Uniform Proofs and Disjunctive Logic Programming
(Extended Abstract)T

Gopalan Nadathur?

Department of Computer Science
University of Chicago
1100 E 58th Street, Chicago, 1L 60637

gopalan@cs.uchicago.edu

Abstract

One formulation of the concept of logic program-
ming s the notion of Abstract Logic Programming
Language, iniroduced in [8]. Central to that defini-
tion 1s uniform proof, which enforces the requirements
of inference direction, including goal-directedness, and
the duality of readings, declarative and procedural. We
use this technology to investigate Disjunctive Logic
Programming (DLP), an extension of traditional logic
programmang that permits disjunctive program clauses.
This extension has been considered by some to be inap-
propriately identified with logic programming because
the indefinite reasoning introduced by disjuncition vio-
lates the goal-oriented search directionality central to
logic programming. We overcome this criticism by
showing that the requirement of uniform provability
can be realized in a logic more general than that of
DLP under a modest, sound, modification of programs.
We use this observation to derive inference rules that
capture the essential proof structure of InH-Prolog, a
known proof procedure for DLP.

1 Introduction

A class of sequent calculus proofs called uniform
proofs is identified in [8] and used as a means for deter-
mining if a given logical language can serve as a basis
for logic programming. The main characteristic of a
uniform proof is that it reflects a goal-directedness in
proof-search: the objective at any stage in the search
is to construct a proof of a single (goal) formula from
a collection of assumptions and if this formula is non-
atomic, then the search proceeds by first processing

T Work on this paper has been partially supported by NSF
grants CCR-92-08465 (Nadathur) and CCR-91-16203 (Love-
land) and a grant from the Konrad-Zuse Programm (Nadathur).
1 On leave till July 1995 at Institut fiir Informatik, Ludwig-
Maximilians Universitat, Miinchen.

Donald W. Loveland

Department of Computer Science
Duke University
Box 90129, Durham, NC 27708-0129

dwl@cs.duke. edu

its top-level logical symbol. Viewed differently, the
logical symbols in the formulas being proved become
primitives for directing search and the inference rules
pertaining to these symbols become specifications of
their search semantics. Classes of formulas and proof
relations provide a basis for logic programming just
in case provability in their context entails the exis-
tence of a uniform proof. The virtue of this “uniform
proof property” is that it permits a duality between
a declarative and a search-related reading for logical
symbols that seems central to a programming use of
logic. An auxiliary benefit of the property is that it
can be used for describing efficient proof procedures
for the underlying logical language [7, 10].

A central characteristic of disjunctive logic pro-
gramming is that it allows for disjunctive information
in the assumption set or program. The ability to ex-
press and process indefinite information and case con-
structions occur in real life and mechanisms to han-
dle such specifications are important. Attention has
focused on the semantics of disjunctive logic program-
ming [1, 2, 11], proof procedures [4, 12] and applica-
tions to disjunctive databases [9, 13, 14]. One point of
view of each of these topics appears in the book [3].

The basic requirement of disjunctive logic program-
ming, that disjunctive information be representable in
the assumption set, appears to be at variance with
the desire for the uniform proof property to hold. For
example, suppose that our assumption set contains
the formula p(a) V p(b) and that our goal is to prove
Jx p(x). To obtain a uniform proof of this formula, it
is necessary to be able to prove p(?) for some specific
term ¢; this is a natural outcome of goal-directedness
and the limitation of a “goal” to a single formula. It is
obviously not possible to construct such a proof. No-
tice, however, that 3z p(z) is provable from p(a) V p(b)
in most logical systems.

