual framework for programs that manipulate programs. The holy grail of this work
is to make it possible for end-users to define their own refactorings. This requires that
there be a simple declarative framework in which the user can compose the refactoring,
and there be a way to determine if the proposed refactoring is semantics-preserving.

A second motivation for such a framework is to ease the task of writing and extend-
ing compilers. Object-oriented (OO) compiler frameworks such as Polyglot [NCM03]
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ease some of the burden of compiler-writing for new OO languages. A compiler-writer
has to provide a parser for the new language, define new Abstract Syntax Tree (AST)
nodes to represent the parsed program, and implement different passes for various com-
piler tasks such as disambiguation, type-checking, translation to an intermediate rep-
resentation (IR), static analysis and code-generation. Several of these passes can be
thought of as generating and checking constraints on the AST. However this structure
is hidden in the current conceptualization in terms ofproceduralcode to implement
“visitors” that build up the context for a node as they traverse the path from the root
to the node, and rewrite the AST based on this context. Thus, it becomes difficult to
extend the underlying IR and perform new analyses for new programming constructs.
Similar difficulties have been reported in other frameworks that aim to make it easy for
programmers to specify and plug new optimization rules into a compiler, while guaran-
teeing that these rules preserve program correctness [LMRC05].

This leads us to enunciate the following desiderata for the kind of framework we
investigate. Below we will find it convenient to distinguish the (hypothetical)object
languageO and the programming languageF to be used to write programs that manip-
ulateO-programs.

Programs as data.F should be able to express programs in modern languages (e.g.
Java, Co-Array Fortran, Prolog) as data in such a way that object programs can be
decomposed into their constituent parts and new object programs can be created from
program parts, while respecting scoping constructs. A central requirement is thatO
scoping constructs (such as method parameter declaration, local variable introduction)
subject to “alpha renaming” should in fact be represented byF scoping constructs
so that the programmer does not have to worry about the book-keeping involved in
explicitly implementing alpha renaming, substitution, generating “new” constants etc.
This is the idea ofhigher-order abstract syntax[PE88].

Constraint-based.There is a large body of work establishing the centrality of con-
straints to the static and dynamic analysis of programs e.g. [Hei92,OSW99,Pal95,PS94],
[Aik99,PW98,RMR01]. Thus, the framework should support the compositional gener-
ation of constraints from program structures. Constraints may be simple (no embedded
quantifiers) or polymorphic (universally and existentially quantified). Programs should
be able to query these constraints and take further action (such as generating more con-
straints or checking more constraints), based on the success or failure of such a query.
Furthermore, we demandextensibility. It should be possible to extend the constraint
system with analysis-specific constraints with the same ease with which new analyses
can be written.

Declarative. It should be possible to viewF programs as logical formulas so that
properties of these programs (such as: they preserve the semantics of the object program
they are manipulating) can be established through logical reasoning involving otherF
programs (e.g. representing the static and dynamic semantics ofO). The declarative
framework should be expressive enough to allow the static and dynamic semantics ofO
to be expressed (and implemented) in terms of declarative rules over program structures
in F .
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2 Basic Paradigm

In searching for a programming language framework for dealing with programs, it is
natural to start withλProlog, and its underlying conceptual basis, higher-order heredi-
tary Harrop formulas [MNPS91] (henceforth calledHH). Consider the basic syntactic
structure of definite clause programs. Starting with the base

(Agent) D ::= true | D ∧D | ∀xD
(Test) G ::= true | G ∧G | G ∨G | ∃xG (1)

we may obtain definite clause logic programmingLP by adding

D ::= G ⊃ A G ::= A (2)

That is, a program is formulated in terms of universally quantified implications, whose
head contains an atom and whose body containsgoals, which may be atomic or con-
junctive, disjunctive or existential formulas. We assume a higher-order language so the
arguments of atomic formulas may be (typed) lambda terms. To keep matters simple,
we exclude quantification over predicates; this condition may be relaxed as inλProlog.

