
Choices in Representation and Reduction Strategies

for Lambda Terms in Intensional Contexts

Chuck Liang,1 Gopalan Nadathur2 and Xiaochu Qi3

Abstract

Higher-order representations of objects such as programs, proofs, formulas and types have
become important to many symbolic computation tasks. Systems that support such rep-
resentations usually depend on the implementation of an intensional view of the terms of
some variant of the typed lambda calculus. New notations have been proposed for the
lambda calculus that provide an excellent basis for realizing such implementations. There
are, however, several choices in the actual deployment of these notations the practical con-
sequences of which are not currently well understood. We attempt to develop such an
understanding here by examining the impact on performance of different combinations of
the features afforded by such notations. Amongst the facets examined are the treatment of
bound variables, eagerness and laziness in substitution and reduction, the ability to merge
different structure traversals into one and the virtues of annotations on terms that indicate
their dependence on variables bound by external abstractions. We complement qualitative
assessments with experiments conducted by executing programs in a language that supports
an intensional view of lambda terms while varying relevant aspects of the implementation
of the language. Our study provides insights into the preferred approaches to representing
and reducing lambda terms and also exposes characteristics of computations that have a
somewhat unanticipated effect on performance.

1 Introduction

We are concerned in this paper with the representation and manipulation of lambda terms
in situations where they are employed as devices for encoding complex syntactic objects.
Our interest in this issue arises from the implementation of programming systems such
as proof assistants [Bru80, CAB+86, Tea02, NPW02], logical frameworks [CH88, HHP93]
and metalanguages [NM88, PS99]. Within these systems, the terms of a chosen lambda
calculus are used as data structures, with abstraction in these terms serving to encode
the binding notions present in objects such as formulas, programs and proofs, and the
attendant β-reduction operation capturing substitution computations. Furthermore, logical
manipulations over the encoded objects often involve analyses of their representations using
a form of unification that incorporates equality under the lambda conversion rules. Finally,

1Department of Computer Science, Hofstra University, Hempstead, NY 11550, cscccl@hofstra.edu.
2Department of Computer Science and Engineering and Digital Technology Center, University of Min-

nesota, 4-192 EE/CS Building, 200 Union Street S.E., Minneapolis, MN 55455, gopalan@cs.umn.edu.
3Department of Computer Science and Engineering, University of Minnesota, 4-192 EE/CS Building, 200

Union Street S.E., Minneapolis, MN 55455, xqi@cs.umn.edu.

1

the actual execution of such manipulations usually involves some form of search, realized,
for instance, through a depth-first search regimen complemented with backtracking.

Lambda terms also underlie functional programming languages and their treatment in
this context is usually based on their compilation into forms whose only required relation-
ship to the original terms is that they both reduce to the same values. Such a translation
is, of course, not acceptable in the situation in which we are presently interested. Instead,
a representation is required that provides access at runtime to the form of a term and that
facilitates comparisons between terms based on this structure. More specifically, these com-
parison operations generally ignore bound variable names and equality modulo α-conversion
must therefore be easy to recognize. Further, comparisons of terms must factor in the β-
conversion rule and, to support this, an efficient implementation of β-contraction must be
provided. An essential component of β-contraction is a substitution operation over terms.
Building in a fine-grained control over this operation has been thought to be useful. While
such control can be realized in principle by encoding substitutions in environments, care is
needed in how exactly this is done because the comparison of terms can involve the propa-
gation of substitutions and the contraction of redexes inside the contexts of abstractions.

The representational issues outlined above have been examined in the past and ap-
proaches to dealing with them have also been described. A well-known solution to the
problem of identifying two lambda terms that differ only in the names chosen for bound
variables is, for instance, to transform them into a nameless form using a scheme due to
de Bruijn [Bru72]. Similarly, several new notations for the lambda calculus have been de-
scribed in recent years that have the purpose of making substitutions explicit (e.g., see
[ACCL91, BBLRD96, KR97, NW98]). However, the actual manner in which all these de-
vices should be deployed in a practical context is far from clear. In particular, there are
tradeoffs involved with different choices and determining the precise way in which to make
them requires experimentation with an actual system: the operations on lambda terms that
impact performance are ones that arise dynamically and they are notoriously difficult to
predict from the usual static descriptions of computations.

We seek to illuminate this empirical question in this paper. We base our investigation on
computations carried out within the language λProlog [NM88] that employs lambda terms
as data structures and that embodies many of the kinds of operations over these terms that
we have described above. The specific vehicle for our study is a new implementation of this
language [NM99] that isolates several choices in term representation, permitting them to be
varied and their impact to be quantified. As we argue in detail in later sections, both the
language and the implementation context that we have chosen provide us with a framework
for investigation that actually encompasses a wide variety of relevant systems. Now, in this
concrete setting, we employ a mixture of actual experiments and analyses motivated by
these experiments to gain an understanding on the following issues:

1. The benefits and drawbacks of adopting the de Bruijn notation for lambda terms.

2. The relative merits of a spectrum of reduction strategies, ranging from ones that fully
normalize terms each time their structure is examined to ones that expose structure

2

in an incremental, demand-driven manner.

3. The importance of an explicit treatment of substitutions that allows for the combina-
tion of ones arising from the contraction of multiple β-redexes into a single environ-
ment.

4. The usefulness of a scheme for annotating (sub)terms that indicates their dependence
on variables bound by external abstractions.

From this examination we determine that both the de Bruijn scheme and the ability to
combine substitutions are important in a practical realization. Our conclusions concerning
the other issues are more mixed: different reduction strategies when combined with other
features can lead to comparable performance and the impact of annotations depends on the
reduction strategy in use. However, we gain significant insight from trying to understand
behaviour even in these cases, one that is, in fact, valuable to choosing the right combination
of features in practice.

The rest of this paper is structured as follows. In the next section, we describe the
explicit substitution notation that underlies the Teyjus system and indicate why this is a
good choice for our study. In Section 3, we outline the structure of λProlog computations,
categorize these into conceptually distinct classes and describe specific programs in each
class that we use to make measurements. The following four sections discuss, in turn, the
impacts of choices in reduction strategies, the treatment of bound variables, the ability to
combine substitutions and annotations. Section 8 summarizes our findings and indicates
possible extensions to our study. The paper also has two appendices that substantiate the
reduction approaches that we examine in Section 4.

2 The Explicit Treatment of Substitution

Theoretical presentations of the lambda calculus often treat the substitution necessitated
by reduction as an atomic operation. Actual implementations have to take a much more
realistic view. The effecting of substitution involves a structure traversal similar to that
needed for finding and contracting β-redexes. This must be taken into account in properly
assessing computational costs. Functional programming language implementations in fact
combine all these walks over structure by accumulating substitutions that need to be per-
formed into an environment. These implementations assume that there is no need to look
inside abstractions in terms, thereby obviating variable renaming and making it possible
to use a simple form of environments. When an abstraction is actually encountered, the
meta-level device of a closure is used to suspend the actual performance of the substitution.

The assumption that it is unnecessary to look under abstractions is, unfortunately, not
really applicable in the situation where lambda terms are used for representation. For
example, consider the task of determining whether the two terms

((λ (λ (λ ((#3 #2) s)))) (λ#1)) and ((λ (λ (λ ((#3 #1) t)))) (λ#1))

3

are equal. We use the de Bruijn notation for lambda terms here, writing #i to represent a
variable occurrence bound by the ith abstraction looking outwards.4 Now, in ascertaining
that these terms are not equal, it is necessary to propagate substitutions generated by β-
contractions under abstractions and also to contract redexes embedded inside abstractions.
The idea of an environment needs to be carefully adapted to yield a delaying mechanism
relative to these requirements. For instance, if a term of the form ((λ t) s) is embedded
within abstractions, it is to be expected that (λ t) contains free variables. Hence, if the
result of contracting this term is to be encoded by the term t and an ‘environment’, then
the environment must record not just the substitution of s for the first free variable but
also the ‘decrementing’ of the indices corresponding to all the other free variables. Similar
observations can be made about propagating substitutions under abstractions.

Explicit substitution calculi extend the notion of environments to yield a treatment
of these issues. Moreover, these calculi reflect suspended substitutions directly into term
structure, thereby offering a flexibility in ordering computations. We study the benefits of
this flexibility in this paper based on a particular calculus known as the suspension notation
[NW98]. We outline this notation in this section to facilitate this discussion. Although our
empirical study must utilize a particular system, the suspension notation is general enough
for our observations to eventually be calculus independent. We make this point below by
contrasting this system with the other explicit substitution calculi in existence.

2.1 The Suspension Notation

The suspension notation conceptually encompasses two categories of expressions, one corre-
sponding to terms and the other corresponding to environments that encode substitutions.
In a notation such as the λσ-calculus [ACCL91] that uses exactly these two categories, an
operation must be performed on an environment expression each time it is percolated inside
an abstraction towards modifying the de Bruijn indices in the terms whose substitution it
represents. The suspension notation instead uses a global mechanism for recording these
adjustments so that they can be effected at one time, when a substitution is actually made,
rather than in an iterated manner. To support this possibility, this notation includes a
third category of expressions called environment terms that encode terms together with the
‘abstraction context’ they come from. The notation additionally incorporates a system for
annotating terms to indicate whether or not they contain externally bound variables.

Formally, the syntax of terms, environments and environment terms of the suspension
notation are given by the following rules:

〈T 〉 ::= 〈C〉 | 〈V 〉 | #〈I〉 | (〈T 〉 〈T 〉)〈A〉 | (λ〈A〉 〈T 〉) | [[〈T 〉, 〈N〉, 〈N〉, 〈E〉]]〈A〉
〈E〉 ::= nil | 〈ET 〉 :: 〈E〉 〈ET 〉 ::= @〈N〉 | (〈T 〉, 〈N〉) 〈A〉 ::= o | c

In these rules, 〈C〉 represents constants, 〈V 〉 represent instantiatable variables (i.e., variables
that can be substituted for by terms), 〈I〉 is the category of positive numbers and 〈N〉 is

4We note that our initial choice of the de Bruijn notation is orthogonal to other ones that we discuss
concerning representation and reduction.

4

the category of natural numbers. Terms constitute our enrichment of lambda terms. As
already noted, #i corresponds to the de Bruijn rendition of bound variable occurrences. An
expression of the form [[t, ol, nl, e]]o or [[t, ol, nl, e]]c, referred to as a suspension, is a new kind
of term that encodes a term with a ‘suspended’ substitution: intuitively, such an expression
represents the term t with its first ol variables being substituted for in a way determined
by the environment e and its remaining bound variables being renumbered to reflect the
fact that t used to appear within ol abstractions but now appears within nl of them.5

Conceptually, the elements of an environment are either substitution terms generated by
a contraction or are dummy substitutions corresponding to abstractions that persist in an
outer context. However, renumbering of indices may have to be done during substitution,
and to encode this the environment elements are annotated by a relevant abstraction level.
To be deemed well-formed, suspensions must satisfy certain constraints that have a natural
basis in our informal understanding of their content: in an expression of the form [[t, i, j, e]]o
or [[t, i, j, e]]c, the ‘length’ of the environment e must be equal to i, for each element of the
form @l of e it must be the case that l < j and for each element of the form (t′, l) of e it
must be the case that l ≤ j. A final point to note about the syntax of our expressions is
that all non-atomic terms are annotated with either c or o. The former annotation indicates
that the term in question does not contain any variables bound by external abstractions and
the latter is used when either this is not true or when enough information is not available
to determine that it is. Our well-formedness criteria for terms additionally require that the
annotations they carry be consistent with these interpretations.

The expressions in our notation are complemented by a collection of rewrite rules that
simulate β-contractions. These rules are presented in Figure 1. The symbols v and u that are
used for annotations in these rules are schema variables that can be substituted for by either
c or o. We also use the notation e[i] to denote the ith element of the environment. Of the
rules presented, the ones labelled (βs) and (β′s) generate the substitutions corresponding to
the β-contraction rule on de Bruijn terms and the rules (r1)-(r12), referred to as the reading
rules, serve to actually carry out these substitutions. As an illustration of these roles for
the rules, we may consider their use in the reduction of the term

((λc ((λo (λo ((#1 #2)o #3)o)) t2)o) t3)c,

in which t2 and t3 denote arbitrary (annotated) de Bruijn terms; note that the consistency
of annotations dictates that t3 be a constant, an instantiatable variable or a complex term
carrying the annotation c. Now, using the (βs) rule, this term can be rewritten to

[[((λo (λo ((#1 #2)o #3)o)) t2)o, 1, 0, (t3, 0) :: nil]]c.