We attempt to reconcile this difference between the
presence of disjunctive information and the desire for
uniform proofs in this paper. Our approach in doing
this is the following. Suppose that we wish to show
that a formula G follows from a set of assumption for-
mulas I" in either classical or intuitionistic logic. We
may, in general, not be able to do this by looking only
for a uniform proof. However, we show that, if we re-
strict the syntax of G and the formulas in I in such a
way that all of disjunctive logic programming is still
included, a simple augmentation of I' makes the search
for a uniform proof a complete strategy. In particu-
lar, if the necessary syntactic restrictions are satisfied,
then a uniform proof exists for G from I'; G O L if and
only if there 1s a classical or an intuitionistic proof for
G from I'. This observation has a practical benefit in
that it forms the basis for a proof procedure for our
formulas (under a reduction to clausal form) that is
a natural generalization of the one usually employed
in logic programming. The main new aspect of this
procedure is that it has a rule for “backchaining” that
is sensitive to the presence of disjunctive information.
The restart mechanism of nH-Prolog [4, 5] is used for
dealing with this possibility and our procedure is, in
fact, an abstract presentation of the InH-Prolog pro-

cedure [6].

2 Logical preliminaries

We shall work within the framework of a first-order
logic in this paper. The logical symbols that we shall
use are T, 1, A, V, D, 3, and V; the first two symbols
are intended to denote the tautologous and the con-
tradictory propositions, respectively. The symbol — is
excluded from our vocabulary, but it can be defined in
terms of the other symbols present: = A is a shorthand
for (A D 1).

Notions of derivation that are of interest to us are
formalized by sequent calculi. A sequent in our con-
text will be a pair of multisets of formulas. The pair
will, as usual, be written as ' — A, assuming that
' and A are its elements. Such a sequent is an ax-
iom if either T € A or for some A that is either L
or an atomic formula, it is the case that A € T and
A € A. The rules that may be used in constructing
sequent proofs are those that can be obtained from the
schemata shown in Figure 1. In these schemata, ', A
and O stand for multisets of formulas, B and D stand
for formulas, ¢ stands for a constant, z stands for a
variable and ¢ stands for a term. The notation B, T
(A, B) is used here for a multiset containing the for-
mula B whose remaining elements form the multiset
T (respectively, A). Further, expressions of the form
[t/z]B are used to denote the result of replacing all

free occurrences of x in B by ¢, with bound variables
being renamed as needed to ensure the logical correct-
ness of these replacements. There is the usual proviso
with respect to the rules produced from the schemata
3-L and V-R: the constant that replaces ¢ should not
appear in the formulas that form the lower sequent.
The purpose of the schemata contr-L and contr-R is
to blur the distinction between sets and multisets, and
so we will be ambivalent about this difference at times.
However, this distinction can be important in a situa-
tion where these contraction rules are not present.

We will be interested in three notions of derivability
for sequents of the formI' — B. A C-proof for such
a sequent is a derivation obtained by making arbitrary
uses of the inference rules. We denote the existence of
such a proof, which is a classical proof, for the sequent
by writing I' l» B. I-proofs, that formalize the notion
of intuitionistic derivability, are C-proofs in which ev-
ery sequent has exactly one formula in its succedent.
We write I' it B to indicate the existence of an I-proof
for ' — B. Finally, a uniform proof is an I-proof
in which any sequent whose succedent contains a non-
atomic formula occurs only as the lower sequent of
an inference rule that introduces the top-level logical
symbol of that formula. Notice that if [— B has
a uniform proof, then the following must be true with
respect to this proof:

(1) TIf Bis C' A D, then the sequent must be inferred
by A-R fromI' — C and ' — D.

(2) TIf Bis C'V D then the sequent must be inferred
by V-R from either — C or ' — D.

(3) If Bis 3z P then the sequent must be inferred by
3-R from ' — [t/z]P for some term ¢.

(4) Tf Bis C D D then the sequent must be inferred
by D-R from C,T — D.

(5) If G is Va P then, for some constant ¢ that does
not occur in the given sequent, it must be the

case that the sequent is inferred by V-R from
I — [e/z]P.

