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Abstract. Higher-order representations of objects such as programs,
specifications and proofs are important to many metaprogramming and
symbolic computation tasks. Systems that support such representations
often depend on the implementation of an intensional view of the terms
of suitable typed lambda calculi. Refined lambda calculus notations have
been proposed that can be used in realizing such implementations. There
are, however, choices in the actual deployment of such notations whose
practical consequences are not well understood. Towards addressing this
lacuna, the impact of three specific ideas is examined: the de Bruijn
representation of bound variables, the explicit encoding of substitutions
in terms and the annotation of terms to indicate their independence
on external abstractions. Qualitative assessments are complemented by
experiments over actual computations. The empirical study is based on
AProlog programs executed using suitable variants of a low level, abstract
machine based implementation of this language.

1 Introduction

This paper concerns the representation of lambda terms in the implementation
of programming languages and systems in which it is necessary to examine the
structures of such terms during execution. The best known uses of this kind of
lambda terms appears within higher-order metalanguages [16, 21], logical frame-
works [9,19] and proof development systems [5, 7,20]. Within these systems and
formalisms, the terms of a chosen lambda calculus are used as data structures,
with abstraction in these terms being used to encode binding notions in objects
such as formulas, programs and proofs, and the attendant S-reduction opera-
tion capturing important substitution computations. Although the intensional
uses of lambda terms have often pertained to this kind of “higher-order” ap-
proach to abstract syntax, they are not restricted to only this domain. Recent
research on the compilation of functional programming languages has, for exam-
ple, advocated the preservation of types in internal representations [23]. Typed
intermediate languages that utilize this idea [22] naturally call for structural
operations on lambda terms during computations.



The traditional use of lambda terms as a means for computing permits each
such term to be compiled into a form whose only discernible relationship to the
original term is that they both reduce to the same value. Such a translation is, of
course, not acceptable when lambda terms are used as data structures. Instead,
a representation must be found that provides a rapid access at runtime to the
form of a term and that also facilitates comparisons between terms based on this
structure. More specifically, the relevant comparison operations usually ignore
bound variable names and equality modulo a-conversion must therefore be easy
to recognize. Further, comparisons of terms must factor in the S-conversion rule
and, to support this, an efficient implementation of 3-contraction must be pro-
vided. An essential component of B-contraction is a substitution operation over
terms. Building in a fine-grained control over this operation has been thought
to be useful. This control can be realized in principle by introducing a new cat-
egory of terms that embody terms with ‘suspended’ substitutions. The detailed
description of such an encoding is, however, a little complicated because the
propagation of substitutions and the contraction of redexes inside the context of
abstractions have, in general, to be considered when comparing terms.

The representational issues outlined above have been examined in the past
and approaches to dealing with them have also been described. A well-known
solution to the problem of identifying two lambda terms that differ only in
the names chosen for bound variables is, for instance, to transform them into
a nameless form using a scheme due to de Bruijn [4]. Similarly, several new
notations for the lambda calculus have been described in recent years that have
the purpose of making substitutions explicit (e.g., see [1, 3,10, 18]). However, the
actual manner in which all these devices should be deployed in a practical context
is far from clear. In particular, there are tradeoffs involved with different choices
and determining the precise way in which to make them requires experimentation
with an actual system: the operations on lambda terms that impact performance
are ones that arise dynamically and they are notoriously difficult to predict from
the usual static descriptions of computations.

This paper seeks to illuminate this empirical question. The vehicle for its
investigation is the Teyjus implementation of AProlog [17]. AProlog is a logic
programming language that employs lambda terms as a representational device
and that, in addition to the usual operations on such terms, uses higher-order
unification as a means for probing their structures. The Teyjus system, therefore,
implements intensional manipulations over lambda terms. This system isolates
several choices in term representation, permitting them to be varied and their
impact to be quantified. We employ this concrete setting to understand three
different issues: the value of explicit substitutions, the benefits and drawbacks
of the de Bruijn notation and the relevance of an annotation scheme that deter-
mines the dependence of (sub)terms on external abstractions. Using a mixture
of qualitative characterizations and experiments, we conclude that:

1. Explicit substitutions are useful so long as they provide the ability to combine
[-contraction substitutions.



2. The potential disadvantage of the de Bruijn representation, namely the need
to renumber indices during S-contraction, is not significant in practice.

