
The Metalanguage λProlog
and Its Implementation

Gopalan Nadathur

Computer Science Department

University of Minnesota
(currently visiting INRIA and LIX)

1



The Role of Metalanguages

Many computational tasks involve the manipulation of linguistic
objects:

• prototyping programming languages

• implementing compilers and program development systems

• manipulating mathematical expressions

• realizing (interactive) proof systems

Emerging applications involve the integration of many of these
computations.

Can programming language support be provided for such activities?

2



Metalanguages and Logic Programming

Prolog-like languages contain two features important to symbolic
computation:

• First-order terms generalize traditional abstract syntax

B ∧ C

⇓
and(B̂,Ĉ)

• Horn clauses naturally translate structural operational
semantics rules

Γ ` B Γ ` C

Γ ` B ∧ C

⇓
prove(Gamma,and(B,C)) :-

prove(Gamma,B), prove(Gamma,C).

3



An Inadequacy of Traditional Abstract Syntax

Binding notions are not supported in the syntax representation.

The ‘first-order’ rendition of the formula ∀xP (x):

all(x ,P̂(x ))

Respecting scope issues becomes the programmer’s burden with
such a representation.

For example consider instantiating the outer quantifier in

all(x, all(y, Q(x,y)))

with the term f(y).

In general, ‘proper’ substitution can be a complex operation to
capture correctly.

4



Higher-Order Treatment of Syntax

Scoping notions arise in many symbolic structures:

• Quantified formulas in non-classical logic

• Side conditions in inference rules

• Proofs for implicational and universal statements

• Binding and bound variable occurrences in programs

A common core of binding related operations apply to all these
situations.

A uniform treatment of these aspects can be provided by
incorporating binding into syntax representation.

5



Structure of the Rest of the Talk

• Higher-Order Abstract Syntax in λProlog

• Issues in Realizing the Metalanguage Features

• Structure of the Teyjus Implementation

• Concluding Remarks

6



Higher-Order Abstract Syntax in λProlog

Richer view of object language syntax is supported through the
following new features:

• Using lambda terms as data structures

• Incorporating an understanding of lambda conversion into
unification

• Allowing for GENERIC goals

∀xG

“Solve G after replacing x with a new constant”

• Allowing for AUGMENT goals

D => G

“Add D to program before solving G”

7



Representing the Lambda Calculus

Term formation through application and abstraction has to be
captured.

The HOAS approach:

• Use constructors to distinguish between object language
application and abstraction

• Use λProlog abstraction to represent object language binding

Thus

(M N) −→ (app M N)

(lambda (x) M) −→ (abs λx M)

8



Representing Functional Programs

• Introduce new constructors to represent programming language
primitives

• Utilize λProlog abstraction to translate object language binding

• Use syntactic de-sugaring and the basic translation scheme to
render programs into terms

9



An Example

fact m n = if (m = 0) then n else (fact (m - 1) (m * n))

m

fact =
(fixpt (f)

(lambda (m) (lambda (n)
(if (m = 0) then n else (f (m - 1) (m * n))))))

↓

fact =
(fix λf

(abs λm(abs λn
(cond (eq m 0) n

(app (app f (minus m 1)) (times m n))))))

10



Usefulness of HOAS Representation

Primitives in λProlog provide direct support for logical operations
on “program terms”

• Lambda conversion rules build in an understanding of binding
structure and substitution

• Higher-order unification is a useful tool for examining program
structure

• Scoping devices support recursion over binding structure

11



Pattern Recognition through Unification

Program terms may contain substitutible variables.

However, substitutions for these variables must respect scope
restrictions.

For instance, the ‘pattern’

(abs λx(abs λy(C x)))

can match with

(abs λx(abs λy(less x 0)))

but not with

(abs λx(abs λy(less x y)))

Thus, unification provides a sophisticated means for dependency
analyses.

12



Recognizing (Binary) Tail Recursive Functions

Consider the following “template”

(fix λf (abs λx (abs λy
(cond (C x y) (H1 x y) (app (app f (H2 x y)) (H3 x y))))))

Notice that C, H1, H2 and H3 cannot be instantiated so as to
depend on f, x or y.

Thus, this term recognizes only those recursive two argument
‘conditional’ programs in which

• there is no recursive call in the condition or then branch, and

• the value returned in the else branch is completely determined
by recursive call.

Such programs must be tail recursive.

13



Limitations of Template Matching

Unfortunately, templates alone have limited applicability.

For example, what if

• the recursive call is in the then branch of conditional?

• there are embedded conditionals?

Thus, our template will not recognize tail recursiveness of the
following program:

gcd x y =
if (x = 1) then 1
else if (x < y) then (gcd y x)

else if (x = y) then x else (gcd (x - y) y)

Worse still, there is no finite set of templates covering all
mentioned cases and recognizing only tail recursive programs.

14



Recursion over Conditional Structure

However, a satisfactory recursive description of such program terms
can be provided:

• A program with no recursive calls

tr (fix λf(abs λx(abs λy(H x y)))).

• A program comprising only a recursive call

tr (fix λf(abs λx(abs λy (app (app f (H x y)) (G x y))))).

• A conditional program with no recursion in the test and with
‘tail recursive’ then and else branches

tr (fix λf(abs λx(abs λy
(cond (C x y) (H1 f x y) (H2 f x y))))) :-

tr (fix λf(abs λx(abs λy(H1 f x y)))),
tr (fix λf(abs λx(abs λy(H2 f x y)))).