These properties permit the search for a uniform proof
to proceed in a goal-directed fashion with the top-level
structure of the goal, z.e., the formula being proved,
controlling the next step in the search at each stage.
We shall write I' 5 B to denote the existence of a
uniform proof for ' — B. Letting D and G denote
collections of formulas and F denote a chosen proof
relation, an abstract logic programming language is

defined in [8] as a triple (D,G,F) such that, for all

B,B. T — A r — A B,B
m contr-L m contr-R
r — A,J_J_R
r — A, D~
B, DI — A L r — A B r — A D R
BADT — A/ T — ABAD A
BT — A DT — A L
BVDT — A V-
I — A B R r — A D R
I — ABvD " I — ABvD "/
B> DT — BA DT — © L B, T — A,D R
BoDT — A© Y T —=ABo>D~
t/x|B,T A r A [t/x]|B
1/e1B T — A — AlalB_

Ve B, — A

[¢/z]B, T — A
2B, T — A —

I' — A/ dzB

I — A/[e/z]B
I — AVeB

Figure 1: Rules for Deriving Sequents

finite subsets P of D and all G € G, P + GG if and only
if PG

Our final observation concerns the so-called Cut
rule that has the following form:

Fl e B,Al B,Fg — Az
I, I's — Ay, Ay

It is well-known that this rule is admissible with re-
spect to classical and intuitionistic provability, ¢.e., the
same set of sequents have derivations with and with-
out this rule. We use this fact in the next section.

3 A disjunctive logic programming
language

A logic programming language can be described in a
proof-theoretic setting by identifying classes of formu-
las that can serve as program clauses and queries and a
proof relation that can be used to derive a query from
a given collection of program clauses. Our present in-
terest is that we be able to represent disjunctive infor-
mation in programs. This leads naturally to the def-
inition of program clauses and queries as the (closed)
G- and D-formulas given by the syntax rules

G = A|GAG|GVG|3zG
D A|GOD|DAD|DVD|32D|VeD

in which A represents an atomic formula distinct from
1. The main difference between the formulas pre-
sented here and those used to define logic program-
ming based on Horn clauses in [8] is that program
clauses (i.e., the D-formulas) are permitted to contain
disjunctions and existential quantifications. The tra-
ditional description of disjunctive logic programming
uses formulas in clausal form. The defining character-
istic in this situation is that clauses with “multiple”
heads are permitted in programs. It is easily seen that
our D-formulas encompass such formulas. In the con-
verse direction, our formulas can, as will become obvi-
ous presently, be translated into an equivalent clausal
form.

To complete the description of our language, it is
necessary to specify the proof relation that is to pro-
vide its declarative semantics. The relation that is
generally employed for this purpose in disjunctive logic
programming is classical provability. In the present
context, we have another choice, namely intuitionistic
provability. It turns out that it 1s actually immaterial
which of these relations is used since a sequent of the
kind we are interested in has a derivation under one
if it has a derivation under the other. This observa-
tion is of importance in our later analysis relating to
uniform provability and so is established below.

Lemma 1 Let ' be a multiset of formulas and let
Biy,..., By be formulas. IfT — Bi,...,B, has a
C-proof in which the rules D-R and V-R are not used,
then ' — By V...V B, has an I-proof.

Lemma 1 is proved by an induction on the height of
a (cut-free) C-proof of ' — By,..., B,. It is easily
seen to be true in the base case. For the inductive step,
we consider the cases for the last rule. For instance,
suppose the last rule is an 3-R. Then the derivation
at the end has the following form:

I — Bi,...,[t/z]Bs,..., B,
T — Bi,...,32B;,..., Bn.

By hypothesis, ' — By V...V [t/z]B;V ...V B,
has an I-proof. Now, it is easily seen that

B\ V...V[t/z]B;V...VB, —
ByV...vIzB; V...V B,

has an I-proof. The desired conclusion follows from
these observations by the admissibility of the Cut rule.
The other cases have similar arguments.

Theorem 2 Let T' be a multiset of D-formulas and
let G be a G-formula. Then I — G has a C-proof
if and only if it has an I-proof.

Proof. The if direction is obvious. For the only if di-
rection, we observe that there can be no occurrences of
V-R and D-R in a cut-free C-proof of ' — G. The
desired conclusion now follows by virtue of Lemma 1.

