
Practical Higher-Order Pattern Unification
With On-the-Fly Raising

Gopalan Nadathur and Natalie Linnell

Department of Computer Science and Engineering, University of Minnesota,
4-192 EE/CS Building, 200 Union Street SE, Minneapolis, MN 55455

Email: {gopalan,nlinnell}@cs.umn.edu, Fax: 612-625-0572

Abstract. Higher-order pattern unification problems arise often in com-
putations within systems such as Twelf, λProlog and Isabelle. An impor-
tant characteristic of such problems is that they are given by equations
appearing under a prefix of alternating universal and existential quan-
tifiers. Most existing algorithms for solving these problems assume that
such prefixes are simplified to a ∀∃∀ form by an a priori application of a
transformation known as raising. There are drawbacks to this approach.
Mixed quantifier prefixes typically manifest themselves in the course of
computation, thereby requiring a dynamic form of preprocessing that is
difficult to support in low-level implementations. Moreover, raising may
be redundant in many cases and its effect may have to be undone by a
subsequent pruning transformation. We propose a method to overcome
these difficulties. In particular, a unification algorithm is described that
proceeds by recursively descending through the structures of terms, per-
forming raising and other transformations on-the-fly and only as needed.

1 Introduction

Higher-order unification, or the unification of typed lambda terms modulo the
rules of lambda conversion, is a problem that appears to have poor computational
properties: most general unifiers may not exist in relevant instances, complete
sets of unifiers may be infinite, the search for such unifiers cannot always be
nonredundant and unifiability itself is, in general, undecidable. It seems some-
what of an anomaly, therefore, that effective use has been made of this operation
in a variety of applications within metalanguages, logical frameworks and proof
assistants such as λProlog [9], Twelf [16] and Isabelle [13]. The answer to this
puzzle seems to lie in the fact that good programming practice avoids exercising
the pathological cases for this form of unification. A discovery of this kind was
made by Dale Miller who observed that occurrences of instantiatable (existen-
tial) variables in λProlog programs usually satisfy static conditions that lead to
unification computations belonging to what is known as the Lλ or higher-order
pattern class [6, 12]. For problems in this class, unifiability is decidable and most
general unifiers can be provided. Moreover, even though the syntactic restric-
tions may not be satisfied by all useful programs [5], the unification problems
that arise dynamically still usually lie within the Lλ class.



In light of these observations, higher-order pattern unification has adopted
a special practical significance. At a coarse level, the unification procedure for
simply typed lambda terms that was invented by Huet [3] behaves well on these
special problems: it converges on exactly one successful path for each solvable
problem and can also be made to terminate in every case. Nevertheless, this
procedure has finer-grained characteristics that can be improved: each local step
within it still involves examining several competing substitutions and a success-
ful computation may offer only a pre-unifier, conditioned by a solvable but as
yet unsolved set of constraints. Both deficiencies can be addressed. Miller has
proposed what is ultimately a refinement of Huet’s procedure that, for each prob-
lem of the Lλ kind, either determines non-unifiability or yields a most general
unifier at the end of a non-branching computation [6]. The ideas underlying this
procedure has been extended to dependently typed lambda calculi [14, 15] and
higher-order rewrite systems [11]. A version of the procedure that has a time and
space complexity that is linear in the size of the input terms has been developed
[18] and it has also been adapted to use explicit substitutions relative to a special
grafting interpretation of instantiatable variables [2].

This work is motivated by a desire to exploit higher-order pattern unifica-
tion in low-level implementations; in particular, in the Teyjus implementation
of λProlog [10]. While many variants of the original procedure have been de-
scribed, none of them seems quite suited to this task. In such a setting, it is
important that the processing be driven entirely by a recursive examination of
the structures of terms. The original procedure that is given by transformation
rules has two rules—pruning and raising—that do not possess this character.
Another important property of practical unification problems is that they need
to be solved under a mixed prefix of quantifiers [7] that are created in the course
of computation. Most procedures other than the original one seem to finesse
this issue by assuming that existential quantifiers appear only at the top-level,
embedded at most under universal quantifiers corresponding to global constants.
1 Now, it is possible to transform arbitrary prefixes into this specialized form
by initially applying a raising transformation to existential quantifiers. However,
this preprocessing must be done dynamically and it requires at least some ad-
ditional bookkeeping at runtime. Moreover, much of this kind of raising may be
unnecessary and performing it has the potential of making other necessary steps
more expensive than they need to be.

This paper is intended to redress this situation. We describe in it a proce-
dure within which unification takes place relative to a mixed quantifier prefix.
However, such prefixes are rendered implicit by tagging existential and universal
variables with numbers that count the quantifier alternations prior to the ones
binding these variables. The processing is oriented around a recursive traversal
of the terms to be unified and consists essentially of simplification and variable
binding phases. The latter phase is characterized by an on-the-fly application of

1 Two exceptions are the approaches in [14] and [2]. The scheme presented in [14] does
not generate most general unifiers and, hence, seems not to be complete. We discuss
[2] further in Section 7.

2



the pruning and raising rules in which the numeric tags are used to recognize
quantifier orders. The algorithm we describe is meant for use with lambda terms
that are polymorphically typed. In this setting it may sometimes be necessary
to treat η-convertibility dynamically. Our algorithm supports this capability.

The rest of this paper is organized as follows. The next two sections describe
the higher-order pattern unification problem and present a naive procedure for
solving it. This procedure is then refined into a more sophisticated form. One
refinement, described in Section 4, makes the quantifier prefix implicit. Another
refinement, developed in Section 5, factors the algorithm into simplification and
variable binding phases. In Section 6 we discuss some aspects relevant to the
practical realization of the procedure. We illustrate our procedure in Section 7
and also contrast its behaviour with previously described ones for the same
problem. We conclude the paper with a brief discussion of continuing work.