3. Dependency annotations can improve performance, but their effect is less
pronounced when combined with the ability to merge environments.

The rest of this paper is structured as follows. In the next section, we describe
a notation for lambda terms that underlies the Teyjus implementation. This
notation embodies an explicit representation of substitutions but one that can,
with suitable control strategies, be used to realize substitutions either eagerly or
lazily. In Section 3, we outline the structure of A\Prolog computations, categorize
these into conceptually distinct classes and describe specific programs in each
class that we use to make measurements. The following three sections discuss,
in turn, the differences in lambda term representation of present interest and
provide the results of our experiments. We conclude the paper with an indication
of other questions that need to be examined empirically.

2 A Notation for Lambda Terms

We use an explicit substitution notation for lambda terms in this paper that
builds on the de Bruijn method for eliminating bound variable names. A no-
tation of this kind conceptually encompasses two categories of expressions, one
corresponding to terms and the other corresponding to environments that encode
substitutions to be performed over terms. In a notation such as the Ao-calculus
[1] that use exactly these two categories, an operation must be performed on an
environment expression each time it is percolated inside an abstraction towards
modifying the de Bruijn indices in the terms whose substitution it represents.
The notation that we have designed for use in the implementation of AProlog
instead allows these adjustments to be carried out in one swoop when a substi-
tution is actually effected rather than in an iterated manner. To support this
possibility, this notation includes a third category of expressions called environ-
ment terms that encode terms together with the ‘abstraction context’ they come
from. Our notation additionally incorporates a system for annotating terms to
indicate whether or not they contain externally bound variables.

Formally, the syntax of terms, environments and environment terms of our
annotated suspension notation are given by the following rules:

(T) (C) [ (V) [#D) | (T) (T))qay | (Aay (1)) [ [(T); (N), (N, (E)]
(E) u==mnil | (ET) :: (E)

(ET) == @Q(N) | (T), (N))

(A) n=o]c

In these rules, (C) represents constants, (V') represent instantiatable variables
(i.e. variables that can be substituted for by terms), (I) is the category of posi-
tive numbers and (V) is the category of natural numbers. Terms correspond to
lambda terms. In keeping with the de Bruijn scheme, #: represents a variable
bound by the ith abstraction looking back from the occurrence. An expression



of the form [t,ol,nl, €], or [t,ol,nl,e]., referred to as a suspension, is a new
kind of term that encodes a term with a ‘suspended’ substitution: intuitively,
such an expression represents the term ¢ with its first ol variables being sub-
stituted for in a way determined by e and its remaining bound variables being
renumbered to reflect the fact that ¢t used to appear within ol abstractions but
now appears within nl of them. Conceptually, the elements of an environment
are either substitution terms generated by a contraction or are dummy substi-
tutions corresponding to abstractions that persist in an outer context. However,
renumbering of indices may have to be done during substitution, and to encode
this the environment elements are annotated by a relevant abstraction level. To
be deemed well-formed, suspensions must satisfy certain constraints that have
a natural basis in our informal understanding of their content: in an expression
of the form [t,4,7,€], or [t,1,7, €], the ‘length’ of the environment e must be
equal to ¢, for each element of the form @[ of e it must be the case that [ < j
and for each element of the form (¢',1) of e it must be the case that I < j. A final
point to note about the syntax of our expressions is that all non-atomic terms
are annotated with either ¢ or 0. The former annotation indicates that the term
in question does not contain any variables bound by external abstractions and
the latter is used when either this is not true or when enough information is not
available to determine that it is.

The expressions in our notation are complemented by a collection of rewrite
rules that simulate S-contractions. These rules are presented in Figure 1. The
symbols v and u that are used for annotations in these rules are schema variables
that can be substituted for by either ¢ or 0. We also use the notation e[i] to denote
the ' element of the environment. Of the rules presented, the ones labelled (3;)
and (f.) generate the substitutions corresponding to the S-contraction rule on
de Bruijn terms and the rules (r1)-(r12), referred to as the reading rules, serve
to actually carry out these substitutions.

The rule (r2) pertaining to ‘reading’ an instantiatable variable is based on a
particular interpretation of such variables: substitutions that are made for them
must not contain de Bruijn indices that are captured by external abstractions.
This is a common understanding of such variables but not the only one. For
example, treating these variables as essentially first-order ones whose instantia-
tion can contain free de Bruijn indices provides the basis for lifting higher-order
unification to an explicit substitution notation [8]. We comment briefly on this
possibility at the end of the paper but do not treat it in any detail here.

