
Optimizing the Runtime Processing of Types
in a Higher-Order Logic Programming Language

Gopalan Nadathur and Xiaochu Qi

Department of Computer Science and Engineering, University of Minnesota,
4-192 EE/CS Building, 200 Union Street SE, Minneapolis, MN 55455

Email: {gopalan,xqi}@cs.umn.edu, Fax: 612-625-0572

Abstract. The traditional purpose of types in programming languages
of providing correctness assurances at compile time is increasingly being
supplemented by a direct role for them in the computational process.
In the specific context of typed logic programming, this is manifest in
their effect on the unification operation. Their influence takes two differ-
ent forms. First, in a situation where polymorphism is permitted, type
information is needed to determine if different occurrences of the same
name in fact denote an identical constant. Second, type information may
determine the specific form of a binding for a variable. When types are
needed for the second purpose as in the case of higher-order unification,
these have to be available with every variable and constant. However, in
many situations such as first-order and higher-order pattern unification
it turns out that types have no impact on the variable binding process.
As a consequence, type examination is needed in these situations only
for the first of the two purposes described and even here a careful pre-
processing can considerably reduce their runtime footprint. We develop
a scheme for treating types in these contexts that exploits this obser-
vation. Under this scheme, type information is elided in most cases and
is embedded into term structure when this is not entirely possible. Our
approach obviates types when properties known as definitional generic-
ity and type preservation are satisfied and has the advantage of working
even when these conditions are violated.

1 Introduction

This paper concerns the runtime treatment of types in a higher-order logic pro-
gramming language that incorporates polymorphic typing. We are interested in
a setting where types are used prescriptively, i.e., where their purpose is to im-
pose coherence conditions on expressions in a program. The traditional utility
for such conditions is to express limitations in the applicability of specific op-
erations, thereby providing a control over the kinds of computations that are
attempted. This is, in fact, a role for types that is relevant to program correct-
ness and one that is typically discharged at compile-time. There is, however,
another mode in which types can be used: they can be employed to influence the
kind of computation that is carried out. Such a usage of types leads to ad hoc

polymorphism, a facet that is exploited systematically in object-oriented pro-
gramming and also sometimes imported into functional programming contexts
for efficiency reasons [15]. It is when types are used in this fashion that they
exhibit a runtime presence.

The two uses of types that we describe above apply also in the logic pro-
gramming setting; they are present, for instance, in the language λProlog [12].
The runtime effects of types are characterized within this paradigm by their role
in the unification operation. This operation is carried out by a possibly repeated
application of two phases. One of these phases is that of term simplification, a
critical part of this computation being that of matching the constants at the
heads of the two terms that are being unified. In a polymorphic setting, differ-
ent instances of a constant with a particular name may have distinct associated
types and information must be available for determining if these can be made
identical. The other phase is one in which a binding is determined for a variable
that appears at the head of one of the terms. Types can affect this variable bind-
ing phase as well, impacting thereby on the shape of unifiers rather than merely
on the question of unifiability. When types influence both phases, as they do in
the case of higher-order unification [3], they must be available with each variable
and constant appearing in a term.

Types typically have a rich structure in declarative programming languages,
making their runtime processing a costly operation. The usual resolution to this
problem in the typed logic programming setting is to restrict the language so
as to altogether eliminate their need in computations. The language that is at
the center of most such proposals is either a first-order one or, at least, uses
unification in a first-order way. In such a situation, types can be made irrelevant
to the variable binding phase. Conditions are then imposed on the structure of
the declared types of constants, the instance types of the predicates that appear
as the head of clauses and possibly on the mode in which predicates are used to
ensure that types are not needed to determine unifiability either. Exemplars of
this approach are those presented in [1, 2, 5, 9].1

Our concern in this paper also is to minimize the impact of types on runtime
behaviour. However, we take the view that we cannot change the language to suit
our needs as its implementors. Instead, we focus on a combination of compile-
time analysis and a processing structure that can reduce the runtime footprint
of types. The key ingredients of our approach are the following:

– We orient our implementation around a form of unification in which types
do not impact on the variable binding phase; this allows us to elide types
with variables.

– Following [4], we utilize information available from signature declarations to
factor types for constants into a fixed skeleton part that we discard and a
variable part that we carry around at runtime.

1 Both [1] and [2] seem to suggest that their conditions can be applied on a “per con-
stant” and “per clause” basis. However, the proposals in these papers are incorrect
if interpreted in this way; see Section 5 for a specific example to this effect.

2

– Using a compile-time examination of predicate definitions and the structure
of the types for constants, we isolate and eliminate those variable parts in
types over which unification is guaranteed to succeed.

The scheme we describe allows all runtime computations over types to be elim-
inated when the conditions known as type generality and type preservation re-
quired by many of the previously described approaches are met and degrades
gracefully to function also in situations where these are not satisfied.

