
Draft: Not for distribution

An Approach to Modularity and Separate
Compilation in Logic Programming

Steven Holte
Department of Computer Science

Brown University
sholte@gmail.com

Gopalan Nadathur
Computer Science and Engineering

University of Minnesota
gopalan@cs.umn.edu

Abstract
The ability to compose code in a modular fashion is important
to the construction of large programs. In the logic programming
setting, it is desirable that such capabilities be realized through
logic-based devices. We present here an approach to doing this
that is a supported in the Teyjus implementation of the λProlog
language. Within this scheme, a module corresponds to a block
of code whose external view is mediated by a signature. Thus,
signatures impose a form of hiding that is explained logically via
existential quantifications over predicate, function and constant
names. Modules interact through the mechanism of accumulation
that translates into conjoining the clauses in them while respecting
the scopes of existential quantifiers introduced by signatures. We
show that this simple device for statically structuring name spaces
suffices for realizing features related to code scoping for which
the dynamic control of predicate definitions was earlier considered
necessary. While a compile-time inlining of accumulated modules
that respects quantifier scoping can be used to realize the module
capabilities we present in a transparently correct way, such an
approach has the drawback of not supporting separate compilation.
We show how this approach can be refined into a scheme that
allows each distinct module to be compiled separately, with the
effect of inlining being realized by a subsequent linking process.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming; D.3.3 [Programming Languages]:
Language Constructs and Features; D.3.4 [Programming Lan-
guages]: Processors; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic

General Terms logic programming, modularity constructs, sepa-
rate compilation

Keywords λProlog, modules, signatures, existential quantifica-
tion, proof search, Warren Abstract Machine, compilation, linking

1. Introduction
We are concerned in this paper with a treatment of modularity in
logic programming. Support for this feature is important to signif-
icant applications of the paradigm. The ability to develop a sys-

[Copyright notice will appear here once ’preprint’ option is removed.]

tem through the composition of small, well-defined units of code is
central to managing complexity and also facilitates the reuse of pro-
gramming effort. Moreover, modular development installs bound-
aries in programs that can be important to the practical use of static
analysis techniques and that are fundamental to the notion of sep-
arate compilation and testing. In light of these facts, it is not sur-
prising that modularity aspects have received significant attention
with respect to most existing programming paradigms. As they per-
tain specifically to logic programming, these notions have received
theoretical treatment [9, 12, 17, 21], have been included in practi-
cal systems [2, 23, 24] and have been the topic of standardization
deliberations concerning Prolog [5].

When incorporating modularity notions into logic programming
systems, a common trend has been to go outside the logical base
and to introduce metalinguistic mechanisms for composing sepa-
rately constructed program fragments. This approach is a little un-
fortunate: a strength of logic programming is its basis in logic that,
with proper choices, can also be used to reason about interactions
between units of code [13]. However, there is also a danger in fo-
cussing too heavily on just the logical aspects. Early logic-based
approaches to controlling code availability have, for instance, uti-
lized the idea of implications or contexts in goals [12, 17]. These
mechanisms call for a dynamic management of predicate defini-
tions and, as such, their implementation is costly. Moreover, the
particular way in which context is handled leads sometimes to pro-
gram behaviour that is counter to the practical understanding of
modularity.

We describe a treatment of modularity in this paper that bal-
ances logical and pragmatic considerations. This treatment draws
on experience with a logic based approach [13] employed in the
Teyjus implementation [19] of the language λProlog. However, our
ideas are quite general and can be used in any logic programming
setting that correctly implements sequences of alternating existen-
tial and universal quantifiers in goals.1 The devices we use are, in
fact, surprisingly simple at a logical level. To support information
hiding, we utilize existential quantification over names. Pragmati-
cally, the hiding of names is effected by associating a signature with
each module of code; all the names used in the module and not ap-
pearing in the signature are treated as being implicitly existentially
quantified. The composition of units of code, accomplished via a
mechanism known as accumulation, translates into the conjoining
of formulas. This leads to a statically determined code space but
one in which the availability of predicate definitions can be con-
trolled by appropriately scoped existential quantifiers. We show
that these simple devices suffice for realizing features such as scop-
ing of predicate definitions, data abstraction and module parameter-

1 Such a capability can be added to common logic programming languages
by changing the unification computation as indicated later.

1 2009/5/19

ization for which more complicated dynamic code structuring ca-
pabilities were previously thought to be necessary [12, 17]. A note-
worthy point is that the often problematic aspect of higher-order
programming coexists completely naturally with this approach to
modularity. From a implementation perspective, accumulation can
be treated through a compile-time inlining of code [20]. However,
true modularity requires support for separate compilation. Our sec-
ond contribution consists of showing that this can be provided. In
particular, we describe a scheme that permits each module to be
compiled separately with the inlining function being relegated to
a later, link-time process. This two phase process, which has been
implemented in a version of the Teyjus system released in April
2008 [6], cumulatively expends effort similar to the compile-time
inlining method, involves an extra linking time that is clearly ac-
ceptable and produces an identical executable image.

The rest of the paper is structured as follows. In the next sec-
tion we introduce a logical language that includes all the features
needed to capture our treatment of modularity. In Section 3 we de-
scribe the main components of the modules language and indicate
their translation into the logical core. The following section de-
scribes embellishments in the form of annotations or compiler di-
rectives to the basic modules language; these directives do not af-
fect the translation into logic but can be used to control acceptabil-
ity of programs in pragmatically meaningful ways and may also
lead to more efficient implementations. In Section 5 we consider
the issue of separate compilation. Section 6 concludes the paper by
contrasting its contents with related work.

2. The Underlying Logical Language
Our approach to information hiding involves the use of existential
quantification. Since we desire the ability to hide the names of
predicates and functions in addition to (first-order) constants, the
right context for our ideas is that of a higher-order logic. We shall
assume also that our language is typed although our main ideas
apply equally in an untyped setting.

2.1 The Logical Syntax
We work with a set of types that initially contains int, real, string
and o, those that can be formed using the unary type constructor list
and, finally, all the function types, written as α → β, that can be
formed from these types. The type o is that of propositions. Type
variables, denoted by tokens starting with uppercase letters, are in-
troduced as a shorthand for an infinite collection of instance types.
Terms in the language are constructed from collections of typed
constant and variable symbols using the operations of application
and abstraction. We assume an initial set of constants that are parti-
tioned into the logical ones, which are accorded a special interpre-
tation in the language, and the nonlogical ones whose introduction
is motivated by programming convenience. The logical constants
consist of the symbols true that denotes the always true proposi-
tion,⊃, ∨ and ∧ that denote infix forms of implication, disjunction
and conjunction and two ‘schema’ constants sigma and pi of type
(A → o) → o. The last two (family of) constants represent gener-
alized existential and universal quantifiers. In particular, ∃xP (x)
and ∀xP (x) are rendered in this logic as (sigma λxP (x)) and
(pi λxP (x)) respectively; we write expressions of the form P (x)
here and elsewhere to denote terms that possibly have free occur-
rences of the variable x in them. The set of nonlogical constants that
are available at the outset—referred to as the pervasive constants—
is implementation dependent, but we shall assume this collection
to include the usual constants denoting integers, reals and strings
and the schema constants nil of type list A and the infix :: of type
A→ (list A)→ (list A) that provide for a builtin notion of lists.
Application is assumed to be left associative. This leads to a curried
notation for terms. If p is an n-ary relation symbol, the expression

(p t1 . . . tn) denotes this relation between the terms t1, . . . , tn.
Such an expression constitutes an atomic formula if its ‘head’ p is
either true or is not a logical constant.