An interesting observation here is that the rewriting step preserves the content of the initial
annotations. We can now use the rules (r6) and (r7) to propagate the substitution, thereby
producing

((λc [[(λo ((#1 #2)o #3)o), 2, 1,@0 :: (t3, 0) :: nil]]o) [[t2, 1, 0, (t3, 0) :: nil]]c)c.
5Thus, one may read ol as ‘old embedding level’ and nl as ‘new embedding level.’

5

(βs) ((λu t1) t2)v → [[t1, 1, 0, (t2, 0) :: nil]]v
(β′s) ((λu [[t1, ol + 1, nl + 1,@nl :: e]]o) t2)v → [[t1, ol + 1, nl, (t2, nl) :: e]]v
(r1) [[c, ol, nl, e]]u → c

provided c is a constant
(r2) [[x, ol, nl, e]]u → x

provided x is an instantiatable variable
(r3) [[#i, ol, nl, e]]u → #j

provided i > ol and j = i− ol + nl.
(r4) [[#i, ol, nl, e]]u → #j

provided i ≤ ol and e[i] = @l and j = nl − l.
(r5) [[#i, ol, nl, e]]u → [[t, 0, j, nil]]u

provided i ≤ ol and e[i] = (t, l) and j = nl − l.
(r6) [[(t1 t2)u, ol, nl, e]]v → ([[t1, ol, nl, e]]v [[t2, ol, nl, e]]v)v.
(r7) [[(λu t), ol, nl, e]]v → (λv [[t, ol + 1, nl + 1,@nl :: e]]o).
(r8) [[(t1 t2)c, ol, nl, e]]u → (t1 t2)c.
(r9) [[(λc t), ol, nl, e]]u → (λc t).
(r10) [[[[t, ol, nl, e]]c, ol

′, nl′, e′]]u → [[t, ol, nl, e]]c.
(r11) [[[[t, ol, nl, e]]o, 0, nl

′, nil]]o → [[t, ol, nl + nl′, e]]o.
(r12) [[t, 0, 0, nil]]u → t

Figure 1: Rule schemata for rewriting annotated terms

The annotation on the embedded suspension [[t2, 1, 0, (t3, 0) :: nil]]c indicates that it must
not contain variables bound by external abstractions, something that is necessary for the
annotations on the original term to be correct. The (β′s) rule is applicable to the term at
this stage and using it yields

[[(λo ((#1 #2)o #3)o), 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]]c, 0) :: (t3, 0) :: nil]]c.

Using the rules (r4)-(r7) some number of times now produces

(λc ((#1 [[[[t2, 1, 0, (t3, 0) :: nil]]c, 0, 1, nil]]o)o [[t3, 0, 1, nil]]o)o).

Noting the structure of rule (r3), it is easy to see that the term [[t3, 0, 1, nil]]o that appears
here represents the result of ‘raising’ the index of each externally bound variable in t3 by 1
as is necessitated by its substitution under an abstraction. A similar comment applies to
the other embedded suspension. Actually, neither of the internal terms can contain such
a variable and so this renumbering is vacuous. A realization of this fact is encoded in the
rules (r8)-(r10) that allow the overall term to be simplified to

(λc ((#1 [[t2, 1, 0, (t3, 0) :: nil]]c)o t3)o).

6

The reading rules can now be applied repeatedly to the remaining suspension, producing
eventually an (annotated) de Bruijn term that results from the original term by contracting
the two outermost β-redexes.

2.2 Some Formal Properties

Interest in the suspension notation derives ultimately from its ability to simulate reduc-
tion in the conventional lambda calculus. This capability has been shown in [Nad99] in
two steps. First, underlying every term in the suspension notation is intended to be a de
Bruijn term that is obtained by ‘calculating out’ the suspended substitutions and erasing
the annotations. The reading rules can be shown to possess properties that support this
interpretation: they define a reduction relation that is both strongly normalizing and con-
fluent. Given a term t, we shall use the notation |t| below to denote the de Bruijn term
obtained by annotation erasure from the the normal form of t modulo the reading rules.
Now, in the second step, it can then be shown that the suspension term t reduces to s using
the rules in Figure 1 if and only if |t| β-reduces to |s|. As a particular case of this, each
β-contraction in the conventional setting can be realized by a use of the (βs) rule followed
by a sequence of reading steps.

Head normal forms play an important role in the comparison of lambda terms. The fol-
lowing definition recalls the conventional notion and also lifts it to the suspension notation:

Definition 1 A de Bruijn term is in head normal form if it has the structure

(λ . . . (λ (. . . (h t1) . . . tm)) . . .)

where h is a constant, a de Bruijn index or an instantiatable variable and there are n
abstractions at the front of the term; by a harmless abuse of notation, we permit n and m
to be 0 in this presentation. Given such a form, t1, . . . , tm are called its arguments, h is
called its head and n is its binder length. Head normal forms are extended to the suspension
notation by allowing for annotations and permitting the arguments to be arbitrary suspension
terms.

Actual comparison of two terms usually proceeds by reducing them to head normal form,
matching their binders and heads and then comparing their arguments. The extension of
head normal forms to the suspension notation permits substitutions over the arguments to
be delayed until we actually need to compare them. The legitimacy of this approach is
based on the following proposition that is proved in [Nad99]:

Proposition 2 Let t be a de Bruijn term and let t′ be a suspension term that yields t by
annotation erasure. Further, suppose that the rules in Figure 1 allow t′ to be rewritten to
a head normal form in the generalized sense that has h as its head, n as its binder length
and t1, . . . tm as its arguments. Then t has the term

(λ . . . (λ (. . . (h |t1|) . . . |tm|)) . . .)
with a binder length of n as a head normal form in the conventional sense.

7

In the conventional setting, the reduction of a term to head normal form may be carried
out by rewriting the head redex at each stage. Assuming the term is not already in head
normal form, this redex is identified as follows: it is the term itself if it is a β-redex;
otherwise, if the term is of the form λ t or (t s), thenx it is the head redex of t. In the
suspension notation, there is one more possibility for the term and there is also a larger
set of rewriting rules. The following definition takes these aspects into account and also
anticipates graph based representations for lambda terms to generalize the notions of head
redexes and head reduction sequences to its context.

Definition 3 Let t be a suspension term that is not in head normal form.

1. Suppose that t has the form (t1 t2)o or (t1 t2)c. If t1 is an abstraction, then t is its
sole head redex. Otherwise the head redexes of t are exactly the head redexes of t1.

2. If t is of the form (λc t1) or (λo t1), its head redexes are identical to those of t1.

3. If t is of the form [[t1, ol, nl, e]]c or [[t1, ol, nl, e]]o, then its head redexes are t itself and
all the head redexes of t1.

Let two subterms of a term be considered non-overlapping just in case neither is contained in
the other. Then a head reduction sequence of a term t is a sequence t = r0, r1, r2, . . . , rn, . . . ,
in which, for i ≥ 0, there is a term succeeding ri if ri is not in head normal form and, in
this case, ri+1 is obtained from ri by simultaneously rewriting a finite set of non-overlapping
subterms that includes a head redex using the rule schemata in Figure 1. Obviously, such a
sequence terminates if for some m ≥ 0 it is the case that rm is in head normal form.

Head reduction sequences may not be unique for two reasons: a term in any given
sequence may have more than one head redex and there also may be choices in additional
redexes to rewrite. However, this redundancy is inconsequential from the perspective of
generating a head normal form and offers also a flexibility in reduction strategy that may
be useful in practice:

Proposition 4 A suspension term has a head normal form if and only if every head re-
duction sequence for it terminates.

The essential idea in establishing this proposition, a detailed proof of which appears in
[Nad99], is that of mapping head reduction sequences for suspension terms onto ones for
the de Bruijn terms that correspond to them. A fully normalized form of a term may be
generated by, as usual, reducing it first to a head normal form and then recursively applying
this procedure to each of its arguments.

2.3 Variations on the Suspension Notation

The suspension notation that we have described here is actually a restricted version of the
calculus presented in [NW98].6 In particular, the full calculus allows for the transformation

6We are eliding annotations and rewrite rules that exploit these in this characterization.

8

of arbitrary nested suspensions as manifest in the expression [[[[t, ol1, nl1, e1]]u, ol2, nl2, e2]]v
into a single suspension of the form [[t, ol, nl, e]]w. The main task in this transformation is
the computation of the effect of the substitutions embodied in the environment e2 on each
of the terms present in e1. The richer calculus includes expression forms and rules that
allow for this computation to be carried out through genuinely atomic steps. Now, there
is a benefit to this kind of a merging ability: the transformation described permits all the
substitutions to be effected in one walk over the structure of t rather than in the two walks
that a naive processing of the nested suspensions would require. While the full collection of
rules for merging environments offer considerable flexibility, this flexibility is also difficult
to exploit in a practical reduction procedure. We have instead incorporated part of the
power of the additional rules into the notation we use here in the form of two special rules:
the (β′s) and the (r11) rules. These rules are, in fact, derived ones relative to the calculus
in [NW98] and, as such, they collapse a larger sequence of ‘merging’ steps into single rule
applications in two useful situations as we indicate next.

The (β′s) rule is redundant to our collection if our sole purpose is to simulate β-
contraction. However, as is manifest in the reduction example considered in Section 2.1, it
is the rule in our system for combining substitutions arising from different contractions into
one environment and, thereby, for carrying them out in the same walk over the structure
of the term being substituted into. This rule can actually be understood as yielding in one
step the final product of merging nested suspensions produced by two applications of the
(βs) rule. This rule in fact meshes well with a control regimen that follows a head reduction
sequence and will be exploited in this fashion in the reduction procedures we describe. The
rule (r11) is also redundant, but it serves a similar useful purpose in that it allows a reduc-
tion walk to be combined with a renumbering walk after a term has been substituted into
a new (abstraction) context. In fact, the useful applications of rules (r11) and (r12) arise
right after a use of rule (r5) and this behaviour can be made explicit through the following
derived rules:

(r13) [[#i, ol, nl, e]]u → t,
provided i ≤ ol, e[i] = (t, l) and nl = l.

(r14) [[#i, ol, nl, e]]o → [[t, ol′, nl′ + nl − l, e′]]o,
provided i ≤ ol, e[i] = ([[t, ol′, nl′, e′]]o, l), and nl 6= l.

The reduction procedures that we present later will utilize these additional rules.
The annotations present in our terms allow a rapid simplification of suspensions in

certain instances and they also facilitate a preservation of sharing in a graph based imple-
mentation of reduction. These capabilities are manifest in the rules (r8)-(r10) whose use we
saw in our reduction example. To exploit these facets, it is necessary to introduce annota-
tions into (de Bruijn) terms, something that we assume is done in a preprocessing phase.
Our rewrite rules then conspire to preserve these annotations and to also utilize them where
possible. It is possible, of course, to not utilize annotations in reduction. In this case, our
terms can be simplified by dropping annotations from them altogether. Of course, the rules
(r8)-(r10) will also have to be eliminated in this case and all the other rules will have to be

9

changed to not mention annotations.
A final comment concerns the treatment of instantiatable or meta variables. The rule

(r2) that is included in our collection for ‘reading’ such variables is based on a particular
interpretation of them: substitutions that are made for them must not contain de Bruijn
indices that are captured by external abstractions. This is a common understanding of
such variables but not the only one. For example, treating these variables as essentially
‘graftable’ ones whose instantiation can contain free de Bruijn indices provides the basis
for lifting higher-order unification to an explicit substitution notation [DHK00]. This is an
interesting possibility but not one that we examine in this paper.

2.4 Relationship to Other Explicit Substitution Calculi

A variety of calculi have been proposed in recent years for reflecting substitution explicitly
into term structure. From the perspective of practical deployment, these can be catego-
rized based on whether or not they have machinery for combining substitutions arising
from contracting different β-redexes into a single environment, thereby allowing them to
be performed in the same traversal over a given term. The majority of the calculi that
have been proposed do not, in fact, possess this ability. This is true, for example, of the
λυ-calculus [BBLRD96], the λζ-calculus [Muñ96], the λse-calculus [KR97] and the λwso-
calculus [DG01]. The last two calculi are distinguished from the others in that they contain
mechanisms for interchanging the order of substitutions in certain circumstances; such a
device is needed to obtain confluence of rewriting under a graftable interpretation of meta
variables. However, in the absence of such variables and when considering the implementa-
tion of reduction and comparison operations, all these calculi are similar to the suspension
notation without the (β′s) rule.7

The systems that do permit the combination of reduction substitutions are the λσ-
calculus [ACCL91], the closely related ΛCCL calculus [Fie90] and the suspension notation.
The first two calculi include machinery to combine arbitrary environments, in the same way
that the full blown suspension notation that we mentioned in Section 2.3 does. However,
this general ability affords too many choices and we believe that it also will need to be
extracted into special derived rules such as the (β′s) rule before it can be embedded in
actual reduction procedures. There is also a difference in the way in which these two variety
of calculi encode adjustments that need to be made to substitution terms that appears to
favour the suspension notation in practice. These adjustments are not maintained explicitly
in the suspension notation but are obtained from the difference between the embedding level
of the term that has to be substituted into and an embedding level recorded with the term

7The λse and λwso calculi both exploit certain optimizations that are possible when the environment
contains exactly one nontrivial substitution. We take this aspect into account in our discussions in Section 6.
The λwso -calculus permits the combination of some renumbering and substitution walks through its b2 rule.
Together with the λse-calculus, it also allows it to be recognized that, for instance, the substitution of t2
cannot affect t3 in the reduction of the term ((λ ((λ (λ t1)) t2)) t3) under any reduction strategy. However,
neither calculus allows t3 and (a suitably modified version of) t2 to be substituted into t1 in the same walk
and this is the critical practical contribution of the (β′s) rule as later discussions highlight.