The rest of this paper is organized as follows. In the next two sections we
describe the typed language and we present a computational model for it around
which we orient our implementation ideas. In Section 4 we show how compile-
time type checking and the structure of types can be exploited to eliminate
much of the type information with non-predicate constants. These methods are
not quite as useful for predicate constants. For such constants, we have to analyze
the usage of type information in goal invocations, an aspect that we discuss in
Section 5. We conclude the paper in Section 6 with an indication of how the
ideas that are presented in it are actually being used.

2 The Syntax of the Typed Language

We consider the core language of λProlog in this paper with a restriction: we
do not permit predicate quantification and we disallow predicates and logical
symbols within the arguments of predicates. This omission simplifies our presen-
tation without seriously limiting the applicability of the scheme that we develop.

The types that are used are similar to the ones employed in a language such
as SML. We begin with sorts and type variables and use type constructors to
build structured types over these. We assume a collection of built-in sorts such as
int, string, and o (that stands for propositions) and the well-known unary type
constructor list. Syntactically, type variables are distinguished as tokens that
begin with uppercase letters. Using this vocabulary, we obtain types such as
int, (list int) and (list A). The last is an example of a polymorphic type whose
different manifestations are obtained by suitably instantiating the variable A.
Existing collections of sorts and type constructors can be enhanced through
mechanisms whose details we omit. We use a curried syntax for constructed
types. Thus, if pair has been identified as a binary type constructor, then the
expression (pair int string) is a type; note that a constructor must be given
a number of arguments equal to its arity to produce a legitimate type. The
types that we have described thus far constitute atomic types. The language
also admits of function types, written as α → β where α and β are types.
Parentheses are omitted in type expressions by assuming that → associates to
the right. Using this convention, a function type may be depicted in the form
α1 → · · · → αn → β where β is an atomic type. Such a type has α1, . . . , αn as
its argument types and β as its target type. This notation and terminology is
extended to atomic types by allowing the argument types to be missing. We do
not permit o to appear in argument types.

3

The terms of the language are those of a lambda calculus restricted by the
types just described. The starting point is provided by a collection of constants
and variables each element of which has a designated type. We assume as built-
in the usual integer and string constants of type int and string and the list
constructors nil of type (list A) and :: of type (A → (list A) → (list A)), the
latter being written as an infix, right associative operator. Additional constants
can be identified together with their types in a manner that we do not detail here.
In constructing terms, we are permitted to use constants at instances of their
defined types. In particular, the terms are given with their associated types by
the following rules: (i) a variable is a term of its associated type, (ii) a constant is
a term of any instance of its defined type, (iii) if t and s are terms of type α → β
and α respectively, then (t s) is an (application) term of type β, and (iv) if x is
a variable of type α and t is a term of type β, then λx t is an (abstraction) term
of type α → β. In writing terms, we shall use the conventions that application
associates to the left and has higher priority than abstraction.

We assume a notion of equality on terms that is given by the rules of α-, β-
and η-conversion. Types ensure that these rules can be used to convert every term
into a head-normal form. Such a form has the structure λx1 . . . λxn (h t1 . . . tn),
where h is a constant or variable; we shall refer to h as the head of the term
and to t1, . . . , tn as its arguments. We also observe that, given two head-normal
forms of the same type, the α- and η-rules allow us to arrange the abstractions
at the front to be identical in number and in the names for the bound variables.
We utilize these facts implicitly in the discussions that follow.

Programming in the language is based on two sets of formulas called program
clauses and queries or goals. Formulas in these two classes are constructed using
logical symbols from atomic ones that are actually terms of type o with (predi-
cate) constants as head. Denoting atomic formulas by the symbol A and using x
to represent variables that do not have o as a target type, program clauses and
goals are the D and G formulas given by the following syntax rules:

D ::= A | G ⊃ A | ∀xD
G ::= A | ∃xG | ∀xG | G ∧G | D ⊃ G.

Computation consists of attempting to solve a closed query relative to a collec-
tion of closed program clauses in a manner that we explain in the next section.

We will use devices familiar from Prolog when we have to depict actual
programs. In particular, we will adopt Prolog’s manner for writing implications in
program clauses, its convention of making top-level universal quantifiers implicit
by using names beginning with uppercase letters for quantified variables and its
method for depicting sets of clauses. As an illustration, the program

{ ∀l (append nil l l),
∀x∀l1∀l2∀l3 ((append l1 l2 l3) ⊃ (append (x::l1) l2 (x::l3))) },

in which we assume append to be a predicate constant of type

(list A) → (list A) → (list A) → o,

4

will be rendered as

append nil L L.
(append (X::L1) L2 (X::L3)) :- (append L1 L2 L3).

