
Practical Higher-Order Pattern Unification
with On-the-Fly Raising

Gopalan Nadathur

Digital Technology Center and Department of Computer Science
University of Minnesota

LIX – January 10, 2006

[Joint work with Natalie Linnell]

Gopalan Nadathur Practical Higher-Order Pattern Unification

Motivating Higher-Order Pattern Unification

Some “Prolog” queries illustrating different forms of unification:

?- append (a :: b :: nil) (a :: nil) L.
L = a :: b :: a :: nil.

?- append (a :: b :: nil) (a :: nil) (F a).

requires solving the unification problem
∀b∀a∃F (F a) = a :: b :: a :: nil

[multiple solutions, branching in unification]

?- ∀a append (a :: b :: nil) (a :: nil) (F a).

requires solving
∀b∃F∀a (F a) = a :: b :: a :: nil.

[most general unifier, non-branching search]

The last is an instance of higher-order pattern unification.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Features of Higher-Order Pattern Unification

Arises naturally in computations over higher-order abstract
syntax

Mixed quantifier prefixes are an essential component of the
problem and usually evolve dynamically

Has properties similar to first-order unification

most general unifiers can be provided
unification is decidable and near linear-time algorithm exists

Question: How close can we get to first-order like treatment in
an implementation?

Gopalan Nadathur Practical Higher-Order Pattern Unification

Outline of the Talk

Formal presentation of the problem

Naive, transformation rules based algorithm

Eliminating quantifier prefixes

Sketch of a more sophisticated algorithm based on

recursive traversal of terms

on-the-fly application of pruning and raising

Comparison with other approaches

Concluding comments

Gopalan Nadathur Practical Higher-Order Pattern Unification

The Structure of Unification Problems

Unification problems are lists of equations between lambda
terms embedded within a quantifier prefix.

Term syntax uses de Bruijn notation and combines sequences
of applications and abstractions:

t ::= x | u | i | λ(i , t) | t(t)

where i is a positive number and t is a sequence of terms.

Every variable appearing in the equations must be bound by an
abstraction or a quantifier in the prefix.

Examples of unification problems:

∀f∀c∃x (x = f (c) :: nil)
∀f∃x∀c (x = f (c) :: nil)
∀u∀v∃x (x(v) = u(v) :: nil)

Gopalan Nadathur Practical Higher-Order Pattern Unification

Solutions to Unification Problems

A term t is proper for existential variable x if every free
variable in it is bound outside the scope of x ’s quantifier.

A unifier for a unification problem is a substitution for
existential variables such that

each pair in it is proper, and

it renders the terms in each equation equal modulo the β-
and η-rules

Prefix may be extended with existential quantifiers over
new variables in the process.

A unifier is most general if any other unifier can be
obtained from it by composition with a proper substitution.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Examples

∀f∀c∃x (x = f (c) :: nil) has {〈x , f (c)〉} as a unifier.

∀f∃x∀c (x = f (c) :: nil) has no unifiers.

∀u∀v∃x (x(v) = u(v) :: nil) has as unifiers

{〈x , λ(1, u(1))〉} and {〈x , λ(1, u(v))〉}.

This problem has no most general unifier.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Higher-Order Pattern Unification Problems

These are problems in which the terms in the equations satisfy
the following property:

Every existential variable occurrence has as arguments
distinct

lambda bound variables or

universal variables bound within the scope of the
quantifier for the existential variable.

For example, ∀u∀v∃x (x(v) = u(v) :: nil) is not such a problem.

However, ∀u∃x∀v (x(v) = u(v) :: nil) does satisfy the
restriction.

Also, every first-order problem meets the requirement trivially.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Unification via Transformations of Equations

Algorithm based on rewrite rules of the form

〈Q1(E1), θ1〉 −→ 〈Q2(E2), θ2〉

such that if 〈Q(E), ∅〉 ∗−→ 〈Q′(nil), θ〉 then θ is an mgu for
Q(E)

Rules assume symmetry of = and normal forms for terms

Higher-order pattern restriction is assumed to be satisfied

Transformation system is complete in the sense that

successful reduction yields a most general unifier

getting “stuck” indicates non-unifiability in the pattern case

Equation list modified so as to yield a processing order
corresponding to recursion over term structure

Gopalan Nadathur Practical Higher-Order Pattern Unification

Notation Used in Rules

Associated with a sequence of terms t :

|t | length of t

t [i] i th element of t

t + s concatenation of t and s

Associated with sequences of distinct lambda bound and
universal variables y and z:

if a = z[i] then a↓z = |z|+ 1 − i

y↓z = y [1]↓z, . . . , y [|y |]↓z, provided all elements of y
appear in z.