10

in the environment. Thus, consider a suspension term of the form [[t1, 1, nl, (t2, nl′) :: nil]]v.
This represents a term that is to be obtained by substituting t2 for the first free variable
in t1 (and modifying the indices for the other free variables). However, the indices for the
free variables in t2 must be ‘bumped up’ by (nl − nl′) before this substitution is made.
In the λσ-calculus, the needed increment to the indices of free variables is maintained
explicitly with the term in the environment. Thus, the suspension term shown above would
be represented, as it were, as [[t1, 1, nl, (t2, (nl − nl′)) :: nil]]v; actually, the old and new
embedding levels are needed in this term only for determining the adjustment to the free
variables in t1 with indices greater than the old embedding level, and devices for representing
environments encapsulating such an adjustment simplify the specific notation used. The
drawback with this approach is that, in moving substitutions under abstractions, every term
in the environment is affected. Thus, from a term like [[(λ t1), 1, nl, (t2, (nl − nl′)) :: nil]]v, we
must produce one of the form (λv [[t1, 2, nl + 1,@1 :: (t2, nl − nl′ + 1) :: nil]]o). In contrast,
using our notation, it is only necessary to add a ‘dummy’ element to the environment and
to make a global change to the embedding levels of the overall term.

The above discussion, while correct in spirit, is inaccurate in one detail. None of the
other calculi mentioned employ annotations in the way the suspension notation does and
thus do not immediately afford the possibility of studying their utility in practice.8 In
summary, we believe that the suspension notation provides a concrete yet sufficiently general
basis for examining the use of explicit substitution systems and the effect of the various
choices afforded by them on actual implementation.

3 A Framework for Empirical Evaluation

We employ computations in the higher-order logic programming language λProlog [NM88]
in this paper for the purpose of assessing the practical impact of the choices that exist
in the representation of lambda terms and also in reduction strategies. There are two
important reasons underlying this selection. First, λProlog is a language that genuinely
employs lambda terms as data structures. In particular, it allows these terms to be used
to represent complex syntactic objects whose structure involves binding and it includes
mechanisms for manipulating such terms in logically meaningful ways. At a computational
level, the use it makes of lambda terms is quite similar to what is done in logical frameworks,
proof assistants and metalanguages such as Twelf [PS99], Isabelle [NPW02] and Coq [Tea02].
The observations that we make relative to this language therefore carry over naturally to all
these other contexts. The second reason for our choice of experimentation platform is also
quite compelling: we have access to a newly completed implementation of λProlog within
which we can easily vary representation and reduction choices pertaining to lambda terms
and then monitor the effects of these variations.

8The recognition and utilization of the property of independence of subterms from external abstractions
is, however, part of two other systems. The Prolog/Mali implementation of λProlog [BR92] exploits such
an idea and notes results relative to a specific program that are similar to the ones we observe in Section 7
[BR91]. The substitution erasure mechanism in [FMS04] also has an overlap with the way we use annotations.

11

In the rest of this section we outline the structure of the λProlog language briefly and
then discuss the collection of programs over which we conduct our experiments as well as
the kinds of data we collect to gauge performance.

3.1 The λProlog Language

The language λProlog is one that, from our current perspective, extends Prolog in three
important ways. First, it replaces first-order terms—the data structures of a logic program-
ming language—with the terms of a typed lambda calculus. Attendant on these lambda
terms is a notion of equality given by the α-, β- and η-conversion rules. Second, λProlog
uses the higher-order unification procedure [Hue75], which respects this extended notion of
equality. Finally, the language extends the collection of goals or queries with two new kinds
of expressions, these being of the form ∀xG and D ⊃ G, in which G is a goal and D is
a conjunction of clauses. These new goals, called universal and implication goals, respec-
tively, have the following operational understanding: ∀xG is solved by solving G with all
free occurrences of x replaced by a new constant, and D ⊃ G is solved by enhancing the
existing program with the clauses in D and then attempting to solve G. Thus, at a pro-
gramming level, universal goals provide a means for giving names a scope and implication
goals similarly determine an extent for clauses that (partially) define procedures.

The new features in λProlog endow it with interesting metalanguage capabilities. To
illustrate this facet, suppose that we wish to represent the terms of the pure, untyped lambda
calculus with the intention of implementing reduction and other operations on them. For
simplicity, assume that we deal only with closed terms. We designate a new atomic type tm
to identify the class of objects encoding such terms in λProlog. Then, to capture the abstract
syntax of an application, we introduce a new constant called app of type tm→tm→tm.9

Thus, a lambda term of the form (e1 e2) will be represented by (app e1 e2), where e denotes
the representation of e. In representing abstractions, an interesting possibility arises. The
binding content in such objects can be reflected into abstractions in the data structures of the
metalanguage. Using this approach, referred to as the higher-order abstract syntax approach
in [PE88], the lambda term λx e would be translated into the λProlog term (abs λxe), where
abs is a special constructor with the type (tm→tm)→tm that is designated to identify
encodings of abstractions.

The benefit of the ‘higher-order’ representation of abstraction is that many of the binding
related operations on lambda terms become available directly because of the ‘structural’
understanding of abstraction embedded in λProlog. As a specific example, suppose that
we desire to realize head normalization over (object-level) untyped lambda terms. The
predicate hnorm implementing this operation can be defined through the following clauses:

hnorm X X :- bvar X.
hnorm (app A B) C :-

whnorm A D, (D = (abs E), hnorm (E B) C ; C = (app D B)), !.
9There are devices in λProlog for identifying new types and constants with their associated types the

details of which we do not go into out here.

12

hnorm (abs A) (abs B) :- ∀v (bvar v ⊃ hnorm (A v) (B v)).

whnorm X X :- bvar X.
whnorm (app A B) C :-

whnorm A D, (D = (abs E), whnorm (E B) C ; C = (app D B)), !.
whnorm (abs A) (abs A).

The syntax used above follows that of Prolog with the exception that application is written
in curried form, in keeping with the higher-order nature of the language. We note also the
convention that application binds more tightly than , (the Prolog conjunction symbol) and
:- (the reverse implication symbol). One significant aspect of this code is the treatment of
substitution in contracting a β-redex. Thus, the substitution of B for the bound variable
in the term represented by (abs E) is realized simply by applying E to B, allowing meta-
language reduction to do the rest. Another novelty is the realization of reduction within an
abstraction context. This is handled, in essence, by introducing a new constant, annotating
this as corresponding to a bound variable (via the bvar predicate), using this to temporarily
dispense with the metalanguage abstraction and head normalizing the resulting structure.
The scoping devices and λProlog reduction play a critical role in realizing this computation.
After the head normalization of the body is realized, it is necessary to insert an abstraction
over all occurrences of the introduced constant. This part of the computation is carried out
by a restricted form of higher-order unification, manifest in the code by the matching of the
produced structure with the term (B v).

3.2 A Program Suite for Collecting Performance Data

The λProlog language has been used in a variety of applications such as implementing
theorem provers, prototyping type inference systems and implementing compilers for pro-
gramming languages. For our experimental study, we decided to categorize these programs
based on the kind of computations they involve over lambda terms. We selected two rep-
resentative programs from each category for collecting performance data. We explain our
categorization and the selected programs in more detail below. One or two of our programs,
such as the one involving computations over the Church encoding of natural numbers, do
not represent significant applications for λProlog. However, they do strain aspects such as
the reduction process and have also been used in other studies; for example, see [GL02].

Programs primarily requiring reduction: The lambda terms that are used in programs
in this category figure mainly in reduction, the unification computation being largely first-
order in nature. The two programs included in this category are the following:

SKI This program corresponds to an improved version of hnorm, the object-level head
normalization procedure presented above, applied to arbitrary compositions of the
well-known combinators S, K and I. The data that is collected is based on the hnorm
procedure being applied to a collection of five hundred combinator compositions. We
note that this program does use some higher-order unification, specifically of the ‘Lλ

13

variety,’ but, in contrast with the next class of programs, most of the computation is
through β-reduction.

Church This program involves arithmetic calculations based on Church’s encoding of nu-
merals and the combinators for addition and multiplication. The largest ‘number’
used in this program is around twenty thousand. The principal difference between
this program and the previous one computationally is that the Church combinators
are represented directly as lambda terms of third-order in the metalanguage, i.e., the
app and abs based encoding is not used. If the app and abs based encoding is em-
ployed, then only second-order computations are required at the meta-level regardless
of the complexity of the object-level terms, leading to a restricted form of β-reduction
being all that is used.

Lλ-style programs: This is by far the most important class from the perspective of λProlog
applications. Computation in this class proceeds by first dispensing with all abstractions
in lambda terms using new constants, then carrying out a first-order style analysis over
the remaining structure and eventually abstracting out the new constants. As an idiom,
this is a popular one amongst λProlog users and it has also been adopted in other related
systems such as Elf and Isabelle. Programs in this class use a special case of reduction—the
argument of a redex is always a constant—and a restricted form of higher-order unification
[Mil91b]. We included the following programs in this category:

Compiler This is a compiler for a small imperative language with object-oriented features
[Lia02]. Aspects of compilation had been studied in logical frameworks, but this
relatively large experiment attempts to capture all the relevant stages in one setting.
The program includes a bottom-up parser, a continuation passing-style intermediate
language, and generation of native byte code. Significant parts of the computation
in this program do not in fact involve lambda terms. However, there are also major
parts that do and our study reveals that choices in representation of lambda terms
and in reduction strategies here can have a significant impact on behaviour.

Typeinf A program that infers principal type schemes for ML-like programs [Lia97]. The
representation of types treats quantification explicitly within this program and ab-
straction in the metalanguage is used to capture the binding effect. A type inference
algorithm similar to that of [AS93] was used. Given the treatment of type variables,
unification over types has to be explicitly programmed. Thus, many of the typical
features of a metalanguage are exercised by this program. Another interesting aspect
is that declarativity was taken seriously in developing the program and so (impure)
control mechanisms, such as the cut familiar from Prolog, have been avoided.

Programs that require higher-order unification: The unification computation in the
Lλ class is carefully controlled: the process always terminates and unifiers are unique.
These properties do not carry over to arbitrary higher-order unification. From a practical
perspective, this means that there may be branching in unification. In particular, different

14

lambda terms may have to be posited as bindings for instantiatable variables and reductions
and other computations would have to be carried out, and possibly backtracked over, using
such terms. The programs we included in this category are the following:

Hilbert This is an encoding in λProlog of the process of solving diophantine equations
through higher-order unification [Mil92]. Solutions are not generated completely by
this program in many instances. Rather, solvability is often determined, the exact
identity of solutions being dependent on the unifiers for ‘flexible-flexible’ disagreement
pairs left behind at the end of the computation. This program shares with Church
the property of involving third-order terms that give rise to more involved reduction
computations than seen in the Lλ case.

Funtrans This is a collection of transformations on functional programs [Mot00], such as
through partial evaluation. Some elements of this program are similar to those in the
Compiler example. However, this program tends to employ meta-level capabilities in
a more direct manner, and includes third-order terms. The compiler, on the other
hand, is restricted to second-order representations and retains greater control over the
structure of terms, as is characteristic of the Lλ style of programming.

The web site at www.cs.hofstra.edu/~cscccl/lambda-examples contains the code for
all the programs in our test suite and also has other information relevant to their use in our
experiments.

3.3 Measuring Performance

All our experiments were conducted within the framework of the Teyjus system [NM99].
This system is an abstract machine and compiler based implementation of λProlog. Of
special interest in the current context is the fact that Teyjus uses a low-level encoding of
lambda terms based on the annotated suspension notation. Moreover, the use of the rewrite
rules in Figure 1 are confined within it to a procedure that transforms terms into forms
appropriate for subsequent comparison and unification computations. This procedure can
be modified to realize, and hence to study, the effect of different choices in lambda term
representation. It is this ability that we utilize in the following sections.10

A few comments on the parameters by which performance is measured are warranted.
We present timing measurements in some of our test data. Where we do this, we obtained
the data by running the relevant programs on a 400 MHz UltraSparc 5 system with 256
megabytes of memory and we report the average time over five runs. The timing data is
useful in indicating trends and especially in understanding how significant the choices re-
lating to reduction strategies and term representation are within a computational context
that also involves unification, procedure invocation, backtracking and other related oper-
ations. However, we caution against putting too much weight on this factor in detailed

10In later sections we outline reduction strategies using Standard ML as a presentation vehicle. We note
that this is really intended to be a ‘pseudo-code’ presentation: the actual procedures we use in the Teyjus
system are all implemented in the C language.