The correctness of some of our reading rules, in particular, the rules (r8)-
(r10), depends on consistency in the use of annotations. Qur assumption is that
these are correctly applied at the outset; thus, the static (compilation) process
that creates initial internal representations of terms is assumed to apply the
annotation c to only those terms that do not have unbound de Bruijn indices in
them. It can then be seen that the rewrite rules preserve consistency while also
attempting to retain the content in annotations [15].

The ultimate utility of our notation is dependent on its ability to simulate
reduction in the lambda calculus. That it is capable of doing this can be seen



(B)  ((utr) t2)o — [t1,1,0, (t2,0) s i,
B ((Aufti,0l +1,nl +1,@nl :: e]o) ta)w — [t1,0l + 1,nl, (t2,nl) :: €]
(r1)  [e,0l,nl,e]u — ¢
provided c is a constant
(r2) [z, ol,nl,e]u — =
provided z is an instantiatable variable
(x3)  [#i,0l,nl,elu — #j
provided ¢ > ol and j =% — ol + nl.
(1‘4) H#i70l7nlv e]]“ - #.7
provided i < ol and e[i] = @ and j =nl — 1.
(r5)  [#i,0l,nl,e]. — [t, 0,7, nil].
provided ¢ < ol and e[i] = (¢,1) and j = nl — L.
(r6)  [(t1 t2)u,o0l,nl ey — ([t1,0l,nl, €]y [t2,0l,nl, €e]y)0v.
(r7)  [(Aut),ol,nl e]v = (Au [t,0l + 1,0l + 1,Qnl :: €]o)-
(1'8) |I(t1 t2)070l7 nlv e]]’u — (tl t2)c-
(r9)  [(Act),ol,nl,e]u = (Act).
(r10) [[t,ol,nl,e]c,0l’,nl' e'lu — [t,ol,nl,€]ec.
(r11) [[t,0l, nl,€]o,0,nl',nil]o — [t,0l,nl + nl’,€]o-
(r12) [t,0,0,ndl]. — t

Fig. 1. Rule schemata for rewriting annotated terms

in two steps [15]. First, underlying every consistently annotated term in the
suspension notation is intended to be a de Bruijn term that is to be obtained by
‘calculating out’ the suspended substitutions. The reading rules can be shown to
possess properties that support this interpretation: every sequence of rewritings
using these rules terminates and any two such sequences that start at the same
term ultimately produce annotated forms of the same de Bruijn term. It can
then be shown that the de Bruijn term t S-reduces to s if and only if any ¢’
that is a consistently annotated version of ¢ can be rewritten using our rules to
a term s’ that is itself a consistently annotated version of s.

The (/) rule is redundant to our collection if our sole purpose is to simulate
[B-contraction; indeed, omitting this rule yields a calculus that is similar to those
in 3] and [10]. However, the (3) rule is the only one in our system that permits
substitutions arising from different contractions to be combined into one envi-
ronment and, thereby, to be carried out in the same walk over the structure of
the term being substituted into. The rule (r11) is also redundant, but it serves a
similar useful purpose in that it that it allows a reduction to be combined with a
renumbering walk after a term has been substituted into a new (abstraction) con-
text. In fact, the main uses of rules (r11) and (r12) arise right after a use of rule
(r5) and a reduction procedure based on our rules can actually roll these distinct
rule applications into one. Rather than eliminating the effects of rules (8.) and



(r11), it is possible to replace them with more general ones that are capable of
merging the environments in any term of the form [[¢t, ol1, nly, €1], olz, nla, e2],
to produce an equivalent term of the form [t, ol, nl, €],; such a collection of rules
is, in fact, presented in [18]. However, embedding this larger collection of rules
in an actual procedure can be difficult and an underlying assumption here is
that the rules (8,) and (r11) provide an efficient way to capture most of their
useful effects. A final observation is that the rules (r8)-(r10) are redundant in a
sense analogous to the (3,) rule. However, using these rules can have practical
benefits as we discuss in Section 6.