y∩z is some listing of the set of elements common to y and
z.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Simplification Transformations

These rules eliminate common rigid structure at the top level in
terms:

Removing Abstractions

〈Q(λ(n, s) = λ(n, t) :: E), θ〉 −→ 〈Q(s = t :: E), θ〉

Descending Under Rigid Heads

〈Q(a(s1, . . . , sn) = a(t1, . . . , tn) :: E), θ〉 −→
〈Q(s1 = t1 :: . . . :: sn = tn :: E), θ〉

if a is a lambda bound or universal variable.

Note: Failure occurs implicitly if heads are different.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Rigid Transformation

An incremental substitution is posited to reduce the difference
between the two terms:

〈Q1∃fQ2(f (y) = a(t1, . . . , tn) :: E), θ〉 −→
〈Q1∃h1 . . .∃hn∃fQ2(h1(y) = t1 :: . . . :: hn(y) = tn :: θ′(E)), θ′ ◦ θ〉

where θ′ = {〈f , λ(|y |, a′(h1(|y |, . . . , 1), . . . , hn(|y |, . . . , 1)))〉}

provided

f does not appear in a(t1, . . . , tn), and

a is a lambda bound or universal variable such that

a is quantified in Q1 and a′ = a, or

a appears in y and a′ = a↓y .

Note: Once again, failure is implicit if the conditions are not
satisfied.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Flexible Transformation (Same Variable)

Here, a substitution must be posited that prunes away
arguments that are not identical in the same places:

〈Q1∃fQ2(f (y1, . . . , yn)) = f (z1, . . . , zn)) :: E), θ〉
−→ 〈Q1∃h∃fQ2(θ

′(E)), θ′ ◦ θ〉

where

θ′ = {〈f , λ(n, h(w))〉} and

w is some listing of the set {m + 1 − i | yi = zi for i ≤ n}

Gopalan Nadathur Practical Higher-Order Pattern Unification

Flexible-Flexible Transformation (Different Variables)

No Intervening Universal Quantifiers
Preserve only those universal variables that are in both
argument lists:

〈Q1∃fQ2∃gQ3(f (y) = g(z) :: E), θ〉 −→
〈Q1∃h∃fQ2∃gQ3(θ

′(E)), θ′ ◦ θ〉
for θ = {〈f , λ(|y |, h(u))〉, 〈g, λ(|z|, h(v))〉}
where u = w↓y and v = w↓z for w = y∩z

Raising Transformation
Bring quantifiers together through a substitution that
encodes permitted dependencies:

〈Q1∃fQ2∃gQ3(f (y) = g(z) :: E), θ〉 −→
〈Q1∃f∃hQ2∃gQ3(f (y) = h(w + z) :: θ′(E), θ′ ◦ θ〉

where w is a listing of the variables quantified universally in
Q2, and θ′ = {〈g, h(w)〉}.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Inefficiencies in the Naive Algorithm

Raising Transformation

Maintaining and examining the quantifier prefix

Introducing arguments that have to be pruned later

Legitimacy check for rigid head in flex-rigid case

requires prefix examination

depends also on size of argument list for flexible term

Incremental substitution generation in flexible-rigid case

unnecessary term construction

repeated occurs check

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

Distinguishing existential and universal variables

Store type tags with variables

Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain lx , the number of changes from
existential to universal quantification before the quantifier
for x

Effecting the raising transformation

Relativize raising to the arguments of the other flexible
term instead

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

Distinguishing existential and universal variables

Store type tags with variables

Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain lx , the number of changes from
existential to universal quantification before the quantifier
for x

Effecting the raising transformation

Relativize raising to the arguments of the other flexible
term instead

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

Distinguishing existential and universal variables

Store type tags with variables

Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain lx , the number of changes from
existential to universal quantification before the quantifier
for x

Effecting the raising transformation

Relativize raising to the arguments of the other flexible
term instead

Gopalan Nadathur Practical Higher-Order Pattern Unification

Eliminating the Quantifier Prefix

Quantifier prefix is used for the following:

Distinguishing existential and universal variables

Store type tags with variables

Checking quantification order in flexible-rigid
transformation

Record quantifier position

In particular, maintain lx , the number of changes from
existential to universal quantification before the quantifier
for x

Effecting the raising transformation

Relativize raising to the arguments of the other flexible
term instead

Gopalan Nadathur Practical Higher-Order Pattern Unification

Raising without the Quantifier Prefix

Consider the equation

f (y) = g(z)

where f and g are existential variables such that lf ≤ lg .