Similarly, the convention for making top-level existential quantifiers in queries
implicit will also be used. Thus, the query

∃f ∀a (append (a::nil) (b::a::nil) (f a)),

where we assume b to be a constant of a (new) type i, will be depicted as

∀a (append (a::nil) (b::a::nil) (F a)).

Solving a query is intended to produce a bindings for its implicitly quantified
variables. Thus, in this instance, the result would be the binding λx (x::b::x::nil)
for F. This query incidentally illustrates the fact that the language is higher-order
and that computation in it can take place under a mixed prefix of quantifiers.

We have thus far been silent about the manner in which types are associated
with variables. A means for doing this may be included with the abstractions
and quantifiers that introduce them in terms. It is also possible to infer a unique
most general type for them using ideas familiar from SML; using this approach
we would, for instance, infer the type (list A) for the variable L that appears
in the first clause for append above. For constants, we have to contend with
the fact that their defined types may be refined in specific contexts of use; this
happens for instance for both :: and nil in the term (1::nil). In the end, these
specific type associations may have to be carried into computations. We shall
depict them as subscripts on variables and constants in the next section when
we spell out the evaluation model. We then devote our attention to the efficient
treatment of these type annotations.

3 The Model of Computation

Given a program P, let us denote the set of instances of clauses in P obtained
by substituting ground types for the type variables appearing in them by {P}t.
Similarly, let us denote the set of all ground type instances of a goal G by {G}t.
A goal G is then intended to be solvable from a program P if and only if there
is a G′ ∈ {G}t such that {P}t ` G′ holds in intuitionistic logic. Our language
possesses the uniform provability property [8] and this fact allows us to use a
procedure similar to the one for Prolog in addressing this derivability question.
In particular, given a complex goal, we may proceed by simplifying it as per
its top-level logical symbol. When this symbol is an existential quantifier, we
introduce a special logic variable that serves as a place-holder for a term whose
precise shape will be determined as the search proceeds. When the goal has been
reduced to an atomic one, we use clauses from the program in a backchaining
mode. This step makes use of unification and may yield a further goal to solve,
leading to a repetition of the overall process.

5

There are, however, new aspects to be dealt with arising out of the richer
syntax of our language. One such aspect relates to the possible presence of
implications in goals. The program can change dynamically because of this and
the solution of each subgoal must therefore be relativized to its own program.
Another issue concerns the treatment of mixed prefixes of quantifiers. Universal
quantifiers in goals lead to the introduction of new constants during computation
and unification must be designed to respect the scope of such constants. To
realize this requirement in an interpreter, we think of annotating each constant
and logic variable with a level indicator and using these annotations in an occurs-
check phase in unification.

θ ∈ unify(A, A′)

P, n ` A, θ
[ATOM]

θ ∈ unify(A, A′) θ(P), n ` θ(G), θ′

P, n ` A, θ′(θ)
[BC]

where A′ ∈ [P]n where G ⊃ A′ ∈ [P]n

P ∪ {D}, n ` G, θ

P, n ` D ⊃ G, θ
[IMP]

P, n ` G1, θ
′ θ′(P), n ` θ′(G2), θ

P, n ` G1 ∧G2, θ
[AND]

P, n ` G[x := Xn], θ

P, n ` ∃x G, θ
[SOME]

P, n + 1 ` G[x := cn+1], θ

P, n ` ∀x G, θ
[ALL]

where X is a new logic variable where c is a new constant of the same
of the same type as x type as x

Fig. 1. The operational semantics rules

Towards implementing these ideas, we allow logic variables to appear in our
formulas and we label each such variable and constant with a natural number;
we display this label where needed below as a superscript on the corresponding
symbol. We then orient the operational semantics of our language around the
derivation of judgements of the form P, n ` G, θ, where P is a program, n is
a natural number, G is a goal and θ is a substitution for logic variables and
type variables. Let us write F ∈ [P]n if F can be obtained from a clause in P
by first picking fresh names for the type variables that appear in it and then
instantiating the universal quantifiers that appear at its head with new logic
variables carrying the label n. Moreover, let us denote the result of replacing
the variable x in a formula F with t by the expression F [x := t]. Then the rules
shown in Figure 1 allow us to derive the judgements that are of interest to us.
To solve the (top-level) goal G from the program P, we label all the constants
appearing in G and in P with 0 and then try to construct a derivation for
P, 0 ` G, θ for some θ using these rules. Notice that the substitution component
of such a judgement actually constitutes the result produced by a computation
and, when thought of in this manner, this imposes a sequentiality in the solution
of conjunctive goals using the rule [AND].