In any real application it is necessary to introduce new sorts and
type constructors as well as new nonlogical constants. We describe
mechanisms in the next section for declaring such symbols. Types
must also be associated with variables. Such type information can
be filled in by an inference process and the language syntax may
also allow it to be explicitly provided.

The logic that we shall use to expose our ideas is a slightly
expanded version of the higher-order theory of Horn clauses. The
main expressions that are treated by this logic are the G and E
formulas identified by the following syntax rules:

G ::= true | A | G ∨G | G ∧G | ∃xG | E ⊃ G
D ::= Ar | G ⊃ Ar | ∀xD
E ::= D | E ∧ E | ∃xE

A denotes atomic formulas here andAr represents atomic formulas
whose heads are either constants distinct from true or are captured
by an existential quantifier in anE formula that forms an enclosing
context. Existential quantifiers in E formulas are treated as con-
stants in the computation model described below. From this it be-
comes clear that the head of an Ar formula is always a nonlogical
constant, albeit of smaller or larger scope. AD formula of the form
Ar or G ⊃ Ar is said to have Ar as its head and its body is ei-
ther empty or G depending on the case in question. Such a formula
is, as usual, part of the definition of a predicate whose name is the
head of the Ar formula.

2.2 The Notion of Computation
Computation in the logical language is oriented around trying to
solve a goal given by a G formula relative to a program that is
determined by a set of D formulas. An important facet of the
language is that it embodies a careful accounting of the set of
constants that are available for forming terms; this set is also known
as a signature.

Formally, (the main notion of) a state in a computation is rep-
resented by a sequent of the form Σ;P −→ G in which Σ is a
signature and P andG are, respectively, a set of closedD formulas
and a closedG formula that use only constants from Σ. We shall re-
fer to P in such a sequent as the program. At the outset, Σ consists
of the logical constants, the pervasive constants and a user-defined
collection of global constants and P corresponds to builtin defini-
tions for some of the pervasive predicates. The transition rules in
Figure 1 define the process by which computations are carried out
in this setting. The instan and ∃G rules here have the proviso that
t is a closed term that is formed using constants from Σ different
from ⊃ and pi and the ∃E rule has the proviso that c is a constant
that is new to Σ. Expressions of the form F [t/x] that are used in
these rules represent the substitution of the term t for the free oc-
currences of x in the formula F .

The transition rules can be understood to be of one of three
kinds. The main category of rules are the ones having lower se-
quents of the form Σ;P −→ G. These rules encode the process
of solving a complex goal by simplifying it based on its structure.
Thus, a conjunctive goal results in an attempt to solve each con-
junct, a disjunctive goal becomes an attempt to solve one of the
disjuncts and an existential goal is instantiated by a suitable closed
term constructed using the current signature. Goals that have the
form E ⊃ G lead to the addition of the D formulas constituting E
to the program. However, prior to doing this, the existential quanti-
fiers in E must be instantiated by new constants that are also added
to the signature. This process is initiated by generating a sequent
of the form Σ;P −〈∆〉→ G in which ∆ represents a multiset of
E formulas. The second category of rules that pertains to treating

2 2009/5/19

Σ;P −→ G

Σ;P −〈 〉→ G
finish

Σ;P, D −〈∆〉→ G

Σ;P −〈D,∆〉→ G
augment

Σ;P −〈E1, E2,∆〉→ G

Σ;P −〈E1 ∧ E2,∆〉→ G
∧E

Σ, c;P −〈E[c/x],∆〉→ G

Σ;P −〈∃xE,∆〉→ G
∃E

Σ;P A−→ A
initial

Σ;P −→ G

Σ;P G⊃A−→ A
backchain

Σ;P D[t/x]−→ A

Σ;P ∀x D−→ A
instan

Σ;P −→ true
>G

Σ;P D−→ A

Σ;P −→ A
atomic

Σ;P −→ G1 Σ;P −→ G2

Σ;P −→ G1 ∧G2
∧G

Σ;P −→ G1

Σ;P −→ G1 ∨G2
∨G1

Σ;P −→ G2

Σ;P −→ G1 ∨G2
∨G2

Σ;P −〈E〉→ G

Σ;P −→ E ⊃ G ⊃G
Σ;P −→ G[t/x]

Σ;P −→ ∃xB ∃G

Figure 1. Transition Rules Defining the Operational Semantics of the Logical Language

sequents of this form then implements the rest of the process of
simplifying the E formula into a form in which it can be added to
the program. The process of goal simplification terminates with the
production of atomic goals. When this goal is different from true,
aD formula from the program must be used to solve it. The atomic
rule begins this process by picking a particular formula for this pur-
pose; this rule has the proviso that D must be a member of P . The
rules for deriving sequents of the form Σ;P D−→ A encode the rest
of the behaviour that is commonly referred to as backchaining.

The framework for computation described above possesses an
interesting ability for giving scopes to names. To understand this,
observe first that variables appearing in D formulas that are gov-
erned by existential quantifiers in an enclosing E formula corre-
spond, in fact, to constants or names. The fact that we can ex-
plicitly quantify over such names then means that we can indicate
a distinct scope for each of them. Thus, consider the E formula
∃xD1(x) ∧ ∃xD2(x). While the same name x appears in both
D1(x) and D2(x), the fact that these are governed by different
quantifiers ensures that they are treated as distinct constants by the
computation model. This situation should be contrasted with the
one where the E formula in question is ∃x (D1(x) ∧ D2(x)) in-
stead. Existential quantification also has an impact on the visibility
of names in an outside context. Thus, if x represents a global con-
stant, then it is allowed to appear in a term that is used to instan-
tiate the quantifier over y in the course of trying to solve the goal
∃y (D(x) ⊃ G(y)). However, this constant may not be so used if
the goal is ∃y ((∃xD1(x)) ⊃ G(y)) instead, i.e., if the scope of
the constant is explicitly narrowed via an existential quantifier.

In the rest of this paper we shall limit the programmer to writing
only G formulas without implications and D formulas. Restricted
to the first-order setting, these formulas are essentially a typed
version of the queries and program clauses that underlie Prolog.
We shall assume a syntax for their presentation that is motivated by
this correspondence except that we shall use a curried notation for
predicates. The E formulas and implication forms for G formulas
will play what amounts to a meta-theoretic role, as a device for
understanding the semantics of the modularity features that we
discuss next. We note, however, that the full collection of formulas

presented here can also be used for programming and are, in fact, a
subset of the logical language defining λProlog. A substantive fact
about this larger logic is that the procedure we have outlined for
solving a G formula from a set of D formulas exactly captures the
provability of the corresponding sequent in intuitionistic logic [14].

3. The Modules Language
We present in this section a simple modules language that builds
on a logic programming core and we explain its static and dynamic
semantics. In presenting the language, we focus only on the new
components and avoid a description of those aspects of syntax that
should be obvious from a familiarity with a language like Prolog.
We do this assuming that there is no resulting loss in precision: a
reader interested in all the details of program syntax spelled out
relative to λProlog is referred to the documentation accompanying
Version 2 of the Teyjus system for a BNF specification [6].