O

The truth of Lemma 1 is independent of the appear-
ance of the L-R rule in C-proofs and so Theorem 2
remains true even if our G- and D-formulas are ex-
tended by letting A in the syntax rules defining them
be L in addition to atomic formulas. Incorporating
this extension permits D-formulas to also encode neg-
ative clauses: the clause (=B; V ...V =B,,) can be
written equivalently as (By A ... A By) D L. Now,
the (classical) unsatisfiability of a set of clauses T' is
equivalent to the existence of a C-proof forI' — L.
Thus, Theorem 2 shows that the reducibility of an
arbitrary formula to clausal form provides another en-
coding of classical logic in intuitionistic logic.

4 Uniform provability

The language described in the previous section does
not have the uniform proof property. For instance,
consider the sequent

p(a) Vp(b) — Tz p(z).

This sequent has both a C-proof and an I-proof but it
does not have a uniform proof. Notice that p(a)V p(b)
is a program clause of our language and 3z p(z) is a
query.

Although the uniform proof property does not hold
directly of our language, it holds of it in a derivative
sense. In particular, suppose that T is a (multi)set
of program clauses and that G is a query. Then
' — G has a C- or an I-proof if and only if
G D 1, — G has a uniform proof. This surpris-
ing observation has an interesting consequence: it can
be used to describe a proof procedure for our language
that is goal-directed and that differs from the proce-
dure usually employed with Horn clauses only in the
structure of the backchaining rule. We explore this as-
pect of our observation in the next section. The rest of
this section is devoted to showing that the observation
is, in fact, true.

We first note that the mentioned transformation of
the assumption set is sound and complete with respect
to intuitionistic logic.

Lemma 3 Let ' be a multiset of program clauses and
let G be a query. Then G D L T G of and only of
kG.

Proof. The if direction is obvious. For the only
if direction, we observe first that if G O L, T G
then G D L, T kG and, hence, (G D L)VG, T HG.
Noting that k- (G D L)V G and using the Cut rule, we
see that I' k- G. The desired observation now follows
from Theorem 2.

O

Theorem 4 Let I' be a multiset of program clauses
and let G be a query. Then G D L, T G if and only
ifGD L, ThG.

Proof. The if direction is immediate. We provide
only a sketch of the argument for the only if direction.

Suppose that G D L, T — G has a cut-free I-
proof. Then it must have one in which (a) for every
non-atomic formula appearing in the right of a sequent
there is a rule introducing its top-level symbol and
(b) no left rule immediately succeeds a right rule per-
taining to a top-level logical symbol of a formula in a
common sequent except in the following cases: the left
rule is V-L and the right rule is either 3-L or V-R or the
left rule is 3-L and the right rule is 3-R. (To ensure (a)
it may be necessary to introduce some inference steps
right after L-R rules and (b) follows from known per-
mutabilities for intuitionistic calculus applied to the
kinds of sequents that arise in our situation.) Let us
call a I-proof satisfying the requirements mentioned

above an I'-proof. Now, let R be either an V-L or
an 3-L rule. We associate a measure with R that is
the count of the number of connectives and quanti-
fiers that appear in the succedent of the lower sequent
of R. We use this measure to associate one with an
I'-proof = as follows: the measure of Z is the sum of
the measures of all the V-L and 3-L rules that appear
in 2. We claim that any I'-proofof G D L, T — G
that has a nonzero such measure can be transformed
into an I'-proof of smaller measure. It follows easily
from this that G D L,I' — G has a uniform proof.
To show the claim we consider the various cases
by which an I'-proof of G D L, T — G might have
nonzero measure. One possibility is that there is an
V-L rule right after an V-R. For instance, the following
steps might appear somewhere in the derivation:

BT — D
BT — DVE C,T' — DVE
BVC, I — DVE

V-R

V-L

We shall assume that D and E are atomic — this
assumption can be dispensed with in a detailed proof.
Our objective in this case is to show that the use of
V-L and V-R rules above can be reordered, thereby
reducing the overall measure.