To LP, HH adds the notion ofuniversalandimplicational goals:

G ::= D ⊃ G | ∀xG (3)

Computationally, implicational goals orextensible testspermit the extension of the
current database of programs before answering a specific query. Universal goals permit
the introduction ofscoped constants. These additional constructs complement the use
of typed lambda-calculus to represent object level binding notions with devices for real-
izing recursion over such structure [NM98]. The practical benefits of these capabilities
in syntax manipulation have been discussed in several places in the literature.

A limitation of λProlog for the applications of interest is the absence of a treatment
of constraints; as we have noted earlier, constraint systems find many uses in static and
dynamic analyses over program structure. This leads us to the integration of constraint
programming withHH. The addition of constraints to goals and agents has been pro-
posed by [FFL03,GDN04,LNRA01] through the further syntax rules:

D ::= c G ::= c (4)

An implicational goal (e.g.c ⊃ G) can be used to add constraints to thestore (the
LHS); a constraint goalc may check that a constraint follows from the store.

The language with syntax described by rules (1)–(4) still has a shortcoming: it does
not permit (recursive) computations on the LHS of a sequent. For example, consider the
computation of the goalD ⊃ (G1 ∧G2) in the context of an LHS given byΛ. Solving
this goal requires the addition ofD toΛ. In HH, the consequences that emerge from the
addition ofD to Λ must be computed separately while solvingG1 andG2. Permitting
recursive computation in the LHS could eliminate this redundancy: the consequences
can then be computed once, and used in showing bothG1 andG2. The following ex-
cerpt from the type checking of Java programs in the context of a class hierarchy is an
example of the utility of this idea.
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Example 1 (Java type checking).The type checking of a method body in a JAVA pro-
gram must be done in the context of type assertions generated by examining the classes
referenced in the code. These assertions are built using predicates such asextendsbe-
tween class names that captures the subtype relationship. It is desirable that the parsing
of referenced classes and the elaboration of type assertions (based on the inheritance hi-
erarchy, method signatures, field signatures, etc) be done only once. Thus, conceptually,
one wishes to define:

∀ClassName ∀Code
(((parse ClassName Code) ∧

((referencedClassTypes Code) ⊃ (typed code Code)))
⊃ (typed class ClassName))

The definition of the predicate fortypedcodeassumes that the type information for
each referenced class is already available in the store and may simply be queried (e.g.
using the constraintsubType ):

∀LExp ∀RExp ∀LT ∀RT
((isType RExp RT ) ∧ (isType LExp LT ) ∧ (subType RT LT ))

⊃ (typed (assign LExp RExp))).

Thus, we expectreferencedClassTypesto be a user-defined (agent) predicate here that
operates on the LHS of a sequent and that walks the ASTCode, determining referenced
classes and for each such class generating type assertions based on the type hierarchy.
Running the agentreferencedClassTypes Codeto quiescence on the LHS would thus
elaborate the type information inCodeonce and for all, sharing this computation among
all subsequent RHS queries.

This motivates us to take the fundamental step underlying this paper: combining the
power ofHH with CCP. CCP is organized around the notion of (deterministic) agents
working together in parallel to produce constraints on a shared store.

(Agent) D ::= true | c | D ∧D | E | G ⊃ D | E ⊃ D | ∃xD
(Test) G ::= true | c | G ∧G

One viewstrue as the vacuous agent,c as the agent which adds the constraintc to
thestore, D1 ∧ D2 as the parallel composition ofD1 andD2, E (an atomic formula)
as a recursively defined agent, (whose rules of behavior are specified by the formulas
E ⊃ D), G ⊃ D as adeep guard ask agentwhich checks whether the store entails
G, and if so, reduces toD, and∃xD as the agent that introduces a new local variable
x and then behaves likeD. [LS93] has shown that the logical view ofCCP (in the
subcase of flat guardsc ⊃ D) corresponds tocomputation on the leftin a sequent
based presentation. Conceptually the purpose of the computation is to determine the
(strongest) set of constraintsc (on the variables inD) that follow fromD. Thus on
termination we have ac and a proof tree forD ` c such that for any otherc1, if D ` c1
thenc ` c1.