The rules in Figure 1 rely on a unification judgement. In elaborating this,
we shall assume that all the unification problems that we encounter dynamically
satisfy the following restriction: whenever a logic variable appears as the head of

6

(1) 〈(λx t = λx s :: E, θ〉 −→ 〈(t = s) :: E, θ〉.
(2) 〈(aτ t1 . . . tn) = (aσ s1 . . . sn) :: E, θ〉

−→ 〈φ(t1 = s1 :: ... :: tn = sn :: E), φ ◦ θ〉,
provided a is a constant or a variable bound by an abstraction
and φ is a most general unifier for τ and σ

(3) 〈(Fσ y1 . . . yn) = t) :: E, θ〉 −→ 〈ϕ(E), ϕ ◦ θ〉
provided F is a logic variable and mksubst(Fσ, t, [y1, . . . , yn]) = ϕ.

(4) 〈(t = (Fσ y1 . . . yn) :: E, θ〉 −→ 〈ϕ(E), ϕ ◦ θ〉
provided F is a logic variable and mksubst(Fσ, t, [y1, . . . , yn]) = ϕ.

Fig. 2. Simplification rules for higher-order pattern unification

a term, it has as arguments a sequence of distinct variables bound by abstrac-
tions or distinct constants with label greater than that attached to the logic
variable.2 This is what is known as the higher-order pattern restriction [7, 13]
and it has been observed to be satisfied by almost all unification problems that
arise in real computations [6]. The solution to such problems can be computed
by descending through the structures of terms first in a simplification mode and
later in a variable binding mode if needed [10]. The rules in Figure 2 sketch
the general form of this process. These rules use lists of equations to capture
recursion through term structure. To determine if θ ∈ unify(A,A′), we initiate
the rewriting process with the tuple 〈A = A′ :: nil, ∅〉, hoping to reduce it to the
form 〈nil, θ〉. Notice that rule (2) requires a most general unifier to be computed
for two types. This is actually an instance of the well understood first-order uni-
fication problem. We also use in this rule the fact that if two terms of identical
type have the same constant or bound variable as their heads, then they must
have the same number of arguments.

The invocation of mksubst(Fσ, t, [y1, . . . , yn]) in the last two rules initiates
the variable binding phase. This computation is intended to determine a substi-
tution for Fσ and possibly for logic variables appearing in t that make the terms
(Fσ y1 . . . tn) and t identical, if they are in fact unifiable. Towards this end,
a traversal is carried out over the structure of t, determining at each subterm
what needs to be done with the head symbol if a unifying substitution is to be
generated. If this symbol is a constant with label less than or equal to that of
Fσ or if it is a variable bound by an abstraction appearing inside t, then it can
appear directly in the term to be substituted for Fσ. If it is a constant that
has a label larger than that of Fσ or it is a variable bound by an abstraction
outside of t, then it may appear in an instance of (Fσ y1 . . . yn) only if it is in
the list [y1, . . . , yn] and in this case the term that Fσ is bound to must carry
out a suitable projection. Finally, the head symbol may itself be a logic variable.
Suppose that the subterm is (Gρ z1 . . . zm) where Gρ is a logic variable and
the arguments z1, . . . , zm satisfy the pattern restriction. Now, the only situation
in which Gρ may be identical to Fσ with the terms still being unifiable is when
the subterm under consideration is all of t. If this is the case, then n must be

2 We assume that the term is in normal form in making this determination.

7

identical to m and the the substitution for Fσ should prune away all the argu-
ments for which yi and zi do not agree. If Gρ is distinct from Fσ, we have two
cases to consider. In one case, the label of Gρ may be smaller than or equal to
that of Fσ. In this case, it is necessary to “prune” those elements of z1, . . . , zm

that do not appear in y1, . . . , yn and a suitable pruning substitution for Gρ and
a corresponding projection for the subterm must be computed. If the label of Gρ

is larger than that of Fσ, it is necessary to replace this variable in the subterm
by one that has the same label as Fσ to prevent subsequent instantiations that
violate scope restrictions. However, while doing this, the elements of y1, . . . , yn

that can legitimately appear in an instantiation of Gρ and that are not already
contained in z1, . . . , zm must be added to the sequence of arguments of the sub-
term. To realize this correctly, the earlier described pruning substitution for Gρ

must be complemented by a “raising” component.
The above sketch of mksubst suffices for the purposes of this paper. We refer

the reader interested its detailed presentation to [10]. Relative to that descrip-
tion, we have the following theorem:

Theorem 1. Let P be a program and let G be a goal and let P ′ and G′ be
obtained from these by labelling all the constants appearing in them with the
number 0. Further suppose that all the terms appearing in a derivation rooted
at P ′, 0 ` G′, θ (for an arbitrary θ) satisfy the higher-order pattern restriction.
Then there is a derivation of P ′, 0 ` G′, ϕ for some ϕ if and only if there is a
G′ ∈ {G}t such that {P}t ` G′ in intuitionistic logic.