3 Computations in AProlog

The language AProlog is one that, from the perspective of this paper, extends
Prolog in three important ways. First, it replaces first-order terms—the data
structures of a logic programming language—with the terms of a typed lambda
calculus. These lambda terms are complemented by a notion of equality given
by the a-, 5- and 7n-conversion rules. Second, AProlog uses a unification op-
eration that builds in the extended notion of equality accompanying lambda
terms. Finally, the language incorporates two new kinds of goals that provide,
respectively, for scoping over names and clauses defining predicates.

The new features of AProlog endow it with useful metalanguage capabilities
based essentially on the fact that the abstraction construct that is present in
lambda terms provides a versatile mechanism for capturing the binding notions
that appear in a variety of syntactic constructs. Suppose, for instance, that we
are interested in representing a formula of the form Vz P(z) where P(z) repre-
sents a possibly complex formula in which z appears free. Using lambda terms,
this formula may be encoded as (all (Az P(z))), where all is a constant chosen
to encode the predicative force of the universal quantifier and P(z) represents
P(z). This kind of explicit treatment of quantifier scope has several advantages.
Identity of formulas under variable renaming is implicit in the encoding; the rep-
resentations of Vz P(x) and Vy P(y) are, for example, equivalent lambda terms.
Quantifier instantiation can be realized uniformly through application. Thus, the
instantiation of the quantifier in (all @), where @ itself is a complex structure
possibly containing quantifiers, by the term ¢ can be realized simply by writing
down the expression (Q t); S-contraction realizes the actual substitution with
all the renamings necessary for logical correctness. Expressions with instantiat-
able variables can be used in conjunction with the enhanced unification notion
to analyze formulas in logically sophisticated ways. Finally, many computations
on formulas are based on recursion over their structure. The usual Horn clauses
of a logic programming language already provide for a recursion over first-order
structure. The new scoping mechanisms of AProlog complement this to realize
also a recursion over binding structure in an elegant and logically justifiable way.

The capabilities of AProlog that we have outlined above have been exploited
for a variety of purposes in the past, ranging from building theorem provers
and encoding proofs to implementing experimental programming languages. A




detailed discussion of these applications is beyond the scope of this paper. For
our present purposes it suffices to note that all of them depend on the ability to
perform conversion operations on lambda terms, to compare their structures and
to decompose them in logical ways. Thus, AProlog provides a rich programming
framework—that is not unlike others that utilize lambda terms intensionally—
for studying the impact on performance of choices in the representation of these
terms. In the following sections, we use this framework in quantifying some of
these differences. We identify below a taxonomy of AProlog computations that
is based roughly on the ‘level’ of the higher-order feature used and we use this to
describe a collection of testing programs to be employed in our empirical study.
The test suite is available from the Teyjus site at http://teyjus.cs.umn.edu/.
First-Order Programs. This category exercises no higher-order features and
should therefore be impervious to differences in the way (lambda) terms are
treated. We include two programs from this category:

— [quicksort] A standard Prolog implementation of the familiar sorting routine.
— [pubkey/ An implementation of a public key security protocol described in
[6]. This program uses the new scoping devices in AProlog.

First-Order Like Unification with Reduction. Genuine lambda terms may
appear in programs in this category, but these figure mainly in reduction com-
putations, most unification problems being first-order in nature. Matching the
representation of a lambda term with the pattern (all @), for instance, yields a
unification problem of this kind and the subsequent application (@ t) generates
a reduction. The two programs included in this category are the following:

— [hnorm] A head normalization routine used to reduce a collection of ran-
domly generated lambda terms.

— [church] A program that involves arithmetic computations with Church nu-
merals and associated combinators.

L, Style Programs. Computation in this class proceeds by first dispensing
with all abstractions in lambda terms using new constants, then carrying out a
first-order style analysis over the remaining structure and eventually abstracting
out the new constants. As an idiom, this is a popular one amongst AProlog users
and it has also been adopted in other related systems such as Elf and Isabelle.
Programs in this class use a controlled form of reduction—the argument of a
redex is always a constant—and a restricted form of higher-order unification
[12]. We test the following programs in this category:

— [typeinf] A program that infers type schemes for ML-like programs.
— [compiler] A compiler for a small imperative language [11].

Unrestricted Programs. Programs in this class make essential use of (general)
higher-order unification. As such, they tend to involve significant backtracking
and they also encompass S-reduction where the arguments of redexes are com-
plex terms. The programs tested in this category are the following;:

— [hilbert] A AProlog encoding of Hilbert’s Tenth Problem [13].