This motivates us to add to the syntax rules (1)–(4) the rules:

D ::= E | G ⊃ D | E ⊃ D | ∃x D (5)
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We call the resulting language frameworkλRCC (RCC for the sub-language with first-
order terms). Notice that the second rule should be thought of as permitting fully recur-
sive asks (“deep guards” in concurrent logic programming terminology), thus allowing
a symmetric interplay between goals and agents (cf the productionG::=D ⊃ G).

An important restriction inλRCC is that the vocabulary of predicate names used
for goals, agents and constraints are pairwise disjoint—we refer to this as theDisjoint
Vocabularycondition. The Rules (1)–(5) can be consolidated as:

(Agent) D ::= true | c | E | D ∧D | G ⊃ A | G ⊃ D | E ⊃ D | ∃xD | ∀xD
(Test) G ::= true | c | A | G ∧G | D ⊃ G | G ∨G | ∃xG | ∀xG (6)

Clearly this includesLP, HH, CLP andCCP. The results of this paper may be extended
to support disjunctive agents as well; but we omit their treatment for lack of space.

3 Operational Semantics forλRCC

How should we understand computation inλRCC? We propose thatbehavioral testing
of concurrent systemsprovides a suitable framework. Let us think of a configuration in
our system as being given by a multiset ofpredicationsof the form(Λ,G) in whichΛ is
a multiset ofD (agent) formulas. Informally, we would like to view such a pair as posing
the question “Does the concurrent systemΛ pass the testG?” We expect the operational
semantics of the language to be described by a transition relation−→ on configurations
that allows us to address such a question in an incremental fashion. To indicate success,
we introduce the configurationε; thus the question(Λ,G) is considered to be one that
has a successful answer iff(Λ,G) ?−→ ε.

The testing notion is behavioral in the sense that it merely examines the behavior, i.e.
the potential to produce certain results, treating the structure of the system as opaque.
Even simple structural queries such as “Does the system contain the agentA?” are not
permitted (thanks to the Disjoint Vocabulary condition). Permitting such queries would
interfere with the understanding of goal-predicates and agent-predicates as recursive
procedure calls. One would have to account for the possibility that a queryA can be
answered not only by unrollingA into the bodyG of a clause definingA but by the mere
presence of the atomA on the LHS. Similarly, there is no possibility of formulating a
query which is able to decompose the system into the parallel composition of two agents
A1 andA2 and ask whetherA1 satisfiesG1 andA2 satisfiesG2 (cf bunched implication
logics [OP99]).

3.1 The underlying intuitions

Let us writeΛ |` G (read: “Λ passesG” or “Λ has the potential to answerG”) to
represent the condition(Λ,G) ?−→ ε.

Structural principles.A question to ask is: When shouldΛ |` c succeed? The opera-
tional interpretation ofCCP suggests a natural answer: it should succeed iff it is pos-
sible forΛ to evolve in such a way that the resulting store entailsc. Thus the question
being asked is: doesΛ have thepotential to generatec? Even before we get specific
about the evolution process, the viewpoint that it only serves to “actualize” potential
leads to certain structural principles that our operational semantics should satisfy:
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Potential preservation (Λ, c) ?−→ (Λ′, c) andΛ |` c impliesΛ′ |` c.
Structural Rules Λ |` c′ andΛ, c′ |` c impliesΛ |` c; Λ,D |` c if Λ,D,D |` c;

Λ,D1, D2 |` c if Λ,D2, D1 |` c; andΛ,D |` c if Λ |` c.