There is a shortcoming in the computation process that we have described in
that it “stalls” when it encounters a higher-order unification problem outside the
higher-order pattern fragment. There is a simple solution to this that is used in
practical systems (e.g. see [14]): the equation that causes the process to stall may
be deferred and reexamined later or presented as a qualification on computed
answers. The detailed technical development of this approach is orthogonal to
the runtime treatment of types and hence we do not discuss it any further.

4 Using Declared Types to Simplify Type Annotations

Types need to be carried into runtime computations only insofar as they affect
the course of computation. Towards understanding how this might happen, it is
useful to consider the different phases of the interpreter that was presented in
the previous section.

In the first phase, characterized by the rules in Figure 1, goals are simpli-
fied and a unification computation may be initiated in support of backchaining.
Types do not determine the steps in this phase although some bookkeeping
work relating to them may have to be done. In particular, the rules [ALL] and
[SOME] must attach the type of the quantified variable to the new constant and
logic variable introduced by these rules if in fact these types are needed later
during execution. An important point to note with these constants and vari-
ables, though, is that the same type is shared by every instance and, in terms of
checking identity, a simple lookup of the names suffices.

8

The next phase, defined by the rules in Figure 2, corresponds to the sim-
plification of the top-level fixed structure of terms in the unification process.
Types are used in an essential way in one of these rules, specifically in rule (2).
In determining the applicability of this rule, it is necessary to match up both
the name and the type of the constants or abstracted variables that appear as
the heads of the two terms being unified. Observe, however, that if these heads
are matching abstracted variables or constants introduced by the [ALL] rule for
goals, then the types must already be identical. Thus the checking or unification
of types is necessary only for the genuinely polymorphic constants declared at
the top-level in the program.

The final phase is the one that determines variable bindings in unification. A
closer look at the description we have provided of the computation carried out by
mksubst reveals the following facts. First, the types of logic variables are neither
examined nor refined in the process of constructing bindings. Notice that we do
have to check the identities of these variables at certain places but, by virtue of
our earlier observation, a simple comparison of names is all that is needed for this.
Second, we sometimes have to compare constants (and abstracted variables), but
these comparisons are all restricted to the ones that appear as the arguments
of the logic variable in the appropriate instance of rule (3) or (4) in Figure 2.
The higher-order pattern restriction requires that the constants in this collection
have a higher label than the logic variable at the head, implying thereby that the
must have been introduced by the use of an [ALL] rule. Hence every instance of
any one of these constants must already be known to have the same type. From
these observations, it is evident that types are incidental to the variable binding
computation.

The above analysis makes clear the fact that the only symbols with which
we need to maintain types at run time are the top-level declared constants. A
further examination allows us to simplify even this information. In the first in-
stance, the defined type for such a constant provides a skeleton that compile-time
type checking ensures every occurrence of the constant shares. The only possible
differences between the types of distinct occurrences is in the instantiations of
the variables that occur in the skeleton. Thus, the type annotations for each con-
stant can be systematically transformed by a compiler into a (possibly empty)
list of type variable instantiations and it is only the simpler types in this list that
need to be unified during execution. As a particular example, given the types
(list A) for nil and A → (list A) → (list A) for ::, a compiler can determine
that only the bindings for the type variable A need to be stored with instances
of these constants. Let us write type annotations as a special first list argument
for constants and let us temporarily use an prefix syntax for ::. Then, by virtue
of the present observation, the structure

(:: [int → (list int) → (list int)] 1 (nil [list int]))

can be rendered into the form (:: [int] i (nil [int])) instead.
The manner in which unification problems are processed actually allows for

a further refinement of type annotations. The usage of the rules in Figure 2
begins with an equation between two (predicate) terms that have the same type

9

and each transformation preserves this relationship between the terms in each
equation. Thus, at the time when the types of different instances of a constant
are being unified in rule (2), their target types are known to be identical. This
has the special implication that there is no need to check the bindings for the
variables in the type skeleton that also occur in the target type and so these
may be eliminated from the annotations. In the case that all the variables in
the skeleton type also appear in the target type, i.e., when the constant type
satisfies the type preservation property [2], the compiler can conclude that no
type annotation needs to be maintained with the constant. This happens to be
the case for both :: and nil, for instance, and so all type information can be
elided from lists that are implemented using these constants.

We formalize the ideas expressed up to this point in the following fashion.
First, we attach with each constant an initial “list of types” argument. This list
is empty for the constants introduced by the [ALL] rule and for instances of the
other constants it consists of bindings for the variables that appear only in the
argument part of their declared types, presented in an order determined by a
compiler. This extra argument is simply carried along with the constant when a
variable substitution is being constructed. The only real use of it occurs in rule
(2) of the simplification phase of unification that is refined into the form shown
in Figure 3. The second rule in this collection is needed because constructors of
function type can appear without their arguments in programs in our higher-
order language. We also note that the types list argument is likely to be empty
in most situations and it may be profitable to provide a distinct treatment of
this case in an implementation.