— [funtrans] A transformer of functional programs [14].

The Teyjus system used in our experiments is an abstract machine and com-
piler based implementation of AProlog. It uses a low-level encoding of the terms
in the annotated suspension notation. The use of the rewrite rules in Figure 1
within Teyjus are confined to a procedure that transforms terms to head normal
forms, upon which all comparison operations are based. This procedure can be
modified to realize, and hence to study, the effect of different choices in lambda
term representation. It is this ability that we utilize in the following sections.

4 The Value of Explicit Substitutions

Reflecting an explicit substitution notation into the representation of lambda
terms provides the basis for a lazy strategy in effecting reduction substitutions.
There are two potential benefits to such laziness.

First, actual substitutions may be delayed till a point where it becomes evi-
dent that it is unnecessary to perform them. Thus, consider the task of determin-
ing if the two terms ((AAX (#3 #2 s)) (A#1)) and (AXX (#3 #1 ¢)) (A #1))
are identical, assuming that s and ¢ are some unspecified but complicated terms.
We can conclude that they are not by observing that they reduce respectively
to AX(#2 §') and A A (#1 t'), where s’ and ¢’ are terms that result from s and ¢
by appropriate substitutions. Note that, in making this determination, it is not
necessary to explicitly calculate the results of the substitutions over the terms
s and t. The annotated suspension notation and a suitable head-normalization
procedure [15] provide the basis for such an approach.

Second, such laziness makes it possible to combine substitution walks that
arise from contracting different S-redexes. Thus, suppose that we wish to instan-
tiate the two quantifiers in the formula represented by (all (Az (all (Ay P)))),
where P represents an unspecified formula, with the terms t; and ¢3. Such an
instantiation is realized through two reductions, eventually requiring ¢; and t;
to be substituted for the first and second free variables in P and the indices of all
other free variables to be decremented by two. All these substitutions involves a
walk over the same structure—the structure of P—and it would be profitable if
they could all be done together. To combine walks in this manner, it is necessary
to temporarily suspend substitutions generated by (3-contractions. In a situation
in which all the redexes are available in a single term, this kind of delaying of
substitution can be built into the reduction procedure through ad hoc devices.
However, in the case being considered, the two quantifier instantiations are ones
that can only be considered incrementally and, further, intervening structure
needs to be processed before the abstraction giving rise to the second redex
is encountered. The structure that engenders sharing is therefore not all avail-
able within a single call to a reduction procedure and an explicit encoding of
substitution over P seems to be necessary for realizing this benefit.

Towards understanding how important these factors are in practice, different
strategies were experimented with in the head normalization routine in Teyjus.
Three variations were tried. In one case, each time a 3, rule was used, the effects



Eager Lazy without Merging Lazy with Merging
Program | Running |Reading Rule|| Running |Reading Rule|| Running|Reading Rule
Time | Applications Time | Applications|| Time | Applications
quicksort| 0.25 secs 0 0.25 secs 0 0.25 secs 0
pubkey | 0.34 secs 0 0.34 secs 0 0.33 secs 0
church | 0.36 secs 243461 0.39 secs 367314 0.27 secs 73200
hnorm | 0.75 secs 266970 0.83 secs 439121 0.66 secs 89020
typeinf |14.70 secs| 10291085 |(|14.81 secs| 17582708 |(|9.58 secs| 2177884
compiler | 3.53 secs 2496431 3.82 secs 3391088  [|2.26 secs 318703
hilbert | 0.48 secs 296027 0.36 secs 58894 0.34 secs 5489
funtrans | 2.20 secs 44803 2.22 secs 60116 2.19 secs 24290

Fig. 2. Comparison of Reduction Substitution Strategies

of the resulting substitution were immediately calculated out, mimicking the
customary eager approach. The second version used lazy substitution but did
not use the (B.) rule in the rewriting process. This version gives us the benefits
of delayed substitution without the added advantage of combining substitution
walks. The last variation used the full repertoire of rewrite rules, once again
in a demand-driven mode for calculating substitutions, thereby attempting to
draw on all the benefits of explicit substitutions. The overall framework in all
three cases was provided by a graph-based reduction routine with an iterative
control and that uses a stack as an auxiliary store. Such a procedure writes the
result of each rewriting step based on the rules in Figure 1 to the heap. An
alternative procedure, that was not utilized but that is applicable equally to
all three variants tested and hence likely to produce similar timing behaviour,
would embed most of the information written to heap within a recursion stack.

