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ABSTRACT
Substitution in the lambda calculus is a complex operation
that traditional presentations of beta contraction naively
treat as a unitary operation. Actual implementations are
more careful. Within them, substitutions are realized incre-
mentally through the use of environments. However, envi-
ronments are usually not accorded a first-class status within
such systems in that they are not reflected into term struc-
ture. This approach does not allow the smaller substitution
steps to be intermingled with other operations of interest
on lambda terms. Various new notations for lambda terms
remedy this situation by proposing an explicit treatment
of substitutions. Unfortunately, a naive implementation of
beta reduction based on such notations has the potential of
being costly: each use of the substitution propagation rules
causes the creation of a new structure on the heap that is
often discarded in the immediately following step. There
is, thus, a tradeoff between these two approaches. This pa-
per discusses these tradeoffs and offers an amalgamated ap-
proach that utilizes recursion in rewrite rule application but
also suspends substitution operations where profitable.
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1. INTRODUCTION
This paper concerns the treatment of substitution in the
implementation of beta reduction over lambda terms. Our
interest in considering this operation arises from situations
in which lambda terms are used as representational devices
as might happen within the context of proof assistants [4,
5, 7, 20], logical frameworks [6, 11] or metalanguages [17,
21]. In these situations, the task of the reduction appara-
tus is usually to transform a term into a head normal form
that then provides the basis for comparison and unification
operations. These head normal forms must, however, also
pay attention to structure under the scope of abstractions.
This is unlike the idea of computation in functional program-
ming languages where the form may be arbitrary under an
abstraction, i.e. where weak head normal forms suffice. The
form of reduction we are interested in here is, thus, what is
referred to as strong reduction in [9].

Traditional presentations of beta contraction take a rather
simplistic view of substitution. Thus, this operation is usu-
ally presented via a rewrite rule of the form

(λx t1) t2 → t1[x := t2]

where t1[x := t2] denotes the expression that is obtained
by replacing the free occurrences of x in t1 by t2, carry-
ing out the necessary renamings in the process to ensure
that binding scopes are properly respected. Unfortunately,
this substitution operation is much too complicated to be
treated as an atomic one, and actual implementations of
the rule have to break it up into a a series of steps that rep-
resent a controlled traversal over the structure of t1. These
implementations, in fact, include a treatment of terms with
environments or suspended substitutions. Such a treatment
has the auxiliary benefit of allowing substitution walks to
be combined. Thus, consider the reduction of the term
(λx λy t1) t2 t3. It is necessary in this process to substi-
tute t2 for x and t3 for y within the structure of t1. By
a process of delaying and combining substitutions, both re-
placements can be carried out simultaneously, resulting in a
savings both in effort and in the amount of new structure
created to represent the result of substitution. This kind
of an organization of the computation is central to many



lambda calculus interpreters and simplifiers, a primary ex-
emplar being the one described in [2].

In the kinds of situations that are of interest to us, ease in
the comparison of terms modulo α-conversion or bound vari-
able renaming is of special significance. A convenient way
to factor this matter in is to use the scheme of de Bruijn [3]
for eliminating names altogether from terms; this approach
obviates α-conversion in equality checking and is also ar-
guably sustainable from the perspective of efficiency in real-
izing beta reduction [14]. The use of the de Bruijn scheme
coupled with the desire to realize strong reduction, how-
ever, complicates the treatment of suspended substitutions.
In particular, when descending into abstraction contexts, it
is necessary to properly modify the correspondence between
de Bruijn indices and the terms that are to replace them.
Further, indices for free variables within the terms being
substituted need also to be modified to account for a new
abstraction that is introduced between them and the ab-
stractions eventually binding them. Issues of this kind have
been the subject of recent study and, in fact, find treatment
in the various explicit substitution notations that have been
proposed for the lambda calculus (e.g., see [1, 12, 19]). Such
notations can be reflected into the environment based ap-
proaches to reduction so as to extend them to treat strong
reduction. We indicate how this might be done in this paper.

Environment based reduction procedures, even if guided
by an explicit substitution notation, provide only an im-
plicit treatment of substitutions. In particular, the terms
eventually produced by such procedures do not contain sub-
parts encoding suspended substitutions. One consequence of
this is that opportunities for sharing substitution walks that
arise from mixing reduction with other kinds of computation
steps are missed. This observation is brought out by an ex-
ample relevant to formula manipulation. In a higher-order
approach to formula representation, the binding character
of quantifiers is captured by lambda abstraction. Thus,
the formula ∀xP (x) may be encoded by the lambda term

(all (λx P (x))), where P (x) denotes, recursively, the repre-
sentation of P (x). Now, relevant computations over formu-
las may involve the instantiation of universal quantifiers that
occur in them. Such instantiations can be realized by recog-
nizing patterns of the form (all P ) and generating the appli-
cation (P t) where t is the instantiating term; actual substi-
tution in this case is effected via beta contraction. Suppose
now that we have at hand a formula encoded by a term of the
form (all . . . (all P ) . . . ), i.e., one in which there are multi-
ple quantifiers scoping over the structure P . It is obviously
beneficial to realize all the instantiating substitutions in one
walk over P . However, to obtain this effect, it is necessary
to delay the actual computation of substitutions not only
within a reduction procedure but also over pattern match-
ing steps. Explicit substitution notations provide exactly
the means for supporting this kind of processing: they allow
substitutions to be represented explicitly in (sub)terms and,
hence, to be delayed over other computations. We indicate
how this might be done by defining a generalized notion of
head normal form and by describing a reduction procedure
that exploits this generalization.