2 Logical Preliminaries

The lambda terms that are of interest to us may contain universal, existential
and lambda bound variables. We initially use the symbol u and x, possibly with
subscripts, to denote variables of the first two kinds; later the status of such vari-
ables will be determined by an explicit quantifier prefix. A variable occurrence
that is bound by an abstraction will be represented, following the scheme due to
de Bruijn, by a positive number that counts the abstractions up to and includ-
ing the one binding that particular occurrence. We bunch together a sequence
of abstractions and, likewise the arguments in a sequence of applications.

Formally, our terms are given by the syntax rule

t ::= x | u | i | λ(i, t) | t(t)

in which i represents positive integers, n represents natural numbers and t repre-
sents a sequence of comma separated terms. In an expression of the form λ(i, t),
i denotes the number of abstractions. In a schematic presentation, we shall allow
this number also to be 0, in which case the term is identical to t. Applications
are written in a manner reminiscent of first-order syntax rather than in the usual
curried form: thus, the term t1(t2, t3) is equivalent to what we would ordinarily
write as ((t1 t2) t3) in a higher-order language. We actually think of t as a vector,
writing |t| to denote its length and t[i] to refer to its i-th argument. Once again,
in a schematic presentation, we shall let t be an empty sequence; the expression
t(t) in this case matches with whatever matches with t.

Two terms are considered equal if they can be β-converted to each other.
Testing for such equality is based on head normal forms. A term in this form
has the structure λ(n, a(t)) where a, called the head of the term, is a universal
or existential variable or a de Bruijn index. Although we do not display types
explicitly anywhere, we assume that our terms are typed in an ML-like sense.
A consequence of this assumption is that every term in fact reduces to a head
normal form. A discussion of procedures for producing such a form that exploit
explicit substitution notations for the lambda calculus may be found in [4].

3



Our operative notion of equality also includes η-conversion. This makes it
necessary to sometimes consider the η-expansion of terms. We write t ↑ j to
denote the ‘lifting’ of the term t over j (new) abstractions; this operation, in
effect, increments the free variables in t by j. For atomic terms, the computation
actually has a simple form: if t is a universal or existential variable then t↑j = t
and if it is a de Bruijn index then t↑j = t + j. For existential variables, this
definition reflects a logical interpretation as opposed to the grafting one in [1]; in
particular, these variables cannot be instantiated by terms containing de Bruijn
indices bound by external abstractions. The lifting operation is extended to a
sequence of terms: if |t| = n then t↑j = t′ where t′ is a sequence of length n + j
with t′[i] = t[i]↑j for 1 ≤ i ≤ n and t′[i] = j− (i− (n+1)) for n < i ≤ n+ j. This
definition applies even when |t| = 0 and we allow the expressions t↑j and t↑j to
be used also when j is 0 in which case they are identical to t and t, respectively.
Using these operations, the j-fold η-expansion of the term λ(n, a(t)) in head-
normal form is given by the term λ(n + j, (a↑j)(t↑j)), also in head-normal form.
Such an η-expansion is sensible only if the type of a allows for it.

A unification problem is defined by two components: a list of equations such
that the two terms in each equation have the same type and a quantifier prefix
that scopes over the list. In depicting equation lists, we shall use nil to denote the
empty list and :: to denote an infix, right associative operator that allows a new
equation to be added to the front of an existing list. Universal and existential
variables may appear in the equations and these are expected to be captured
by a quantifier of the corresponding force appearing in the prefix. Intuitively,
universal variables correspond to constants whereas existential variables may be
instantiated towards solving the equations in a situation where an equation is
considered solved when it relates two (closed) terms that are equal modulo β-
and η-conversion. A solution to or a unifier for a given problem is a substitution
for the existential variables that reduces the list of equations to a solved form.
However, the prefix structure restricts what substitutions may legitimately be
made for a given existential variable: these must be closed terms, i.e., terms with
no existential variables or unbound de Bruijn indices, in which the only constants
that are allowed to appear are ones whose quantifier scope includes that of
the quantifier governing the existential variable. This constraint determines, for
example, that the unification problem given by ∃x∀u((x = u) :: nil) has no
solutions whereas the problem ∀u∃x((x = u) :: nil) has the solution {〈x, u〉}.

In the description above, solutions are required to be closed substitutions.
We relax this requirement to permit an existential variable to appear in a sub-
stitution term provided its quantifier scope includes all the universal quantifiers
within the scope of the quantifier governing the variable being substituted for.
Thus, the unification problem ∀u∃x1∃x2((x1 = x2) :: nil) now has {〈x1, x2〉} as
a solution. We further allow a prefix to be extended by the introduction of exis-
tential quantifiers over variables not occurring in the equation list and consider
solutions to such modified problems to be solutions to the original problem. For
instance, the earlier problem may be modified to ∀u∃x1∃x2∃x3((x1 = x2) :: nil)
and then has the solution {〈x1, x3〉, 〈x2, x3〉}. Substitutions with existential vari-