Agent combinators.To address the issue of evolution itself, when shouldΛ,D pass a
testc? This should happen if (a)Λ passes the test by itself or (b)D interacts withΛ in
such a way that the system reaches a state in whichc can be answered. To specify this
precisely, we needagent interaction rules:

Vacuous agentΛ, true |` c iff Λ |` c.
Parallel agent Λ,D1 ∧D2 |` c iff Λ,D1, D2 |` c.
Recursive agentΛ,E |` c iff Λ |` c or there is aΛ′ and a ruleE ⊃ D ∈ Λ′ s.t.

((Λ,E), c) ?−→ ((Λ′, E), c) andΛ′, E,D |` c.
Deep guard agentΛ,G ⊃ D |` c iff for someΛ′: ((Λ,G ⊃ D), c) ?−→ ((Λ′, G ⊃

D), c), and (i)Λ′ |` c or (ii) Λ′, G ⊃ D |` G andΛ′, D |` c.
Existential agent Λ, ∃xD |` c iff Λ,D[i/x] |` c for some new parameteri.
Universal agent Λ, ∀xD |` c iff Λ, ∀xD,D[t/x] |` c.

The first two rules have already been discussed in conjunction withCCP. For recursive
agents,Λ,E passes the testc if Λ passes the test by itself or ifΛ can evolve toΛ′ in
which a ruleE ⊃ D is revealed such thatΛ′, E,D passes the test. The agent∃xD
interacts withΛ by producing a previously unknown instance ofD that it runs in par-
allel. The case for∀xD keeps∀xD around to produce other instances that might be
needed. Finally,G ⊃ D interacts withΛ by testing whetherΛ passesG (usingG ⊃ D
as a resource if needed) and, if so, by runningD in parallel withΛ. Thus we require
Λ,G ⊃ D |` c iff for someΛ′: ((Λ,G ⊃ D), c) ?−→ ((Λ′, G ⊃ D), c), and (i)Λ′ |` c
or (ii) Λ′, G ⊃ D |` G andΛ′, D |` c. Notice that, in contrast toE, G functions as
a deep guard in this kind of agent formula. Further, the evolution of((Λ,G ⊃ D), c)
may itself involve a recursive use ofG ⊃ D, but this time in the context of establishing
G′ for a differentG′ ⊃ D′ in the current configuration.

Test combinators.Of course, tests may themselves have a complex, non-primitive struc-
ture and the operational semantics must specify behavior with respect to such structure
as well. Here we rely on the usual interpretation of atomic goalsA as recursively de-
fined tests and ofG1 ∧ G2 (resp.G1 ∨ G2, D ⊃ G, ∀xG) should be viewed as a
conjunctive (resp. disjunctive, conditional, generic) test, consistent with their “search
reading” formalized by uniform proofs [MNPS91]. There is, however, a subtle differ-
ence in the interpretation of existential tests: While the test∃xG succeeds when there is
some termt such that the testG[t/x] succeeds, existential agents are allowed to evolve
and introduce new constants that can be used to constructt.

Vacuous query Λ |` true always holds.
Recursive query Λ |` A iff there is someΛ′ s.t. (Λ,A) ?−→ (Λ′, A), and there is a

G ⊃ A ∈ Λ′ andΛ′ |` G.
Conjunctive query Λ |` G1 ∧G2 iff Λ |` G1 andΛ |` G2.
Disjunctive query Λ |` G1 ∨G2 iff Λ |` G1 orΛ |` G2.
Extensible query Λ |` D ⊃ G iff Λ,D |` G.
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Universal query Λ |` ∀xG iff Λ |` G[i/x] for some new parameteri.
Existential query Λ |` ∃xG iff there is someΛ′ s.t. (Λ, ∃xG) ?−→ (Λ′,∃xG) and

Λ′ |` G[t/x], for somet built using the constants inΛ′, G.