To solve this equation, we have to transform both sides to the
form h(w)

where

h is a new existential variable such that lh = lf , and

w consists of two parts:

variables u in y such that lu ≤ lg
variables shared between y and z.

Substitutions for f and g to realize this can be generated
“on-the-fly,” solely from looking at y and z.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Modified Flex-Flex (Different Variables) Rule

Let y⇑g denote a listing of the set

{u | u is a universal variable in y such that lu ≤ lg}

Then rules for the flexible-flexible with different heads case can
be replaced by

〈f (y) = g(z) :: E , θ〉 −→ 〈θ′(E), θ′ ◦ θ〉

for θ′ = {〈f , λ(|y |, h(q + v))〉, 〈g, λ(z, h(p + u))〉}
where

h is a new existential variable such that lh = lf ,

p = y⇑g and q = p↓y , and

v = (y∩z)↓y and u = (y∩z)↓z

assuming that lf ≤ lg .

Gopalan Nadathur Practical Higher-Order Pattern Unification

The Full Algorithm

Based on a recursive traversal of terms in two modes:

First-order like term simplification

Variable binding, initiated by flex-flex or flex-rigid pair

Variable binding computation is parameterized by

variable to be bound,

vector of its arguments, and

term constituting the other half of the equation

Variable binding involves recursive descent through term
towards generating

a substitution term, and

possible substitutions for embedded variables

Normalization is performed on-demand using explicit
substitutions

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example

Consider the unification problem

∃x∀a∀b∀c∃y∀d(b(x(a, d)) = b(a(y)) :: nil)

After labelling of variables and dropping of the prefix this
becomes

(bc(1)(xv(0)(ac(1), dc(2))) = bc(1)(ac(1)(yv(1))) :: nil)

After simplification applied to the (first) equation, we get

(xv(0)(ac(1), dc(2)) = ac(1)(yv(1)) :: nil)

Variable binding must now be applied to the equation to
generate a unifier.

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

{〈x ,

λ(2,

2(

hv(0)(2)

)

)

〉} +

{〈y , hv(0)(ac(1))〉}

xv(0)(ac(1), dc(2)) = ac(1)(yv(1))

2(

hv(0)(2)

)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], ac(1)(yv(1)))

hv(0)(2)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], yv(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

{〈x , λ(2,

2(

hv(0)(2)

)

)〉} +

{〈y , hv(0)(ac(1))〉}

xv(0)(ac(1), dc(2)) = ac(1)(yv(1))

2(

hv(0)(2)

)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], ac(1)(yv(1)))

hv(0)(2)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], yv(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

{〈x , λ(2, 2(

hv(0)(2)

))〉} +

{〈y , hv(0)(ac(1))〉}

xv(0)(ac(1), dc(2)) = ac(1)(yv(1))

2(

hv(0)(2)

)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], ac(1)(yv(1)))

hv(0)(2)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], yv(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Example (Continued)

Variable binding unravels as follows:

{〈x , λ(2, 2(hv(0)(2)))〉} +

{〈y , hv(0)(ac(1))〉}

xv(0)(ac(1), dc(2)) = ac(1)(yv(1))

2(hv(0)(2))

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], ac(1)(yv(1)))

hv(0)(2)

{〈y , hv(0)(ac(1))〉}

mksubst(xv(0), [ac(1), dc(2)], yv(1))

Gopalan Nadathur Practical Higher-Order Pattern Unification

Comparison with Other Algorithms

Two existing styles of algorithms:

Based on an explicit a priori raising
e.g. [Nipkow], [Qian]

must maintain list of all universals encountered

blind raising coupled with pruning of redundant variables

explicit substitution based approach, characterized by
graftable metavariables
e.g. [Dowek, Hardin, Kirchner, Pfenning]

can avoid initial raising, but

dynamic behaviour can be akin to blind raising

Gopalan Nadathur Practical Higher-Order Pattern Unification

Conclusions and Future Work

Algorithm has been implemented in C and SML and used
in actual systems

Has a significant impact on performance in the Teyjus
system

Compilation of aspects beyond first-order like simplification
are being examined

Relevance of explicit substitutions needs to be better
understood:

seems useful for delaying reduction substitution, but

do graftable metavariables really offer a benefit?

Gopalan Nadathur Practical Higher-Order Pattern Unification