4



ables may be thought of as schemas for generating (legitimate) closed solutions.
Towards making this idea precise, we first note that substitutions are given by
a finite set of variable-term pairs where each pair pertains to a distinct variable
and where the term obeys the constraints imposed by a relevant quantifier pre-
fix and that the application of a substitution θ to a term t is denoted by θ(t).
Further, the composition of two substitutions θ1 and θ2, written θ1 ◦ θ2, is given
as follows: 〈x, t〉 belongs to θ1 ◦ θ2 just in case 〈x, s〉 ∈ θ2 and t = θ1(s) or there
is no pair pertaining to x in θ2 and 〈x, t〉 ∈ θ1. Now, it is easily seen that if θ
is a solution to a unification problem Q(E) that is legitimate with respect to a
prefix Q′ that extends Q in the permitted fashion and ρ is another substitution
that is legitimate with respect to Q′, then ρ ◦ θ is also a solution to Q(E). The
substitution θ then constitutes a schema in the sense that it represents all the
closed solutions that can be obtained from it by such a composition. Our interest
is eventually only in closed substitutions pertaining to the existential variables
appearing in Q, the original prefix. Letting θ1 =Q θ2 represent the proposition
that θ1 and θ2 agree on these variables, we say that θ is a most general unifier
for Q(E) just in case it is a solution to this problem that is legitimate with
respect an extended prefix Q′ and for every closed solution ρ1 of Q(E) there is a
substitution ρ2 that is legitimate with respect to Q′ and such that ρ1 =Q ρ2 ◦ θ.

Unification problems may be higher-order in the sense that function variables
may by existentially quantified in the prefix. A particular problem illustrating
this facet is the following: ∀u1∀u2∃x((x(u2) = u1(u2)) :: nil). This problem
has the two incomparable solutions {〈x, λ(1, u1(1))〉} and {〈x, λ(1, u1(u2))〉}.
A higher-order pattern unification problem is one where each occurrence of an
existential variable in the equation list satisfies the following syntactic constraint:
if it appears applied to arguments, then each of these arguments is a distinct de
Bruijn index or a distinct universal variable whose quantifier appears within the
scope of the quantifier binding the existential variable. The expression x(u2) in
the unification problem just considered does not satisfy this constraint. However,
it does obey this requirement in the problem ∀u1∃x∀u2((x(u2) = u1(u2)) :: nil)
with a modified prefix. The result of this change is that the problem now has only
one solution: the substitution {〈x, λ(1, u1(1))〉}. The existence of most general
solutions is a general property of higher-order pattern unification problems [6].

The quantifier prefixes governing the list of equations in a unification problem
usually arise from reasoning over predicate formulas in a larger logical system.
While our presentation appears to portray these prefixes as fixed entities, it is
important to bear in mind that they evolve during computation in practice.

3 Unification via Transformations

We present the first version of our unification procedure in the form of rewrite
rules that transform tuples of the form 〈Q(E), θ〉 where Q(E) is a unification
problem and θ is a substitution. In the initial configuration, the first component
of the tuple is the problem that we want solved and θ is the empty substitution.
The purpose of the rewrite rules is to reduce the differences between the terms in

5



(1) 〈Q((λ(n, t) = λ(n, s)) :: E), θ〉 −→ 〈Q((t = s) :: E), θ〉, provided n > 0.

(2) 〈Q((λ(n, t) = λ(m, s)) :: E), θ〉 −→ 〈Q((t = λ(m− n, s)) :: E), θ〉,
provided n > 0 and m > n.

(3) 〈Q((a(t) = λ(m, s)) :: E), θ〉 −→ 〈Q(((a↑m)(t↑m) = s) :: E), θ〉,
provided a is a de Bruijn index or a universal variable and m > 0.

(4) 〈Q((f(t) = λ(n, g(s))) :: E), θ〉 −→ 〈Q((f(t↑n) = g(s)) :: E), θ〉,
provided f and g are existential variables and n > 0.

(5) 〈Q((a(t) = a(s)) :: E), θ〉 −→ 〈Q((t[1] = s[1]) :: . . . :: (t[n] = s[n]) :: E), θ〉,
where |t| = n, provided a is a de Bruijn index or a universal variable.

(6) 〈Q1∃fQ2((f(y) = λ(n, a(t1, . . . , tm))) :: E), θ〉 −→
〈Q1∃h1 . . . ∃hm∃fQ2((h1(y↑n) = t1) :: . . . :: (hm(y↑n) = tm) :: θ′(E)), θ′ ◦ θ〉,

where θ′ = {〈f, λ(|y|+ n, a(h1(|y|+ n, . . . , 1), . . . , hm(|y|+ n, . . . , 1)))〉},
provided a is universally quantified in Q1 and f does not appear in t.

(7) 〈Q1∃fQ2((f(y) = λ(n, a(t1, . . . , tm))) :: E), θ〉 −→
〈Q1∃h1 . . . ∃hm∃fQ2((h1(y↑n) = t1) :: . . . :: (hm(y↑n) = tm) :: θ′(E)), θ′ ◦ θ〉,

where θ′ = {〈f, λ(|y|+ n, a′(h1(|y|+ n, . . . , 1), . . . hm(|y|+ n, . . . , 1)))〉}
for a′ = a↓(y↑n), provided a appears in y↑n and f does not appear in t.

(8) 〈Q1∃fQ2((f(y) = f(z)) :: E), θ〉 −→ 〈Q1∃h∃fQ2(θ
′(E)), θ′ ◦ θ〉,

for θ′ = {〈f, λ(m, h(w))〉}, where m = |y| and w = {m− i | i ≤ m and y[i] = z[i]}.
(9) 〈Q1∃fQ2∃gQ3((f(y) = g(z)) :: E), θ〉 −→

〈Q1∃f∃hQ2∃gQ3((f(y) = h(w + z)) :: θ′(E)), θ′ ◦ θ〉,
where w = {u | ∀u appears in Q2} and θ′ = {〈g, h(w)〉},
provided Q2 contains at least one universal quantifier.