3.1 Modules and Signatures
In developing real programs, it is necessary, first of all, to identify
a vocabulary of types and term constants. New type constructors
are defined in our language through kind declarations that have the
form

kind tyc1, ..., tycn type -> ... -> type.

where the arity of the constructors tyc1,. . .,tycn is one less than
the number of occurrences of type in the declaration. Term con-
stants are identified through type declarations of the form

type c1,...,cn <type expression>.

where the type expression is constructed using the available type
constructors.

The notion of scope for kind and type declarations is important
in constructing type and predicate definitions. Modules impart a
structure to this space of names. Formally, a module begins with a
declaration of the form

module <name>.

3 2009/5/19

and continues with the kind, type and predicate definitions to be
associated with the indicated name. We adopt a file oriented view
of modules here: all the code defining a module named foo is to
be found in a file with the name foo.mod. Now, the boundaries of
a module determine a textual notion of scope in that the kind and
type declarations that appear within them are interpreted as ranging
over all the other declarations contained in the module. Consistent
with this viewpoint, these boundaries also provide a delimiting
region for analyses that a compiler might perform in the course
of translating a source language program.

The following definition of a module called store illustrates
module syntax:

module store.

kind store type -> type.

type emp (store A).
type stk A -> (store A) -> (store A).
type init (store A) -> o.
type add, remove

A -> (store A) -> (store A) -> o.

init emp.
add X S (stk X S).
remove X (stk X S) S.

This module identifies a representation for stores with three asso-
ciated operations, one for initializing a store and two others for
adding an element to and removing an element from an existing
store. Towards providing a definition that is parametric in the type
of the elements stored, this module declares a unary type construc-
tor for stores that is then used in the types of constants that im-
plement store representations. The particular realization of a store
embedded in this code is based on the idea of a stack. The last
three lines in the module are D formulas that define the desired
operations based on this interpretation. The tokens that begin with
uppercase letters stand, as usual, for variables that are implicitly
universally quantified at the head of the formula.

Not all the declarations in a module are typically intended to
be externally visible. With the module store, for example, it is
sensible to hide the actual representation of stores, requiring these
to be manipulated opaquely through the predicates init, add and
remove. In our language, the contents of a module that are to be
visible to the outside must be explicitly identified through a sig-
nature that shares its name with the module. Formally, a signature
begins with a declaration of the form

sig <name>.

and continues with the kind and type declarations to be associated
with the specified name. Thus, the following declarations constitute
a signature that imposes the kind of view desired on the module
store:

sig store.

kind store type -> type.

type init (store A) -> o.
type add, remove

A -> (store A) -> (store A) -> o.

There is an obvious consistency requirement with signatures:
they must identify all the type constructors that are needed to
sensibly interpret the types that appear in them. A syntactically
well-formed signature actually functions as an interface definition
for a module. From the perspective of an external use, a compiler
must treat this signature as a complete description of all the type
and kind declarations contained in the module that are available for
global use in any context into which the module has been imported.
From an internal perspective, the compiler must correspondingly

check that the declarations in the signature agree with what is
actually present in the module. We describe formally the process
of checking these various requirements in the next subsection.
In support of this kind of type checking role, we shall adopt a
file oriented view of signatures similar to that for modules: the
definition of the signature named foo is to be found in a file called
foo.sig.

An important aspect of a module system is the mechanisms it
provides for realizing interactions between units of code. In our
system, this ability is obtained from a single operation referred to
as module accumulation. The combination of modules through this
operation is achieved by placing a declaration of the form

accumulate M1, ..., Mk.

in a new module being constructed, assuming M1, ..., Mk are module
names. The intended lexical effect of this declaration is to provide
access to the signatures of the modules M1, ..., Mk within the new
module. From a computational perspective, the effect of this decla-
ration is to make available, in a logically controlled way, the clauses
contained in the accumulated modules at the point of occurrence.
This dynamic semantics will be made precise shortly via a transla-
tion into the underlying logical language.

Just as with modules, it is also possible to accumulate signa-
tures. This effect is realized by using a declaration of the form

accum_sig S1, ..., Sp.

in a module or signature being constructed; we assume here that
S1, ..., Sp are signature names. This declaration is intended to have
only a lexical effect that is similar to the one accompanying module
accumulation.

3.2 Checking Signatures and Modules
A key part of formalizing the modules language is making precise
the intended relationship between signatures and modules. There
are two parts to this relationship: one part concerns the checking of
wellformedness and the other part relates to the use of the module
in computation. We treat the first aspect here, leaving a discussion
of the logical and search related aspects to the next subsection.

Before the matching of signatures and modules can be dis-
cussed, it is necessary to understand how the full content of a given
signature is to be extracted. This is done by a process called signa-
ture elaboration that also simultaneously determines if a signature
is well-formed. The process is easily defined when the signature
does not accumulate any other signatures: it simply collects all the
kind and type declarations appearing in the signature. As for well-
formedness, one set of conditions is obvious: all the type construc-
tors used in the signature should either be defined in it or should be
drawn from the pervasive set and each of these symbols should be
used in a way that respects its arity. The second set of conditions
stems from the fact that kind and type associations must be func-
tional in nature. For kind declarations, this amounts to requiring
that all such associations with any given token in the signature be
identical. For type declarations the requirement takes into account
the presence of type variables: all the types associated with a token
must be identical up to (type) variable renaming. If this requirement
is fulfilled, any one of the alphabetic variants is treated as the type
associated with the token by the extracted signature.2

Signature elaboration for a signature that accumulates other
signatures requires the notion of signature merging. A collection
of elaborated signatures are mergeable if the following properties
hold:

2 It may seem unnecessary to allow for more than one kind or type decla-
ration for the same symbol. However, this becomes more natural when we
consider that such declarations might come from different signatures that
are accumulated into the same context, an aspect that we treat next.

4 2009/5/19

• If a symbol has a kind declaration in more than one signature
in the collection, then all the declarations pertaining to it are
identical, and

• If a symbol has a type declaration in more than one signature in
the collection, then all the types associated with it through such
declarations are identical up to a renaming of type variables.

Now, suppose that S0 is a signature that accumulates the signatures
S1, . . . , Sn. A prerequisite for the wellformedness of S0 is that
there be no accumulation cycles going through it, i.e., that there
is no sequence of accumulations starting at any one of S1, . . . , Sn

that includes S0. If this condition holds, then the next requirement
is that each of S1, . . . , Sn should be well-formed. Let this property
also hold and let S′1, . . . , S′n be the elaborations of these signa-
tures. Then the third requirement for S to be well-formed is that
S′1, . . . , S

′
n be mergeable. Suppose this also to be true and let S′

be the signature obtained by replacing the accumulation declara-
tions in S by the elaborations S′1, . . . , S′n. Then, S′ is the elabora-
tion of S and the latter signature is well-formed only if the former
(accumulation-free) one is.

The second step in the syntactic checking of a module consists
of verifying that it is well-formed and simultaneously identifying
an implicit signature for it. This step, once again, has an easy expla-
nation in the case of a module that does not accumulate any other
modules. The implicit signature here is determined by signature
elaboration applied to the result of dropping all the program clauses
from the module. The module is then well-formed if this signature
is well-formed, if every constant used in the program clauses is de-
fined in the signature or in the collection of pervasive constants, if
each such constant is used at an instance of the type associated with
it and, finally, each program clause is well-typed.