From a programmer’s point of view, the notion of behavioral testing of a concurrent
system provides an account of the operational behavior of various combinators.λRCC
can be thought of as building on the basic query of the underlying constraint system,
c0, . . . , cn ` c, by permitting complex, recursively defined agents on the LHS of the
`, and complex recursively defined queries on the RHS. The purpose of the complex
formulas on the LHS and RHS in this context is to construct appropriate queries of the
underlying constraint system (which may be viewed as a replacement for the axiom
case in the usual inference systems).

3.2 A formal presentation

We formalize these ideas via a transition system specified in the tradition of Plotkin’s
SOS. The transition relation builds on some unknown but fixed underlying constraint
systemC satisfying the properties described in [Sar92,PSSS92] that formalizes a deriv-
ability relation of the formc0, . . . , ck `C c. In particular, the properties include the ad-
missibility of CUT, i.e., if c0, . . . , ck−1 `C ck andc0, . . . , ck `C c thenc0, . . . , ck−1 `C
c, the admissibility ofContraction, i.e., if Γ, c, c `C c′ thenΓ, c `C c′, and closure
under substitution for parameters, i.e., ifΓ `C c andΓ ′ andc′ result fromΓ andc by
replacing a parameteri by a termt thenΓ ′ `C c′. We augmentC with the inference rule
CONST

c0, . . . , ck `C c
Λ, c0, . . . , ck `C c

(CONST) (7)

in whichΛ ranges over multisets ofD-formulas. The configurations of the machine are
multisetsΓ of predications(Λ,G). We useε for the empty multiset. The inference rules
of the transition system are:

((Λ,E,E ⊃ D), G) −→ ((Λ,E,D), G) (FC) Λ `C c
(Λ, c) −→ ε

(C)

((Λ,G ⊃ D), G)
?−→ ε

((Λ,G ⊃ D), G′) −→ ((Λ,D), G′)
(DG) (Λ,G ∨G′) −→ (Λ,G) (R-OR-1)

((Λ,D ∧D′), G) −→ ((Λ,D,D′), G) (L-A ND) (Λ,G ∨G′) −→ (Λ,G′) (R-OR-2)
((Λ,∃xD), G) −→ ((Λ,D[i/x]), G) (L-E(*)) (Λ,D ⊃ G) −→ ((Λ,D), G) (R-IMP)
((Λ,∀xD), G) −→ ((Λ,∀xD,D[t/x]), G) (L-U) (Λ,∃xG) −→ (Λ,G[t/x]) (R-E)
(Λ, true) −→ ε (R-TRUE) (Λ, (∀x)G) −→ (Λ,G[i/x]) (R-U(*))

((Λ,G ⊃ A), A) −→ ((Λ,G ⊃ A), G) (BC)
(Λ,G)

?−→ Γ ′

Γ, (Λ,G) −→ Γ, Γ ′
(STRUC)

(Λ,G ∧G′) −→ (Λ,G), (Λ,G′) (R-AND)

The symbol “,” is used to denote multiset union in these rules. In determining the appli-
cability of any rule to a given configuration, we assume that a notion of equality modulo
the rules ofλ-conversion is used. In the rules L-E and R-U,i must be a parameter that
does not already appear in the predication on the LHS of the transition rule.

The semantics described above accurately modelssuccessful terminationleveraging
don’t know non-determinism inherent in the application of BC (which of many appli-
cable rules should be chosen?), R-Or-1/2 (which branch should be chosen?), and R-E
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(when the rule should be used and with which term?). (See Theorem 8 which estab-
lishes that the nondeterminism in the application of the remaining rules is don’t care.)
The first two can be handled via or-parallel search or backtracking in the usual Prolog
style. Once the point of use of the R-E rule has been determined, the actual instantia-
tion for the quantifier may be incrementally generated, using techniques such as those
described in [Sha92] to encode quantifier dependency information that constrains the
instantiation. A more detailed operational semantics could also replace the “coarse step”
evaluation of deep guards above with an incremental evaluation based on maintaining
and propagating partial state (cf AKL [HJ90]). Such a detailed operational semantics is
beyond the scope of this paper and will be presented in subsequent work.

