System Description:
Teyjus—A Compiler and Abstract Machine
Based Implementation of AProlog

Gopalan Nadathur and Dustin J. Mitchell

Department of Computer Science
University of Chicago
Ryerson Hall, 1100 E 58th Street
Chicago, IL 60637
gopalan@cs.uchicago.edu, djmitche@cs.uchicago.edu

Abstract. The logic programming language AProlog is based on the
intuitionistic theory of higher-order hereditary Harrop formulas, a logic
that significantly extends the theory of Horn clauses. A systematic ex-
ploitation of features in the richer logic endows AProlog with capabili-
ties at the programming level that are not present in traditional logic
programming languages. Several studies have established the value of
AProlog as a language for implementing systems that manipulate formal
objects such as formulas, programs, proofs and types. Towards harnessing
these benefits, methods have been developed for realizing this language
efficiently. This work has culminated in the description of an abstract
machine and compiler based implementation scheme. An actual imple-
mentation of AProlog based on these ideas has recently been completed.
The planned presentation will exhibit this system—called Teyjus—and
will also illuminate the metalanguage capabilities of AProlog.

1. Introduction. In work going back over a decade, Miller, Nadathur and col-
leagues have studied the proof-theoretic foundations of logic programming. A
result of these investigations is the establishment of the intuitionistic theory of
higher-order hereditary Harrop formulas as a suitable basis for this paradigm of
programming [8]. This class of formulas enriches that of Horn clauses—the tra-
ditional basis for logic programming—with the possibilities of quantifying over
function and (certain occurrences of) predicate variables, of explicitly represent-
ing binding in terms and of using a fuller complement of connectives and quanti-
fiers. The AProlog language [13] is based on the logic of higher-order hereditary
Harrop formulas. By systematically exploiting the new features in the underlying
logic, AProlog provides support at the programming level for capabilities such as
higher-order programming, polymorphic typing, scoping over names and proce-
dures, modular programming, abstract data types and the use of lambda terms
as data structures. Much research has been conducted in recent years towards
fully understanding the usefulness of these additions to logic programming. Two
aspects that have received special attention are the availability of lambda terms
for representing objects and of a suitable set of primitives for manipulating such



representations. These features enable AProlog to support the notion of higher-
order abstract syntax [18] that is a profitable way to view the syntax of objects
whose structure involves binding. Several detailed studies (e.g. [3], [5], [7]) have
indicated the utility of AProlog in building systems that manipulate formal ob-
jects such as formulas, programs, proofs and types, making it comparable to
other recently proposed metalanguages and logical frameworks such as Coq [1],
Elf [17] and Isabelle [16]. Fuelled by these applications, Nadathur and colleagues
have investigated methods for providing an efficient and robust realization of the
language. This work has culminated recently in an actual implementation called
Teyjus. We provide some insight here into the overall implementation scheme
and its realization.

2. The AProlog Abstract Machine. An integral part of the implementation
scheme is an abstract machine that is capable of realizing the operations that
arise in typical AProlog programs efficiently. As with other logic programming
languages, unification and backtracking are intrinsic to AProlog and the Warren
Abstract Machine [19] provides a basic structure for treating these aspects well.
However, an extensive embellishment of this framework is needed for realizing
the following additional features satisfactorily:

— The language contains primitives that can alter the name space and the
definitions of procedures in the course of execution. This means, in particular,
that unification has to pay attention to changing signatures and that the
solution to each (sub)goal has to be relativized to a specific program context.

— Lambda terms are used in AProlog as data structures. A representation must
therefore be provided for these terms that permits their structures to be
examined and compared in addition to supporting reduction operations ef-
ficiently.

— Higher-order unification is used in an intrinsic way in the language. This
operation has a branching character that must be supported. Further, it is
sometimes preferable to delay the solution to unification problems and so a
good method is needed for transmitting these across computation steps.

— In addition to having a role in determining program correctness, types are
relevant to the dynamic behavior of programs. A sensible scheme must there-
fore be included for carrying these along at run-time.

