Practical Higher-Order Pattern Unification

with On-the-Fly Raising

Gopalan Nadathur

Digital Technology Center and Department of Computer Science
University of Minnesota

LIX — January 10, 2006

[Joint work with Natalie Linnell]

Gopalan Nadathur Practical Higher-Order Pattern Unification

Motivating Higher-Order Pattern Unification

Some “Prolog” queries illustrating different forms of unification:

?- append (a :: b : nil) (a : nil) L.
L=a::b::a::nil
?- append (a :: b :: nil) (@ :: nil) (F a).
requires solving the unification problem
vbvadF(F a) = a :: b :: a : nil
[multiple solutions, branching in unification]
?- Vaappend (a :: b : nil) (a :: nil) (F a).
requires solving
vbdFva(F a) = a = b a I nil
[most general unifier, non-branching search]

The last is an instance of higher-order pattern unification.

Features of Higher-Order Pattern Unification

@ Arises naturally in computations over higher-order abstract
syntax

@ Mixed quantifier prefixes are an essential component of the
problem and usually evolve dynamically

@ Has properties similar to first-order unification

@ most general unifiers can be provided
e unification is decidable and near linear-time algorithm exists

Question: How close can we get to first-order like treatment in
an implementation?

Gopalan Nadathur Practical Higher-Order Pattern Unification

Outline of the Talk

Formal presentation of the problem

@ Naive, transformation rules based algorithm

Eliminating quantifier prefixes

Sketch of a more sophisticated algorithm based on

e recursive traversal of terms
e on-the-fly application of pruning and raising

Comparison with other approaches

Concluding comments

Gopalan Nadathur Practical Higher-Order Pattern Unification

The Structure of Unification Problems

Unification problems are lists of equations between lambda
terms embedded within a quantifier prefix.

Term syntax uses de Bruijn notation and combines sequences
of applications and abstractions:

tu=xu i) A@,t) | t(t)
where i is a positive number and t is a sequence of terms.

Every variable appearing in the equations must be bound by an
abstraction or a quantifier in the prefix.

Examples of unification problems:

vive3dx (x = f(c) :: nil)
viaxve (x = f(c) = nil)
Yuvv3ax (x(v) = u(v) :: nil)

Gopalan Nadathur Practical Higher-Order Pattern Unification

Solutions to Unification Problems

@ Atermt is proper for existential variable x if every free
variable in it is bound outside the scope of x’s quantifier.

@ A unifier for a unification problem is a substitution for
existential variables such that
@ each pairin it is proper, and

e it renders the terms in each equation equal modulo the -
and n-rules

Prefix may be extended with existential quantifiers over
new variables in the process.

@ A unifier is most general if any other unifier can be
obtained from it by composition with a proper substitution.

Gopalan Nadathur Practical Higher-Order Pattern Unification

@ vfveax (x =f(c) :: nil) has {(x,f(c))} as a unifier.
@ vf3IxVvc (x = f(c) :: nil) has no unifiers.

@ YuVvv3x (x(v) = u(v) :: nil) has as unifiers

{6 A(L,u(1)))} and {(x, A(L,u(v)))}.

This problem has no most general unifier.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Higher-Order Pattern Unification Problems

These are problems in which the terms in the equations satisfy
the following property:

Every existential variable occurrence has as arguments
distinct

@ lambda bound variables or
@ universal variables bound within the scope of the

guantifier for the existential variable.
For example, Yuvv3x (x(v) = u(v) :: nil) is not such a problem.

However, Yu3x v (x(v) = u(v) :: nil) does satisfy the
restriction.