(2.1) 〈(a [τ1, ..., τk] t1...tn) = (a [σ1, ..., σk] s1...sn) :: E, θ〉
−→ 〈φ((t1 = s1) :: ... :: (tn = sn) :: E), φ ◦ θ〉,

where n > 0, and φ is a most general unifier for {〈τ1, σ1〉, . . . , 〈τk, σk〉},
if a is a constant.

(2.2) 〈(a [τ1, ..., τk]) = (a [σ1, ..., σk]) :: E, θ〉 −→ 〈E, θ〉,
if a is a constant.

(2.3) 〈(a t1...tn) = (a s1...sn) :: E, θ〉 −→ 〈((t1 = s1) :: ... :: (tn = sn) :: E), θ〉,
is a is a variable bound by an abstraction.

Fig. 3. The refined structure simplification rule

The correctness of the implementation scheme we have described in this
section is stated in the following theorem. The proof of this theorem requires,
first of all, a specific formal presentation of the compiler function that transforms
the types of constants into lists of type variable bindings. A subsequent argument
then builds on this definition to establish a correspondence between compile-time
type checking and the runtime type unification in rule 2.1 in Figure 3 on the one
hand and the unification that is carried out at runtime over the entire type in
rule (2) of Figure 2 on the other hand.

10

Theorem 2. The modified interpreter described in this section in combination
with the scheme for transforming type annotations is sound and complete with
respect to the interpreter presented in Section 3.

The ideas we have described here may be applied to the append program. We
note that append has a type variable appearing in its argument types that does
not appear in its target type and the binding for this variable must therefore
annotate its occurrences. We have already seen that type annotations can be
dropped from :: and nil. Thus, the definition of append is transformed into the
following:

append [A] nil L L.
(append [A] (X::L1) L2 (X::L3)) :- (append [A] L1 L2 L3).

The query considered in Section 2 correspondingly becomes

∀a (append [i] (a::nil) (b::a::nil) (F a)).

The scheme that we have described is capable also of dealing with the situ-
ation where the type preservation property is violated. As an example, consider
a representation of heterogenous lists based on the constants null of type lst and
cons of type A → lst → lst. The list containing 1 and “list” as its elements would
then be represented by the following term:

(cons [int] 1 (cons [string] “list” null)).

5 Eliminating Type Annotations for Predicates

Predicate names are constants whose defined types have o as their target types.
A consequence of this is that the ideas of the previous section do not allow any
of the variables that appear in the type of a predicate constant to be dispensed
with from the annotation that adorns it. This is unfortunate because in many
instances these annotations have no tangible effect on a computation. A partic-
ular illustration of this fact is provided by the transformed definition of append
that we saw towards the end of Section 4. The type variable A that annotates
the head of each of these clauses can be unified with any type and hence has no
impact on the applicability of the clause to a given query. Actually carrying out
its unification with an incoming type will result in extracting a binding that, in
the second clause, is passed on to a recursive call of append. However, this call
will also at most result in the type binding being extracted and passed along
without affecting the computation in an observable way. The type annotation
for append can therefore be dispensed with without adverse effect.

But is there a systematic way for identifying situations in which a type anno-
tation on a predicate constant can be so eliminated? This is the issue we address
in this section. The approach we adopt consists of determining which elements
of the types list associated with a predicate name could potentially influence the
course of a computation. For the others, we can conclude that they will never
be needed in an essential way and hence they can be eliminated.

11

The process of determining the potentially “needed” elements in the types
list can be oriented around the clauses defining the predicate constant.3 We
must include in this analysis also the clauses that appear on the lefthand sides
of implication goals in the bodies of clauses. If a constant appears as the head
of such a clause, we assume every element in its types list is needed: in the
model of computation we have described, the values for the type variables that
appear in such a clause get fixed when the clause is added to the program
and consequently runtime unification with them may determine a binding that
influences the subsequent usage of the clause. For a clause that appears at the
top-level, our analysis can be more sophisticated. A particular element in the
types list for its head predicate is needed if the value in the relevant position in
the list associated with the head in that clause is anything other than a variable;
unification over this element must be attempted during execution since it has
the possibility of failing in this case. Another situation in which the element is
needed is if it is a variable that occurs elsewhere in the same types list or in the
types lists associated with a non-predicate constant that occurs in the clause.
The rationale here is that either the variable will already have a binding that
must be tested against an incoming type or a value must be extracted into it
that is used later in a unification computation of consequence. A more subtle
situation for the variable case is when it occurs in the types list associated with
the predicate head of a clause that appears on the left of an implication goal in
the body. In this case the binding that is extracted at runtime in the variable
has an impact on the applicability of the clause that is added and consequently
is a needed one.