The simplest approach to exploiting explicit substitutions
is to utilize the rewrite rules that propagate substitutions
directly; thus, the reduction procedure becomes one that
mainly organizes the application of these rules. A disadvan-
tage of this approach is that it may create many terms that

are discarded almost immediately as the next rewrite rule
is applied in reduction. The organization of environment
based procedures suggests a way to avoid such a poten-
tially profligate use of heap space. Rather than creating new
terms with embedded substitutions immediately, these may
be represented implicitly through the (environment) param-
eters and local variables in recursively structured processing.
However, when such a process has finally uncovered a gener-
alized head normal form, rather than actually effecting the
remaining substitutions, new structures can be created that
maintain such substitutions in suspended form. This ap-
proach combines the implicit and explicit treatments of sub-
stitutions and can accrue the benefits of both. We present
a reduction procedure that executes this idea.

One contribution of this paper, then, is to describe three
different approaches to the use of explicit substitutions in
the implementation of strong reduction.1 As another contri-
bution, we attempt to quantify the benefits perceived for the
different approaches by comparing the heap usage accruing
to the creation of new terms under each. This experimental
evaluation is carried out by embedding C based realizations
of each reduction procedure within the Teyjus implementa-
tion of λProlog [18] and using the resulting system to run
prototypical higher-order logic programs.

The rest of this paper is structured as the follows. In
the next section we describe an explicit substitution calculus
called the suspension notation [19]; this notation has already
been used in two practical systems [18, 22] and is therefore
an appealing basis for our study. Sections 3, 4 and 5 then
present reduction procedures realizing the three different ap-
proaches of interest. These procedures are presented using
the SML language both for simplicity of exposition and for
concreteness, although the same ideas can be deployed in
realizations in any other language as well.2 Section 6 con-
tains a quantitative comparison of these approaches using,
in fact, a C based realization of each. Section 7 concludes
the paper.

2. THE SUSPENSION NOTATION
Like other explicit substitution calculi, the suspension no-
tation conceptually encompasses two categories of expres-
sions, one corresponding to terms and the other correspond-
ing to environments that encode substitutions to be per-
formed over terms. In a notation such as the λσ-calculus
[1] that use exactly these two categories, an operation must
be performed on an environment expression each time it is
percolated inside an abstraction towards modifying the de
Bruijn indices in the terms whose substitution it represents.
The suspension notation instead allows these adjustments to
be carried out in one swoop when a substitution is actually
effected rather than in an iterated manner. To support this
possibility, this notation includes a third category of expres-
sions called environment terms that encode terms together
with the ‘abstraction context’ they come from.

1Some of these approaches may have been used in practical
systems in the past; e.g., a variant of one of these is embod-
ied in the Teyjus system. Our contribution, however, is in
explicitly identifying and contrasting the different possibili-
ties.
2We assume in this presentation that our readers are familiar
with SML, a tutorial introduction to which may be found,
for instance, in [10].



Formally, the syntax of terms, environments and environ-
ment terms in our notation is given by the following rules:

〈T 〉 ::= 〈C〉 | 〈V 〉 | #〈I〉 |
(〈T 〉 〈T 〉) | (λ 〈T 〉) | [[〈T 〉, 〈N〉, 〈N〉, 〈E〉]]

〈E〉 ::= nil | 〈ET 〉 :: 〈E〉
〈ET 〉 ::= @〈N〉 | (〈T 〉, 〈N〉)

In these rules, 〈C〉 represents constants, 〈V 〉 represents in-
stantiatable variables (i.e., variables that can be substituted
for by terms), 〈I〉 is the category of positive numbers and
〈N〉 is the category of natural numbers. Terms constitute
our enrichment of lambda terms. In keeping with the de
Bruijn scheme, #i represents a variable bound by the ith
abstraction looking back from the occurrence. An expres-
sion of the form [[t, ol, nl, e]], referred to as a suspension, is
a new kind of term that encodes a term with a ’suspended’
substitution: intuitively, such an expression represents the
term t with its first ol variables being substituted for in
a way determined by e and its remaining bound variables
being renumbered to reflect the fact that t used to appear
within ol abstractions but now appears within nl of them.
Conceptually, the elements of an environment are either sub-
stitution terms generated by a contraction or are dummy
substitutions corresponding to abstractions that persist in
an outer context. However, renumbering of indices may have
to be done during substitution, and to encode this the en-
vironment elements are annotated by a relevant abstraction
level. To be deemed well-formed, suspensions must satisfy
certain constraints that have a natural basis in our informal
understanding of their content: in an expression of the form
[[t, i, j, e]], the ‘length’ of the environment e must be equal to
i, for each element of the form @l of e it must be the case
that l < j and for each element of the form (t′, l) of e it
must be the case that l ≤ j.

The expressions in our notation are complemented by
a collection of rewrite rules that simulate β-contractions.
These rules are presented in Figure 1. We use the notation
e[i] in these rules to denote the ith element of the environ-
ment. Of the rules presented, the ones labelled (βs) and
(β′

s) generate the substitutions corresponding to the beta
contraction rule on de Bruijn terms and the rules (r1)-(r9),
referred to as the reading rules, serve to actually carry out
these substitutions. As an illustration of these roles for the
rules, we may consider their use in the reduction of the term

((λ ((λ (λ ((#1 #2) #3))) t2)) t3),

in which t2 and t3 denote arbitrary de Bruijn terms. Using
the (βs) rule, this term can be rewritten to

[[((λ (λ ((#1 #2) #3))) t2), 1, 0, (t3, 0) :: nil]].