The proof of the following theorem relies on Theorem 3, Theorem 7, and known
properties of intuitionistic derivability.

Theorem 2 (Operational Characterization). The operational semantics formalized
above validates the structural principles and the agent and test combinator conditions
described in Section 3.1.

4 Proof-Theoretic Semantics forλRCC

We show the declarative semantics ofλRCC to be given by provability in intuitionis-
tic logic augmented by a fixed constraint systemC of the kind described in Section 3.
Specifically we assume that the derivability relation is characterized by a standard se-
quent system that may additionally use as axioms

Λ ` c (CONST)

wheneverΛ `C c is a valid judgement. We differentiate these axioms from the usual
ones in a sequent calculus below by annotating the latter as (ID).

4.1 Operational Derivability

We are interested in (cut-free) proofs of sequents of the formΛ ` G whereΛ is a
multiset ofD formulas. Observe that ifΞ is any sequent that appears in a proof, then
the LHS ofΞ contains onlyD andA formulas and the RHS ofΞ contains either aG
or anE formula. One consequence of this observation is that we do not have a need for
the∨-L rule in constructing proofs for the sequents under consideration. We would also
like to restrict the use of the⊃-L rule as follows.
Chaining condition:Every instance of⊃-L in which the principal formula isG ⊃ A
(resp.E ⊃ D) is of the form on the left (resp. right):

Π′

...
Λ,G ⊃ A ` G Λ,A ` A (ID)

Λ,G ⊃ A ` A (⊃-L ) Λ,E,E ⊃ D ` E (ID)

Π′

...
Λ,E,D ` G

Λ,E,E ⊃ D ` G (⊃-L )
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Constraint-condition:Every instance of⊃-L in which the principal formula isc ⊃ D
is of the form:

Λ, c ⊃ D ` c (CONST)

Π′

...
Λ,D ` G

Λ, c ⊃ D ` G (L-I MP )

There are no restrictions on the use of⊃-L onG ⊃ D formulas whereG is notc.
We say that a sequentD ` G isoperationally derivableiff it has a proof in which the

∨-L rule is not used and each occurrence of the⊃-L rule satisfies the above restrictions.
We indicate the existence of such a proof by writingD `o G. In such proofs, goal rules
are used only to determine what to do next when trying to prove an atomic goal (thus
goal rules define the behavior of goal-predicates); agent rules are used only to determine
which agents follow from atomic agents (thus agent rules define the behavior of agent-
predicates); a constraint query can be proven only if sufficiently powerful constraints
are explicitly present in the constraint store. In particular, operational derivability forces
proofs to have a “straight line” structure. In a proof the only nodes which have two deep
subtrees (i.e. subtrees of depth> 1) and which correspond to the application of a left
rule are those whose principal formula is(G ⊃ D) (whereG is notc).

Operational derivability corresponds to the transition system of Section 3.

Theorem 3 (Faithfulness Theorem).Λ `o G iff (Λ,G) ?−→ ε

The proof in one direction proceeds by induction on the size of a derivation and in
the other by induction on the length of the transition sequence.

4.2 Correspondence with Intuitionistic Logic

Operational derivability is intended as a bridge between the transition semantics and
intuitionistic provability. In one direction, the connection is immediate since operational
proofs are intuitionistic proofs with additional structure.

Theorem 4 (Soundness Theorem).D `o G impliesD ` G.

For the other direction, we have to show that the provability relation is unaltered
even though we may lose some proofs. We proceed towards this goal via a couple of
lemmas. The first lemma is modelled on results in Dyckhoff [Dyc92]. Call a proofsen-
sible if wheneverA ⊃ B is the principal formula of an⊃-L rule in an intuitionistic
derivation andA is atomic, thenA also appears on the LHS of the lower sequent. Then
the following holds for Intuitionistic Logic (with constraints, as developed in this pa-
per):

Lemma 5. A proof exists for a sequent if and only if a sensible proof exists.