The only case that remains to be considered is that where a variable element
in the types list for the clause head appears also in the types list associated with
a predicate constant in a goal position in the body, either at the top-level or,
recursively, in an embedded clause definition. We could, somewhat simplistically,
treat such predicate constants also like the other constants. The drawback with
this is that the type annotation with the predicate constant appearing in the
body may itself be eliminable and then an opportunity for optimization would
be missed. We could, of course, determine this neededness information for the
body predicate constant first and then use this information in the analysis for
the given clause head. As an example of how this might work, suppose that print
is a predicate of type A → o and printlist is a predicate of type (list A) → o and
consider the following clauses annotated in the style of Section 4:

print [int] X :- {code for printing an integer value}.
print [string] X :- {code for printing a string value}.
printlist [C] nil.
printlist [C] (X::L) :- print [C] X, printlist [C] L.

3 The calculation we describe is sensitive to our being able to fix statically the full set
of clauses for a predicate. We obtain this ability here by assuming that the top-level
goal does not contain implications. In reality, the module system of λProlog gives
assistance in this task. A detailed discussion is beyond the scope of this paper.

12

In this code, print is predicate that is polymorphic in an ad hoc way and that
makes genuine use of its type “argument.” This information can be used to
determine that it needs its type adornment and the following analysis exposes
the fact that printlist must therefore carry its type annotation.4

The approach suggested above needs refinement to be applicable to a context
where dependencies between definitions can be iterated and even recursive; at
present, it doesn’t apply directly even the definition of append. The solution
is to use an iterative, fixed-point computation that has as its starting point
the neededness information gathered by initially ignoring predicate constants
appearing in goal positions in the body of the clause. In effecting this calculation
relative to a given program P, we employ a two-dimensional global boolean array
called needed whose first index, p, ranges over the set of predicate constants
appearing in P and whose second index, i, is a positive integer that ranges over
the length of the types list for p; this array evidently has a variable size along
its second dimension. The intention is that if, at the end of the computation,
needed[p][i] is false then the ith element in the types list associated with p does
not have an influence on the solution of any goal G from P. We compute the
value of this array by initially setting all the elements of needed to false and then
calling the procedure find needed defined in Figure 4 on the program P.

The invocation of find needed on any program P must clearly terminate. The
correctness of the procedure is then the content of the following lemma.

Lemma 1. Let p be a predicate constant defined in P. Further, let it be the case
that when find needed(P) terminates, needed[p][i] is set to false. Then the ith
element in the types list associated with p has no impact on the solvability of any
goal G from P.

Proof. Only a sketch is provided. Suppose that the specific value of a component
of the types list of a predicate constant p has a relevance to a some computation.
Then it must become relevant at a specific point in the backchaining sequence.
An induction on the distance of the relevant call of p from this point in the
sequence shows that needed[p][i] must have been set to true by find needed: the
base case is accounted for by the initialization code and the inductive case is
handled by the fact that the iteration concludes only when a fixed point is
reached.

The lemma leads naturally to the following theorem:

Theorem 3. Let P and G be a program and a goal that is annotated in style
described at the end of Section 4. Let P and G be the program and goal that
result from P and G by eliminating those components from the types lists of
predicates that are found not to be needed by the invocation of find needed(P).
Then G succeeds from P if and only if G succeeds from P using the interpreter
described in Section 4.
4 This example vividly illustrates the problem with interpreting the conditions de-

scribed in [1] and [2] as applicable on a “per clause” and “per constant” basis. Using
them in this way, we would drop the type annotation with print list and therefore
not be able to pass this information on to print where it is genuinely needed.

13

procedure find needed(P) {
init needed(P);
repeat
for each top-level non-atomic clause C in P {process clause(C);}

until (the value of needed does not change)
}
procedure init needed(P) {

for every embedded clause C in P with (p [τ1, ..., τk] t1 ... tn) as head
for 1 ≤ i ≤ k {needed[p][i] = true};

for every top-level clause C in P with (p [τ1, ..., τk] t1 ... tn) as head
for 1 ≤ i ≤ k
if τi is not a type variable {needed[p][i] = true;}
else {
if ((τi occurs in τj for some j such that 1 ≤ j ≤ k and i 6= j) or

(τi occurs in the types list of a non-predicate constant in C) or
(τi occurs in the types list of a predicate constant appearing
as the head of an embedded clause in the body of C))

needed[p][i] = true;
}

}
procedure process clause(C) {

let C be of the form (p [τ1, . . . , τk] t1 . . . tn) :- G
for 1 ≤ i ≤ k
if needed[p][i] is false then {needed[p][i] = process body(G, τi)};