We can now use the rules (r6) and (r5) to propagate the
substitution, thereby producing

((λ [[(λ ((#1 #2) #3)), 2, 1,@0 :: (t3, 0) :: nil]])
[[t2, 1, 0, (t3, 0) :: nil]]).

The (β′

s) rule is applicable to this term and using it yields

[[(λ ((#1 #2) #3)), 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]], 0) ::
(t3, 0) :: nil]].

Using the rules (r4)-(r7) some number of times now produces

(βs) ((λ t1) t2) → [[t1, 1, 0, (t2, 0) :: nil]]

(β′

s) ((λ [[t1, ol + 1, nl + 1,@nl :: e]]) t2) →
[[t1, ol + 1, nl, (t2, nl) :: e]]

(r1) [[c, ol, nl, e]] → c

provided c is a constant

(r2) [[x, ol, nl, e]] → x

provided x is an instantiatable variable

(r3) [[#i, ol, nl, e]] → #j

provided i > ol and j = i − ol + nl.

(r4) [[#i, ol, nl, e]] → #j

provided i ≤ ol and e[i] = @l and j = nl − l.

(r5) [[#i, ol, nl, e]] → [[t, 0, j, nil]]
provided i ≤ ol and e[i] = (t, l) and j = nl − l.

(r6) [[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]]).

(r7) [[(λ t), ol, nl, e]] → (λ [[t, ol + 1, nl + 1,@nl :: e]]).

(r8) [[[[t, ol, nl, e]], 0, nl′, nil]] → [[t, ol, nl + nl′, e]].

(r9) [[t, 0, 0, nil]] → t

Figure 1: Rewrite rules for the suspension notation

(λ ((#1 [[[[t2, 1, 0, (t3, 0) :: nil]], 0, 1, nil]]) [[t3, 0, 1, nil]])).

Noting the structure of rule (r3), it is easy to see that the
term [[t3, 0, 1, nil]] that appears here represents the result of
‘raising’ the index of each free variable in t3 by 1 as is neces-
sitated by its substitution under an abstraction. A similar
comment applies to the other embedded suspension. Using
the rule (r8), the overall term can be further transformed
into

(λ ((#1 [[t2, 1, 1, (t3, 0) :: nil]]) [[t3, 0, 1, nil]])).

The content of this rewriting step is, in effect, to merge
a ‘renumbering’ suspension into the suspension embedded
within it. Depending on the particular structures of t2 and
t3, the reading rules can be applied repeatedly to this term
to finally produce a de Bruijn term that results from the
original term by contracting the two outermost β-redexes.

The rule (r2) that is included in the collection pertain-
ing to ‘reading’ instantiatable variables. This rule is actu-
ally based on a particular interpretation of such variables:
substitutions that are made for them must not contain de
Bruijn indices that are captured by external abstractions.
This is a common understanding of such variables but not
the only one. For example, treating these variables as es-
sentially first-order ones whose instantiation can contain free
de Bruijn indices provides the basis for lifting higher-order
unification to an explicit substitution notation [8].

The (β′

s) rule is redundant to our collection if our sole
purpose is to simulate β-contraction. However, as is man-
ifest in the reduction example considered, it is the rule in
our system for combining substitutions arising from differ-
ent contractions into one environment and, thereby, for car-
rying them out in the same walk over the structure of the
term being substituted into. This rule will be exploited to
this effect in all the reduction procedures we describe. The
rule (r8) is also redundant, but, as is again demonstrated
in our reduction example, it serves a similar useful purpose
in that it allows a reduction to be combined with a renum-
bering walk after a term has been substituted into a new



(abstraction) context. In fact, the main uses of rules (r8)
and (r9) arise right after a use of rule (r5) and they may
therefore be eliminated in favour of the following enhanced
versions of (r5):

(r10) [[#i, ol, nl, e]] → t,
provided i ≤ ol, e[i] = (t, l) and nl = l.

(r11) [[#i, ol, nl, e]] → [[t, ol′, nl′ + nl − l, e′]],
provided i ≤ ol, e[i] = ([[t, ol′, nl′, e′]], l), and nl 6= l.

This course is followed in our reduction procedures.
The capability of the suspension notation to simulate re-

duction in the lambda calculus has been shown in [19] in two
steps. First, underlying every term in the suspension nota-
tion is intended to be a de Bruijn term that is obtained by
‘calculating out’ the suspended substitutions. The reading
rules can be shown to possess properties that support this
interpretation: they define a reduction relation that is both
strongly normalizing and confluent. It can then be shown
that the de Bruijn term t β-reduces to s if and only t can
be rewritten to s using the rules in Figure 1.

Our objective in reduction will be to produce head normal
forms for terms that can be used, for instance, in subsequent
comparison operations. The notion of a head normal form
can be lifted as follows to our notation, assuming a willing-
ness to represent suspensions explicitly:

Definition 1. A suspension term is in head normal form
if it has the structure

(λ . . . (λ (. . . (h t1) . . . tm)) . . . )

where h is a constant, a de Bruijn index or an instantiatable
variable. In this case, t1, . . . , tm are called its arguments, h

is called its head and n is its binder length.