Using the fact that what is displayed above is
a subpart of an I'-proof of GO L T — G, it
can be shown that C, T — G has an I'-proof of
smaller measure than the one for G D L, T — G
— the essential idea is to mimic the I’-proof for
G D L, T — G and to note that at least one use of
the V-L rule — the one shown above — is not needed.
By induction it follows then that C,T' — G has
an I’-proof of zero measure. It can also be seen that
C,T' can be written as either G O L, T or L, T".
We assume the former; the argument is simpler if the
latter is true. Thus, we can construct the following
sub-derivation:

LT — 1
cr — ¢ LTm — ptR
B,T' — D c1T — D o-L
BVC.T — D V-L
V-R

BVC, T — DVE

Using the known I’-proofs of B,IY — D and
C,T" — G together with this to replace the ear-
lier subderivation,we obtain the desired I'-proof of re-
duced measure.

The other cases are amenable to a similar argument.

O

There is a constructive content to the discussions
in this section that we attempt to bring out by means
of an example. Consider the following I-proof of
p(a) Vp(b) — T p(z):

p(a) — p(a) p(b) — p(b)
pla) — Jap(x) p(b) — Jap(x)
p(a)Vp(b) — Jzp(x)
By following the argument in the proof of Theorem 4,
we obtain from this I-proof the uniform proof for
Jzp(z) D L,p(a) Vp(b) — Tz p(z) that is shown in
Figure 2.

IR IR

5 A deductive calculus with direction-
ality

A virtue of the uniform proof property is that it
provides some control over the proof search process:
So long as the formula in the succedent of the sequent
is non-atomic, the top-level connective can be used to
direct the next step in the search. However, the way
to proceed 1s not as clear in the situation when the
succedent is an atomic formula since a variety of left
rules may be possible. An analogous problem arises in
the case of Horn clauses. The solution in that situa-
tion 1s to reduce the left rules to a single backchaining
rule; of course, some nondeterminism persists in that
a choice has to be made of the program clause that is
to be backchained over. The surprising observation is
that there is a natural generalization of this backchain-
ing rule that can be used to similar effect even in the
context of our language. We show this to be the case
in this section.

To permit the statement of this backchaining rule,
it 1s necessary, first of all, to consider a simplification
to the syntax of program clauses. In particular, we
assume henceforth that these are closed D-formulas
given by the syntax rule

D = AV..VA|GD(AV...VA)|VeD;

as before, A is intended to be a syntactic variable for
an atomic formula distinct from L in this rule. A pro-
gram clause in the syntax of Section 3 can be trans-
formed into a classically equivalent set of program
clauses in the current syntax. By invoking Theorem 2,
we see that this transformation is also intuitionisti-
cally acceptable. Notice that Theorem 2 is used in an
essential way in justifying this step since operations
like (static) Skolemization and the raising of scope of
universal quantifiers that are used in the transforma-
tion process are, in general, not intuitionistically valid.
As a specific example, Vo (D1(z) V D3) is not neces-
sarily intuitionistically equivalent to (Y Di(z)) V D5
even if z has no free occurrences in D5.

p(b), 3z p(z) D L — p(b)

L,p(h) — L

p(b),Jxp(z) D L — Fzp(x)

IR

Tp0) — pla) 78

pla),3ep(z) O L — p(a)

p(h), Jxp(z) D L — p(a) o-L

p(a)Vp(b),Jzp(x) D L — p(a)

V-L

Jzp(x) D L,p(a)Vp(h) — Jzp(x)

IR

Figure 2: A Uniform Proof for 3z p(z) D L, p(a) vV p(b) — Iz p(x)

If the syntax of our program clauses is simplified in
this manner, then the rules 3-L and A-L can be ex-
cluded from our calculus since they cannot occur in
cut-free proofs of sequents of the kind we are inter-
ested in. The contr-L rule can also be eliminated if we
restate the V-L rule as follows:

[t/z]B,Yx B,T — A
Ve B, — A

(We are effectively building contraction into this rule.)
We hereafter assume this modification to the V-L rule.