15

assessments: while we have attempted to be as careful as possible to neutralize this effect,
small variations in time may, for instance, be reflective of the absence or presence of specific
optimizations in coding in the implementation language. We include two other measures in
our tests relating to reduction strategies that we believe may be more accurate and, hence,
more informative. One of these is the number of term nodes (i.e., applications, abstractions,
suspensions, atomic terms and ‘cons’ cells in environments) traversed during computation;
this has an obvious and direct impact on time that is immune to the kinds of variations we
mention earlier. The second is the number of new term nodes created on the heap.11 This
factor provides information about space requirements. We also note that the differences
in heap usage statistics reflect principally new term nodes that are created and discarded
during processing. Thus, although the Teyjus system currently does not have a garbage
collection facility, give us also an indirect measure of the cost of garbage collection were
such a mechanism to be included.

4 Choices in Reduction Strategies

The comparison of terms requires the production of head normal forms. There is flexi-
bility, however, in the interpretation of these forms and their generation, at least some of
which arises from the availability of explicit substitution calculi. Two specifically interesting
choices may be understood as follows. First, it is possible to either utilize the encoding of
substitution—i.e., the suspension terms of the notation described in Section 2—only implic-
itly as an implementation level device or to reflect this also into actual term representation.
Second, we may think of generating a fully normalized form for a term each time we need
to examine its structure for comparison or we may stop after a head normal form has been
exposed. At an intuitive level, these choices may be understood as those between an eager
or a demand-driven approach to substitution and reduction, respectively.

We examine these choices more completely in this section and we assess also their
consequences within a practical system. The suspension notation is used as the basis for
this study. Towards ensuring that our observations apply uniformly to explicit substitution
calculi, we avoid the use of annotations within this system for the moment; a consideration
of the benefits of annotations will be taken up separately in a later section. However, we
do assume rules for combining substitution walks—the (β′s) and (r11) rules relative to the
suspension calculus—on the assumption that the style of processing they support would
be standard within any environment based reduction procedure. We also assume a graph-
based implementation of reduction, i.e., lambda terms will be represented as graphs and
destructive changes will be used to register, and thus to possibly share, reduction steps.
The destructive treatment of reduction is orthogonal to that of variable binding for which
we already assume the destructive realization with sharing that is customary in the logic
programming setting.

11We implicitly consider only the term nodes seen or created by the reduction procedure in these counts
since it is only these that are relevant to our study.

16

4.1 Eagerness versus Laziness in Substitution

The suspension notation provides a natural basis for extending usual environment based
head normalization procedures to the situation where it is also necessary to look inside ab-
stractions. Within such a procedure, suspensions will be generated to encode substitutions
over terms and the reading rules will be used to calculate these out as needed. However,
suspensions will not be represented explicitly. Rather, they will appear implicitly, in the
form of the arguments of recursive calls to the normalization procedure; terms that are input
to the procedure or that are eventually returned will not themselves contain suspensions.
In the usual leftmost-outermost reduction control regime inherent to head normalization,
it is necessary to record closures, or terms paired with environments, in environments. The
only explicit use of suspensions in our present variety of reduction procedures will occur in
the encoding of such closures. These suspensions appear only at the top-level of terms and
also will not persist beyond the reduction process.

A more detailed pseudo-code style presentation of the procedure outlined above is pro-
vided in Appendix A and we confine ourselves to a few qualitative remarks concerning its
structure here. First, unlike usual reduction procedures, this one needs also to process the
structures of terms embedded inside abstractions. Part of this requirement is manifest in
the two extra components in a suspension in addition to a term and an environment, i.e.,
the new and old embedding levels. These become arguments of the reduction procedure as
well. Further, in descending into the bodies of abstractions, the (unannotated version of)
rule (r7) will need to be used. However, for efficiency reasons, this rule should be utilized
only when the external environment is non-vacuous and such care should be built into the
normalization routine. Second, this procedure must return de Bruijn terms. Thus, after it
has succeeded in exposing a generalized head normal form, it must enter a phase of process-
ing in which any implicit suspensions over the arguments of this form are calculated out.
This procedure exhibits, in this sense, a eager approach to substitution.

An alternative approach to that described above is to take the explicit substitution
notation seriously by reflecting it directly into the structures of terms. The simplest way
to realize this approach is to look at each point for a head redex in the term and to rewrite
this explicitly and immediately using an appropriate rule from the collection in Figure 1.
This processing structure can be easily translated into a recursive procedure that descends
through terms looking for a leftmost-outermost redex to be rewritten next. However, such
a procedure would adopt a somewhat naive approach to rewriting and would ignore the
natural flow of control present in reduction. Thus, consider (the unannotated version of)
the rule for propagating substitutions over applications:

[[(t1 t2), ol, nl, e]]→ ([[t1, ol, nl, e]] [[t2, ol, nl, e]])

An eager creation of the structures [[t1, ol, nl, e]], [[t2, ol, nl, e]] and the application on the
righthand side has the potential for using heap space unnecessarily: the very next steps
may require the first of these suspensions to be rewritten and, a few steps later, it is
possible that the outer application itself may be recognized as a β-redex.

17

The procedure that uses suspensions only implicitly avoids the redundancy problem
described above by maintaining information needed for reduction in the recursion stack and
committing structures to heap only when these are known to be necessary. However, this
procedure does not allow any suspensions into terms at all, leading to a different kind of
redundancy: calculating out the substitutions over the arguments of a head normal form
eagerly leads to a traversal of these arguments that is in addition to those that may be
needed over these structures in the course of later processing.

Fortunately, it is possible to structure the reduction process so that both kinds of re-
dundancies are avoided. The essential idea is to adopt the basic control regime of the
environment based procedure but, in the end, when a generalized head normal form has
been exposed, to leave the uncomputed substitutions in the form of suspensions. In or-
der to implement this approach it is, of course, necessary to use a richer representation of
terms that includes an encoding of suspensions. This raises the possibility that embedded
suspensions may be encountered in the course of reduction and our new procedure must
be equipped to deal with them. The notion of head reduction sequences described in Sec-
tion 2.2 is, however, general enough to afford a simple way of dealing with this situation:
the head normalization procedure itself can be invoked recursively on such embedded sus-
pensions without the loss of any termination properties. This idea and other ones related to
this style of processing are brought out in more detail in Appendix B through a pseudo-code
presentation of the procedure under consideration.

The two procedures described above support different styles of effecting substitutions
with contrasting benefits: eagerness can avoid redundant retracing of steps due to sub-
sequent backtracking behaviour in a search-oriented framework whereas laziness has the
potential for increasing sharing in structure traversal during substitution. Towards under-
standing the impact of these differences in practice, we collected data relating to time and
space usage under each of these strategies for the six programs in our test suite. This
information is presented in Table 1. The particular data that is tabulated here consists of
the number of new term nodes created on the heap (referred to as heap terms), the number
of term nodes encountered during normalization and substitution (referred to as traversal
count) and the time required for the execution of each program (indicated in the columns
labelled time). We note that the last component counts the time for the entire computation;
in particular, it includes backchaining over clauses and unification computations in addition
to normalization. We also remark that the traversal count includes only the number of times
term objects are inspected to determine if it they are redexes or to percolate substitutions
and that we do not include the creation of term nodes in this count.

The timing, structure traversal and structure creation measurements indicate a consis-
tent advantage for the delayed substitution strategy. This advantage is at times dramatic.
In the important cases of Lλ-style programs, structure traversal is reduced to about half
the original (with an accompanying significant effect on overall processing time) and new
structure creation is reduced to less than 25% by adopting this style of processing.

The better performance of the lazy substitution strategy is attributable, ultimately, to
the fact that delaying creates substantially more opportunities for sharing in the structure

18

Eager Substitution Lazy Substitution
Program Heap Traversal Time Heap Traversal Time

Terms Count (sec.) Terms Count (sec.)
SKI 98,319 449,917 0.41 76,779 367,944 0.40
Church 44,797 175,301 0.18 37,162 169,192 0.17
Compiler 2,640,909 4,276,004 4.30 134,316 2,390,346 3.17
Typeinf 7,142,880 8,724,726 5.70 1,722,696 4,314,569 3.64
Hilbert 170,123 574,705 0.38 5,642 446,715 0.26
Funtrans 28,027 679,757 0.40 24,404 665,773 0.40

Table 1: Comparison of Substitution Strategies

traversal required for substitution and reduction. Some of these situations for sharing are
created by the stalling of substitution walks till other computation steps have been carried
out. As an illustration of this phenomenon, consider the manipulation of a quantified
formula such as ∀x∀y P (x, y), where P (x, y) itself represents a possibly complex formula
containing occurrences of x and y. The encoding of this formula using lambda terms
would take the form (all λx (all λy P (x, y))), where all is a constructor chosen to represent
the universal quantifier and P (x, y) represents the encoding of P (x, y). Now, consider a
theorem-proving context in which a universal quantifier is processed by substitution with an
instantiatable variable. In a language such as λProlog, this calculation would be effected by
first recognizing a formula that fits the pattern (all F) and then applying the instantiation
of F to a new variable. When applied to the given formula, this kind of computation must
produce the structure P (X,Y) where X and Y represent new instantiatable variables. In
producing the structure, it is necessary to substitute X and Y for the bound variables x and
y, respectively, in a common term. It is possible, in principle, to carry out both substitutions
in one walk over this term. However, this effect can only be obtained if the actual effecting
of substitutions can be delayed over theorem-proving steps (specifically, over the distinct
calls to ∀-elimination). Such a behaviour is achievable under the lazy substitution strategy
but not under the eager one.

Another situation in which a demand-driven approach to substitution can have beneficial
effects is that when β-redexes appear embedded in the term into which substitution has
to be performed. Suppose that this redex has the structure ((λx t1) t2).12 When an eager
substitution strategy is used, the external substitution would first be percolated over this
term, resulting in a walk over the structure of t1. At a later point, the embedded redex may
be contracted, producing another substitution traversal over t1. If substitution is delayed
until it is needed, these two distinct walks can actually be combined into one.

A remarkable fact about λProlog programs—one that we became aware of in trying
12We use a named notation for lambda terms here and below, contrary to our current assumption of the

treatment of metalanguage expressions in an implementation, to ease the reading of these expressions by
humans.

19

to understand the enormous performance differences seen above—is that structures that
have significant quantities of embedded redexes can be produced whenever these programs
embody an intrinsic use of higher-order unification. A central part of this computation is
that of positing substitutions towards reconciling the differences between what are known
as flexible-rigid disagreement pairs, i.e., a pair of terms of the form

〈λx1 . . . λxl (F t1 . . . tn), λx1 . . . λxl (c s1 . . . sm)〉
where F is an instantiatable variable, c is a constant or a bound variable occurrence captured
by one of the abstractions in the binder of the term and t1, . . . , tn, s1, . . . , sm are arbitrary
terms; we assume here that the binder lengths of the two terms are identical, something
that can be arranged based on typing considerations under the typical assumptions of
equality between lambda terms. Using the procedure due to Huet [Hue75], a collection of
substitutions known as the imitation and projection substitutions would be posited for F
in this situation. These substitutions all have the structure

{〈F, λw1 . . . λwn (h (H1 w1 . . . wn) . . . (Ho w1 . . . wn))〉}
where h is either a constant or one of w1, . . . , wn and H1, . . . , Ho are new instantiatable
variables. Now, in subsequent steps of the computation, these new variables may themselves
become instantiated in a similar way yielding embedded redexes at all the places where F
appears. Moreover, the instantiations for the variables H1, . . . , Ho may themselves contain
embedded redexes, resulting in further embedded redexes in the binding for F .

A concrete understanding of the phenomenon described above may be obtained by
considering a prototypical computation over a higher-order encoding of pure lambda terms
described in Section 3. Assuming such a representation, the following collection of clauses
in λProlog realize an object-evel equality predicate over lambda terms:

copy (app A B) (app C D) :- copy A C, copy B D.
copy (abs A) (abs B) :- ∀v(copy v v ⊃ copy (A v) (B v)).