We shall refer to head normal forms in the de Bruijn no-
tation as head normal forms in the conventional sense. Def-
inition 1 extends this notion by allowing the arguments to
be suspensions. We shall call the terms described by this
definition generalized head normal forms. The main utility
of these forms arises from the fact that they are also related
to the conventional ones at a rewriting level:

Theorem 2. Let t be a de Bruijn term. Further suppose
that the rules in Figure 1 allow it to be rewritten to a gen-
eralized head normal form that has h as its head, n as its
binder length and t1, . . . tm as its arguments. Then t has the
term

(λ . . . (λ (. . . (h |t1|) . . . |tm|)) . . . )

as a head normal form in the conventional sense, where |t|
denotes the normal form modulo the reading rules for a sus-
pension term t.

Proof. See [16]

3. ENVIRONMENT BASED REDUCTION
We now discuss head normalization procedures that exploit
the mechanisms provided by the suspension notations. All
the procedures that we consider will be graph-based, i.e.,
lambda terms will be represented as graphs within them
and destructive changes will be used to register, and thus to
share, reduction steps.

datatype rawterm = const of string

| bv of int

| ptr of (rawterm ref)

| app of (rawterm ref * rawterm ref)

| lam of (rawterm ref)

type term = (rawterm ref)

datatype eitem = dum of int

| bndg of clos * int

and clos = cl of term * int * int * (eitem list)

type env = (eitem list)

Figure 2: Type declarations for lambda terms

The first reduction procedure that we present makes use
of the new devices in the suspension notation only implic-
itly. Thus, within this procedure, the idea of suspension
will be used to effect the propagation of substitution over
terms. However, suspensions will be realized mainly through
the structure of recursive calls to the normalization routine;
terms that are input to the procedure or that are eventually
returned by it will not themselves contain embedded sus-
pensions. In the usual leftmost-outermost reduction control
regime that is inherent to head normalization, it is neces-
sary to record closures, or terms paired with environments,
in environments. The only explicit use of suspensions in
our present variety of reduction procedures will occur in the
encoding of such closures. Notice that these suspensions ap-
pear only at the top-level of terms and also do not persist
beyond the reduction process.

Figure 2 provides the datatype declarations in SML that
serve to represent terms and closures as needed in the reduc-
tion procedure of interest at the moment. We observe that
terms are realized as references to appropriate structures in
these declarations so as to support a graph based approach
to reduction. Complementing this encoding, we use the fol-
lowing two functions to dereference a term and to assign a
new value to a given term:

fun deref(term as ref(ptr(t))) = deref(t)

| deref(term) = term

fun assign(t1,ref(ptr(t))) = assign(t1,t)

| assign(t1,t2) = t1 := ptr(t2)

In the course of reduction, we will often need to look up
a value in an environment. The following function is useful
for this purpose:

fun nth(x::l,1) = x

| nth(x::l,n) = nth(l,n-1)

The head normalization procedure presently of interest
has two essential phases. In the first phase, it traces a
(generalized) head reduction sequence to produce a head
normal form as per Definition 1. Once such a form has
been unearthed, a second phase is entered to compute out
the effect of suspended substitutions on the arguments. In
both these phases, the relevant suspensions are encoded im-
plicitly in the parameters of the procedures. The functions
head norm1 and subst whose definitions appear in Figures 3



fun head_norm1(term as ref(const(c)),ol,nl,env,whnf) = (term,0,0,nil)

| head_norm1(term as ref(bv(i)),ol,nl,env,whnf) =

if (i > ol)

then (ref(bv(i-ol+nl)),0,0,nil)

else

(fn dum(l) => (ref(bv(nl - l)),0,0,nil)

| bndg(cl(t,ol’,nl’,e’),l) =>

if (l = nl)

then head_norm1(t,ol’,nl’,e’,whnf)

else head_norm1(t,ol’,nl+nl’-l,e’,whnf)

) (nth(env, i))

| head_norm1(term as ref(lam(t)),ol,nl,env,true) = (term,ol,nl,env)

| head_norm1(term as ref(lam(t)),ol,nl,env,false) =

let val (t’,_,_,_) =

if (ol = 0) andalso (nl = 0)

then head_norm1(t,0,0,nil,false)

else head_norm1(t,ol+1,nl+1,dum(nl)::env,false)

in (ref(lam(t’)),0,0,nil)

end

| head_norm1(term as ref(app(t1,t2)),ol,nl,env,whnf) =

let val (f,fol,fnl,fe) = head_norm1(t1,ol,nl,env,true)

in

(fn ref(lam(t)) =>

let

val t2’ = cl(t2,ol,nl,env)

val s’ = head_norm1(t,fol+1,fnl,bndg(t2’,fnl)::fe,whnf)

val (t’,ol’,nl’,env’) = s’

in

(if (ol = 0) andalso (nl = 0) andalso (ol’ = 0) andalso (nl’ = 0)

then assign(term,t’)

else ());

s’

end

| f =>

if (ol = 0) andalso (nl = 0)

then (assign(term,ref(app(f,t2))); (term,0,0,nil))

else

let val t = app(f,subst(t2,ol,nl,env))

in (ref(t),0,0,nil)

end

) (deref(f))

end

| head_norm1(term as ref(ptr(t)),ol,nl,env,whnf) =

head_norm1(deref(t),ol,nl,env,whnf)