Let T be a set of program clauses and let G be a
query. By virtue of Theorem 4, a sound and complete
strategy for finding a C- or an I-proof for ' — G'is
to look for a uniform proof for G D L, I — G. An
analysis of the proof of the theorem indicates that the
enhancement to the assumption set is unnecessary if
we change the V-L rule to be the following:

BT — A DT — G
BvDT — A

In this rule, A stands for an atomic formula and G for
the original query. Notice that this is a rule that is
dependent on the original query and we indicate this
dependence by using the name V-Lg for it. The dis-
cussions that follow must also be understood relative
to this choice of G.

By incorporating the various modifications de-
scribed above, we obtain a calculus in which the only
left rules are V-L¢g, D-L and V-L. Further, assuming
that T is a (multi)set of program clauses, the classical
and intuitionistic provability of ' — G is equiva-
lent to the uniform provability of the same sequent in
this modified calculus. The backchaining rule that is
of interest to us combines the three left rules of our
modified calculus into a single rule.

Definition 1. Let D be a program clause. Then [D]
denotes a collection of pairs of sets of formulas given
as follows:

(1) fDis Ay V...V A, then

[D] = {(0,{Ay,... A D)}
(2) DisG D (A1 V...V A,,), then
[D] = {{G} {A,.... 4 1) }.
(3) If DisVa Dy, then
[D] = U{[[t/x]D1] | t is a term}.

This notation is extended to a (multi)set T' of program

clauses as follows: [l = J{[D] | D € T}.

Definition 2. Let T be a (multi)set of program
clauses. As mentioned already, GG is assumed to be
a fixed query.

(1) The ATOMIC rule is the following

Al,F—>G
r — ¢

A, I — G

provided that (0, {C, A1,..., Ax}) € [[]. In the
degenerate case, i.e., when the second component
of the pair shown is simply {C'}, this rule has no
upper sequents.

(2) The BACKCHAIN rule is the following

F—>G/ Al,F—>G

r — C

A, T — G

provided that ({G'},{C, A1,..., A,}) € [T]. In
the degenerate case, i.e., when the second com-
ponent of the pair shown is simply {C'}, this rule
has ' — G’ as its only upper sequent.

The rules defined above are obvious generalizations
of the ones that make use of program clauses in the
usual Horn clause setting. The latter rules correspond,
in fact, to the degenerate versions of our rules. From a
proof search perspective, both the ATOMIC and the
BACKCHAIN rules exhibit directionality: the atomic
formula to be proved determines the clauses whose use
is to be considered.

Lemma 5 Let T be a multiset of program clauses and
let C be an atomic formula. Then ' — C has a
uniform proof with | sequents in the calculus with the
original right rules and the left rules V-Lg, D-L and
V-L, if and only if one of the following conditions hold:

(1) For some Ay,..., Ay, (0,{C, Ay,...,A}) € [T]
and, for 1 <i<mn, A;,T — G has a uniform
proof with fewer than | sequents in the same cal-
culus.

(2) For some Ay,..., Ay, {G'},{C, A1,..., An}) €
[[] and T — G' and, for 1 < i < mn,
A;, T — G have uniform proofs with fewer than
[sequents in the same calculus.

Proof. By an induction on the size of the uniform
proof for ' — C.
O

Theorem 6 Let ' be a set of program clauses and let
G be a query. Then I' — G has a C-proof or an I-
proof if and only if it has a uniform proof in a calculus
containing all the right rules and the ATOMIC and
BACKCHAIN rule relativized to G.

Proof. Recall that a sequent of the kind we are
interested in has a C-proof or an I-proof just in case
it has a uniform proof in a calculus containing all the
right rules, V-L¢g, D-Land V-L. The theorem follows
by an easy induction from this and Lemma 5.