These clauses embody an extremely popular style of programming in λProlog-like languages,
seen already in Section 3, that uses universal and implication goals, substitution and higher-
order unification to lift recursive computations over structures devoid of binding into ones
that do include binding. Thus, consider a structure of the form (abs λxB) where B is an
encoding only of applications. Assuming that we already possess the ability to make a copy
of the latter kind of structure, we may proceed to make a copy of the former as follows.
First, we replace all the occurrences of x in B with a chosen constant and make a copy
of the resulting structure. We then abstract out all the occurrences of the constant from
this copy and wrap an abstraction constructor around the generated object. The second
clause above realizes just this kind of processing. We have chosen ‘copying’ as the task for
simplicity here, but a variety of transformations can be effected on the given term using this

20

Number Number Eager Substitution Lazy Substitution
of of Heap Traversal Heap Traversal

Abstractions Applications Terms Count Terms Count
3 3 429 986 169 684
3 12 2,670 4,097 520 2,070
12 3 5,880 6,865 1,094 2,956
12 12 20,629 20,896 2,983 7,162

Table 2: The Effect of Embedded Redexes

approach. Moreover, the copy predicate that is defined above can itself be used in different
modes to realize operations such as unification and rewriting [Mil91a].13

Consider now the computation that will be engendered by a query of the form

copy (abs λx (abs λy (app x y))) F,

i.e., one that attempts to create in (the instantiatable variable) F a copy of the first argument
supplied in the query above. By tracing the steps, we see that F will be bound to a term
of the form (abs B), then B will be bound to a term of the form λx (abs (H1 x)), then
H1 will be bound to a term of the form λxλy (app (H2 x y) (H3 x y)) and, finally, H2

and H3 will be bound to the terms λxλy x and λxλy y, respectively; note that the tokens
beginning with uppercase letters all represent instantiatable variables here. The overall
result of this computation is actually to produce in F a copy of the given term. However,
the incremental manner in which this calculation is carried out leaves several embedded,
uncontracted redexes in the binding determined for F. Piecing the various substitutions
described above together, it can be seen that it is, in fact, the term

(abs λx (abs ((λxλy (app ((λxλy x) x y) ((λxλy y) x y))) x)))

that F is bound to. An especially interesting point to note is that the embedded redexes all
appear in what we might call ‘argument’ positions in this term. Thus, each of these redexes
will be left in place by the head normalization procedure whenever it is invoked to manifest
the top-level structure of a subterm of which the redex is a part.14

The computation that we have described above ends once a substitution for F has been
determined. In this kind of situation the embedded redexes are a harmless artifact and do
not significantly influence performance characteristics. However, in the typical situation it

13Meta-programming in a logic programming context sometimes require a ground representation in which
object-level variables are represented as constants in the meta-language. The copy clauses can be used to
bridge the resulting gap between meta- and object-level treatments of variables and substitution.

14An alert reader may wonder if the structure of the binding found for F is dependent on the particular
higher-order unification procedure used. A little thought reveals that it is only the incremental manner
in which the clauses lead to the generation of this binding that is the culprit. For example, F will be
instantiated with an identical term even if the unification procedure described in [Mil91b], that also applies
to this situation, is used.

21

is to be expected that bindings found for variables through ‘copy clause’ like processing are
used in further computations. This kind of effect may be forced in the present context by
invoking two copy goals in succession, i.e., by invoking the goal

copy A B, copy B C

where A is a ground term represents the encoding of an actual lambda term and B and C
are variables whose bindings are to be determined by the computation. Table 2 presents
term traversal and structure creation data under the eager and lazy substitution strategies
when we use for A the encodings of lambda terms consisting of a sequence of applications
embedded within a sequence of abstractions but vary the number of such applications and
abstractions. These data indicate a dramatic difference between the two styles for effecting
substitutions, one that is especially exaggerated, as might be anticipated from the preceding
discussion, as the number of abstractions at the head of the term increase. The performance
differences noted relative to our test suite owe significantly to manifestations of this kind of
phenomenon.

4.2 Eagerness versus Laziness in Reduction

In deeming that two terms are equal modulo the lambda conversion rules, it is necessary
eventually to reduce them to their normal forms. As discussed in Section 2.2, head nor-
malization provides the basis for a lazy approach to such reduction. In a situation where
the check for equality also has a good chance of failing, such laziness can be advantageous:
failure can be detected even without having to traverse the terms in question completely,
let alone having to fully normalize them. However, we have also just seen some problems
with this lazy strategy at least when it is utilized within a eager substitution regime. In
particular, this approach can leave in place many embedded redexes even when effecting
substitutions into them, requiring a subsequent redundant walk over their structure for the
purpose of contracting them. Given the substantial impact on performance that such be-
haviour over embedded redexes has, a natural question to ask is whether an eager approach
to reduction might not work better in practice. A further consideration in this regard is
that if these redexes have to be contracted anyway, they are better contracted early and
before a backtracking point is encountered so that rollbacks in computation do not cause
such contractions to be undone and subsequently redone.

Towards understanding this issue, we conducted experiments comparing the head nor-
malization strategy with one that fully normalizes terms anytime there is a need to look
at their structure. In generating a fully normalized form of a term, we adopted both a
call-by-value and a call-by-name or leftmost-outermost style of rewriting. The data are
similar for both cases and we present only that observed under the latter strategy here.15

15Either style of rewriting can be legitimately used when strong normalizability holds for terms as it does
in the context of interest. Of course, when only weak normalizability holds, the call-by-name approach
must be used. Another observation, that is interesting especially in light of the work in [GL02], is that
the call-by-value approach is compatible only with full normalization and cannot be used, for instance, in
conjunction with the enhanced head normalization process we discuss next.

22

Head Normalization Full Normalization
Program Heap Traversal Time Heap Traversal Time

Terms Count (sec.) Terms Count (sec.)
SKI 76,779 367,944 0.40 98,319 1,535,208 0.76
Church 37,162 169,192 0.17 37,161 418,755,708 370.98
Compiler 134,316 2,390,346 3.17 150,625 32,317,036 12.68
Typeinf 1,722,696 4,314,569 3.64 1,629,028 10,590,519 4.87
Hilbert 5,642 446,715 0.26 13,142 1,736,602 0.68
Funtrans 24,404 665,773 0.40 20,414 1,273,737 0.53

Table 3: Comparison of Laziness and Eagerness in Reduction

In implementing the call-by-name approach, we essentially utilized the head normalization
procedure that implicitly employs the suspension notation. However, once a generalized
head normal form has been exposed, the same procedure is invoked on each of the argu-
ments. Table 3 contrasts the heap usage, term traversal and running time observed under
this interpretation of full normalization with those obtained when only head normalization
is performed and a lazy approach to substitution is employed.

The data in Table 3 indicate a near parity in terms of the objects allocated on the heap
between the lazy and the eager reduction strategies being considered. This actually reflects,
as we had anticipated, a substantial reduction in the creation of new term structures if a
full normalization strategy is used instead of a head reduction approach that also carries
out substitution eagerly. However, the present form of full normalization is clearly not
practically viable. The decision to completely normalize a term each time there is a need
to look at it can lead to several traversals over the structure of any given term. Moreover,
all these traversals are redundant if the term is already in normal form. This intuition is
borne out by the differences in structure traversal (and processing time) between the two
reduction approaches tabulated in Table 3. The difference is most dramatic in the case
of the Church program where it arises out of the need to repeatedly traverse large terms
encoding numerals. Even if this example is skewed towards revealing the shortcomings
of the full normalization approach, the point remains that there are circumstances under
which performance can deteriorate in an unacceptable way under it.

A closer consideration of the data presented to this point indicates a reduction approach
that is intermediate between head normalization and full normalization that may be useful
to try. This approach would be driven by the needs of the comparison process and its first
goal would be to produce a head normal form. Once such a form has been exposed, it would
proceed to effect substitutions eagerly in the argument parts of the form, rather than leaving
these to be completed later as suspensions. However, in contrast to the head normalization
with eager substitution approach, the current procedure would also contract β-redexes it
encounters in the course of any structure traversal it undertakes. In other words, unlike full
normalization, this procedure will contract non-head redexes only if it encounters these in

23

Lazy Substitution Enhanced Head Normalization
Program Heap Traversal Time Heap Traversal Time

Terms Count (sec.) Terms Count (sec.)
SKI 76,779 367,944 0.40 98,319 459,198 0.40
Church 37,162 169,192 0.17 37,161 213,095 0.22
Compiler 134,316 2,390,346 3.17 109,589 2,452,932 3.13
Typeinf 1,722,696 4,314,569 3.64 1,588,648 4,936,116 3.49
Hilbert 5,642 446,715 0.26 12,908 461,851 0.27
Funtrans 24,404 665,773 0.40 19,734 676,067 0.41

Table 4: Performance Under an Enhanced Form of Head Normalization

the course of performing substitutions.
The procedure that is outlined above can be obtained by a straightforward modification

to that in Appendix A; essentially the call to the substitution process in this procedure
needs to become a recursive call to the normalization process instead. We, once again,
experimented with its use within the Teyjus system. Referring to the new approach as
enhanced head normalization, Table 4 contrasts performance under it to that under the
head normalization with lazy substitution regime. The new procedure is designed to avoid
the multiple walks over the bodies of embedded redexes that affected adversely the head
normalization with eager substitution approach as well as the redundant walks over already
normalized structures that mark the full normalization scheme. The data bear out the fact
that this effect is, indeed, achieved.

The enhanced head normalization procedure still has a disadvantage in principle in com-
parison with the lazy substitution approach in that it is not possible to combine structure
traversals arising from contracting redexes whose generation is dependent on other com-
putation steps. It is therefore somewhat surprising that this procedure out-performs the
lazy substitution approach in some of the test programs considered. Our understanding of
this phenomenon is as follows: There are certain places in the evaluation of queries where
it is necessary to fully normalize terms. In these circumstances, the benefit of the kind
of sharing described for the lazy substitution approach is lost. Furthermore, eagerness in
substitution and reduction can be also be an advantage in this context since if these com-
putations are performed before backtrack points, then they will not have to be rolled back
and subsequently redone.

We illustrate the situation described above through a suitable enhancement of the copy
clauses based example. Suppose first that we add to our language of pure lambda terms a
let construct that takes the form

let x = e in t end.

In this construct, whose semantics we assume is familiar to the reader, x is expected to be
a variable and e and t can be arbitrary terms. The higher-order encoding of this construct
will take the form

24

(let e λx t)

where let is a special constructor of type tm→(tm→tm)→tm and e and λx t are encodings of
e and λx t, respectively. Now, suppose we want to extend our copy predicate to the language
that includes the let construct with the following additional possibility: in the case that the
variable x bound in the construct does not appear in the body, then the overall construct is
to be considered equal to just the body. This desire can be realized through the following,
augmented definition of the copy predicate:

copy (app A B) (app C D) :- copy A C, copy B D.
copy (abs A) (abs B) :- ∀v(copy v v ⊃ copy (A v) (B v)).
copy (let E (λxT)) T’ :- copy T T’.
copy (let E T) (let E’ T’) :- copy E E’, ∀v (copy v v ⊃ copy (T v) (T’ v)).

There are two clauses for the let form of expressions in this definition, the second one of
which is easy to understand by analogy with the clause for abstractions. The first of these
clauses, on the other hand serves to eliminate vacuous lets. The key part of this clause is
the term λxT that is used in the pattern to be matched with the first argument of the copy
predicate. This term will unify only with an abstraction structure whose body does not
contain an occurrence of the bound variable. The let is vacuous in this case and the clause
allows for its elimination in the second, ‘copy’, argument.

Let us consider now the task of solving a query of the form

copy (abs λx (let t1 t2)) C

in which t1 and t2 represent arbitrary terms and C is an instantiatable variable. Processing
the top-level abstraction structure will produce a redex. This redex will be contracted
and completely evaluated prior to the let structure being examined in the case that an
eager approach to substitution and reduction is used. In contrast, the actual performance
of substitution will be carried out only incrementally under the lazy substitution scheme.
However, the pattern in the first clause pertaining to let requires a sort of ‘occurs-check’ to be
performed and the incoming term will have to be fully normalized in the course of carrying
out this check. Suppose now that the let under consideration is actually not a vacuous one.
In this case, the occurs-check will fail at some point, all the reduction and substitution work
carried out at the behest of this clause will be rolled back, only to be repeated in the course
of using the second clause for the let case. In short, delaying substitutions when coupled with
backtracking can lead to a redundancy in structure traversal that is not also present under
the eager approach. It is precisely this kind of phenomenon that gives the enhanced form
of head normalization the edge, even if ever so slightly, in some of the examples included in
the test suite.