Figure 3: Head normalization with implicit use of suspensions



fun subst(term as ref(const(c)),ol,nl,env) =

term

| subst(term as ref(app(t1,t2)),ol,nl,env) =

ref(app(subst(t1,ol,nl,env),

subst(t2,ol,nl,env)))

| subst(term as ref(lam(t)),ol,nl,env) =

ref(lam(subst(t,ol+1,nl+1,dum(nl)::env)))

| subst(term as ref(bv(i)), ol, nl, env) =

if i > ol

then ref(bv(i-ol+nl))

else

(fn dum(l) => ref(bv(nl - l))

| bndg(cl(t,ol’,nl’,e’),l) =>

if (l = nl)

then subst(t,ol’,nl’,e’)

else subst(t,ol’,nl’+nl-l,e’)

) (nth(env,i))

| subst(term as ref(ptr(t)),ol,nl,env) =

subst(deref(t),ol,nl,env)

Figure 4: Calculating out suspensions

and 4 serve to implement each of these phases. The invoca-
tion of head norm1 can occur in one of two modes depending
on the value of its last argument that is of boolean type. If
this argument is true, the intention is to produce a weak
head normal form in recognition of the fact that the term
to be reduced appears as the function part of an applica-
tion. This argument being false, on the other hand, signals
the desire for a (strong) head normal form. The value re-
turned by head norm1 will in general be a quadruple that
is to be interpreted implicitly as a suspension. In reality,
this suspension will be a trivial one in all cases other than
when a weak head normal form is computed and the term
component of the resulting suspension is an abstraction.

Any given term t may be transformed into head normal
form by invoking the procedure hnorm1 that is defined as
follows:

fun hnorm1(t) = head_norm1(t,0,0,nil,false)

Note that at the end of such a call, t is intended to be
a reference to a head normal form of its original value as
might be expected in a graph-based reduction scheme. That
hnorm1 correctly realizes this purpose is the content of the
following theorem.

Theorem 3. Let t be a reference to the representation
of a de Bruijn term that has a head normal form. Then
hnorm1(t) terminates and, when it does, t is a reference
to the representation of a head normal form of the original
term.

Proof. Only a sketch is provided. The rewriting steps
that are carried out by successive invocations of head norm1
and subst produced by hnorm1(t) can be seen to correspond
to a generalized head reduction sequence as defined in [16],
followed by a sequence of reading rules once a generalized
head normal form has been found. The former sequence
terminates when t has a head normal form and the reading
relation is noetherian. Overall termination is thus assured.
The final term must be a head normal form for t because of
the correctness of the rewrite rules in Figure 1.

datatype rawterm = const of string

| bv of int

| ptr of (rawterm ref)

| lam of (rawterm ref)

| app of (rawterm ref) * (rawterm ref)

| susp of (rawterm ref)*int*int*(eitem list)

and eitem = dum of int

| bndg of (rawterm ref) * int

type env = (eitem list)

type term = (rawterm ref)

Figure 5: Type declarations for suspension terms

The procedures that we have presented here create more
new terms than are strictly necessary. As an example, given
an application, there is no need to create a new version of it if
its subcomponents are unaffected by the reduction process.
This kind of improvement can be obtained by including a
flag in the returned value that indicates whether or not the
incoming term has been changed. We have omitted this opti-
mization here for the sake of simplicity of discussion. A simi-
lar effect can also be obtained with the reduction procedures
that use suspensions explicitly by associating a closedness
annotations with terms [16] and this simplification therefore
does not affect the comparisons we make between different
approaches in a later section.

4. EXPLICIT USE OF SUSPENSIONS
We now consider the possibility of using suspensions directly
in term reduction. To obtain this effect we need to first en-
hance the structure of our term representation in SML. Fig-
ure 5 provides the new datatype declarations for this pur-
pose. The main difference between these declarations and
the ones in Figure 2 is that suspensions are now formally
accepted as one possibility for terms. The suspension nota-
tion also allows terms of any arbitrary form, as opposed to
only closures, to appear in environments and the structure
of environment items is also modified to reflect this possibil-
ity. Terms are, once again, realized as references to support
graph based reduction and we assume that the functions as-
sign and deref are available as before to support destructive
updates and the concomitant dereferencing of pointers.

In the present version of reduction, our intention is to use
the rewrite rules more or less directly in trying to produce a
head normal form. This approach involves the creation on
the heap of representations for all the new structures that
appear on the right hand side of a rule immediately on the
application of the rule. Thus, suppose that at a certain point
in computation, we use the rule

[[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]])

for propagating substitutions over applications. In the mode
that we are presently considering, we will create the new
structures [[t1, ol, nl, e]] and [[t2, ol, nl, e]] and destructively
update the term on the lefthand side with an application
formed out of these two pieces before proceeding to the next
step in reduction. The other facet of the present approach
is, of course, that we will not shy away from leaving suspen-
sions in terms when it is unnecessary to evaluate them. In



fun beta_contract(term,t1 as ref(susp(t3,ol,nl,dum(nl1) :: e)),t2) =

if nl = nl1 + 1

then term := susp(t3,ol,nl1, bndg(t2,nl1) :: e)

else term := susp(t1,1,0,[bndg(t2,0)])

| beta_contract(term,t1,t2) = term := susp(t1,1,0,[bndg(t2,0)])

fun lazy_read(term as ref(susp(t,ol,nl,env))) = lazy_read_aux(term,deref(t),ol,nl,env)

| lazy_read(_) = ()

and

lazy_read_aux(t1,t2 as ref(const(_)),_,_,_) = t1 := !t2

| lazy_read_aux(t1,ref(bv(i)),ol,nl,env) =

if i > ol

then t1 := bv(i - ol + nl)

else

((fn dum(l) => t1 := bv(nl - l)

| bndg(t2,l) =>

( if (nl = l)

then assign(t1,t2)

else

((fn ref(susp(t3,ol’,nl’,e’)) => t1 := susp(t3,ol’,nl’+ nl - l,e’)

| t => t1 := susp(t,0,nl - l,nil)