(10) 〈Q1∃fQ2∃gQ3((f(y) = g(z)) :: E), θ〉 −→ 〈Q1∃h∃fQ2∃gQ3(θ
′(E)), θ′ ◦ θ〉,

for θ′ = {〈f, λ(m, h(u))〉, 〈g, λ(n, h(v))〉},
where m = |y|, n = |z| and u = w↓y and v = w↓z for w = y∩z,
provided no universal quantifiers appear in Q2.

Fig. 1. Transformation rules for higher-order pattern unification

the equations. They may postulate substitutions towards this end and these are
accumulated in the second component of the tuple. New existential variables may
be introduced in the process and the quantifier prefix is, in this case, modified
to accommodate them. If a reduction sequence succeeds in transforming the
equation list to an empty one in this way, then the substitution component is
intended to be a most general solution to the original unification problem.

The specific rules defining the procedure appear in Figure 1. As is evident
from their lefthand sides, the action carried out by these rules is based on the
form of the first equation in a non-empty list. Prior to attempting a match,
the two terms in such an equation must be reduced to their head normal forms.
The matching process assumes that the equality symbol is symmetric, i.e., it will
attempt a match by also interchanging the left and right sides of the equations

6



shown in the patterns. An explanation is warranted with respect to some of the
notation for terms used in these patterns. The symbols t and s used in rules
(3)-(7) are intended to match with (possibly empty) sequences of arguments in
actual terms and the rules may refer to the lengths of these sequences as well as
their components subsequent to the match. The symbols y and z that are used in
rules (6)-(10) match with actual argument sequences only if they further satisfy
the higher-order pattern restriction: each element of such a sequence must be a
distinct de Bruijn index or universal variable that is quantified within the scope
of the existential quantifier binding the variable that appears as the head of the
term. That this condition is satisfied needs to be ascertained only if the problem
is not already known to be of the higher-order pattern unification kind and, in
this case, the arguments will also have to be reduced to head-normal form prior
to the attempted match. Some explanation pertaining to the action parts of the
rules is also relevant. The rules (6)-(10) introduce existential quantifiers over
variables shown schematically as h, possibly with subscripts. These variables
must be different from ones already appearing in the quantifier prefix. In rule
(9), the notation S where S is a set is used to denote a sequence created from
the elements of S and the expression w + z is used to represent the sequence
obtained from the concatenation of two given ones. In rule (10), we write y∩z
to represent a sequence of the elements common to y and z. The notation a↓z
where z is a sequence of distinct universal variables and de Bruijn indices and
a is an element of this sequence that is used in rule (7) corresponds to the de
Bruijn index given by (|z| + 1 − i) where z[i] = a. The expression w↓z used in
rule (10) extends this notation to the situation where w is a sequence of elements
appearing in z as follows: if |w| = n then w↓z = w[1]↓z, . . . , w[n]↓z.

The procedure that we have described here is essentially a deterministic adap-
tation of the one in [6] to a situation where the de Bruijn notation is used and
where η-expansion is done on demand. Determinism is obtained by imposing a
processing order that is based on a recursive traversal of the structures of the
terms to be unified. In this context the rules in Figure 1 may be understood
as follows. Rules (1) and (2) implement a descent through abstractions. If the
number of abstractions at the top-level in the two terms are mismatched, an
η-expansion may be needed. This is done explicitly when the head of the non-
abstraction term is rigid or unchangeable under substitution (rule (3)) or when
both terms have existential variables as their heads, i.e., have heads that are
flexible (rule (4)). In the only remaining case, η-expansion is folded into the
substitution generation process (rules (6) and (7)). Once past abstractions, rule
(5) reduces the task of unifying two terms with the same rigid head to that
of unifying their (possibly empty) sequence of arguments in a pairwise fashion;
typing constraints ensure that the lengths of these sequences are the same. Rule
(8) solves an equation between two terms with the same flexible head; if these
are applications, typing constraints again ensure that they have the same num-
ber of arguments. Rule (10) solves such an equation when the two heads are
not identical but are bound by existential quantifiers that scope over the same
universal quantifiers. Rule (9) applies the raising transformation to prepare the

7



ground for rule (10) in case the proviso on quantifier scopes is not met initially.
The only remaining case relative to higher-order patterns is that where one of
the terms is an application with a flexible head and the other term has a rigid
head. Rules (6) and (7) attempt to solve this problem at the root using imitation
and projection substitutions, respectively, adding new equations to realize the
needed recursion over the arguments of the term with the rigid head.

The formal properties of the procedure are given by the following theorem
whose proof is to be found in an extended version of this paper:

Theorem 1. If Q(E) represents a unification problem, then the sequence of rule
applications starting from 〈Q(E), ∅〉 must terminate. Further, if the last tuple has
the form 〈Q′(nil), θ〉, then θ represents a most general solution to Q(E). Finally,
if Q(E) is a solvable higher-order pattern unification problem, then the tuple at
the end must have such a form.

Theorem 1 shows that the procedure we have outlined in this section is com-
plete for higher-order pattern unification problems. In a more general situation,
however, the procedure may terminate because the proviso on the forms of argu-
ments for terms with flexible heads is not satisfied. This can happen even when
the problem embodied in the state has a solution. Our procedure is therefore
seen not to be complete for general higher-order unification.

4 Eliminating the Quantifier Prefix

The explicit treatment of quantifier prefixes poses practical difficulties: Prefixes
grow and shrink as the result of other logical computations and maintaining them
therefore requires run-time effort. Using the prefixes also requires that contextual
information be examined in the recursive descent through term structure. It is
preferable that such a descent be predicated entirely on local information.