O

The final calculus described in this section can
translate into a proof procedure very close to one
already in the literature in the Disjunctive Logic
Programming field, namely, the Inheritance Near-
Horn Prolog procedure (InH-Prolog)[6, 12]. The
ATOMIC and BACKCHAIN rules implement pre-
cisely the restart rule of InH-Prolog, and with the su-
perimposed search ordering of InH-Prolog providing
an ordering of pursuit of the upper sequents of these
rules, the mapping from proof searches in this calculus
to InH-Prolog proof search is nearly one-to-one. This
relationship will be made explicit in the full paper. Fi-
nally, a very similar calculus can also be described in
the situation where the atomic formula in the syntax
rules for program clauses and queries i1s permitted to
be L. Indeed, this is the usual presentation format
for InH-Prolog, although it is known that use of the
original goal is interchangeable with use of L for all
procedures in the Near-Horn Prolog family. Again,
this will be addressed in the full version of this paper.

6 Conclusion

In this paper, we have investigated a generaliza-
tion of the logical language underlying disjunctive
logic programming from a proof-theoretic perspective.
While the uniform proof property described in [8] does
not hold of this language, we have shown that a mod-
est addition to programs makes the search for a uni-
form proof a complete strategy. This observation has
been utilized to describe a deductive calculus that cap-
tures the essence of the proof structure of Inheritance
near-Horn Prolog, one of the proof procedures ear-
lier proposed for disjunctive logic programming. This
methodology also provides a basis for analyzing other
proposed proof procedures. A fuller discussion of these
issues will appear in a complete version of the paper.

References
[1] A. Van Gelder, K.A. Ross, and J.S. Schlipf.

The well-founded semantics for general logic pro-

grams. J. ACM, 38(3):620-650, 1991.
[2] J. Lobo, J. Minker, and A. Rajasekar. Extend-

ing the semantics of logic programs to disjunctive
logic programs. In G. Levi and M. Martelli, edi-
tors, Logic Programmang: Proc. of the Sizth Int’l
Conf., Lisbon, Portugal, 1989.

[3] J. Lobo, J. Minker, and A. Rajasekar. Foun-
dations of Disjunctive Logic Programming. MIT
Press, Cambridge, MA, 1992.

[4] D.W. Loveland. Near-Horn Prolog. In J. Lassez,
editor, Logic Programming: Proc. of the Fourth
Int’l Conf., pages 456-469. MIT Press, 1987.

[5] D.W. Loveland. Near-Horn Prolog and beyond.
J. Automated Reasoning, 7:1-26, 1991.

[6] D.W. Loveland and D.W. Reed.
Horn Prolog for compilation. In J. Lassez and
G. Plotkin, editors, Computational Logic: Fssays
i Honor of Alan Robinson. MIT Press, 1991.

A near-

[7] Dale Miller. A logic programming language with
lambda-abstraction, function variables, and sim-
ple unification. Journal of Logic and Computa-

tion, 1(4):497-536, 1991.

[8] Dale Miller, Gopalan Nadathur, Frank Pfenning,
and Andre Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and

Applied Logic, 51:125-157, 1991.

[9] J. Minker. On indefinite databases and the
closed world assumption. In Lecture Notes in
Computer Science 138, pages 292-308. Springer-
Verlag, Berlin, 1982.

[10] Gopalan Nadathur. A proof procedure for the
logic of hereditary Harrop formulas. Journal
of Automated Reasoning, 11(1):115-145, August
1993.

[11] T.C. Pryzmusinski. Stationary semantics for dis-
junctive logic programs and deductive databases.
In S. Debray and M. Hermenegildo, editors, Logic
Programmang: Proc. of the 1990 North American
Conf., pages 40-62. MIT Press, 1990.

[12] D.W. Reed, D.W. Loveland, and B.T. Smith. An

alternative characterization of disjunctive logic

programs. In V. Saraswat and K. Ueda, editors,
Logic Programming: Proc. of the 1991 Int’l Symp.
MIT Press, 1991.

K.A. Ross and R.W. Topor. Inferring negative
information from disjunctive databases. J. Auto-
mated Reasoning, 4(2):397-424, 1988.

A. Yahya and L.J. Henschen. Deduction in
non-Horn databases. J. Automated Reasoning,

1(2):141-160, 1985.