) (deref t2));

(lazy_read t1)

)

) (nth (env,i)))

| lazy_read_aux(t1,ref(app(t2,t3)),ol,nl,env) =

t1 := app(ref(susp(t2,ol,nl,env)),ref(susp(t3,ol,nl,env)))

| lazy_read_aux(t1,ref(lam(t2)),ol,nl,env) =

t1 := lam(ref(susp(t2,ol+1,nl+1,dum(nl)::env)))

| lazy_read_aux(t1,t,ol,nl,env) =

(lazy_read(t) ; lazy_read_aux(t1,deref(t),ol,nl,env))

fun head_norm2(term as ref(app(t1,t2)),whnf) =

(head_norm2(t1,true) ;

(fn ref(lam(t)) => (beta_contract(term,t,t2); head_norm2(term,whnf))

| _ => ()) (deref t1))

| head_norm2(ref(lam(t)),false) = head_norm2(t,false)

| head_norm2(term as ref(susp(_,_,_,_)),whnf) = (lazy_read(term) ; head_norm2(term,whnf))

| head_norm2(term as ref(ptr(t)),whnf) = (head_norm2(t,whnf) ; assign(term,t))

| head_norm2(_,_) = ()

fun hnorm2(t) = head_norm2(t,false)

Figure 6: Head normalization using suspensions and immediate rewriting



particular, our reduction procedure will return generalized
head normal forms for terms and will not need to calculate
out the effects of substitutions at the end as was the case for
the earlier reduction procedure. A consequence of this ap-
proach is, of course, that our procedure may encounter sus-
pensions during processing and it should therefore include
mechanisms for incrementally ‘unravelling’ these kinds of
terms.

Figure 6 presents the definition of a function head norm2
that realizes this overall approach to reduction. This pro-
cedure can, once again, be invoked in one of two modes de-
pending the value of its second argument that is of boolean
type. If this value is true, this signals the desire for a weak
head normal form of the term whose representation is ref-
erenced by the first argument. A strong head normal form
is to be produced otherwise. An auxiliary procedure called
lazy read is used in this code to realize the incremental expo-
sure of a non-suspension structure from a suspension when-
ever a term of this category is encountered during normal-
ization. Finally, the function beta contract that appears in
this code has the purpose of determining which of the (βs)
and (β′

s) rules is appropriate to use when a beta redex has
been discovered and of effecting the corresponding rewriting
step.

The intended use of the function hnorm norm2 is as fol-
lows. Given a reference t to the representation of a lambda
term that we wish to transform to head normal form, we
evaluate the expression hnorm norm2(t,false); this is, in
fact, the interface that is provided by the function hnorm2.
Upon return from this invocation, the expectation is that t

is a reference to a head normal form of the input term. That
head norm2 correctly realizes this purpose is the content of
the following theorem.

Theorem 4. Let t be a reference to the representation of
a suspension term that translates via the reading rules to a
de Bruijn term with a head normal form. Then hnorm2(t)
terminates and, when it does, t is a reference to the repre-
sentation of a generalized head normal form of the original
term.

Proof. Once again we provide only a sketch. The succes-
sive invocations of head norm2 and lazy read that are engen-
dered by the evaluation of hnorm2(t) produce a sequence of
rewrites that correspond to what has been identified in [16]
as a generalized head reduction sequence relative to the term
represented by t. It has also been shown in [16] that every
such sequence must terminate if the underlying de Bruijn
term has a head normal form. This argument guarantees
termination of hnorm2(t). The fact that it is the rewrite
rules in Figure 1 that are implemented now assures us that
it is a normal form of the term corresponding to t that is
found.

5. COMBINING IMPLICIT AND EXPLICIT
USES OF SUSPENSIONS

The two previous reduction procedures have complemen-
tary benefits and drawbacks. The procedure that uses sus-
pensions explicitly adopts a somewhat naive approach to
rewriting and ignores the natural flow of control present in
reduction. Thus, consider again the rule for propagating
substitutions over applications:

[[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]])

An eager creation of the structures [[t1, ol, nl, e]], [[t2, ol, nl, e]]
and the application on the righthand side has the potential
for using heap space unnecessarily: the very next steps may
require the first of these suspensions to be rewritten and,
a few steps later, it is possible that the outer application
itself may be recognized as a beta redex. The procedure
that uses suspensions only implicitly, avoids this problem
by maintaining information needed for reduction in the re-
cursion stack and committing structures to heap only when
these are known to be necessary. However, this procedure
does not allow any suspensions into terms at all. There are
problems with this structure as well. In particular, it be-
comes impossible under this approach to delay substitutions
over other computations and, hence, to combine substitution
walks that arise from beta redexes that are created in the
course of other processing.

Fortunately, an amalgamation of the two approaches can
be attempted. The essential idea is to follow the basic pro-
cessing regime of the environment based reduction proce-
dure but, in the end, when a generalized head normal form
has been exposed, to leave the uncomputed substitutions in
the form of suspensions.