Towards understanding how quantifier prefixes may be obviated, we examine
the manner in which they are utilized in the unification procedure. These prefixes
are relevant to three tasks: (i) determining whether given variable occurrences
are of the existential or universal kind, (ii) ascertaining that the arguments of
a flexible term satisfy the scoping requirements of higher-order patterns, and
(iii) realizing the raising transformation embodied in rule (9). The first of these
tasks can also be accomplished by labelling each variable with its associated
type. The only additional information the prefix supplies for the second task is
the relative order of quantification. However, this information can be maintained
more succinctly by associating with each variable a numeric tag that records the
number of times an existential quantifier is immediately followed by a universal
one in the prefix up to and including the quantifier binding that occurrence. We
assume henceforth that this is done and that the tag for a variable y is given by
l(y). The test for the satisfaction of the higher-order pattern constraint becomes
a local one with these tags: a universal variable u is quantified within the scope
of the quantifier for an existential variable x just in case l(x) < l(u).

8



The information needed for the raising transformation seems more difficult
to encode in a local fashion at the outset: rule (9) requires knowledge of the uni-
versal quantifiers that intervene between two existential quantifiers in the prefix
and this is information that appears not to be available simply from looking at
the two (flexible) terms that are to be unified. There is, however, an important
observation to be made about the role of rule (9) in the unification procedure.
The purpose of this rule is essentially to prepare the stage for an application
of rule (10) that solves an equation between two flexible terms with distinct
heads. From this perspective, the universal variables over which g, the flexible
head of one of the pertinent terms in rule (9), is raised can be factored into two
kinds: those that appear as arguments of f , the flexible head of the other term,
and those that do not so appear. While rule (9) raises g over the latter kind of
variables as well, this raising is redundant since the subsequent application of
rule (10) prunes them away. Thus, the collection of variables over which g really
needs to be raised can be determined simply by looking at the universal variables
that appear as arguments of f and checking if they are quantified outside the
scope of the quantifier for g. The last aspect, as we have already noted, can be
decided by looking at the tags associated with the two variables.

We introduce notation to represent the operation of raising over a restricted
collection of variables: If g is an existential variable and y is a sequence of distinct
universal variables and de Bruijn indices, then y⇑g will denote the sequence

{u | u is a universal variable occurring in y such that l(u) ≤ l(g)}.
Now, the modified version of rule (9) and rule (10) both involve traversals over
the arguments of the flexible terms that can potentially be carried out simulta-
neously in an implementation. Towards facilitating this possibility, we combine
these rules into one new rule labelled (9’):

(9’) 〈(f(y) = g(z)) :: E, θ〉 −→ 〈θ′(E), θ′ ◦ θ〉,
for θ′ = {〈f, λ(m,h(q + v))〉, 〈g, λ(n, h(p + u))〉}, where m = |y|, n = |z|,
h is a new existential variable such that l(h) = l(f), p = y⇑g, q = p↓y,
and v = w↓y and u = w↓z for w = {a | a appears in both y and z},
assuming f 6= g and l(f) ≤ l(g).

In this rule, p collects the universal variables over which g must eventually be
raised by looking at the arguments of f and q represents a sequence of projections
over the arguments of f that is needed to match p. The calculation of p and q
captures the cumulative effect of raising as per rule (9) and the application of
rule (10) relative to the added arguments. The effect of rule (10) corresponding
to the original arguments of g and their counterparts in f is reflected in the
calculation of v and u, respectively.

The discussions of this section result in a unification procedure that is ob-
tained by modifying the rules in Figure 1 as follows: First, quantifier prefixes are
eliminated from unification problems and numeric and type tags are associated
with all universal and existential variables. Second, the new existential variables
introduced in rules (6)-(8) are all accorded the same numeric tag as f . Third,

9



the choice between rules (7) and (8) when a is a universal variable is made by
comparing the numeric tags of a and f , picking (7) if l(a) ≤ l(f) and attempting
to use (8) otherwise. Finally, rules (9) and (10) are replaced by rule (9’).

Let Q(E) be a unification problem that is presented with an explicit quanti-
fier prefix and let E′ be a version of the equations in E in which universal and
existential variables are distinguished and labelled with numeric tags consistent
with the prefix. We shall then say that E′ is obtained from Q(E) by prefix
erasure. The important property of the unification procedure described in this
section is the content of the following theorem whose proof involves using the
intended correspondence between tags and prefixes and the relationship between
rule (9’) in the present system and the earlier rules (9) and (10).

Theorem 2. Let E′ be obtained from Q(E) by prefix erasure. Then the sequence
of rule applications starting from 〈E′, ∅〉 must terminate. Further, if the last tuple
has the form 〈nil, θ〉, then θ is a most general unifier for Q(E). Finally, if Q(E)
is a solvable higher-order pattern unification problem, then the tuple at the end
must have such a form.

5 Combining Variable Substitution Steps

The procedure we have at this point solves equations involving two flexible terms
immediately. However, it resorts to an incremental process when one term is
flexible and the other is rigid and has arguments. This character is manifest in
the structure of rules (6) and (7) in Figure 1 that solve the problem if possible
at the ‘root’ and introduce new variables and equations towards solving the
rest of the problem in subsequent steps. There is a bookkeeping overhead to
this approach that can be avoided by combining the sequence of steps into a
mechanism that generates a single composite substitution for solving the entire
equation. Such a mechanism would obviously involve a traversal of the structure
of the rigid term. Rules (6) and (7) already require such a traversal towards
ascertaining that the head of the flexible term does not appear in the arguments
of the rigid one. Ideally, these two traversals should be folded into one.