Proof. (Sketch) Associate with a proof aninsensibilitymeasure that counts the number
of places where⊃-L is applied in a way that violates the notion of sensibility, i.e., where
it pertains to a formula of the formA ⊃ B whereA is atomic andA does not appear
in the antecedent. We then prove the lemma by induction on the insensibility measure,
essentially showing that the first occurrence of such a rule in the derivation along any
path starting from the leaves (axioms) can be eliminated.
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Lemma 5 shows that we can restrict attention to intuitionistic derivations satisfying the
forward chaining condition. By a similar argument, we can show also that the constraint
condition can be respected without loss of completeness. We now want to show that if
the RHS of the sequent is an atom then we can require it to be proved by backchaining.
Define aclause instancebased on the structure of aD formula as follows:
(1) Any clause instance ofD′[i/x] for a new constanti is a clause instance of∃xD′.
(2) Any clause instance ofD′[t/x], for a closed termt is a clause instance of∀xD′.
(3) Any clause instance ofD1 orD2 is a clause instance ofD1 ∧D2.
(4) LetD = G ⊃ D: If G′ ⊃ A is a clause instance ofD then((G ∧ G′) ⊃ A is a
clause instance ofD.

Lemma 6. If A is an atomic formula andΛ is a multiset ofD formulas, thenΛ ` A
has a derivation if and only if there is a clause instanceG ⊃ A of someD formula in
Λ such thatΛ ` G has a derivation.

Proof. (Sketch) The proof proceeds by induction on the height of the derivation. The
last rule in the derivation must pertain to the LHS. The definition of clause instances is
modelled to address the non-trivial cases, namely∃-L, ∀-L and⊃-L.

Lemmas 5 and 6 provide the basis for the proof of the desired result:

Theorem 7 (Completeness Theorem).D ` G impliesD `o G.

The results of this section show that entailment in intuitionistic logic provides an
alternative semantics forλRCC. Apart from underpinning the declarative semantics of
this language, this property also allows us to use known properties of the intuitionistic
calculus to understand characteristics of our transition relation. As one example, known
permutation properties for this calculus reveal that some aspects of non-determinism in
the transition relation are inconsequential:

Theorem 8 (Local Confluence Theorem).Let (Λ,A) −→ (Λ1, A1) by any rule ex-
ceptR-OR-2, R-OR-1, R-E or BC. Let (Λ,A) −→ (Λ2, A2) by any rule. Then there
exists aΛ3 such that(Λ1, A1) ?−→ (Λ3, A

′) and(Λ2, A1) ?−→ (Λ3, A
′).

5 Conclusions

This paper establishes the semantic foundations for a logical approach to program ma-
nipulation,λRCC, which satisfies the desiderata laid out in Section 1.λRCC endows
a very rich subset of intuitionistic logic with a (complete) computational interpretation
based on testing determinate concurrent systems. Operationally, the programmer may
use recursive agents to generate constraints from a representation of an object program,
and recursive queries to test these constraints.

From a practical point of view, we are currently developing a concrete extension
of λProlog along these lines. We intend to develop an integration of such a language
into JAVA -like languages along the lines ofjcc[SJG03], and use it as the basis for AST-
rewrites in Polyglot and Eclipse.
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On the theoretical front, extending the basic conception of this paper to sub-structural
logics such as linear logic remains open. In contrast to LolliMon [LPPW05] that asso-
ciates backward (resp. forward) chaining with asynchronous (resp. synchronous) con-
nectives of linear logic, this paper explores forward and backward chaining mostly
(except existentials) in the asynchronous fragment. The detailed integration of these
seemingly different approaches remains open to further investigations.
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