— Programming in the language is done relative to modules. In realizing this
feature, it is necessary to support certain operations for composing mod-
ules. Moreover, a mechanism must be provided for periodically adding and
removing code depending on which modules are in use.

The abstract machine that has been developed includes devices for treating
all these aspects well. The solution to the problem of changing signatures is
based on an elegant scheme for tagging constants and variables and using these
tags in unification [9]. To realize changing program contexts, a fast method has
been designed for adding and removing code that is capable also of dealing
with backtracking [11]. The code that needs to be added may sometimes con-
tain global variables and this possibility has been dealt with by an adaptation



to logic programming of the idea of a closure. To facilitate a sensible represen-
tation of lambda terms, a new notation has been designed for these terms that
utilizes the scheme of de Bruijn for eliminating names and that additionally sup-
ports an incremental calculation of reduction substitutions [15]. This notation
has then been deployed systematically in the low-level steps contained in the ab-
stract machine [10]. A method has been devised for the purpose of representing
suspended unification problems [12] that has several interesting features. For ex-
ample, based on the observation that new such problems arise out of incremental
changes to old ones, the scheme is designed to support sharing while still making
it possible to rapidly reinstate a previous unification problem upon backtracking.
The treatment of higher-order unification itself includes compilation and priori-
tizes deterministic computations while delaying the truly non-deterministic parts
[12]. This approach makes it possible, for instance, to realize a generalization of
first-order unification in a completely deterministic fashion. The technique that
is adopted for propagating types at run-time uses information already present
during compilation to reduce substantially the effort to be expended dynamically
[6]. Using this approach, virtually no new computation is required relative to a
monomorphic subset of the language that is similar to Prolog. Finally, towards
supporting modular programming, a method has been designed for realizing
module interactions that permits separate compilation [14]. The actual addi-
tion and removal of modules of code can be achieved by methods developed for
handling scoping over program clauses. However, these methods have been em-
bellished by efficient devices for determining if a block of code will be redundant
in a given context and also by mechanisms for realizing information hiding.

3. Realizing the Implementation Scheme. An implementation of AProlog
on stock hardware based on the above ideas envisages four software subsystems: a
compiler, a loader, an emulator for the abstract machine and a user interface. The
function of the compiler is to process any given module of AProlog code, to certify
its internal consistency and to ensure that it satisfies a promise determined by an
associated signature and, finally, to translate it into a byte code form consisting of
a ‘header’ part relevant to realizing module interactions and a ‘body’ containing
sequences of instructions that can be run on the abstract machine. The purpose
of the loader is to read in byte code files for modules that need to be used, to
resolve names and absolute addresses using the information in the header parts
of these files and to eventually produce a structure consisting of a block of code
together with information for linking this code into a program context when
needed. The emulator provides the capability of executing such code after it has
been linked. Finally, the user interface allows for a flexibility in the compilation,
loading and use of modules in an interactive session.

The Teyjus system embodies all the above components and comprises about
50,000 lines of C code. The functionality outlined above is realized in its entirety
in a development environment. Also supported is the use of the compiler on the
one hand and the loader and emulator on the other in standalone mode. The
system architecture actually makes byte code files fully portable. Thus, AProlog
modules can be distributed in byte code form, to be executed later using only



the loader/emulator. Finally, the system includes a disassembler for the purpose
of viewing the results of compilation.

4. Related Languages and Implementations. Logic and functional pro-
gramming languages have been used often in the role of metalanguages. However,
AProlog and Elf are, to our knowledge, the only languages that systematically
support the higher-order abstract syntax approach. The language Qu-Prolog [4]
incorporates a partial understanding of binding: in particular, it permits binding
operators to be identified and recognizes equality modulo a-conversion but does
not support unification relative to the full set of A-conversion rules and does not
also include primitives for recursing over binding structure.