Figure 2 presents a set of rewrite rules that embody a realization of the
substitution generation process of the kind desired. These rewrite rules have
a pseudo-procedural character in that some of them have as side conditions
additional computations using the same set of rules; the symbol ∗−→ is to be
interpreted in them as a sequence of rewritings. In interpreting these rules, all the
notational conventions described in conjunction with Figure 1 are to be utilized.
We also assume the following additional conventions: sR represents the reverse of
the sequence s, ε matches with the empty sequence and ϕ(t) denotes the result of
applying the substitution ϕ to each term in the sequence t. Further, in attempting
to match with the first two rules, i.e., the ones for mksubst, we require that the
second argument be head normalized and, similarly, before matching with the
next four rules, the second argument of bnd should be put in head normal form.
Finally, the satisfaction of side conditions that involve rewriting requires also
that the results of the rewriting have the forms shown for the righthand sides.

10



mksubst(f, λ(n, f(z)), y, m) −→ {〈f, λ(n + m, h(w))〉},
where w = {m + n− i | i ≤ n + m and (y↑n)[i] = z[i]} and
h is a new existential variable such that l(h) = l(f).

mksubst(f, t, y, m) −→ {〈f, λ(m, s)〉} ◦ θ,

if the head of t is not f and bnd(f, t, y, 0)
∗−→ 〈θ, s〉.

bnd(f, λ(n, t), y, l) −→ 〈θ, λ(n, s)〉,
if n > 0 and bnd(f, t, y, l + n)

∗−→ 〈θ, s〉.
bnd(f, a(t), y, l) −→ 〈θ, b(sR)〉,
provided foldbnd(f, 〈θ, ε〉, t, y, l)

∗−→ 〈θ, s〉 and
either a is a universal variable such that l(a) ≤ l(f) and b = a
or a appears in y↑l and b = a↓(y↑l).
bnd(f, g(z), y, l) −→ 〈{〈g, λ(|z|, h(p + u))〉}, h(q + v)〉,
where h is a new existential variable such that l(h) = l(f),
p = (y↑l)⇑g, q = p↓(y↑l), and u = w↓z and v = w↓(y↑l) for w = (y↑l)∩z,
provided f and g are distinct existential variables such that l(f) < l(g).

bnd(f, g(z), y, l) −→ 〈{〈g, λ(|z|, h(q + v))〉}, h(p + u)〉,
where h is a new existential variable such that l(h) = l(g),
p = z⇑f , q = p↓z, and v = w↓z and u = w↓(y↑l) for w = (y↑l)∩z,
provided f and g are distinct existential variables such that l(g) ≤ l(f).

foldbnd(f, 〈θ, s〉, ε, y, l) −→ 〈θ, s〉.
foldbnd(f, 〈θ, s〉, (t1, t), y, l) −→ foldbnd(f, 〈ϕ ◦ θ, (s1, s)〉, ϕ(t), y, l),

provided bnd(f, t1, y, l)
∗−→ 〈ϕ, s1〉.

Fig. 2. Calculating variable bindings

The rules in Figure 2 are intended for solving an equation of the form f(y) = t
where f is an existential variable, y is a sequence of arguments satisfying the
higher-order pattern restriction and t is an arbitrary term. Their usage begins
with an attempt to rewrite the expression mksubst(f, t, y, |y|). The outcome of a
successful rewriting will be a substitution with a binding for f . The substitution
may also bind other variables: t may contain occurrences of existential variables
and the solution to the equation may require that substitutions be made for these
as well. Of course, not every such equation will be solved: this may happen, as in
Section 3, because t violates the higher-order pattern restriction or because f(y)
and t are not unifiable. Such an effect would be manifest in our system by the
inability to rewrite mksubst(f, t, y, |y|) to a substitution. A failure of this kind
would arise, in turn, out of the inability to use any rule to rewrite an intermediate
expression either because it does not match with the lefthand side of the rule or
because of the violation of a side condition.

We comment briefly on the content of the rules in Figure 2, explaining this
with reference to the rules in Figure 1. Borrowing imagery from [2], the substi-
tution for f that solves the equation f(y) = t may be viewed as an ‘inversion’

11



(1’) 〈(λ(n, t) = λ(n, s)) :: E, θ〉 −→ 〈(t = s) :: E, θ〉, provided n > 0.

(2’) 〈(λ(n, t) = λ(m, s)) :: E, θ〉 −→ 〈((t = λ(m− n, s)) :: E), θ〉,
provided n > 0 and m > n.

(3’) 〈(a(t) = λ(m, s)) :: E, θ〉 −→ 〈((a↑m)(t↑m) = s) :: E, θ〉,
provided a is a de Bruijn index or a universal variable and m > 0.

(4’) 〈(a(t) = a(s)) :: E, θ〉 −→ 〈(t[1] = s[1]) :: . . . :: (t[n] = s[n]) :: E, θ〉,
where |t| = n, provided a is a de Bruijn index or a universal variable.

(5’) 〈(f(y) = t) :: E, θ〉 −→ 〈ϕ(E), ϕ ◦ θ〉
provided f is an existential variable and mksubst(f, t, y, |y|) −→ ϕ.

Fig. 3. Simplified higher-order pattern unification rules

of t relative to y. That such an inversion has to be performed is an essential
difference from first-order unification and its reflection is the third argument to
mksubst. Now, the only situation in which the equation with f occurring in t has
a solution is when this occurrence is at the head. The first rule for mksubst treats
this case, leaving all others to be handled by bnd. In the treatment of the other
cases, actual η-expansion of the flexible term is delayed—this is more efficient
and also necessary to treat embedded abstractions. The fourth argument of bnd
provides the information for this expansion when needed. The first rule for bnd
reflects this treatment of η-expansion. The second rule treats the case when a
rigid structure is encountered in the traversal, building rules (6) and (7) into
this process. These rules naturally lead to the examination of the arguments of
the rigid term. This process is compiled into the definition of bnd and is realized
through foldbnd that ‘maps’ bnd over the arguments. The third and fourth rules
for bnd use the idea embodied in rule (9’) to treat the situation where a flexible
term is encountered. The analysis splits into two cases here because, unlike in
rule (9’), we cannot guarantee that l(f) ≤ l(g). A final aspect to observe is the
effect the delaying of η-expansion has on the last three rules for bnd.