To treat the general case, suppose that a module M accumu-
lates, in this order, the modules M1, . . . ,Mn that have specified
signatures Σ1, . . . ,Σn. There are then three requirements forM to
be well-formed:

• M must not be part of a module accumulation cycle, i.e., no se-
quence of module accumulations starting at one ofM1, . . . ,Mn

should include M .
• Each of the modules M1, . . . ,Mn must be well-formed and

must match its specified signature.
• The module M ′ that is obtained from M by replacing the

accumulation of modules M1, . . . ,Mn with an accumulation
instead of the signatures Σ1, . . . ,Σn must be wellformed by
virtue of the criteria already described for modules that do not
accumulate other modules.

Suppose that all these conditions are met. The implicit signature for
M is then identical to that associated with the moduleM ′ described
above.

Let M be a well-formed module with the implicit signature S.
Then we say that M matches a signature S′ just in case S and the
(signature) elaboration of S′ are mergeable.

3.3 The Logical Interpretation of Modules
The logical or dynamic semantics of a module, as opposed to its lex-
ical or static semantics that was treated in the previous subsection,
is explained by a translation into an E formula and a subsequent
use of the computation model for the underlying logical language.

The translation for a module that does not accumulate any other
modules is actually quite simple. We first determine all the local
constants for the module: these are the constants that appear in
implicit signature of the module but not in the explicit signature
associated with it. We then construct the desired E formula by
conjoining all the D formulas (program clauses) contained in the
module and existentially quantifying all the local constants over

this conjunction. As an illustration of this idea, the logical essence
of the module store considered earlier in this section is reduced to
the formula

∃Emp∃Stk((init Emp) ∧
∀X∀S (add X S (Stk X S)) ∧
∀X∀S (remove X (Stk X S) S)).

under this approach.
The translation in the situation where the module accumulates

other modules is only slightly more complicated. We proceed as be-
fore to identify the local constants for the module; as a pragmatic
issue, notice that calculating this set requires the implicit signa-
ture of the module to be constructed which, in turn, requires that
we look also at the (explicit) signatures of the accumulated mod-
ules. We then extract an E formula corresponding to each of the
accumulated modules. This step involves a recursion that is well-
defined because of the absence of accumulation cycles. Next, we
construct an E formula by conjoining the E formulas correspond-
ing to the accumulated modules with the program clauses contained
in the module. The formula to be associated with the given mod-
ule is now obtained by existentially quantifying the local constants
over this E formula.

The formula that is constructed for a module that accumulates
other modules may contain within it (essential) existential quanti-
fiers that scope only over subparts of the formula. It is possible to
move these quantifiers so that they have global scope. In carrying
out such a transformation we may utilize the fact that an E for-
mula of the form (∃xD1(x)) ∧D2) is equivalent, in a provability
sense and in the context of the calculus described in Section 2, to
the formula ∃x (D1(x)∧D2) provided that the variable x does not
occur free in D2. Notice that the kind of transformation that we
are describing here may involve the renaming of local constants;
for example, the formula (∃xD1(x)) ∧ (∃xD2(x)) would trans-
late under it to something of the form ∃y∃z(D1(y)∧D2(z)), with
x in D1 and D2 being renamed to the distinct and fresh variables
y and z. At a programming level, this kind of transformation is
tantamount to treating accumulation as the inlining of code in the
accumulated module, taking care, however, to preserve the locality
of names within it. The implementation scheme that we describe
in Section 5 will exploit the possibility of carrying out this kind
of static simplification of E formulas (or, alternatively, of the code
available from a module) extensively in getting improved run-time
behaviour.

3.4 Interpreting Queries Against Modules
The attempt to solve a goal at the top level is always made in the
context of a chosen module. From a lexical perspective, the signif-
icance of such a relativization is that all the kind and type declara-
tions in the signature of the module become available in analyzing
the syntax of the goal. On the other hand, the relativization from
the perspective of computation is realized (at least conceptually)
by constructing an implicational goal. In particular, suppose that
we are interested in solving the goal G(y1, . . . yn) given the code
in the module M ; the sequence y1, . . . , yn depicts the free vari-
ables of the goal here. Assuming thatM translates into the formula
E, this desire is then understood precisely as that of wanting to
solve the goal ∃y1 . . .∃yn (E ⊃ G(y1, . . . , yn)).

The interpretation of modules and goals that we have just de-
scribed actually embodies a fairly strong form of hiding. In the
schematic example that we have considered, the lexical interpre-
tation obviously prevents G(y1, . . . , yn) from referring directly to
any constant local to M . A little less obvious is the fact that these
local constants cannot also percolate out of M in the form of com-
putation results. In particular, the results computed for this query
would be instantiations for the variables y1, . . . , yn that lead to a

5 2009/5/19

successful solution of the goal ∃y1 . . .∃yn (E ⊃ G(y1, . . . , yn)).
The operational semantics that we have described in the previous
section now clearly precludes the appearance of the local constants
of M in instantiations for y.

3.5 Some Remaining Odds and Ends
The discussion of the restrictions on bindings for variables ap-
pearing in goals reveals an interesting dynamic aspect to the abil-
ity to limit scopes of constants that existential quantifiers in E
formulas provide. To understand this, consider again the goal
∃y1 . . .∃yn (E ⊃ G(y1, . . . , yn)). A practical treatment of this
goal would need to defer the particular choice of instantiations
for the variables y1, . . . , yn till such time that there is information
available for making them insightfully. Typically, such delaying is
realized by using placeholders or logic variables Y1, . . . , Yn for
the instantiation initially; these logic variables have the character-
istic that they can be substituted for via a unification process later
in the computation. Subsequent to this instantiation, suitable con-
stants would have to be determined for the existentially quantified
variables appearing in E prior to adding the clauses in E to the
program context. We note at this point that, in order to be correct
with respect to the logical semantics, the variables Y1, . . . , Yn must
not be allowed to be instantiated with terms containing these newly
introduced constants.

The way we have described the computation above might make
it seem prohibitively expensive and, hence, unacceptable as the ba-
sis for a practical notion of information hiding related to modules:
local constants that appear in modules should after all be treated
largely as constants and should not lead to costly run-time manip-
ulations. It turns out, however that an implementation can be pro-
vided that essentially respects these pragmatic considerations. We
have described (and proved correct) elsewhere a benign extension
to the usual unification computation that realizes explicitly pro-
vided scopes for names by assigning numeric labels to logic vari-
ables and constants and then using these these to ensure adherence
to the occurrence constraints [18]. We do not discuss this matter
in any more detail here, but we assume the availability of such an
implementation in ensuring the overall practicality of our modules
language.

An important requirement that we have imposed on the accumu-
lation of modules and signatures is that such accumulation should
eventually not be cyclic. Note that, in a separate compilation model,
cyclicity in module accumulation chains is a property that can only
be checked at linking time. A common worry is that the prohibition
of accumulation cycles might be tantamount to preventing a mutual
dependence between modules. Fortunately, this worry turns out not
to be true. For example, suppose that the two modules M1 and M2

each contain code that depends on predicate definitions that appear
in the other module. This kind of interaction can be supported with-
out running afoul of the requirement that there be no accumulation
cycles by accumulating any one of these modules into the other or,
perhaps better still, by accumulating both modules into a common
context.

We have at this point described the logical structure of the mod-
ules language in its entirety: A module corresponds syntactically
to a possibly large E formula obtained by combining its clauses,
its signature and the formulas corresponding to its accumulated
modules in the manner just described. The dynamic semantics of
the module is then explained completely and precisely through this
formula and the operational semantics for the underlying logical
language. The next section adds further syntactic sugar and some
compiler-oriented annotations to this language without modifying
the logical core.