In order to implement this approach it is, of course, neces-
sary to use the richer representation of terms that includes
an encoding of suspensions. Assuming the datatype decla-
rations in Figure 5, a collection of ML functions that realize
the proposed idea are shown in Figure 7. Let t be a refer-
ence to the representation of a term the we wish to head
normalize. The function invocation hnorm3(t) is intended
to achieve this effect: upon return from this call, t should be
a reference to a generalized head normal form of the original
term.

The main work in reduction is actually performed by the
function head norm3. This function has a structure that is
in most respects identical to the environment based proce-
dure head norm1 that we have seen earlier. There are, in
fact, only two significant differences. The first of these re-
lates to the processing of an application when this has been
recognized to be a (left) part of a head normal form. In such
a situation, rather than computing out the effects of a non-
trivial substitution, the argument part of the application is
encapsulated as a suspension. The second difference arises
from the fact that the new procedure must be prepared to
also process suspensions. It is interesting to note that, in
order to preserve the ability to commit structures to heap
only when necessary, the embedded suspension needs to be
processed first in this case. This order is different from the
one used by the reduction procedure of the previous section
that commits structures to heap eagerly. However, the pro-
gression of reduction steps is still encompassed by the gen-
eralized notion of head reduction sequence defined in [16].

The correctness of hnorm3 is the content of the following
theorem whose proof is similar to those of Theorems 3 and
4.

Theorem 5. Let t be a reference to the representation of
a suspension term that translates via the reading rules to a
de Bruijn term with a head normal form. Then hnorm3(t)
terminates and, when it does, t is a reference to the repre-
sentation of a generalized head normal form of the original
term.



fun make_explicit(t,0,0,nil) = t

| make_explicit(ref(lam(t)),ol,nl,env) = ref(lam(ref(susp(t,ol+1,nl+1,dum(nl)::env))))

fun head_norm3(term as ref(const(c)),ol,nl,env,whnf) = (term,0,0,nil)

| head_norm3(term as ref(bv(i)),0,0,nil,whnf) = (term,0,0,nil)

| head_norm3(term as ref(bv(i)),ol,nl,env,whnf) =

if (i > ol) then (ref(bv(i-ol+nl)),0,0,nil)

else

(fn dum(l) => (ref(bv(nl-l)),0,0,nil)

| bndg(t,l) =>

if (nl = l) then head_norm3(t,0,0,nil,whnf)

else

((fn ref(susp(t2,ol’,nl’,e’)) => head_norm3(t2,ol’,nl’+ nl - l,e’,whnf)

| t => head_norm3(t,0,nl-l,nil,whnf)

) (deref t))

) (nth(env, i))

| head_norm3(term as ref(lam(t)),ol,nl,env,true) = (term,ol,nl,env)

| head_norm3(term as ref(lam(t)),ol,nl,env,false) =

let val (t’,ol’,nl’,env’) =

if (ol = 0) andalso (nl = 0)

then head_norm3(t,0,0,nil,false)

else head_norm3(t,ol+1,nl+1,dum(nl)::env,false)

in (ref(lam(t’)),ol’,nl’,env’)

end

| head_norm3(term as ref(app(t1,t2)),ol,nl,env,whnf) =

let val (f,fol,fnl,fenv) = head_norm3(t1,ol,nl,env,true)

in

(fn ref(lam(t)) =>

let val t2’ = if (ol = 0) andalso (nl = 0)

then t2

else ref(susp(t2,ol,nl,env))

val s = head_norm3(t,fol+1,fnl,bndg(t2’,fnl)::fenv,whnf)

val (t’,ol’,nl’,env’) = s

in

(if (ol = 0) andalso (nl = 0) andalso (ol’ = 0) andalso (nl’ = 0)

then assign(term,t’)

else ());

s

end

| f => if (ol = 0) andalso (nl = 0)

then (assign(term,ref(app(f,t2))); (term,0,0,nil))

else (ref(app(f,ref(susp(t2,ol,nl,env)))),0,0,nil)

) (deref(f))

end

| head_norm3(term as ref(susp(t,ol,nl,env)),ol’,nl’,env’,whnf) =

let val s = head_norm3(t,ol,nl,env,whnf)

val t’ = (make_explicit s)

in

( assign(term,t’);

if (ol’ = 0) andalso (nl’ = 0)

then s

else head_norm3(term,ol’,nl’,env’,whnf)

)

end

| head_norm3(term as ref(ptr(t)),ol,nl,env,whnf) =

head_norm3(deref(t),ol,nl,env,whnf)

fun hnorm3(t) = head_norm3(t,0,0,nil)

Figure 7: Head normalization using suspensions implicitly and explicitly



implicit explicit combination
suspensions suspensions approach

[typeinf ] 20,834,989 11,044,078 4,508,664
30,478,132 26,982,390 9,447,584

[compiler] 4,565,938 777,803 331,973
6,117,710 1,866,979 693,387

[church] 227,271 214,334 148,970
411,368 500,448 236,158

[hilbert] 220,358 27,263 11,932
356,882 69,086 21,535

Figure 8: Heap usage for different reduction ap-

proaches

6. COMPARISONS
We now consider a quantification of the relevance in prac-
tice of the intuitions underlying the various reduction pro-
cedures discussed in the earlier sections. The higher-order
logic programming language λProlog provides an excellent
framework for conducting such a study. This language em-
ploys lambda terms as a means for realizing higher-order
approaches to the processing of syntactic structure. Thus,
within it, lambda terms are available for use in represent-
ing objects whose understanding embody binding notions,
and operations such as higher-order unification and reduc-
tion can be utilized for manipulating such representations
in logically meaningful ways. By running a variety of actual
λProlog programs and collecting suitable data over these,
we can therefore obtain an understanding of the impact of
the different approaches to reduction.