Our higher-order pattern unification procedure can be simplified based on the
substitution computation rules. The changed set of rules are shown in Figure 3.
These rules are to be used in the manner already described and the correctness of
the resulting procedure follows from Theorem 2 by formalizing the explanation
provided of mksubst earlier in this section. We omit the details.

6 Some Aspects Relevant to Actual Implementation

The presentation of the procedure of the last section is still at a high-level and
some optimizations are possible in an actual implementation. One such aspect
concerns the treatment of the lifting transformation on an argument sequence
that is needed in the course of generating a substitution term. Although our
presentation suggests that this is done at the relevant points in an eager fashion,

12



a delayed realization that folds lifting into the specific computation that needs
it is usually possible. Thus consider the calculation of the sequence

{m + n− i | i ≤ n + m and (y↑n)[i] = z[i]}
that appears in the first rule for mksubst. Finding this sequence requires an
iteration over z and y↑n. However, rather than adjusting y at the outset, the
iteration may be driven by z and the lifting operation can be performed on
demand. A similar observation also applies to the places where this operation is
needed in the definition of bnd.

Another observation concerns the computation of the raising and pruning
sequences of arguments in the last two rules for bnd. The presentation of these
rules may suggest that the sequences p, q, u, v and w are to be calculated
separately. In reality, however, the calculation of at least p and q on the one
hand and that of u, v and w on the other can be coordinated to yield two
essential iterations. The last rule for bnd presents an even better situation where
the entire computation can be carried out in one iteration assuming that the
elements of q + v can be shuffled so long as the elements of p + u are shuffled in
the same way: we sweep through the elements of z determining which ones to
keep in q + v either because of raising or because they also occur in y↑l and we
simultaneously determine the corresponding elements in p + u.

We have treated substitution non-destructively up to this point. This may
be changed in an implementation, thereby obviating the explicit application of
substitutions to argument sequences and equation lists. In a different direction,
our procedure currently fails when it discovers terms that are not higher-order
patterns. This failure may be treated by simply deferring the unification problem.
This is probably the best decision at the top-level but a different treatment is
possible within the substitution computation process. If it is discovered that t is
a flexible term that does not have the structure of a higher-order pattern when
attempting to rewrite the expression bnd(f, t, y, l), a substitution term of the
form h(y↑l) where h is a new existential variable such that l(h) = l(f) may be
returned and the equation h(y↑l) = t may be deferred.

7 An Example

We illustrate our procedure relative to the unification problem

∃x∀a∀b∀c∃y∀d((b(x(a, d)) = b(λ(2, (y(1))))) :: nil).

Associating the tags 0 with x, 1 with a, b, c and y and 2 with d allows the
quantifier prefix to be eliminated, reducing the problem representation to

(b(x(a, d)) = b(λ(2, (y(1))))) :: nil.

Rule (4’) of Figure 3 simplifies this to (x(a, d) = λ(2, (y(1)))) :: nil and rule (5’)
then calls for the rewriting of the expression mksubst(x, λ(2, (y(1))), (a, d), 2) to
a substitution that solves the sole equation in this list.

13



The rule for mksubst in Figure 2 that is relevant to this rewriting task is
the second one. This rule requires the expression bnd(x, λ(2, (y(1))), (a, d), 0)
to be transformed into the form 〈θ, s〉 where θ composed with the substitution
λ(2, s) for x is intended to be a solution to the original equation. The first rule
for bnd applies to this case, leading to the attempt to rewrite the expression
bnd(x, y(1), (a, d), 2); observe that (a, d) ↑ 2 = (a, d, 2, 1) represents the argu-
ments of x after an η-expansion. The evaluation of this last expression actually
represents the heart of the entire calculation. The rule relevant to its rewriting is
the third one for bnd. Conceptually, one component of this rule determines the
arguments of x over which y needs to be raised. This part is given by ((a, d)↑2)⇑y
that evaluates to (a). The projection over (a, d)↑2 of this sequence, notated as
(a)↓((a, d)↑2), yields (4) that represents the corresponding part of the substitu-
tion term being constructed for x. Another component of the rule finds that part
of y’s arguments that must not be pruned. This is calculated as ((a, d)↑2)∩(1),
yielding the sequence (1). The projection over the arguments of y and x of this
sequence have an identical result, both being given by (1). Combining the two
parts gives us the substitution λ(1, h(a, 1)) for y and the term h(4, 1) that rep-
resents the corresponding part of the substitution for x; h is a new existential
variable with tag 0 here. Embedding the substitution term for x in the right con-
text eventually yields the substitution {〈x, λ(4, h(4, 1))〉, 〈y, λ(1, h(a, 1))〉} that
is a most general unifier for the given problem.

It is instructive to contrast the calculation described above with the one that
results under a “blind” raising that first moves all existential variables to the
outermost level. Such a raising transforms the problem into the form

∃x∃y′∀a∀b∀c∀d((b(x(a, d)) = b(λ(2, (y′(a, b, c, 1))))) :: nil)

by substituting y′(a, b, c) for y. The subsequent substitution generation process
must then take responsibility for pruning away the unnecessary arguments intro-
duced during the initial raising. The advantages of our approach become evident
from this especially when we note that, in the typical setting, the initial raising
must be performed dynamically, the quantifier prefixes can get long and, finally,
most of the dependencies that are introduced during the indiscriminate raising
eventually have to be pruned away.