5 The Treatment of Bound Variables

We have assumed up to this point the de Bruijn scheme for treating bound variables. There
is another method that is commonly used both in discourse and in implementation, this

25

being that of representing bound variables with explicit names or, roughly equivalently,
by pointers to cells associated with their binding occurrences. In this section we contrast
these two approaches. In making this comparison, we note at the outset the importance
of distinguishing two operations on which the treatment of bound variables has an impact.
One of these is that of checking the identity of two terms up to α-convertibility. The second
is that of making substitutions generated by β-contractions into terms, in which case the
treatment of bound variables is relevant to the way in which illegal capture is avoided.

The de Bruijn representation is evidently superior from the perspective of checking the
identity of terms up to α-convertibility. For example, consider matching the two terms
λy1 . . . λyn (yi t1 . . . tm) and λz1 . . . λzn (zi s1 . . . sm). The heads of these terms that are
embedded under the abstractions are bound in both cases by the same abstraction. Thus,
the matching problem can be translated into one over the arguments of this term. A
prelude to this transformation at a formal level under a name based scheme is, however, a
‘normalization’ of bound variable names. This step is avoided under the de Bruijn scheme.

A further consideration of the above example indicates a more significant advantage of
the de Bruijn notation. Under a name based scheme, the transformation step must produce
the following set of pairs of terms to be matched:

{〈λy1 . . . λyn t1, λz1 . . . λzn s1〉, . . . , 〈λy1 . . . λyn tm, λz1 . . . λzn sm〉}.
The abstractions at the front of each of the terms are necessary: they provide the context in
which the bound variables in the arguments are to be interpreted in the course of matching
them. Constructing these new terms at run time is computationally costly and also a bit too
complex to accommodate in a low-level, abstract machine based system such as Teyjus. A
possibility in the named-based scheme that avoids the specific problem of carrying forward
the abstractions is to first apply the two terms being compared to a sequence of distinct,
new variables [GL02] or constants [BR92]. This approach has the disadvantage at least
of requiring an additional substitution into terms and also introduces symbols into terms
whose origins or meanings are difficult to comprehend at the source language level. The
latter factor can be significant especially when the comparison operation is distributed over
other computation steps and the results have to be occasionally shown back to the user.
Under the de Bruijn scheme, the abstraction context is implicitly present in the numbering
of bound variables, obviating the explicit attachment of the abstractions and, moreover, the
index of the variable occurrence conveys its significance in an unequivocal way.

From the perspective of carrying out substitutions in contrast, the de Bruijn scheme
has no real benefit and may, in fact, even incur an overhead. The important observation
here is that the renaming that may be needed in the substitution process in a name based
scheme has a counterpart in the form of renumbering relative to the de Bruijn notation.
To understand the nature of the needed mechanism, we may consider the reduction of the
term λx ((λy λz y x) (λw x)) whose de Bruijn representation is λ ((λλ#2 #3) (λ#2)). This
term reduces to λxλz ((λw x) x), a term whose de Bruijn representation is λλ ((λ#3) #2).
Comparing the two de Bruijn terms, we notice the following: When substituting the term
(λ#2) inside an abstraction, the index representing the locally free variable occurrence,

26

Lazy Substitution Enhanced Head Normalization

Program Total Renumbering Total Renumbering
Substitutions Substitutions Substitutions Substitutions

SKI 16,749 643 16,749 1005
Church 35,824 200 35,824 200
Compiler 93,766 0 60,677 0
Typeinf 780,745 0 656,950 0
Hilbert 1,718 412 5,977 1,773
Funtrans 8,367 96 7,866 96

Table 5: The Frequency of Renumbering with the de Bruijn Representation

i.e., 2, has to be incremented by 1 to avoid its inadvertent capture. Further, indices for
bound variable occurrences within the scope of an abstraction that disappears on account
of a β-contraction may have to be changed; here the index 3 corresponding to the variable
occurrence x in the scope of the abstraction that is eliminated must be decremented by 1.
The substitution operation that is used in formalizing β-contraction under the de Bruijn
scheme must account for both effects.

At a detailed level, there is a difference in the renaming and renumbering devices needed
in name-based and nameless representations. Given a β-redex of the form (λxλy t1) t2
whose de Bruijn version is a term of the form (λλ t̂1) t̂2, the renaming in the first case is
effected over the ‘body’, i.e., λy t1, and in the second case over the argument, i.e., t̂2.16 One
advantage of the name-based representation is that the renaming may be avoided altogether
if there is no name clash. However determining this requires either a traversal of the term
being substituted, or an explicit record of the variables that are free in it. An interest-
ing alternative, described, for instance, in [AP81], is to always perform a renaming and,
more significantly, to fold this into the structure traversal that realizes the β-contraction
substitution.

The above discussion indicates that the additional cost relative to substitution that is
attendant on the de Bruijn notation is bounded by the effort expended in renumbering sub-
stituted terms. A first sense of this cost can thus be obtained by measuring the proportion
of substitutions that actually lead to nontrivial renumbering of compound terms. Cases of
this kind can be identified as those in which rule (r5) is used where the skeletal term is
non-atomic and an immediate simplification by rule (r12) is not possible.

Table 5 tabulates the data gathered towards this end for the two viable and comparable
approaches that was identified by the analysis in Section 4, namely head normalization
with lazy substitution and the enhanced form of eager head normalization. An interesting
observation is that no renumbering is actually involved in the case of Lλ style program-
ming. The reason for this is that the only reductions performed are those corresponding to

16In the de Bruijn scheme, some bound variables in t̂1 may also have to be renumbered, but this can be
done efficiently at the same time that t̂2 is substituted into the term.

27

Lazy Substitution Enhanced Head Normalization

Program Separate Merged Separate Merged
Renumbering Renumbering Renumbering Renumbering

SKI 23,884 23,884 23,884 23,884
Church 13,063 13,063 13,063 13,063
Compiler 102,592 102,592 70,062 70,062
Typeinf 1,441,489 1,441,489 1,314,324 1,319,901
Hilbert 3,188 3,188 4,860 4,860
Funtrans 9,508 9,508 9,422 9,462

Figure 2: The Effect of Separating Contraction and Renumbering Walks

eliminating the binding with a new constant. Thus, for a significant set of computations
carried out in λProlog and related languages, renumbering is a non-issue. In the other cases,
some renumbering can occur. A point worth noting is that an enhanced ability to combine
substitutions, as is manifest in the head normalization procedure that carries out substi-
tutions lazily, appears to reduce renumbering work significantly. This phenomenon is also
understandable; substituting a term in after more enclosing abstractions have disappeared
due to contractions leaves fewer reasons to renumber.

The cases where a nontrivial renumbering needs to be done do not by themselves consti-
tute an extra cost. In general, when a term is substituted in, it is necessary also to examine
its structure and possibly to reduce it to (weak) head normal form. Now, the necessary
renumbering can be incorporated into the same walk as the one that carries out this intro-
spection. This structure is realized by choosing to percolate the substitution inwards first
in a term of the form [[t, 0, nl, nil]]v, using rule (r11) to facilitate the necessary merging in
the case that t is itself a suspension. The main drawback of this approach, in contrast to
the scheme in [AP81] for instance, is that it can lead to a loss in sharing in reduction if the
same term, t, has to be substituted, and reduced, in more than one place. The alternative
strategy would separate the contraction and renumbering phases by contracting t first. An
indication of the loss in sharing can be obtained from the differences in the number of β-
redexes encountered under the two strategies. Table 2 tabulates the data relevant to this
assessment, again under the lazy enhanced head normalization schemes. There is actual
loss in sharing in β-contractions in the case of only one program from our test suite and
even in this case the loss is a very small fraction of all the redexes contracted.

The conclusion from these data and discussions seems to be that the de Bruijn treatment
of bound variables is the preferred one in practice. It is obviously superior to name based
schemes relative to comparing terms modulo α-conversion; in fact, for reasons that we
have explained, we know of no way to use a name based representation in a low-level
implementation that is still user-friendly. The de Bruijn scheme has a potential drawback
in terms of a renumbering overhead in realizing β-contraction. However, our experiments
show that this overhead is either negligible or nonexistent in most cases.

28

With Merging Without Merging
Program Heap Traversal Time Heap Traversal Time

Terms Count (sec.) Terms Count (sec.)
SKI
lazy 76,779 367,944 0.40 135,691 431,750 0.46
enhanced 98,319 459,198 0.40 137,720 504,125 0.46
Church
lazy 37,162 169,192 0.17 627,048 782,972 0.58
enhanced 37,161 213,095 0.22 626,582 826,124 0.65
Compiler
lazy 134,316 2,390,346 3.17 2,417,025 5,226,479 5.03
enhanced 109,589 2,452,932 3.13 1,475,457 4,018,991 4.20
Typeinf
lazy 1,722,696 4,314,569 3.64 15,695,839 18,936,333 13.06
enhanced 1,588,648 4,936,116 3.49 13,072,813 16,484,357 11.05
Hilbert
lazy 5,642 446,715 0.26 25,074 464,505 0.28
enhanced 12,908 461,851 0.27 58,565 503,727 0.30
Funtrans
lazy 24,404 665,773 0.40 55,290 701,188 0.45
enhanced 19,734 676,067 0.41 48,548 708,866 0.43

Table 6: Impact of Merging Rules

6 The Value of Mechanisms for Combining Substitutions

The suspension notation includes a rule that enables the collection of multiple reduction
substitutions into one environment, this being the (β′s) rule. However, not all explicit
substitution calculi have this kind of combining ability. On the one hand, omitting such
an ability has potential theoretical benefits: it is known at least in some cases to lead
to the preservation of strong normalization properties of the underlying lambda calculus
[BBLRD96, DG01]. On the other hand, we believe that an approach that does not use
a mechanism for collapsing multiple substitution traversals into a composite one may not
be viable in practice. The environment based reduction procedures that we considered in
Section 4 have all utilized the (β′s) rule whenever possible for this reason. Given that the
ability to structure reduction in this way distinguishes between explicit substitution calculi,
it is important to quantify this observation.

It is possible to simulate the effect of not using the ability to combine reduction substi-
tutions in our setting by simply choosing to employ the (βs) rule to contract every β-redex.
Table 6 presents data indicating the impact of the combination ability using this idea. In
particular, it tabulates the number of term nodes created on the heap, the term traversal

29

Lazy Substitution Enhanced Head Norm
Program With Without With Without

Merging Merging Merging Merging
SKI 153,108 153,998 188,544 171,982
Church 231,531 698,978 253,486 720,789
Compiler 966,331 1,293,564 602,730 967,120
Typeinf 6,282,150 12,533,011 5,564,191 10,647,547
Hilbert 19,088 21,214 46,427 65,618
Funtrans 43,043 49,263 42,545 47,988

Table 7: Variable Lookup Costs With and Without Substitution Combination

count, and the composite running time for the programs in our test suite in the cases when
the (β′s) rule was and was not used for the head normalization procedure with delayed
substitution (denoted by lazy) and the enhanced form of the head normalization procedure
with eager substitution (denoted by enhanced). We note that the rule (r11) also represents
a form of substitution combination that is missing in some of the calculi of explicit sub-
stitution. However, since some form of this rule is available in other calculi, we allowed
it to be employed in our reduction procedures. The data indicate a clear and significant
superiority for both reduction strategies when the combination ability is also exploited.
That the source of this difference is, in fact, the use of the (β′s) rule is also not difficult to
substantiate. We have compared the number of times the (β′s) rule is used to contract a
β-redex with the total number of β-redexes contracted. This rule turns out to be used in
well over 50% of all the cases. In the case of the Lλ-style programs, the usage is actually
close to 90% under the lazy substitution strategy and also in the enhanced form of head
normalization.

In the discussion above, we have ostensibly overlooked an optimization that is possible
in the situation where the underlying explicit substitution calculus does not include the
possibility of encoding multiple non-trivial substitutions in a single environment. In such a
situation, it is not necessary to represent environments at all. Rather, it suffices to simply
encode the (single) term to be substituted and the index of the variable for which it is to
be substituted; the actual substitution and all the adjustments to indices can be calculated
from just this information. There is an impact to this optimization along both the space
and time dimension, assuming a list based representation for environments. The data in
Table 6 actually already factors in the space optimization. In particular, in counting the
number of new term nodes, we have not included the cost of creating environment terms in
the case when the merging ability available through the (β′s) is not utilized. With regard
to timing considerations, in the case that an environment represents multiple substitutions,
there is a cost associated with looking up the binding corresponding to a particular index as
required by rules (r4) and (r5); this cost arises from having to work down the list until the
right entry has been found. This lookup cost is unitary when the ‘environment’ encodes a

30

single substitution. However, in this case, in contrast to the situation where environments
are capable of encoding more than one substitution, several lookups may have to be done
on the same variable. There appears thus to be a tradeoff between the two approaches with
regard to this aspect. Table 7 contrasts this lookup cost for the two reduction strategies
under consideration, assuming a unit cost for proceeding to the next item in an environment
list and for effecting a substitution once the item corresponding to the index has been found.
As we see from this data, the situation where multiple substitutions can be merged into
one environment is no worse with regard to this cost than that in which they cannot be so
merged, and is actually noticeably better in some instances.