4. The Practical Use of Modules
Although the modules language described in the previous section
is simple, it is quite versatile at a programming level. We attempt to
bring this facet out in this section by considering some paradigms
for its use.

4.1 Hiding and Abstract Data Types
A module in our language allows code that supports a desired
functionality to be collected into a named unit and an associated
signature provides a window into this code. Now, the capabilities
implemented by a module may be needed in the context of another
module. Module accumulation supports the realization of such an
interaction.

As an illustration of the above idea, suppose that we wish to
implement a heuristic-based graph search procedure. This proce-
dure would initialize a collection of states and then expand this
set based on the rules for generating new states and an underly-
ing strategy for selecting the next state for expansion. To realize
what is required of it, this code may need the implementation of
a store. This can be obtained by accumulating the module store
presented earlier. Figure 2 displays part of the definition of a graph
search module to illustrate this idea. The accumulation of store
gives this module a type for stores that is used in the type decla-
rations of init_open and expand_graph. This accumulation also
allows the procedures init, add and remove to be used in the code
in graph_search module. An aspect worthy of note is that while
the (universally quantified) variables in the program clauses in this
module can be instantiated with store representations, these repre-
sentations are still abstract: the implicit existential quantification
over local constants imposes visibility restrictions that ensure that
their inner structure can only be accessed by recourse to operations
in the module store. Note also that by excluding declarations for
init, add and remove from the signature for graph_search, the
predicate definitions in store can be made entirely private to the
graph search module. Thus, in contrast to the import construct
of [12], we are able to achieve code scoping by simply structur-
ing name spaces in a completely statically determined collection of
code.

4.2 Module Parameterization and Sharing of Code
The example in the previous subsection shows how a private copy
of code can be acquired by a module. While this may be the desired
behaviour in some situations, the accumulated module may in many
other cases represent a common capability that is to be shared
between different modules in a large system. As a specific example
of this, consider the need for the modules implementing different
functionalities in a system like a compiler to interact through a
shared, efficient representation of a collection of symbols extracted
from a user program. In such a setting, none of the modules in
question need to know the innards of the representation of the
“symbol table,” but they do need to know that the representation
is one that is shared between them and that it can be manipulated
through a common set of procedures for inserting, deleting and
looking up items in the table. Moreover, it is desirable to use
one copy of the code implementing the symbol table in the entire
system rather than replicating the code at each place it is needed.

A solution to this problem is to think of modules that use such
library capabilities as being parameterized by them. Our mod-
ules language supports this kind of parameterization in a natural
way. For example, suppose that we wish to think of the module
graph_search as one that depends on an externally provided im-
plementation of stores rather than one that it accumulates. This de-
pendency can be manifest by including appropriate declarations in
its signature. In particular, this signature would identify the type
constructor store and the constants init, add and remove. We

6 2009/5/19

module graph_search.
accumulate store.
kind state,action type.
type graph_search list action -> o.
type init_open store state -> o.
type expand_graph store state -> list state -> list action -> o.
...

graph_search Soln :- init_open Open, expand_graph Open nil Soln.
init_open Open :- start_state State, init Op, add State Op Open.
expand_graph Open Closed Soln :-

remove State Open Rest, final_state State, soln State Soln.
expand_graph Open Closed Soln :-

remove State Open ROpen, expand_node State NStates,
add_states NStates ROpen (State::Closed) NOpen,
expand_graph NOpen (State::Closed) Soln.

...

Figure 2. A Module Implementing Graph Search

would, of course, have to provide the module with the functionality
it needs eventually. This can be done by accumulating the module
store at the relevant place. As a specific illustration, suppose we
wish to test our implementation of graph search. A harness suitable
for this purpose can be expressed via the following module:

module test_graph_search.
accumulate graph_search, store.

By endowing this module with a signature that makes the needed
types, data representations and predicates defined within the mod-
ule graph_search externally visible, we can pose queries against
it that exercise the capabilities that are to be tested. This discussion
also shows how different modules in a composite system can share
“library” capabilities: they can all be parameterized in the same
way that the graph_search module was in this example and the
the parameterization can eventually be discharged by accumulating
the library module into a common context.

4.3 Renaming of Imported Constants
The accumulate and accum_sig constructs as we have described
them up to this point import the global names from the relevant
module or signature without change into the context of accumu-
lation. This can sometimes be problematic: the same name may
have been used for different purposes in independent components
of code and an inability to distinguish between them would pre-
clude benefitting from the functionalities they represent in a com-
mon context. To circumvent this problem, we allow for the accu-
mulation declaration to be optionally parameterized by a function
that renames some of the incoming global constants. In particular,
a declaration of the form

accumulate M1 {
kind tyc1 --> tyc2
c1 --> c2
}

signals that the global type constructor tyc1 and the global con-
stant c1 in the module M1 are first to be renamed to tyc2 and c2
respectively and the resulting module is then to be accumulated
into the relevant context; this renaming process will use an identity
mapping on the names of the global constants and type constructors
that are not mentioned explicitly in the accumulate declaration
and also requires that the eventual function used has a one-to-one
character on the type constructor and constant spaces, respectively.
As a specific example, the accumulate declaration

accumulate store {
kind store --> mystore
add --> insert
remove --> delete
}

results in the accumulation of the module store with the type
constructor it provides renamed to mystore and the predicates for
adding and removing from a store renamed to insert and delete,
respectively. A similar syntax is used to realize renaming with
respect to accumulated signatures.

4.4 Annotations for Fixing Predicate Definitions
Predicate definitions in the logic programming context can be ex-
panded by adding further clauses. The definitions emanating from
an accumulated module have the potential of being extended in this
way in the accumulating module. It is sometimes desirable to cur-
tail this possibility. Referring to the module store, for instance, we
may want to freeze the definition of the operations init, add and
remove that it provides. This possibility is supported by permitting
an “export” annotation in signatures. Specifically, by replacing

type add A -> (store A) -> (store A) -> o.

with the annotated declaration

exportdef add
A -> (store A) -> (store A) -> o.

in the signature of the module store, we may signal that the defi-
nition of add may not be altered by the accumulating context. Pay-
ing attention to the model for pairing functionality that we have
just sketched, our modules language also provides a complemen-
tary “useonly” annotation. Thus, by using the declaration

useonly add
A -> (store A) -> (store A) -> o.

instead of the type declaration for add in the graph_search mod-
ule, we indicate that the definition of this predicate can be used but
cannot be altered in this module. We note that at a logical level both
the exportdef and useonly declarations are identical to type dec-
larations. They differ from type declarations only at a pragmatic
level by imposing special wellformedness restrictions—that must
be checked and can be made use of by a compiler—on module
composition. The restrictions can, however, be quite useful in prac-
tice: they impart a completeness property to definitions that can

7 2009/5/19

sig comblibrary. module comblibrary.
type call o -> o. type call o -> o.

type p list int -> o.
p (1 :: nil).
call Q :- Q.

sig test. module test.
type test list int -> o. accumulate comblibrary.

type test list int -> o.
type p list int -> o.
p (2 :: nil).
test X :- call (p X).

Figure 3. Interpreting predicate names in higher-order programs.

help in reasoning about program properties and also in generating
better object code especially in a separate compilation setting.