Figure 2 tabulates the running time and the number of applications of the
rewrite rules that percolate the effects of substitutions over terms for each variant
over the suite of programs described in Section 3. All the tests were conducted
on a 400MHz UltraSparc and each figure in the table represents the average of
five runs. The data in the table indicates a clear preference for a lazy approach to
substitution combined with merging of substitutions in the cases where lambda
terms are used intrinsically in computation. In the cases where the computation
predominantly involves reduction or Ly style processing, the time improvements
range from 12% to over 35%. The measured time is over all computations, includ-
ing backchaining over logic programming clauses. The difference attributable to
the substitution strategy is pinpointed more dramatically and accurately by the
counts of reading rule applications that are directly responsible for the timing
differences and that are unaffected by the specifics of term representation and
reduction procedure implementation. These figures indicate a reduction of struc-
ture traversal to between a third and an eigth in the cases mentioned through
the use of lazy substitution with merging. A complementary observation is that
while the number of 3-redexes contracted remains unchanged, between 50% and
90% of these contractions are realized via the (3.) rule.



We note that behavior degrades in some cases when lazy substitution is used
without merging. There are two explanations for this. First, in this mode, terms
of the form [¢, 0l, nl, €], where t is itself a suspension are often encountered. In a
demand driven approach the two suspensions have to be worked inwards in tan-
dem and this has a noticeable overhead. Second, backtracking, a possibility in a
logic programming like setting, has an impact. Backtracking causes a revocation
of the changes that have been made beyond the choice point that computation
is retracted to. By carrying out substitution work that is deterministic late,
a source of redundancy is introduced. This effect is evident in the increase in
reading rule applications under a lazy substitution strategy without merging.

The data tabulated above pertain to the situation when annotations are
used. Without these the differences are more dramatic as we discuss later. The
conclusion from our observations thus seems to be that explicit substitutions are
important for performance provided they are accompanied by merging.

5 The Treatment of Bound Variables

The common approaches to representing bound variables can be separated into
two categories: those that use explicit names or, roughly equivalently, pointers to
cells corresponding to binding occurrences and those that use de Bruijn indices.
In comparing these approaches, it is important to distinguish two operations to
which bound variables are relevant. One of these is that of checking the identity
of two terms up to a-convertibility. The second is that of making substitutions
generated by (-contractions into terms, in which case the treatment of bound
variables is relevant to the way in which illegal capture is avoided.

The de Bruijn representation is evidently superior from the perspective of
checking the identity of terms up to a-convertibility. For example, consider
matching the two terms Ay ... Ayn (ys t1 ... tm)and Azy ... Az, (25 81 ... Sm).
The heads of these terms that are embedded under the abstractions are bound in
both cases by the same abstraction. Thus, the matching problem can be trans-
lated into one over the arguments of this term. A prelude to this transformation
at a formal level under a name based scheme is, however, a ‘normalization’ of
bound variable names. This step is avoided under the de Bruijn scheme.

A further consideration of the above example indicates a more significant
advantage of the de Bruijn notation. Under a name based scheme, the transfor-
mation step must produce the following set of pairs of terms to be matched:

{Ay1 - AYnt1,A21 ... A2 S1)y - (AYL - AYn b, AZ1 - AZp S ) b

The abstractions at the front of each of the terms are necessary: they provide
the context in which the bound variables in the arguments are to be interpreted
in the course of matching them. Constructing these new terms at run time is
computationally costly and also a bit too complex to accommodate in a low-level,
abstract machine based system such as Teyjus. Under the de Bruijn scheme, this
context is implicitly present in the numbering of bound variables, obviating the
explicit attachment of the abstractions.