We have carried out the described idea by taking advan-
tage of a compiler and abstract machine based implemen-
tation of λProlog called Teyjus. This system, that is im-
plemented in the C language, supports a low-level encoding
of lambda terms based on the suspension notation. More-
over, reduction computations within it are isolated to a head
normalization procedure that is invoked at relevant points
to produce terms in a form that is appropriate for subse-
quent comparison operations. As a basis for our study, we
have implemented three different versions of this normaliza-
tion procedure following the lines of discussion in this paper,
and we have metered these to collect information about the
number of heap cells created over the entire duration of any
given user program.3

The data that we provide here has been obtained by run-
ning the following representative user programs:

• [typeinf ] A program that infers type schemes for ML-
like programs based on the Damas-Milner system.

• [compiler] A compiler for a small imperative language
[13].

• [church] A program that involves arithmetic computa-
tions with Church numerals and associated combina-
tors.

3Another important factor to assess is the impact on pro-
cessing time of the different strategies. However, a system-
atic study of this aspect must optimize the reduction im-
plementation to the particular strategy used and must also
include garbage collection costs. A consideration of these
issues is beyond the scope of the present study.

• [hilbert] A λProlog encoding of Hilbert’s Tenth Prob-
lem.

The first two programs exemplify what might be called the
Lλ style of programming [15]. Computations in this class
proceed by first dispensing with all abstractions in lambda
term encodings of objects, then carrying out a first-order
style analysis over the remaining structure and eventually
abstracting out the new constants. As an programming
idiom, this is a popular one amongst λProlog, Elf and Is-
abelle users and, in fact, arguably the most important case
to consider in performance assessments. The third program
represents a situation in which mainly normalization com-
putations are involved over lambda terms and the last pro-
gram includes also cases of genuine higher-order unification
calculations.

Figure 8 tabulates information that we have gathered us-
ing the different implementations of head normalization over
this collection of examples. The two rows corresponding to
each λProlog program indicate, respectively, the number of
internal term nodes and the number of heap cells created in
the course of executing the program; these figures are dis-
tinct because the number of heap cells needed for a given
term node varies in the Teyjus implementation depending
on the type of the node. The columns are to be understood
as follows: implicit suspensions corresponds to the reduction
scheme where suspensions are recorded only in the structure
of recursive procedure calls, explicit suspensions corresponds
to the approach that explicitly realizes each rewrite rule in
Figure 1 and the combination approach represents the amal-
gamation of the two other ones.

The data that we have presented indicate a significant su-
periority, especially in the case of the Lλ-style of programs,
in terms of reduced heap usage for an approach that utilizes
suspension explicitly in term representation. These bene-
fits are also further enhanced by an exploitation of the pro-
cessing structure to delay the commitment of the effects of
rewriting to the heap.

7. CONCLUSION
We have examined different approaches to using explicit sub-
stitutions in reduction computations in this paper. Most
simplifiers for the lambda calculus actually take advantage
of this notion in spirit, as is manifest in their use of envi-
ronments and closures. However, it is often believed that
an intrinsic use of explicit substitutions—in particular, a re-
flection of substitution encodings into term structure and
the creation of such terms during reduction—can be costly
in terms of space usage. There is some justification to this
belief when the entire structure of the term to be normal-
ized is known at the outset and when the reduction process
is invoked only once over this term. However, there are
many metalanguages, logical frameworks and proof assis-
tants where computations over lambda terms have a signifi-
cantly different character. In these systems, many substitu-
tions may have to be performed into the same subcomponent
of a given object in the course of a larger calculation. These
substitutions are effected by creating and contracting at dif-
ferent points of time β-redexes that span over the relevant
structure. An explicit rendition of substitutions appears to
be the only way to combine the effecting of such substitu-
tions and, hence, to avoid redundant structure creation in
these cases. Experiments that we have conducted show that



this can be a significant factor in practical situations. The
delaying of substitutions even with a naive realization of
rewriting can, as we have seen, substantially reduce the de-
mand for heap space. Moreover, we have described a more
sophisticated approach to rewriting that exploits the pro-
cessing structure to avoid the creation of redundant inter-
mediate terms towards further reducing heap usage.

Our focus in this work has been mainly on a comparison
of space usage and the elimination of redundant structure
creation. Another important factor to consider is the time
efficiency of each of the reduction approaches. The proce-
dure based on the naive view of rewriting is the simplest to
realize and the Teyjus system, in fact, embodies an itera-
tive rendition of this procedure using a term stack. We are
currently examining optimized implementations of the other
reduction strategies and also a way in which to take garbage
collection costs into account. Once a treatment of these as-
pects has been determined, it will be meaningful to obtain,
and contrast, time measurements. A different aspect that is
relevant to study concerns the compiled realization of reduc-
tion. Recent work relative to the Coq system has shown how
to use compilation assuming eager reduction and substitu-
tion strategies to obtain substantial speedups in comparison
with the existing interpretive approach [9]. The examples
considered in this study seem to be ones where the terms to
be normalized are available in complete form at the begin-
ning of the computation. As we have argued, this situation
is different from what is encountered in metalanguages such
as λProlog and Elf. It is, therefore, of interest to see if ex-
plicit substitutions can be built into a compilation model
towards harnessing the benefits of laziness in substitution
over and above those of compilation in these contexts.
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