The kind of fixed predicate definitions discussed above might
be expected to be provided typically by library modules. A simple
way to benefit from their functionality would be to accumulate
their (external) signatures but with a twist: we would want all the
exportdef declarations in such a signature to be transformed into
the counterpart useonly declarations at the point of accumulation.
We provide the declaration

use_sig S1, ..., Sp.

in which S1, ..., Sp are expected to be signature names for this
purpose. Like the accum_sig declaration, this declaration also
causes the mentioned signatures to be included in place but only
after each exportdef declaration is converted to a useonly one.

4.5 Code Extension and Modular Composition
While predicate definitions can made to be self-contained within
specific modules either because of annotations of the kind de-
scribed in the previous subsection or because they pertain to local
constants, it may also sometimes be desirable to distribute them
across two or more interacting modules. This kind of distribution
is in keeping with the logic programming style that builds a pred-
icate definition by combining the effect of several clauses. Prag-
matically, the spreading of a definition seems to have some uses
as witnessed by multifile declarations in Prolog. As another prac-
tically pertinent example, consider the task of implementing proof
relations in different logics. A common part to all these logics may
be the treatment of propositional rules. This treatment may be iso-
lated in a particular module named, say, prop_logic. A realization
of first-order logic may then accumulate prop_logic and extend
the predicates defined therein. This kind of construction of predi-
cate definitions by incremental composition is naturally supported
by our modules language. Such a composition also raises special
problems for separate compilation. A treatment of these problems
is considered in the next section.

4.6 Higher-Order Programming and Predicate Visibility
Our language allows for the writing of predicates that are parame-
terized by other predicates. Such predicate definitions have general
applicability and might therefore be usefully collected into a library
module. The invocation of such predicates will, of course, supply
them with specific predicate names as arguments. A question that
has evoked interest relative to the discussion of modularity and the
treatment of the call/1 predicate in Prolog is how these names
should be interpreted.

Figure 3 presents module definitions designed to bring out the
relevant issue. An attempt to solve the goal test X relative to the
module test will lead to the invocation of the goal call (p X)

that, in turn, will cause the goal p X to be called. The question
then is what the definition of the name p should be when this goal
is called. Two competing possibilities have been suggested [7]: its
denotation may be determined by whatever is visible in the context
where the predicate call is defined or by the environment in which
the name is explicitly used. In this instance, the top-level query will
succeed either way, but with different results depending on which
answer one takes: X will be bound to 1 :: nil in the first case and
to 2 :: nil in the second.

The second interpretation is the resolution that is now com-
monly accepted. This interpretation has the advantage that the de-
notations of names are determined statically, an important require-
ment for any good notion of modularity. It is interesting to note that
this interpretation is also a natural consequence of the semantics
that we have presented for our modules language. The possibility
of two different interpretations arises from a separation between the
calling and the called context. This separation plays no role in our
semantics. The module test is, in fact, treated as one collection
of declarations in which existential quantifiers with limited scope
control the visibility and, hence, the identity of names. The relevant
occurrence of the name p therefore has an unambiguous interpreta-
tion and the only answer substitution to the query shown above is
the binding 2 :: nil for X.

5. A Separate Compilation Scheme
A naive implementation of the language we have described can be
obtained by a compile-time inlining of accumulated modules. We
show in this section that this approach can be refined into one where
each module is individually compiled and the inlining is carried out
by a later linking phase. Towards exposing the issues that have to be
addressed, we first outline the naive approach below. We then use
this context to develop the improved separate compilation scheme.
In this discussion we ignore the effects of the exportdef and
useonly annotations and also the capability of explicitly renaming
constants and type constructors that we discussed in Section 4 in
association with the accumulate and accum_sig declarations. An
actual compiler must build in a treatment of these features but it
is easy to see how to do this once we have understood how the
basic form of signature and module accumulation can be effectively
handled.

5.1 A Naive Implementation of Module Accumulation
Figure 4 presents a typical example of module interactions that
an implementation must be capable of handling. In this example,
rather than explicitly displaying signatures, we have marked con-
stants as either global or local directly in the code of modules. For
simplicity, we have also elided type declarations.

8 2009/5/19

module m1. module m2.
global r,w. global r.
[clauses in m1] [clauses in m2]

module m3. module m4. module m5.
accumulate m1. accumulate m2. accumulate m3,m4.
local r. local r, w. local q.
global w. global w.
[clauses in m3] [clauses in m4] [clauses in m5]

Figure 4. An example of nested accumulation

A naive implementation of our language can be obtained
through a process of inlining accumulated modules.3 However,
this process has to be careful about distinguishing constants that
come from different accumulated modules and must map them to
appropriately scoped ones in the larger module it constructs. A
schematic depiction of what such an inlining compiler must ac-
complish appears in Figure 5. We have used here the names r[1]
and r[2] to distinguish the two constants with name r that come
from the modules m3 and m4 and we have similarly employed the
names w[1] and w[2] to differentiate between the global constant
in module m5 and the local constant in module m4 that share the
name w. Further, we have exploded the renaming process into a
cascade of steps following the accumulation chain. For example,
the constant r appearing in the clauses of module m1 is to be re-
named to the first local in the enclosing context (module m3) which
is itself renamed to the second local in the outermost context. In
reality, an inlining compiler can collapse this nesting by actually
carrying out the sequence of renamings, yielding a module with
one set of global and local constants and a collection of clauses
from all the modules with the constant in them appropriately iden-
tified. It can then proceed to compile the clauses with complete
knowledge of all the relevant predicate definitions.

5.2 A Separate Compilation Based Treatment
The previous model indicates the structure of the code that needs
to be produced prior to execution. We are interested, however, in
generating this code from compiled versions of each of the modules
m5, m4, m3, m2 and m1 that have been generated without knowledge
of where they are going to be used and information at most of the
signatures of modules that they accumulate. In this situation

1. the compiler will not have specific knowledge when compiling
a potentially accumulated module of what the global and local
constants are going to be mapped to in the enclosing context,

2. for predicates whose names are global and whose definitions
are extendible, the compiler will have to produce code assuming
that the clauses in the module form an incomplete set and must
be fitted into a larger context, and

3. the code that the compiler produces may have calls to predi-
cates whose entry points cannot be determined at compilation
time but must wait till the relevant assembly of modules is put
together.

The tasks of the inlining compiler will, under these circumstances,
have to be divided between a compiler that produces code for each
module separately but includes in such code suitable annotations
that allow it to be fitted into a larger context and a linker that

3 We have chosen to explain the semantics of our modules constructs here
by translation into the core logical language and a subsequent use of the
operational semantics of that language. An alternative approach, that might
not pay as close attention to the logical underpinnings, would be to develop
this inlining or module elaboration presentation more formally.

uses the “glue” information with each module to build a complete
bytecode image of the system. We sketch the structure of these
components below that in combination achieve the desired result.
For concreteness in presentation, we will assume as a target low-
level code that can be run on an architecture closely related to the
Warren Abstract Machine (WAM) [25]. We assume familiarity with
this machine structure below.

5.2.1 The Outcome of Compilation
Given a module, the compiler that we envisage will produce a file
for the linker that has the following items of information:

1. A listing of the global constants that includes their names and
other information such as their types that will be needed during
execution.

2. A listing of the local constants similar to that for the global ones
but, this time, the names are not needed.

3. A list of names for each accumulated module paired with a
mapping from its global names (obtained from its signature)
to indices into either the local or global constant list for this
module.