15



Recursion Over Binding Structure

Recognizing tail-recursiveness of arbitrary arity functions requires
an explicit recursion over binding structure:

• Given an expression of the form
(fix (λf F))

analyze F after replacing f with a new constant whose
occurrences must be restricted.

• Given an expression of the form
(abs (λx R))

analyze R after replacing x with a new constant whose usage
can be arbitrary.

• Check the eventual “first-order” structure for satisfaction of
usage constraints.

Can be realized using GENERIC, AUGMENT and application.

16



A Recognizer for Tail Recursive Functions

Assume that (term T ) succeeds just in case T is a ‘program term.’

tr (fix M) :- ∀f ((recfn f) => (trfn (M f))).

trfn (abs R) :- ∀x ((term x) => (trfn (R x))).
trfn R :- trbody R.

trbody (cond C M N) :- term C, trbody M, trbody N.
trbody (app M N) :- trbody M, term N.
trbody M :- recfn M.

17



Representation of Lambda Terms

Lambda terms are being used as data structures.

Thus, the representation should satisfy the following criteria:

• Structure should be accessible

• Equality under renaming should be easy to determine

• The operation of β-reduction should be efficiently supported

A Complication: In the context of interest, it may be necessary to
look inside abstractions.

18



A Consideration in Beta Reduction

Support for laziness in reduction substitutions could be useful:

• Provides the basis for combining structure traversals in
reductions

• Actual substitution may sometimes be delayed to a point
where it becomes unnecessary

Explicit treatment of substitution is an essential ingredient to
realizing such benefits.

19



Actual Lambda Term Representation

The representation used in Teyjus has the following characteristics:

• Utilizes the deBruijn scheme for eliminating (bound variable)
names

• Based on an explicit substitution notation called the
suspension notation

• Uses a demand driven approach to reduction and substitution,
thereby interleaving these with comparison operations

• Exploits annotations indicating closedness status of terms

• Implements reduction using a graph-based scheme

20



Dealing with GENERIC

Idea of instantiating with new constant may be used

However, there is interference with usual treatment of free
(existential) variables

Program: ∀x p(x, x)

?- p(Y, c)

Goal: ?- ∀x p(Y, x)

c/x

Unification has to be somehow constrained to cause failure in this
situation

21



A Possible Solution

Maintain term universes as hierarchy

Introduce new levels in the hierarchy when processing GENERIC

∀y p(a, f(X), y)

.

Terms formed using
f and a

Terms formed using
f, a and new constant

.
.

Label constants to determine ‘place’ in hierarchy

Label variables to constrain possible instantiations

22



Details of the Solution

The scheme can be realized as follows:

• Maintain the current highest universe level in a special register

• Translate GENERIC into register increment on entry and
decrement on success

• Label constants and variables with register value at creation

• When binding a variable, check also the consistency of labelling

Most actions can be realized though low-level instructions.

23



Realizing Higher-Order Unification

Multiple most general unifiers may exist.

For example, consider the problem

(F 1) = (g 1 1)

This problem has four distinct unifiers:

F 7→ λx(g x x)

F 7→ λx(g x 1)

F 7→ λx(g 1 x)

F 7→ λx(g 1 1)

An implementation must correspondingly manifest a branching
character.

Moreover, it should be able to sometimes suspend unification
problems to avoid redundant search.

24



Treatment of Higher-Order Unification

Our implementation of this operation has the following
characteristics:

• Supports compilation of first-order like processing

• Attempts to exploit determinism in unification

• Provides an explicit representation for unification problems
that supports sharing

• Has efficient mechanisms for realizing branching in unification

25



Higher-Order Pattern Unification

Decidability and unicity properties hold when existential variables
are applied to distinct variables universally quantified within their
scope.

For example,
∀v∃X∀u∃Z∀w ((X u) = (v (Z w)))

has the solution

X 7→ λx(v (Y x))

Z 7→ λx(Y u)

where Y is a new variable existentially quantified at the same level
as X.

Generating this substitution involves pruning and raising steps.

A new algorithm that does these steps on the fly has been
developed.

26



Dealing with AUGMENT

Two new issues arise in a sequential implementation with a central
program:

• Incremental programs changes must be modelled

Thus, solving the goal

D => G

This involves adding and removing code

• Backtracking behavior requires old programs to be remembered

For example, consider the goal

(D1 => G1(X)) ∧ (D2 => G2(X))

Both code access and context switching must be efficient.

27



An Implementation Scheme

An efficient implementation can be realized using the following
ideas:

• Represent program via an implication point record (IPR)
containing

– access function to new code layer

– pointer to previous IPR

• Compile AUGMENT goals into creation and ‘removal’ of IPRs

• Maintain a special program register pointing to most recent IPR

• At choice point creation, store also the contents of program
register

The scheme permits compilation of the antecedents of AUGMENT
goals.

28



Bringing it All Together

The Teyjus system embodies a solution to all the problems and
comprises three parts:

• An abstract machine that supports, low-level, λProlog relevant
operations

• A compiler for translating to abstract machine programs

• A loader for realizing modularity notions with separate
compilation

The abstract machine has been realized through a software
emulator.

The entire system has been implemented in C.

29



Directions of Ongoing Research

• Improved support for modularity

• Compiled treatment of higher-order pattern unification based
language

• Evaluation of choices in the representation of lambda terms

• Modularization of implementation technology

30



Resources

• The λProlog web page

http://www.cse.psu.edu/~dale/lProlog/

• The Teyjus web page

http://teyjus.cs.umn.edu/

• Papers providing the basis for this talk

http://www.cs.umn.edu/~gopalan/papers.html

31