Most previously described procedures for higher-order pattern unification as-
sume that existential quantifiers have an outermost scope. The comparison of our
ideas with these is therefore obvious. The contrast with the approach presented
in [2] is more subtle. In the statement of the problem, this work also assumes
that all existential variables are quantified at the outermost level. However, by
exploiting properties of explicit substitutions and a special interpretation for in-
stantiatable variables, this requirement can be eliminated and, diverging from
the underlying theory, the eventual procedure presented in [2] seems to actually
allow for mixed quantifier prefixes. Moreover, this procedure does not explicitly
utilize quantifier prefixes, basing its behaviour mainly on the manipulation of
explicit substitutions. However, even given this, the computation that results
can manifest a character that is akin to redundant raising complemented by
pruning. In the particular example considered here, the behaviour will, in fact,

14



be quite similar to that seen under an initial blind raising. A detailed discussion
of this matter requires an exposition also of the explicit substitution approach
and is, for this reason, beyond the scope of this paper.

While the above discussion indicates both the significance and the novelty of
the ideas in this paper, a sceptical reader might also wish to see an experimental
comparison of the different approaches. A study of this kind requires an isolation
of just the part to be compared within a larger practical system. This is difficult
to realize: the question of whether to maintain quantifier prefixes dynamically or
to dispense with them is, for instance, quite fundamental and impacts on several
aspects of an implementation. Nevertheless, such a study is important and we
are currently examining ways to conduct it even if only in a fragmented manner.

8 Conclusion

We have presented in this paper a procedure that allows for the treatment of
higher-order pattern unification in the context of a mixed prefix of quantifiers.
Computation within this procedure is based on a recursive traversal of the terms
to be unified and only uses information that is available in the course of this
traversal. A particular characteristic of our approach is an on-the-fly treatment
of raising that exploits the interaction between this transformation and pruning.
This procedure has actually been implemented in C and incorporated into the
Teyjus system. We have also realized these ideas in an SML program [8] that
has been used in a meta-proof system built by Alwen Tiu and Dale Miller.

This work can be extended in a few different directions. First, there are
similarities in the dynamics of our procedure and the one presented in [2] even
though we have not utilized explicit substitutions. We would like to understand
these connections better since this is likely to shed light on the question of
whether the explicit substitutions based approach of [2] is really useful in the
higher-order pattern unification setting. In a different direction, we have found it
beneficial to employ explicit substitutions implicitly in reduction procedures [4]
and we would like to extend this approach also to the unification context. Finally,
higher-order pattern unification offers promising possibilities for compilation.
Some work has already been done on this topic [17] and we also have recently
started a systematic study oriented around a redesign of the λProlog abstract
machine that exploits the procedure of this paper.

9 Acknowledgements

This work began while the first author was on a sabbatical visit to the Protheo
group at LORIA and INRIA, Nancy and the Comete and Parsifal groups at
Ecole Polytechnique and INRIA, Saclay. Support has also been derived from the
NSF through a Graduate Fellowship and the grant numbered CCR-0429572 and
from the Digital Technology Center at the University of Minnesota.

15



References

1. G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit sub-
stitutions. Information and Computation, 157:183–235, 2000.

2. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit sub-
stitutions: The case for higher-order patterns. Technical Report 3591, INRIA,
December 1998.

3. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

4. C. Liang, G. Nadathur, and X. Qi. Choices in representation and reduction strate-
gies for lambda terms in intensional contexts. Journal of Automated Reasoning,
33:89–132, 2005.

5. S. Michaylov and F. Pfenning. An empirical study of the runtime behavior of
higher-order logic programs. In Conference Record of the Workshop on the λProlog
Programming Language, Philadelphia, July-August 1992.

6. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

7. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321–358, 1992.

8. G. Nadathur and N. Linnell. An SML implementation of higher-order pattern
unification, January 2004. Source code distributed over the web via the URL
http://www.cs.umn.edu/~gopalan/code/ho-pattern-unif.tar.gz.

9. G. Nadathur and D. Miller. An overview of λProlog. In K. A. Bowen and R. A.
Kowalski, editors, Fifth International Logic Programming Conference, pages 810–
827. MIT Press, August 1988.

10. G. Nadathur and D.J. Mitchell. System description: Teyjus—a compiler and ab-
stract machine based implementation of λProlog. In H. Ganzinger, editor, Auto-
mated Deduction–CADE-16, number 1632 in LNAI, pages 287–291. Springer, 1999.

11. T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Computer
Science, pages 342–349. IEEE Press, 1991.

12. T. Nipkow. Functional unification of higher-order patterns. In Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 64–74. IEEE Computer Society
Press, June 1993.

13. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

14. F. Pfenning. Logic programming in the LF logical framework. In G. Huet and
G. D. Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

15. F. Pfenning. Unification and anti-unification in the Calculus of Constructions. In
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85, 1991.

16. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Automated Deduction–CADE-
16, number 1632 in LNAI, pages 202–206. Springer, July 1999.

17. B. Pientka and F. Pfenning. Optimizing higher-order pattern unification. In
F. Baader, editor, Proceedings of the 19th Conference on Automated Deduction
(CADE-19), LNCS 2741, pages 473–487. Springer-Verlag, July 2003.

18. Z. Qian. Unification of higher-order patterns in linear time and space. Journal of
Logic and Computation, 6(3):315–341, 1996.

16