Also, every first-order problem meets the requirement trivially.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Unification via Transformations of Equations

@ Algorithm based on rewrite rules of the form
(Q1(E1),01) — (Q2(E2),02)

such that if (Q(E), #) — (Q/(nil), #) then 6 is an mgu for
Q(E)

@ Rules assume symmetry of = and normal forms for terms
@ Higher-order pattern restriction is assumed to be satisfied

@ Transformation system is complete in the sense that

e successful reduction yields a most general unifier
@ getting “stuck” indicates non-unifiability in the pattern case

@ Equation list modified so as to yield a processing order
corresponding to recursion over term structure

Gopalan Nadathur Practical Higher-Order Pattern Unification

Notation Used in Rules

@ Associated with a sequence of terms t:
It| length of t
t[i] ith element of t

t+s concatenation of t and s

@ Associated with sequences of distinct lambda bound and
universal variables y and z:

o ifa=7ZJijthenalz=1|Z|+1—i

e y|z =y[1]lzZ,...,y[ly|]lZ, provided all elements of y
appear in Z.

@ yNz is some listing of the set of elements common to y and
Z.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Simplification Transformations

These rules eliminate common rigid structure at the top level in
terms:

@ Removing Abstractions
(Q(A(n,s) = A(n,t) = E),0) — (Q(s =t E),H)

@ Descending Under Rigid Heads

(Q(a(s1,.--,8n) =a(ty,...,tq) = E),0) —
(Q(si1 =t ...usp=th = E),0)

if a is a lambda bound or universal variable.

Note: Failure occurs implicitly if heads are different.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Rigid Transformation

An incremental substitution is posited to reduce the difference
between the two terms:

(@13 (f(Y) = a(ty, ... th) = E),0) —
(Q13hy ... 303 Qa(hy(Y) =t1 ... hp(Y) =th 2 0/(E)), 6 0 6)

where ¢’ = {(f, \(Iy.a'(hs(7], -, 1).....hn([¥]..... D))}
provided

o f does not appear in a(ty, ..., t,), and

@ ais a lambda bound or universal variable such that

@ ais quantified in Q; and a’ = a, or
@ aappearsiny and a’ = aly.

Note: Once again, failure is implicit if the conditions are not
satisfied.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Flexible Transformation (Same Variable)

Here, a substitution must be posited that prunes away
arguments that are not identical in the same places:

(Qu3f Qo(f(y1, ... yn)) =F(z1,...,20)) = E),0)
— (©13h3IHF Q(#(E)), 0 0 6)

where
o ¢ = {{f, A(n,h(W)))} and
@ w is some listing of the set {m +1 —i |y; = z; fori <n}

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Flexible Transformation (Different Variables)

@ No Intervening Universal Quantifiers
Preserve only those universal variables that are in both
argument lists:

(Q13f Q239 Q3(f(Y) = 9(2) = E),0) —
(Q13h3f Q39 Q3(¢'(E)), 0" 0 0)

of
for & = {(f, A(Iy], h(U))), (9, A(Iz], h(V)))}
whereu=wly andv =w|z forw =ynNz

@ Raising Transformation
Bring quantifiers together through a substitution that
encodes permitted dependencies:

(130,39 Qs(f(Y) = 9(2) = E).0) —
(©133hQ,3g93(f(Y) =h(W +Z) :: ¢'(E), 0 0 0)
where w is a listing of the variables quantified universally in
Qz,and 0" = {(g,h(W))}.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Inefficiencies in the Naive Algorithm

@ Raising Transformation

e Maintaining and examining the quantifier prefix
e Introducing arguments that have to be pruned later

@ Legitimacy check for rigid head in flex-rigid case

e requires prefix examination
e depends also on size of argument list for flexible term

@ Incremental substitution generation in flexible-rigid case

@ unnecessary term construction
e repeated occurs check

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

@ Distinguishing existential and universal variables

@ Checking quantification order in flexible-rigid
transformation

@ Effecting the raising transformation

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

@ Distinguishing existential and universal variables
Store type tags with variables

@ Checking quantification order in flexible-rigid
transformation

@ Effecting the raising transformation

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

@ Distinguishing existential and universal variables
Store type tags with variables

@ Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain Iy, the number of changes from
existential to universal quantification before the quantifier
for x

@ Effecting the raising transformation

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

@ Distinguishing existential and universal variables
Store type tags with variables

@ Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain Iy, the number of changes from
existential to universal quantification before the quantifier
for x

@ Effecting the raising transformation

Relativize raising to the arguments of the other flexible
term instead

Gopalan Nadathur Practical Higher-Order Pattern Unification

Raising without the Quantifier Prefix

Consider the equation
f(y) =9(z)
where f and g are existential variables such that I < lg.