From the perspective of carrying out substitutions in contrast, the de Bruijn
scheme has no real benefit and may, in fact, even incur an overhead. The impor-
tant observation here is that the renaming that may be needed in the substitution
process in a name based scheme has a counterpart in the form of renumber-
ing relative to the de Bruijn notation. To understand the nature of the needed
mechanism, we may consider the reduction of the term Az ((Ay Azy z) (Aw z))
whose de Bruijn representation is A ((AX#2 #3) (A#2)). This term reduces
to Az Az ((Awz) z), a term whose de Bruijn representation is A A ((A #3) #2).
Comparing the two de Bruijn terms, we notice the following: When substituting
the term (A#2) inside an abstraction, the index representing the locally free
variable occurrence, i.e., 2, has to be incremented by 1 to avoid its inadver-
tent capture. Further, indices for bound variable occurrences within the scope
of an abstraction that disappears on account of a [-contraction may have to
be changed; here the index 3 corresponding to the variable occurrence x in the
scope of the abstraction that is eliminated must be decremented by 1. The sub-
stitution operation that is used in formalizing S-contraction under the de Bruijn
scheme must account for both effects.

At a detailed level, there is a difference in the renaming and renumbering
devices needed in name-based and nameless representations. Given a -redex of
the form (Az A\yt1) t2 whose de Bruijn version is a term of the form (A \#;) £z,
the renaming in the first case is effected over the ‘body’, i.e., Ayt;, and in
the second case over the argument, i.e., f.! One advantage of the name-based
representation is that the renaming may be avoided altogether if there is no
name clash. However determining this requires either a traversal of the term
being substituted, or an explicit record of the variables that are free in it. An
interesting alternative, described, for instance, in [2], is to always perform a
renaming and, more significantly, to fold this into the same structure traversal
as that realizing the S-contraction substitution.

The above discussion indicates that the additional cost relative to substi-
tution that is attendant on the de Bruijn notation is bounded by the effort
expended in renumbering substituted terms. A first sense of this cost can thus
be obtained by measuring the proportion of substitutions that actually lead to
nontrivial renumbering of compound terms. Cases of this kind can be identified
as those in which rule (r5) is used where the skeletal term is non atomic and
where an immediate simplification by one of the rules (r8)-(r10) or (r12) is not
possible.

Figure 3 tabulates the data gathered towards this end for the programs in
our test suite that use reductions. An interesting observation is that no renum-
bering is actually involved in the case of L) style programming. The reason for
this is not hard to see—the only reductions performed are those corresponding to
eliminating the binding with a new constant. Thus, for a significant set of compu-
tations carried out in AProlog and related languages, renumbering is a non-issue.
In the other cases, some renumbering can occur but adopting a merging based

! In the de Bruijn scheme, some bound variables in #; may also have to be renumbered,
but this can be done efficiently at the same time that ¢» is substituted into the term.



FEager Lazy with Merging

Program Total Renumbering Total Renumbering

Substitutions| Substitutions| Substitutions| Substitutions
church 34999 3267 34723 12
hnorm 25497 0 32003 0
typeinf 777832 0 722291 0
compiler| 154967 0 100519 0
hilbert 3840 1500 1539 411
funtrans 8587 146 7374 19

Fig. 3. Renumbering with the de Bruijn Representation

approach to substitution can reduce this considerably. This phenomenon is also
understandable; substituting a term in after more enclosing abstractions have
disappeared due to contractions leaves fewer reasons to renumber.

The cases where a nontrivial renumbering needs to be done do not necessarily
constitute an extra cost. In general, when a term is substituted in, it is necessary
also to examine its structure and possibly reduce it to (weak) head normal form.
Now, the necessary renumbering can be incorporated into the same walk as the
one that carries out this introspection. This structure is realized by choosing
to percolate the substitution inwards first in a term of the form [¢,0,nl, nil],,
using rule (r1l) to facilitate the necessary merging in the case that ¢ is itself a
suspension. The main drawback of this approach, in contrast to the scheme in [2]
for instance, is that it can lead to a loss in sharing in reduction if the same term,
t, has to be substituted, and reduced, in more than one place. An indication of
the loss in sharing can be obtained from the differences in the number of (3;)
and (f.) reductions under the two strategies in those cases where renumbering
is an issue. Our measurements show that, under an ‘umbrella’ regime of delayed
substitution with merging, these numbers were identical in all the relevant cases.
Thus, there is no loss in sharing from combining the reduction and renumbering
walks and, consequently, no real renumbering overhead relative to our test suite.