4. A listing of the (indices of) externally redefinable predicates.

5. WAM-like code obtained by compiling the clauses presented in
the module. Constant indices in this code will be indices into
the lists in the header, to be patched up eventually by the linker.
Calls to externally redefinable predicates also use indices into
the listing of these predicates and will have to be filled in after
the entry point for these has been finally determined.

6. A map from predicate names (represented by their indices) to
their entry points in the code space.

In the WAM setting, the code that is produced for individual
clauses defining a predicate is surrounded by instructions for se-
quencing through choices and also indexing into them. The typical
structure for this is illustrated below:

try_me_else L1

switch_on_term V1,C1,Lst1,S1

C1: switch_on_constant CHT1

S1: switch_on_structure SHT1

V1: try_me_else L12
[code for one clause]

L12: retry_me_else L13
...

LLn: trust_me
[code for last clause]

L1: retry_me_else L2
[code for another block]

9 2009/5/19

module m5.
global w[1].
local q, r[1], w[2], r[2].

{accumulate m3 [r -> second local: r[1], w -> first global: w[1]]
global w.
local r.
[clauses from m3] with constant references suitably resolved

{accumulate m1 [r -> first local: r, w -> first global: w]
[clauses from m1] with constant references suitably resolved}}

{accumulate m4 [r -> fourth local: r[2], w -> third local: w[2]]
local r, w.
[clauses from m4] with constant references suitably resolved

{accumulate m2 [r -> first local: r]
[clauses from m2] with constant references suitably resolved}}

[clauses from m5] with constant references suitably resolved

Figure 5. The definition of module m5 after inlining accumulates

...

Ln: trust_me
[code for last block]

At the outermost level, this code captures a possible sequencing
through different chunks of clauses. Each chunk corresponds to
a subsequence over which indexing may be useful. One compo-
nent of this “indexed” subsequence pertains to the variable case
that must support a simple sequencing through the entire collection.
The other possibility, corresponding to lists or hashing on constant
name or structure names, is that only some of the clauses in the
sublist are relevant. In this case, auxiliary sequencing code using
the instructions try, retry and trust would be generated. These
possibilities are not specifically illustrated above but are nonethe-
less relevant to the discussions that follow.

5.2.2 The Linking Process
Linking begins by creating a frame for a flattened image of the
top-level module to be filled out by functions that map global and
local constants to runtime indices, recursively load the accumulated
modules and, finally, add the code to the frame.

The mapping of constants to runtime indices follows the cas-
cading structure of the inlining compiler, except that this is done
at linking time. In some detail, each local constant in the chain of
accumulates translates into a unique index. The global constants of
the top-level module also are assigned unique indices. Finally, the
assignments for the local and global constants of the parent mod-
ule and the associated renaming functions determine the indices of
global constants of accumulated modules.

An issue that is important in preparing the code for addition
to the frame is that of combining predicate definitions: different
modules may provide pieces of the definition of a predicate and
these need to be assembled together. To begin with, there must be
a fixed order governing the assembly—in λProlog, for instance,
clauses from the accumulated modules appear first in the order of
accumulation followed by those in the parent module—and this
is adhered to by the linker. Now, the code that is generated for a
predicate in each module has the structure of a list and a natural
first step towards integration is appending separate lists together.
Ignoring for the moment the existence of indexing in the WAM
code, it is easy to see how this might be done. For instance, suppose
that compilation of one module has produced the following code
sequence for a particular predicate:

L1: try_me_else L2
[code for a block]

L2: retry_me_else L3
[code for a block]

L3: trust_me
[code for a block]

Further, suppose that the compilation of another module has re-
sulted in the following sequence for the same predicate:

L4: try_me_else L5
[code for a block]

L5: retry_me_else L6
[code for a block]

L6: trust_me
[code for a block]

This combination of these two blocks of code can be realized by
changing the trust_me instruction that precedes the last block of
the first sequence into a retry_me_else instruction pointing to
the start of the next definition and by changing the first instruction
of that collection into a retry_me_else to yield the following:

L1: try_me_else L2
[code for a block]

L2: retry_me_else L3
[code for a block]

L3: retry_me_else L4
[code for a block]

L4 retry_me_else L5
[code for a block]

L5: retry_me_else L6
[code for a block]

L6: trust_me
[code for a block]

The indexing optimization in the WAM complicates matters a
little because some elements of the top-level sequence may be in-
dexed blocks. If we were to simply append the top-level sequences
as suggested, the new sequence may have two adjacent blocks of
this kind. This is undesirable: it may mean, for instance, that we
end up keeping a choice point on the stack when one is not really
needed. Fortunately, it is possible to avoid this. We can determine if
this will occur by examining the last element of the first sequence

10 2009/5/19

and the first element of the second sequence. If they are both in-
dexed blocks, then we proceed to merge them.

One problem to be addressed in generating a single indexed
block is, once again, that of merging two segments of code that
represent sequencing through clauses. For the “main” sequences
corresponding to the variable case, this can be effected as for top-
level sequences. To treat the case when these may be sequences
realized through try, retry and trust instructions, we augment
the instruction set with two new instructions called try_else and
retry_else. These instructions behave like try and retry except
that that they take an additional argument that provides the address
of the code to try upon on backtracking. Suppose now that the two
blocks of sequencing code that we need to merge are the following:

S1: try L1 S2: try L4
retry L2 retry L5
trust L3 trust L6

This merging can be realized by changing the code to the following:

S1: try L1 S2: retry L4
retry L2 retry L5
retry_else L3,S2 trust L6

The try_else instruction is needed in implementing this idea in
the case where the first block corresponds to a unique clause choice.

The other problem that needs to be dealt with in combining
indexing blocks is that of merging hash tables corresponding to
constant and structure names. This is easy to do. The compiler
can actually emit the separate tables simply as lists of pairs of
constant names and corresponding entry points to code. The linker
can determine from this which lists have to be merged and then
emit the merged lists, which are used by the emulator to generate
the hash tables.

The last aspect that the linker must resolve is the (relative) code
location for predicates that could not be finalized at compile time.
After the combining of all the clause code has been completed, a
map is available from each predicate name in our universal names-
pace to the location of its definition. These addresses can now be
patched in at the appropriate places.

6. Related Work and Conclusion
This paper has described a logic-based interpretation of modularity
in logic programming. A natural question that arises in assessing its
contributions is the relationship of the treatment it proposes to that
in functional and other related styles of programming. There are
obvious similarities at the pragmatic level to the ideas of signatures
and structures in Standard ML [11, 15] and existential quantifica-
tion in programs looks enticingly similar to existential types that
underlie hiding in functional programming [16]. There is a large
body of work pertaining to type checking, separate compilation and
related issues in this setting (e.g. see [8, 10, 22]) that may have
bearing on similar issues in the logic programming setting and that
should be examined more closely to get a clearer understanding of
the connections. We have not done this here primarily because our
treatment of types has been simple and our main concern has been
with the impact the modularity features have on the proof search
aspect that is unique to logic programming. Much of the attention
in this paper has, in fact, been on spelling out a coherent logical
viewpoint for modularity in logic programming and then describ-
ing how a satisfactory computational treatment can be provided to
realize the effect this has on the attendant proof search.