To solve this equation, we have to transform both sides to the
form h(w)

where

h is a new existential variable such that I, = I, and
W consists of two parts:

e variables u iny such that l, <l

e variables shared betweeny and z.
Substitutions for f and g to realize this can be generated
“on-the-fly,” solely from looking aty and z.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Modified Flex-Flex (Different Variables) Rule

Let yig denote a listing of the set
{u | uis a universal variable in y such that I, <Ig}

Then rules for the flexible-flexible with different heads case can
be replaced by

f(y)=9(z) - E,0) — (¢'(E),0' 0 0)
for 0" = {{f, A(Iy[,h(q +V))), (9, Mz, h(p + U)))}
where
@ his a new existential variable such that I, = I,
® p=yfgandq=ply, and
o V= (ynz)lyandu = (ynz)|zZ

assuming that Iy < g.

Gopalan Nadathur Practical Higher-Order Pattern Unification

The Full Algorithm

@ Based on a recursive traversal of terms in two modes:

e First-order like term simplification
e Variable binding, initiated by flex-flex or flex-rigid pair

@ Variable binding computation is parameterized by
e variable to be bound,
e vector of its arguments, and
e term constituting the other half of the equation

@ Variable binding involves recursive descent through term
towards generating

@ a substitution term, and
e possible substitutions for embedded variables

@ Normalization is performed on-demand using explicit
substitutions

Gopalan Nadathur Practical Higher-Order Pattern Unification

Consider the unification problem
IxVavbvc3dyvd(b(x(a,d)) = b(a(y)) :: nil)

After labelling of variables and dropping of the prefix this
becomes

(be(1) (Xv(0)(Ac(1): de(2))) = be(r)(@c(ny (Yv(ay)) == nil)
After simplification applied to the (first) equation, we get

(Xv(0)(Bc(1), de(2)) = Ac(ny(Yu(y) = nil)

Variable binding must now be applied to the equation to
generate a unifier.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

|

Xy(0)(@c(1)> de2)) = ac(1)(Yv(z))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

J [{(x, A2, N+

Xy(0)(@c(1)> de2)) = ac(1)(Yv(z))

|

mksubst(xv(o), [ac(l), dc(z)], ac(l)(Yv(l)))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

J [{6, A(2,2(Mt +

Xy(0)(@c(1)> de2)) = ac(1)(Yv(z))

.

mksubst(xv(o), [ac(l), dc(z)], ac(l)(Yv(l)))

|

mksubst (xy (o), [ac(1); de(2)]; Yu(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

l [{(x;A(2,2(hy(0)(2))))} +
{<y=hv(0)(ac(l))>}

mksubst (X, (o), [ac(1), de(2)]> Ac(1) (Vv (1))

l [hv(O)(Z)
{1y, hvoy(acy)

mksubst (xy (o), [ac(1); de(2)]; Yu(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Comparison with Other Algorithms

Two existing styles of algorithms:

@ Based on an explicit a priori raising

e must maintain list of all universals encountered
e blind raising coupled with pruning of redundant variables

@ explicit substitution based approach, characterized by
graftable metavariables

e can avoid initial raising, but
e dynamic behaviour can be akin to blind raising

Gopalan Nadathur Practical Higher-Order Pattern Unification

Conclusions and Future Work

@ Algorithm has been implemented in C and SML and used
in actual systems

@ Has a significant impact on performance in the Teyjus
system

@ Compilation of aspects beyond first-order like simplification
are being examined

@ Relevance of explicit substitutions needs to be better
understood:

e seems useful for delaying reduction substitution, but
e do graftable metavariables really offer a benefit?

Gopalan Nadathur Practical Higher-Order Pattern Unification