The AProlog language has received several implementations in the past. All
but one of these implementations have been in the form of interpreters, the most
recent one being the Terzo interpreter [20] that is written in Standard ML. The
interpreter based implementations have not profited from an in-depth analysis of
the issues that are peculiar to realizing AProlog and, consequently, it is not rea-
sonable to compare their design with that of the Teyjus system. The only other
implementation to adopt a compilation approach is Prolog/MALI [2]. The core
of this implementation is a memory management system called MALI that offers
functionalities relevant to realizing logic programming languages. To a first ap-
proximation, AProlog programs are compiled to C programs that execute MALI
commands for creating and interpreting goal structure. Certain inefficiencies,
such as the copying of goal structure, appear to be inherent to this approach
as opposed to the abstract machine based approach used in Teyjus. There are
also differences in the treatment of specific aspects such as the representation
and runtime manipulation of types, the representation of terms, the realization
of reduction, and the implementation of the scoping primitives. Finally, Pro-
log/MALI appears to support a different notion of modularity. It is of interest
to analyze the impact of all these differences and also to quantify their effect on
performance, but a treatment of this issue is beyond the scope of this paper.

5. The System Presentation. We will demonstrate the Teyjus system and
will expose the AProlog language as embodied in this implementation. We will
also discuss examples that indicate the metalanguage capabilities of AProlog.

6. Acknowledgements. B. Jayaraman, K. Kwon and D.S. Wilson have assisted
in the design of the AProlog abstract machine. L. Headley, S.-M. Perng and G.
Tong have participated in the implementation effort. Support for this work has
been provided by NSF at different stages under the grants CCR-8905825, CCR-
9208465, CCR-9596119 and CCR-9803849.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez, H. Herbelin,
G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin, A. Saibi, and B. Werner.
The Coq Proof Assistant Reference Manual — Version V6.1. Technical Report 0203,
INRIA, August 1997.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Pascal Brisset and Olivier Ridoux. The compilation of AProlog and its execution

with MALI. Publication Interne No 687, IRISA, Rennes, November 1992.

Amy Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11(1):43-81, August 1993.

Richard A. Hagen and Peter J. Robinson. Qu-Prolog 4.3 reference manual. Tech-
nical Report 99-03, Software Verification Research Centre, School of Information
Technology, University of Queensland, 1999.

John Hannan and Dale Miller. From operational semantics to abstract machines.
Mathematical Structures in Computer Science, 2(4):415 459, 1992.

Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing poly-
morphic typing in a logic programming language. Computer Languages, 20(1):25—
42, 1994.

Dale Miller and Gopalan Nadathur. A logic programming approach to manipu-
lating formulas and programs. In Seif Haridi, editor, IEEE Symposium on Logic
Programming, pages 379 388. IEEE Computer Society Press, September 1987.
Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125 157, 1991.

Gopalan Nadathur. A proof procedure for the logic of hereditary Harrop formulas.
Journal of Automated Reasoning, 11(1):115-145, August 1993.

Gopalan Nadathur. An explicit substitution notation in a AProlog implementa-
tion. Technical Report TR-98-01, Department of Computer Science, University of
Chicago, January 1998.

Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping constructs in
logic programming: Implementation problems and their solution. Journal of Logic
Programming, 25(2):119-161, November 1995.

Gopalan Nadathur, Bharat Jayaraman, and Debra Sue Wilson. Implementation
considerations for higher-order features in logic programming. Technical Report
(CS-1993-16, Department of Computer Science, Duke University, June 1993.
Gopalan Nadathur and Dale Miller. An overview of AProlog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Programming
Conference, pages 810-827. MIT Press, August 1988.

Gopalan Nadathur and Guanshan Tong. Realizing modularity in AProlog. Tech-
nical Report TR-97-07, Department of Computer Science, University of Chicago,
August 1997. To appear in Journal of Functional and Logic Programming.
Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A gen-
eralization of environments. Theoretical Computer Science, 198(1-2):49-98, 1998.
Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer Verlag, 1994.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University Press,
1991.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 199-208. ACM Press, June 1988.

D.H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI
International, October 1983.

Philip Wickline and Dale Miller. The Terzo 1.1b implementation of AProlog.
Distribution in NJ-SML source files. See http://www.cse.psu.edu/ dale/IProlog/.,
April 1997.