Another relevant comparison is with work that endows actual
Prolog systems with modularity capabilities. A major concern
within such efforts (e.g., [3, 23, 24]) has been the interpretation
of metalogical predicates such as call and the treatment of declara-
tions relating to syntax. The focus on this view of modularity has

significant practical relevance—e.g., see [3] for its importance to
language extensibility. However, this concern is orthogonal to our
primary one here relating to name and code scoping. With regard
to the handling of names, these other approaches have been some-
what ad hoc at a logical level, permitting the hiding of predicate
names but not those of functors and constants, a critical aspect of
data abstraction. The treatment in the Mercury language is closer
to ours pragmatically but differs in that it requires either all or none
of the constructors of a type to be hidden [1]. Moreover, our use of
existential quantifiers can lead to richer computations that require
a more sophisticated unification procedure. Unfortunately space
does not permit a fuller discussion of this issue.

We should also contrast our work with those in logic program-
ming that focus on a logic-oriented approach to realizing modular-
ity. The proposal of Sanella and Wallen [21] that brings ideas from
ML into the logic programming setting is one example of this. The
notions of signatures and structures in this proposal once again cor-
respond closely to our ideas of signatures and modules. One differ-
ence is that [21] does not allow for a predicate definition to be built
up across different structures/modules; such a capability has po-
tential usefulness in a logic programming setting as argued in Sec-
tion 4. We also note that, in our setting, the hiding realized through
signature specifications is explained in a logic-based way. Another
proposal is that of Miller [13] that subsumes the constructs we have
used here. Our contribution relative to this work is to demonstrate
that an entirely static subpart of it suffices to realize scoping over
clause definitions as well. Finally we mention the work of Harper
and Pfenning [9] that adapts an ML-like approach to modularity to
an LF based logic programming language but that, like [12], also
allows for dynamic modifications of predicate definitions.

At an implementation level, we have had to deal with two differ-
ent issues: the treatment of scope for existentially quantified vari-
ables and the combining of code for a given predicate that is ob-
tained from compiling different modules. The second issue is per-
tinent also to multifile definitions in, for instance, the SICStus sys-
tem. The solution adopted there is different at least on the surface:
compilation is done directly to core and indexing is realized inter-
pretively based on a data structure that is built up incrementally as
each clause is compiled [4]. It is of interest, however, to see if as-
pects of that approach can be adapted to our separate compilation
setting as well.

There are different aspects relevant to the work we have pre-
sented here such as the logical features underlying our proposal for
modularity, the syntax chosen to support this notion, the treatment
of name scopes in compilation and computation (or, more precisely,
in unification) and the realization of separate compilation. Each of
these aspects has received consideration individually in past work,
raising the question of what precisely the contribution of this pa-
per is. The main novelty here, in our estimation, is in the way we
combine these different ideas to yield a logic motivated approach
to modularity that is pragmatically useful and that has a simple,
separate-compilation based implementation.

The modules language that we have described has been imple-
mented within the Teyjus system. The inlining approach described
in Section 5.1 was already present in the first version of this system
[19]. Experience relative to this system with the approach to scop-
ing that we have advocated has been positive: users have adapted
easily to this method from the dynamic, import based approach that
it also supported. We have recently completed and released a sec-
ond implementation of this system [6]. The newer system includes
an implementation of the modules constructs described in this pa-
per that is based on the ideas presented in Section 5 and that conse-
quently supports separate compilation.

11 2009/5/19

Acknowledgments
This paper has benefitted from suggestions for improvement re-
ceived from the reviewers of an earlier version. Dale Miller has
also provided helpful comments. Support for this work has been
provided by the National Science Foundation under Grant No.
0429572. Opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

References
[1] Ralph Becket. Mercury tutorial, 2005. Available at the URL http://

www.cs.mu.oz.au/research/mercury/tutorial/book/book.pdf.

[2] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lpez, and
G. Puebla. The Ciao Prolog System, August 1997. Reference Man-
ual, Technical Report CLIP 3/97, School of Computer Science, Technical
University of Madrid.

[3] D. Cabeza and M. Hermenegildo. A new module system for Prolog. In
Computational Logic - CL 2000, pages 131–148. Springer, 2000. LNAI
Vol 1861.

[4] M. Carlsson. Private Communication, June 2007.

[5] International Organization for Standardization. Prolog. ISO/IEC 13211
— Part 2: Modules, 2000.

[6] A. Gacek, S. Holte, G. Nadathur, X. Qi, and Z. Snow. Teyjus ver-
sion 2: An implementation of λProlog, April 2008. Available from
http://teyjus.cs.umn.edu.

[7] Rémy Haemmerlé and François Fages. Modules for Prolog revisited. In
S. Etalle and M. Truszczynski, editors, ICLP: Logic Programming, 22nd
International Conference, volume 4079 of LNCS, pages 41–55. Springer,
August 2006.

[8] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In POPL ’94: Proceedings of the 21st
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 123–137, New York, NY, USA, 1994. ACM.

[9] R. Harper and F. Pfenning. A module system for a programming
language based on the LF logical framework. Journal of Logic and
Computation, 8(1):5–31, 1998.

[10] Xavier Leroy. Manifest types, modules, and separate compilation. In
POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 109–122, New York,
NY, USA, 1994. ACM.

[11] D. MacQueen. Modules for Standard ML. In LFP ’84: Proceedings of
the 1984 ACM Symposium on LISP and functional programming, pages
198–207, New York, NY, USA, 1984. ACM.

[12] D. Miller. A logical analysis of modules in logic programming.
Journal of Logic Programming, 6:79–108, 1989.

[13] D. Miller. A proposal for modules in λProlog. In R. Dyckhoff, editor,
Proceedings of the 1993 Workshop on Extensions to Logic Programming,
pages 206–221. Springer-Verlag, 1994. Volume 798 of Lecture Notes in
Computer Science.

[14] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125–157, 1991.

[15] R. Milner, M. Tofte, and R. Harper. The definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1990.

[16] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type.
ACM Trans. Program. Lang. Syst., 10(3):470–502, 1988.

[17] L. Monteiro and A. Porto. Contextual logic programming. In G. Levi
and M. Martelli, editors, Sixth International Logic Programming Confer-
ence, pages 284–299. MIT Press, June 1989.

[18] G. Nadathur. A proof procedure for the logic of hereditary Harrop
formulas. Journal of Automated Reasoning, 11(1):115–145, August
1993.

[19] G. Nadathur and D.J. Mitchell. System description: Teyjus—a
compiler and abstract machine based implementation of λProlog. In

H. Ganzinger, editor, Automated Deduction–CADE-16, number 1632 in
Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag,
July 1999.

[20] G. Nadathur and G. Tong. Realizing modularity in λProlog. Journal
of Functional and Logic Programming, 1999(9), April 1999.

[21] D.T. Sannella and L.A. Wallen. A calculus for the construction of
modular Prolog programs. Journal of Logic Programming, 12:147–178,
January 1992.

[22] Zhong Shao. Transparent modules with fully syntatic signatures.
In ICFP ’99: Proceedings of the fourth ACM SIGPLAN international
conference on Functional programming, pages 220–232, New York, NY,
USA, 1999. ACM.

[23] Swedish Institute of Computer Science. SICStus Prolog v3 User’s
Manual. The Intelligent Systems Laboratory, PO Box 1263, S-164 28
Kista, Sweden, 1991–2004.

[24] Swedish Institute of Computer Science. Quintus Prolog v3 User’s
Manual. The Intelligent Systems Laboratory, PO Box 1263, S-164 28
Kista, Sweden, 2003.

[25] D.H.D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI International, October 1983.

12 2009/5/19