Our conclusion, then, is that the de Bruijn treatment of bound variables is
the preferred one in practice. It is obviously superior to name based schemes
relative to comparing terms modulo a-conversion and, in fact, representations
of the latter kind are not serious contenders from this perspective in low-level
implementations. The de Bruijn scheme has the drawback of a renumbering
overhead in realizing [-contraction. However, our experiments show that this
overhead is either negligible or nonexistent in a large number of cases.

6 The Relevance of Annotations

Annotations that are included with terms have the potential for being useful
in two different ways. First, they can lead to substitutions walks being avoided
when it is known that the substitutions will not affect the term. Second, by



allowing a suspension to be simplified directly to its skeleton term, they can
lead to a preservation of sharing of structure, and, hence, of reduction work, in
a graph based implementation. Both effects are present in the rules (r8)-(r10) in
Figure 1, the only ones to actually use annotations. There is, of course, a cost
associated with maintaining annotations as manifest in the structure of all the
other rules. However, this cost can be considerably reduced with proper care. In
the Teyjus implementation, for example, an otherwise unused low-end bit in the
tag word corresponding to each term stores this information. The setting of this
bit is generally folded into the setting of the entire tag word and a single test on
the bit that ignores the structure of the term suffices in utilizing the information
in the annotation.

Fager Lazy with Merging

Program | Without With Without With
Annotations| Annotations| Annotations| Annotations

quicksort 0.26 0.25 0.25 0.25
pubkey 0.33 0.34 0.31 0.33
church 1.90 0.36 0.29 0.27
hnorm 0.77 0.75 0.68 0.66
typeinf 48.56 14.70 9.56 9.58
compiler 19.51 3.53 2.29 2.26
hilbert 0.60 0.48 0.34 0.34
funtrans 2.20 2.20 2.26 2.19

Fig. 4. The Effect of Annotations

Experiments were conducted to quantify the benefits of annotations. The
different versions of the head normalization routine described in Section 4 were
modified to ignore annotations. The chosen programs were then executed on a
400MHz UltraSparc using the various versions of the Teyjus system. Figure 4
tabulates the running time in seconds for four of these versions; we have omitted
the case of delayed substitutions without merging since the results are similar
to the version with eager substitutions. The indication from these data is that
annotations can make a significant difference in a situation where substitution
is performed eagerly—for example, the running time is reduced by about 70%
and 80% in the case of the two L, style programs—but they have little effect
in the situation when lazy substitution with merging is used. Interpreting these
observations, it appears that annotations can lead to the recognition of a large
amount of unnecessary substitution work. In the situation where substitution
walks can be merged, however, these can also be combined with walks for reduc-
ing the term. Since reduction has to be performed in any case, the redundancy
when annotations are not used is minimal. Consistent with the observations from
the previous section, the data for the case of lazy substitutions also indicates
little benefit from shared reduction.



7 Conclusion

We have examined the tradeoffs surrounding the use of three ideas in the machine
encoding of lambda terms. Our study indicates that a notation that supports a
delayed application of substitution as well as a merging of substitution walks can
be used to significant practical effect. Within this context the de Bruijn scheme
for treating bound variables has definite advantages with little attendant costs.
Finally, the benefits of annotations appear to be marginal at best when reduction
and substitution are performed in tandem. Our observations have been made
relative to a graph-based approach to representing terms. It is further possible
to use hash-consing in the low-level encoding as has been done in the FLINT
system that also employs the annotated suspension notation [22]. While we have
not experimented with this technique explicitly, we believe that its use will be
neutral to the other choices considered here.

The work reported here can be extended in several ways. One further question
to consider is the difference between destructive and non-destructive realizations
of reduction. There are ‘obvious’ advantages to a destructive version in a deter-
ministic setting that become less clear with a language like AProlog that permits
backtracking. This matter can be examined experimentally. Along a different di-
rection, the implementation of higher-order unification needs to be considered
more carefully. By changing the interpretation of instantiatable or meta vari-
ables, it is possible to lift higher-order unification to an explicit substitution
notation. Doing so has the benefit of making the application of substitutions to
meta variables very efficient. However, there are also costs: a more general mech-
anism for combining substitutions is needed and context information must be
retained dynamically to translate metavariables prior to the presentation of out-
put. There is a tradeoff here that can, once again, be assessed empirically. A final
question concerns a more refined set of benchmarks, one that makes finer dis-
tinctions in the categories of computations on lambda terms. Such a refinement
may reveal further factors that can influence the tradeoffs in representations.
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