7 The Relevance of Annotations

We have not used the annotation scheme supported by the suspension notation in our nor-
malization procedures up to this point. As we have seen in Section 2, these annotations can
facilitate a quick calculation of substitution in some cases and they can also lead to greater
sharing in the rewriting process. There is, of course, a cost associated with maintaining and
utilizing annotations. However, this cost can be considerably reduced with proper care. In
the Teyjus implementation, for example, an otherwise unused low-end bit in the tag word
corresponding to each term node stores this information. The setting of this bit is generally
folded into the setting of the entire tag word and a single test on the bit independently of
the type of the term node suffices in utilizing the information in the annotation.

There is actually a situation discussed in Section 4 in which annotations have a significant
potential to be useful, this being that of embedded (β-)redexes in terms. Recall that these
kinds of redexes arose when a term of the form

λw1 . . . λwn (h (H1 w1 . . . wn) . . . (Hm w1 . . . wn))

is posited as a substitution for a variable F , with the variables H1, . . . , Hm becoming bound
through later computations to abstraction terms. The problem posed by such embedded
redexes is that if they are not contracted at the time of effecting the substitution generated
by contracting the application of F , then a separate, redundant walk would have to be per-
formed later over the bodies of their ‘function’ parts when they are themselves contracted.
The interesting thing to note, however, is that these parts must actually be closed terms
and can be annotated as such at the point when substitutions are created for the variables
H1, . . . , Hm. In the presence of these annotations, the contraction of the redex correspond-
ing to the application of F to its arguments generates no traversals over the structures
that instantiate H1, . . . ,Hm and the problematic redundancy in substitution walks can be
avoided in this way.

An experiment was conducted to test out this potential benefit from annotations. The
data from this experiment is tabulated in Table 8. For each of the programs in our test suite,
we show in two rows the number of new term nodes allocated on the heap and the number of
term nodes encountered during substitution and normalization, first when annotations were
used and then when annotations were not used. Moreover, this data is presented for each of

31

Eager Substitution Lazy Substitution Enhanced Head Norm
Program Heap Traversal Heap Traversal Heap Traversal

Terms Count Terms Count Terms Count
SKI 45,884 391,004 46,362 360,327 45,884 402,271

98,319 449,917 76,779 367,944 98,319 459,198
Church 37,596 171,133 37,162 169,192 37,161 213,095

44,797 175,301 37,162 169,192 37,161 213,095
Compiler 133,730 2,501,384 134,316 2,390,346 109,447 2,452,690

2,640,909 4,276,004 134,316 2,390,346 109,589 2,452,932
Typeinf 1,654,245 4,808,113 1,722,694 4,314,569 1,588,576 4,936,080

7,142,880 8,724,726 1,722,696 4,314,569 1,588,648 4,936,116
Hilbert 169,748 574,419 5,642 446,715 12,908 461,851

170,123 574,705 5,642 446,715 12,908 461,851
Funtrans 19,165 671,751 23,762 665,098 18,749 674,751

28,027 679,757 24,404 665,773 19,734 676,067

Table 8: The Effect of Annotations

the reduction procedures studied in Section 4. As expected from the earlier discussion, the
reduction strategy that shows the most improvement from the use of annotations is the one
that suffers the most from the presence of embedded redexes, namely the head normalization
strategy with eager substitution. The improvement in this case is, in fact, quite dramatic:
with annotations, performance under this strategy becomes comparable to that under the
others in all cases except that of the Hilbert program. Annotations provide very little benefit
along the dimensions measured with the other strategies. This is also not surprising. In the
cases of both head normalization with eager substitution and the enhanced form of head
normalization, most of the traversals over a given structure are combined into one. Since
at least one walk has to be carried out over a term in any practically interesting situation,
annotations do not help in avoiding any of this work. Moreover, since almost all of these
‘accumulated’ substitutions are likely not to be trivial in the sense of being effected over
a closed term, annotations do not also lead to any increased possibilities for sharing in
reduction either.

The observations in the case of the Hilbert program are an exception to the above
generalizations. From a closer analysis of the terms encountered in the course of execution
of this program, we understand that embedded redexes are the key to the differences in
behaviour under the varied strategies here as well. However, these embedded redexes arise
from a different phenomenon, namely an interaction between the presence of third and
higher order terms and the conversion of terms to an η-expanded form that is done to
account for equality under the η-conversion rule. As a specific example, consider the term

λu ((λxλy λz (y (x z))) u)

in which the bound variable u has a function type with its argument also being of function

32

type. (We use a named lambda calculus here for readability.) Now, under an η-expansion,
this term becomes

λu ((λxλy λz (y (x z))) λw (u λv (w v))).

Notice that the the subterm λw (u λv (w v)) is an open term and any term that it is ap-
plied to will consequently also be open. The contraction of the outermost redex in the
displayed term then produces an embedded redex whose function part must be annotated
as open. Many embedded redexes in the Hilbert program are, in fact, generated this way and
annotations do not provide assistance to the eager substitution strategy towards avoiding
redundant traversal over the function part of these redexes for this reason.17

8 Conclusion

This paper has examined a collection of issues relevant to the representation of lambda
terms and the realization of reduction in the situation where these terms are used as data
structures, thereby requiring their intensions to be taken seriously. Explicit substitution
calculi provide an excellent basis for the machine encoding of these terms in such contexts
but, as we have noted, detailed decisions on the actual deployment of such calculi require a
careful understanding of the computations that arise in practice. We have tried to obtain
such an understanding by experimenting with different ways of using the suspension notation
in an implementation of the λProlog language and by measuring the effects of such variations
on the performance of prototypical programs. The framework for our experiments has
several characteristics that lends generality to our observations: the suspension notation
contains within it the spectrum of mechanisms that are found in explicit substitution calculi
and the computations that are carried out within the λProlog language typifies those that
are performed within systems in which lambda terms are used for representing objects.

The conclusions of our study are varied and may be summarized as follows. First, the
de Bruijn scheme appears to be an important one to use in representing lambda terms.
The overheads in reduction because of this scheme are minimal and are offset by significant
benefits in the encoding of binding contexts and in the checking of the identity of terms
modulo the renaming of bound variables; we have, in fact, not been able to conceive of a
viable low-level implementation that uses a name based representation for reasons that we
have discussed in Section 5. Second, the ability to combine substitutions generated by the
contraction of β-redexes is an important one and explicit substitution calculi that cannot
support this possibility are not viable in practice. Third, there are a number of somewhat
unanticipated factors that affect the choice of an ‘optimal’ reduction strategy for terms.
These include the fact that the incremental instantiation of variables during computation
can give rise to a large number of embedded β-redexes whose contraction should be care-
fully coordinated and that the backtracking needed to support a search-based paradigm

17The alert reader may wonder why the Church program that also involves third-order terms avoids the
fate of Hilbert. It does this by exploiting polymorphic typing in a way idiocyncratic to the Teyjus system.
We eschew a detailed discussion of this matter since it is orthogonal to our present scope.

33

can sometimes favour an eager performance of substitution and reduction work. Fourth,
notwithstanding the last observation, a strategy that attempts to fully normalize terms each
time their structure is to be examined is not a viable one in practice. Fifth, an enhanced
head normalization strategy that performs substitutions eagerly but also considers contract-
ing β-redexes that are encountered during substitution traversals turns out, surprisingly,
to be competitive with a head normalization strategy that delays actual substitution over
argument structures. Finally, while head normalization under an eager substitution regimen
is not practical by itself, it can be made competitive with the previous two approaches by
using annotations on terms to indicate their dependence on external abstractions.

The work reported here can be extended in several ways. One aspect that is open to
further investigation is the compiled realization of reduction. Recent work relative to the
Coq system has shown how to do this assuming eager reduction and substitution strategies to
obtain substantial speedups in comparison with the existing interpretive approach [GL02].
Now, we have seen that full normalization is not a sensible strategy in a situation where the
structures of terms are to be examined incrementally and, indeed, the examples considered
in the mentioned study seem to be ones where the comparison is limited to ground terms
available in complete form at the beginning of the computation. Nevertheless, compilation
does have benefits and it is of interest to see if these can be harnessed to yield better
implementations of head normalization with delayed substitutions or the enhanced form
of head normalization. Another matter that is useful to consider is the difference between
destructive and non-destructive realizations of reduction. There are ‘obvious’ advantages to
a destructive version in a deterministic setting that become less clear with a language like
λProlog that permits backtracking. This matter can be examined experimentally. The final
matter that we mention concerns the implementation of higher-order unification. It has
been shown in [DHK00] how to lift this operation to an explicit substitution notation with
a special, graftable interpretation of meta variables. Doing so has the benefit of making
the application of substitutions to such variables very efficient. However, there are also
costs: a more general, and complete, mechanism for combining substitutions is needed and
additional information must be also be retained dynamically. There is a tradeoff here that
can, once again, be assessed empirically.

9 Acknowledgements

We are grateful to the reviewers of this paper for their careful reading and thoughtful
feedback on this paper. This work has derived supported from a special research grant from
the Department of Computer Science at Hofstra University, NSF Grant CCR-0096322, a
Grant in Aid of Research from the University of Minnesota and the Department of Computer
Science and Engineering and the Digital Technology Center at the University of Minnesota.
Revisions were made to this paper during Nadathur’s sabbatical visit to the Parsifal and
Comete groups at Ecole Polytechnique and INRIA, Saclay.

34

References

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Ex-
plicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[AP81] L. Aiello and G. Prini. An efficient interpreter for the lambda-calculus. The
Journal of Computer and System Sciences, 23:383–425, 1981.

[AS93] A. and Z. Shao. Smartest Recompilation. In Tenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 1993.
Longer version as Princeton University Technical Report CS-TR-395-92.

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of
explicit substitutions which preserves strong normalization. Journal of Func-
tional Programming, 6(5):699–722, 1996.

[BR91] Pascal Brisset and Olivier Ridoux. Naive reverse can be linear. In Koichi
Furukawa, editor, Eighth International Logic Programming Conference, pages
857–870. MIT Press, June 1991.

[BR92] Pascal Brisset and Olivier Ridoux. The compilation of λProlog and its execu-
tion with MALI. Publication Interne 687, IRISA, Rennes, November 1992.

[Bru72] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser The-
orem. Indag. Math., 34(5):381–392, 1972.

[Bru80] N. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 579–606. Academic Press, 1980.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2/3):95–120, February/March 1988.

[DG01] R. David and B. Guillaume. A λ-calculus with explicit weakening and explicit
substitution. Mathematical Structures for Computer Science, 11:169–206, 2001.

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit
substitutions. Information and Computation, 157:183–235, 2000.

[Fie90] John Field. On laziness and optimality in lambda interpreters: Tools for spec-
ification and analysis. In Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 1–15. ACM Press, January 1990.

35

[FMS04] M. Fernandez, I. Mackie, and F-R. Sinot. Closed reduction: Explicit substitu-
tions without alpha-conversion. Mathematical Structures in Computer Science,
2004. To appear.

[GL02] B. Grégoire and X. Leroy. A compiled implementation of strong reduction.
In Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming, pages 235–246, Pittsburgh, October 2002.

[Har86] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-
86-14, Laboratory for Foundations of Computer Science, University of Edin-
burgh, November 1986. Revised by Nick Rothwell, January 1989, with exercises
by Kevin Mitchell.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, 1993.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27–57, 1975.

[KR97] Fairouz Kamareddine and Alejandro Ŕios. Extending the λ-calculus with ex-
plicit substitution which preserves strong normalization into a confluent calcu-
lus on open terms. Journal of Functional Programming, 7(4):395–420, 1997.

[Lia97] C. Liang. Let-polymorphism and eager type schemes. In TAPSOFT ’97:
Theory and Practice of Software Development, pages 490–501. Springer Verlag
LNCS Vol. 1214, 1997.

[Lia02] C. Liang. Compiler construction in higher order logic programming. In
4th International Symposium on Practical Aspects of Declarative Languages,
Springer-Verlag LNCS no. 2257, pages 47–63, 2002.

[Mil91a] D. Miller. Unification of simply typed lambda-terms as logic programming.
In Eighth International Logic Programming Conference, pages 255–269. MIT
Press, June 1991.

[Mil91b] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497–
536, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computa-
tion, 14:321–358, 1992.

[Mot00] M. Mottl. Automating functional program transformation. MSc Thesis. Divi-
sion of Informatics, University of Edinburgh, September 2000.

[Muñ96] César Muñoz. Confluence and preservation of strong normalization in an ex-
plicit substitution calculus. In Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 440–447. IEEE Computer Society Press, July 1996.