}

function process body(G, τ) : boolean {
if G is
∀G′ , ∃G′ : return process body(G′, τ);
G1 ∧G2: return (process body(G1, τ) or process body(G2, τ));
D ⊃ G: return (process body(G, τ) or process embedded clause(D, τ));
atomic and of the form (q [σ1, ..., σl] s1 ...sm):
if τ occurs in σi for some i such that 1 ≤ i ≤ l and needed[q][i] is true
then return true;
else return false;

}

function process embedded body(D, τ) : boolean {
if D is
∀D1 : return process embedded body(D1);
G ⊃ A: return process body(G, τ));
atomic: return false;

}

Fig. 4. Determining if a predicate type argument is needed

14

Using this theorem and find needed, the type annotation for append can be
eliminated and the definition of this predicate can be reduced to essentially the
untyped form. In general, if every clause is type general in the sense of [2], then
types can be eliminated entirely from runtime computations. Note, however, that
we permit programs that do not satisfy this property and that our ideas can be
useful in reducing type annotations even with such programs.

6 Conclusion

A polymorphically typed higher-order logic programming language like λProlog
requires type information to be carried into computations. We have described
in this paper ways in which the amount of information that must be available
and manipulated at runtime can be significantly reduced. A critical part of our
approach is a shift from using a full higher-order unification procedure to one
based on higher-order patterns. There can be some differences in the end re-
sults of computations as a result of this shift but, in most cases, the changes are
actually for the better in that more precise answers are produced. The modi-
fied model also facilitates a static analysis of the dynamic effects of types that
eventually lies at the heart of our approach for eliding them in programs.

The ideas we have described here need extension in one respect to be actually
applicable to λProlog. In this language, predicate constants can in fact appear
within terms. When they appear in such contexts, they have to be treated like
other (non-predicate) constants and, under the present scheme, must carry bind-
ing for their type variables. However, even in this situation, the ideas in Section 5
can be applied to the extensional uses of predicate constants. Moreover, by ex-
ploiting visibility properties of constants emanating from the modules language
of λProlog, we can profitably lift the kind of analysis that we have described
in Section 5 for predicate constants that appear extensionally to constants that
appear within terms. As a particular case, then, the reach of these ideas can also
be extended to constants that appear both intensionally and extensionally.

The work that we have described here is being utilized in a new implemen-
tation of λProlog. They already have an impact in yielding an abstract machine
for the language that is considerably simpler than the one underlying the Teyjus
system [11]. We expect in the future to be able to compare the performance
of the two systems and to isolate the efficiency benefits of the reduced type
processing that are supported by the ideas in this paper.

Acknowledgements

Support for this work has been provided by the NSF through the grant numbered
CCR-0429572 and by the Digital Technology Center and the Department of
Computer Science and Engineering at the University of Minnesota.

15

References

1. M. Hanus. Horn clause programs with polymorphic types: Semantics and resolu-
tion. In J. Diaz and F. Orejas, editors, TAPSOFT 89, pages 225–240. Springer-
Verlag, 1989. Lecture Notes in Computer Science Vol 352.

2. M. Hanus. Polymorphic higher-order programming in Prolog. In G. Levi and
M. Martelli, editors, Proceedings of the Sixth International Logic Programming
Conference, pages 382–398. MIT Press, 1989.

3. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

4. K. Kwon, G. Nadathur, and D.S. Wilson. Implementing polymorphic typing in a
logic programming language. Computer Languages, 20(1):25–42, 1994.

5. T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda, editors, Proceedings
of the International Logic Programming Symposium, pages 202–217. MIT Press,
1991.

6. S. Michaylov and F. Pfenning. An empirical study of the runtime behavior of
higher-order logic programs. In Conference Record of the Workshop on the λProlog
Programming Language, Philadelphia, July-August 1992.

7. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

8. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

9. A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295–307, 1984.

10. G. Nadathur and N. Linnell. Practical higher-order pattern unification with on-
the-fly raising. Technical Report 2005/2, Digital Technology Center, April 2005.
To appear in the Proceedings of ICLP’05.

11. G. Nadathur and D.J. Mitchell. System description: Teyjus—a compiler and ab-
stract machine based implementation of λProlog. In H. Ganzinger, editor, Au-
tomated Deduction–CADE-16, number 1632 in Lecture Notes in Artificial Intelli-
gence, pages 287–291. Springer-Verlag, July 1999.

12. G. Nadathur and F. Pfenning. The type system of a higher-order logic program-
ming language. In F. Pfenning, editor, Types in Logic Programming, pages 245–283.
MIT Press, 1992.

13. T. Nipkow. Functional unification of higher-order patterns. In Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 64–74. IEEE Computer Society
Press, June 1993.

14. F. Pfenning. Elf: A language for logic definition and verified metaprogramming.
In Fourth Annual Symposium on Logic in Computer Science, pages 313–322. IEEE
Computer Society Press, June 1989.

15. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pages 181–192, 1996.

16