36

[Nad99] Gopalan Nadathur. A fine-grained notation for lambda terms and its use in
intensional operations. Journal of Functional and Logic Programming, 1999(2),
March 1999.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Program-
ming Conference, pages 810–827. MIT Press, August 1988.

[NM99] Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus—a
compiler and abstract machine based implementation of λProlog. In Harald
Ganzinger, editor, Automated Deduction–CADE-16, number 1632 in Lecture
Notes in Artificial Intelligence, pages 287–291. Springer-Verlag, July 1999.

[NPW02] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NW98] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A
generalization of environments. Theoretical Computer Science, 198(1-2):49–98,
1998.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM-SIGPLAN Conference on Programming Language Design and
Implementation, pages 199–208. ACM Press, June 1988.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16),
pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[Tea02] The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 7.2. Technical Report 255, INRIA, February 2002. More recent versions
may be obtained from the site http://coq.inria.fr/.

A Head Normalization with Eager Substitution

We provide concreteness here to the description in Section 4 of the head normalization
procedure that makes only implicit use of the suspension notation. We employ Standard
ML (SML) as our ‘pseudo-code language’ in this presentation. This choice is motivated by
the fact that it permits the essential details of the procedure to be sketched while retaining
succinctness in description. We assume a familiarity with SML to an extent that might
be obtained from the tutorial introduction in [Har86], but the uninitiated reader will likely
find the code we present self explanatory.

The first task is to provide datatype declarations for the terms and the closures that
will be needed in the reduction procedure. This is done below:

37

datatype rawterm = const of string
| var of string
| bv of int
| ptr of (rawterm ref)
| app of (rawterm ref * rawterm ref)
| lam of (rawterm ref)

type term = (rawterm ref)

datatype eitem = dum of int
| bndg of clos * int
and clos = cl of term * int * int * (eitem list)

type env = (eitem list)

Notice that terms are realized as references to appropriate structures in these declarations
so as to support a graph based approach to reduction. Complementing this encoding, we
use the following functions to, respectively, dereference a term and assign a new value to a
given term:

fun deref(term as ref(ptr(t))) = deref(t)
| deref(term) = term

fun assign(t1,ref(ptr(t))) = assign(t1,t)
| assign(t1,t2) = t1 := ptr(t2)

In the course of reduction, we will often need to look up a value in an environment. The
following function is useful for this purpose:

fun nth(x::l,1) = x
| nth(x::l,n) = nth(l,n-1)

The head normalization procedure has two essential phases. In the first phase, it traces
a (generalized) head reduction sequence to produce a head normal form as per Definition 1.
Once such a form has been unearthed, a second phase is entered to compute out the effect of
suspended substitutions on the arguments. In both these phases, the relevant suspensions
are encoded implicitly in the parameters of the procedures. The functions hn eager and
subst whose definitions appear in Figures 3 and 4 implement each of these phases. The
invocation of hn eager can occur in one of two modes depending on the value of its last
argument that is of boolean type. If this argument is true, the intention is to produce a
weak head normal form in recognition of the fact that the term to be reduced appears as the
function part of an application. This argument being false, on the other hand, signals the
desire for a (strong) head normal form. The value returned by hn eager will in general be
a quadruple that is to be interpreted implicitly as a suspension. In reality, this suspension

38

fun hn_eager(term as ref(const(c)),ol,nl,env,whnf) = (term,0,0,nil)
| hn_eager(term as ref(var(v)),ol,nl,env,whnf) = (term,0,0,nil)
| hn_eager(term as ref(bv(i)),ol,nl,env,whnf) =

if (i > ol) then (ref(bv(i-ol+nl)),0,0,nil)
else
(fn dum(l) => (ref(bv(nl - l)),0,0,nil)
| bndg(cl(t,ol’,nl’,e’),l) => hn_eager(t,ol’,nl+nl’-l,e’,whnf)

) (nth(env, i))
| hn_eager(term as ref(lam(t)),ol,nl,env,true) = (term,ol,nl,env)
| hn_eager(term as ref(lam(t)),ol,nl,env,false) =

let val (t’,_,_,_) =
if (ol=0) andalso (nl=0)
then hn_eager(t,0,0,nil,false)
else hn_eager(t,ol+1,nl+1,dum(nl)::env,false)

in (ref(lam(t’)),0,0,nil)
end

| hn_eager(term as ref(app(t1,t2)),ol,nl,env,whnf) =
let val (f,fol,fnl,fe) = hn_eager(t1,ol,nl,env,true)
in
(fn ref(lam(t)) =>

let
val t2’ = cl(t2,ol,nl,env)
val s’ = hn_eager(t,fol+1,fnl,bndg(t2’,fnl)::fe,whnf)
val (t’,ol’,nl’,env’) = s’

in
(if (ol=0) andalso (nl=0) andalso (ol’=0) andalso (nl’=0)
then assign(term,t’)
else ());

s’
end

| f =>
if (ol=0) andalso (nl=0)
then (assign(term,ref(app(f,t2))); (term,0,0,nil))
else (ref(app(f,subst(t2,ol,nl,env))),0,0,nil)

) (deref(f))
end

| hn_eager(term as ref(ptr(t)),ol,nl,env,whnf) =
hn_eager(deref(t),ol,nl,env,whnf)

Figure 3: Head normalization with implicit use of suspensions

39

fun subst(term as ref(const(c)),ol,nl,env) = term
| subst(term as ref(var(v)),ol,nl,env) = term
| subst(term as ref(app(t1,t2)),ol,nl,env) =

ref(app(subst(t1,ol,nl,env),subst(t2,ol,nl,env)))
| subst(term as ref(lam(t)),ol,nl,env) =

ref(lam(subst(t,ol+1,nl+1,dum(nl)::env)))
| subst(term as ref(bv(i)), ol, nl, env) =

if i > ol then ref(bv(i-ol+nl))
else
(fn dum(l) => ref(bv(nl - l))

| bndg(cl(t,ol’,nl’,e’),l) =>
if ((ol’=0) andalso (nl’+nl-l=0)) then t
else subst(t,ol’,nl’+nl-l,e’)

) (nth(env,i))
| subst(term as ref(ptr(t)),ol,nl,env) =

subst(deref(t),ol,nl,env)

Figure 4: Calculating out suspensions

will be a trivial one in all cases other than when a weak head normal form is computed and
the term component of the resulting suspension is an abstraction.

Any given term t may be transformed into head normal form by invoking the procedure
head norm eager that is defined as follows:

fun head_norm_eager(t) = (hn_eager(t,0,0,nil,false) ; ())

That head norm eager is true to its intended purpose is the content of the following theorem:

Theorem 5 Let t be a reference to the representation of a de Bruijn term that has a head
normal form. Then head norm eager(t) terminates and, when it does, t is a reference to
the representation of a head normal form of the original term.

Proof. Only a sketch is provided. Using an induction on the structure of terms, we can
see that head norm eager(t) carries out a sequence of rewriting steps on t that corresponds
first to a head reduction sequence as per Definition 3 of the suspension term encoded by
t and then, possibly, a sequence of reading rule applications on the last term in the head
reduction sequence. Proposition 4 guarantees that the head reduction sequence terminates.
The reading relation is strongly normalizing. Thus head norm eager(t) must terminate.
That t must be a reference when this happens to a head normal form for the term it
originally represented now follows from the correctness of the rewrite rules in Figure 1.

2

40

B Head Normalization with Delayed Substitution

We are now interested in reflecting suspensions fully into term structure. The new datatype
declarations appear below:

datatype rawterm = const of string
| var of string
| bv of int
| ptr of (rawterm ref)
| lam of (rawterm ref)
| app of (rawterm ref) * (rawterm ref)
| susp of (rawterm ref)*int*int*(eitem list)

and eitem = dum of int
| bndg of (rawterm ref) * int

type env = (eitem list)

type term = (rawterm ref)

Notice that these declarations permit terms of arbitrary form, as opposed to simply closures,
to appear in environments.

The main work in this version of our head normalization routine is performed by the
function hn lazy defined in Figure 5. This function has a structure that is in many respects
identical to that of the environment based procedure hn eager seen in Appendix A; we note
especially that the arguments of this procedure implicitly encodes a suspension and that
it is also invoked in one of two modes that cause it to compute either a weak or a strong
head normal form. There are, however, a few differences. The first of these relates to the
processing of an application when this has been recognized to be a (left) part of a head
normal form. In such a situation, rather than computing out the effects of a nontrivial
substitution, the argument part of the application is encapsulated as a suspension. A
second difference arises from the fact that the new procedure must be prepared to also
process suspensions. In order to preserve the ability to commit structures to heap only when
necessary, the present procedure invokes the head normalization process on the embedded
suspension. It is interesting to note that the sequence of rewriting steps that results is still
encompassed by the head reduction sequences of Definition 3. Finally, in the case that a
suspension has been processed in a mode intended to find a weak head normal form, it is
possible for the returned value to itself be an (implicit) suspension; this would happen if the
term reduces to one that is an abstraction at the top-level. This suspension must be made
explicit and, further, it should be transformed into an abstraction using rule (r7) before
computation can proceed. This effect is accomplished by an invocation of the make explicit
function defined below:

fun make_explicit(t,0,0,nil) = t
| make_explicit(ref(lam(t)),ol,nl,e) =

41

fun hn_lazy(term as ref(const(c)),ol,nl,e,whnf) = (term,0,0,nil)
| hn_lazy(term as ref(var(v)),ol,nl,e,whnf) = (term,0,0,nil)
| hn_lazy(term as ref(bv(i)),ol,nl,e,whnf) =

if (i > ol) then (ref(bv(i-ol+nl)),0,0,nil)
else (fn dum(l) => (ref(bv(nl-l)),0,0,nil)

| bndg(t,l) => (fn ref(susp(t2,ol’,nl’,e’)) =>
hn_lazy(t2,ol’,nl’+nl-l,e’,whnf)

| t => hn_lazy(t,0,nl-l,nil,whnf)
) (deref t)) (nth(e, i))

| hn_lazy(term as ref(lam(t)),ol,nl,e,true) = (term,ol,nl,e)
| hn_lazy(term as ref(lam(t)),ol,nl,e,false) =

let val (t’,ol’,nl’,e’) =
if ((ol=0) andalso (nl=0)) then hn_lazy(t,0,0,nil,false)
else hn_lazy(t,ol+1,nl+1,dum(nl)::e,false)

in (ref(lam(t’)),ol’,nl’,e’) end
| hn_lazy(term as ref(app(t1,t2)),ol,nl,e,whnf) =

let val (f,fol,fnl,fe) = hn_lazy(t1,ol,nl,e,true)
in (fn ref(lam(t)) =>

let val t2’ = if ((ol=0) andalso (nl=0)) then t2
else ref(susp(t2,ol,nl,e))

val s = hn_lazy(t,fol+1,fnl,bndg(t2’,fnl)::fe,whnf)
val (t’,ol’,nl’,e’) = s

in (if (ol=0) andalso (nl=0) andalso (ol’=0) andalso (nl’=0)
then assign(term,t’)
else ()); s

end
| f => if ((ol=0) andalso (nl=0))

then (assign(term,ref(app(f,t2))); (term,0,0,nil))
else (ref(app(f,ref(susp(t2,ol,nl,e)))),0,0,nil)

) (deref f)
end

| hn_lazy(term as ref(susp(t,ol,nl,e)),ol’,nl’,e’,whnf) =
let val s = hn_lazy(t,ol,nl,e,whnf)

val t’ = (make_explicit s)
in assign(term,t’);

if ((ol’=0) andalso (nl’=0)) then s
else hn_lazy(term,ol’,nl’,e’,whnf)

end
| hn_lazy(ref(ptr(t)),ol,nl,e,whnf) = hn_lazy((deref t),ol,nl,e,whnf)

Figure 5: Head normalization with the capability of delaying substitutions

42

ref(lam(ref(susp(t,ol+1,nl+1,dum(nl)::e))))

The function hn lazy reduces terms that correspond implicitly to suspensions. The
external interface to this function is provided by the following function:

fun head_norm_lazy(t) = (hn_lazy(t,0,0,nil,false) ; ())

The correctness of head norm lazy is the content of the following theorem whose proof is
similar to that of Theorem 5.

Theorem 6 Let t be a reference to the representation of a suspension term that translates
via the reading rules to a de Bruijn term with a head normal form. Then head norm eager(t)
terminates and, when it does, t is a reference to the representation of a generalized head
normal form of the original term.

An observant reader may note that the functions hn eager and hn lazy that we have
presented sometimes create new terms where this can be avoided—e.g., when the term
being processed is an application that is unchanged by the environment—and also miss out
on some opportunities for sharing in reduction. These choices have been made here for
clarity and brevity in presentation. In the actual implementations, care has been taken to
ensure that all such extraneous aspects have a neutral impact on our experiments.

43

