
Optimizing the Runtime Processing of Types in
Polymorphic Logic Programming Languages

Gopalan Nadathur1 and Xiaochu Qi2

Digital Technology Center and Dept. of CS&E, University of Minnesota, USA

Dept. of CS&E, University of Minnesota, USA

LPAR 2005 – Montego Bay, Jamaica
December 2, 2005

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



The Motivation for this Work

(Polymorphic) types can be useful in logic programming
can help catch program errors at compile time
essential for higher-order notions
polymorphism provides conciseness and flexibility

Runtime computations over types may be necessary
clause based definitions lead to ad hoc polymorphism
unification may require type information

Computations over types can be costly
types have the structure of first order terms
polymorphism leads to unification over types

Question: Can type computations be made redundant by
compile time analysis?

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Outline of the Talk

Types and their consequences in λProlog

Processing model based on higher-order pattern
unification

Simplifying type annotations with constructors

Eliminating type annotations in predicate definitions

Concluding remarks

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types in λProlog

λProlog is a higher-order, strongly typed language with a
polymorphic typing discipline

kind list type -> type.

type nil (list A).
type :: A -> (list A) -> (list A).

type append (list A) -> (list A)
-> (list A) -> o.

append nil L L.
append (X :: L1) L2 (X :: L3) :-

append L1 L2 L3.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Program Checking

Compiler ensures that all expressions it admits are type correct.
For example, consider

type sum_list (list int) -> int -> o.

sum_list nil 0.
sum_list (X :: L) N :-

sum_list L N1, N is N1 + 1.

?- append ("a" :: "b" :: nil) nil L,
sum_list L N.

Compiler will flag an error with this query.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Ad Hoc Polymorphism in λProlog

Clauses defining predicates may be sensitive to type instances:

type print A -> o.
print (X:int) :-

{code for printing integer X}.
print (X:string) :-

{code for printing string X}.

Predicates that are defined in terms of ad hoc predicates also
need to carry types at runtime:

type print_list (list A) -> o.
print_list nil.
print_list (X :: L) :- print X, print_list L.

Here print_list must have the type of the list elements
available to pass on to print.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Unification

In addition to determining unifiability, types can determine the
shapes of unifiers.

For example, consider the equation

(F X ) = (g a)

where g has type i → i .

If F has type int → i then there is an mgu:

{〈F , λx (g a)〉}.

If F has type i → i there are two other incomparable unifiers:

{〈F , λx x〉, 〈X , (g a)〉} and {〈F , λx (g x)〉, 〈X , a〉}.

The Teyjus implementation must, as a result, calculate and
carry around types with every constant and variable.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Higher-Order Pattern Unification (HOPU)

A form of higher-order unification with several pleasing features:

solves most higher-order unification problems that occur in
practice
sometimes even solves pairs that are left over as
constraints by the usual procedure
has first-order like behaviour over the class it covers
completely,
e.g. is decidable, admits most general unifiers, etc.

Thus, processing in λProlog and other higher-order languages
can be oriented around HOPU.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Higher-Order Pattern Unification

Unification can be carried out as the combination of two
phases:

A simplification phase

Peeling off top-level constants in equations of the form
(c t1 . . . tn) = (c s1 . . . sn)

Types of the two constant heads must be matched

A variable binding phase

Finding substitutions for solving equations of the form
(F u1 . . . un) = t

Types are irrelevant to this computation

Thus, types are needed only with constants and, that too, only
declared ones.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Simplifying Type Annotations for Constants

An observation:
Every instance of a declared constant must have a
type that matches the declared one.

For example, every occurrence ot :: must have as type an
instance of

A -> (list A) -> (list A).

Thus, only bindings for the type variables in the ‘skeleton’ need
be stored and compared.

Using this idea, (1 :: 2 :: nil) can be encoded as

(1 (:: [int]) 2 (:: [int]) (nil [int])).

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Further Simplifying Constant Types

A further observation:
Unification proceeds outside in and compares only
terms with identical types

For example, given the problem

(1 :: 2 :: nil) = (X :: L)

the context automatically ensures that the second list is of type
(list int).

The upshot: bindings for variables that also appear in the target
type of the skeleton can be dropped from type annotations.

A special case: no type annotations are needed with type
preserving constants.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Types and Predicate Constants

Considering the target type does not remove type annotations
from clause definitions.

For example, the definition of append becomes

append [A] nil L L.
append [A] (X :: L1) L2 (X :: L3) :-

append [A] L1 L2 L3.

However the type annotation is redundant even in this case:
type unification in clause head will always succeed
behaviour repeats with type passed on to recursive call

Such type annotations can be eliminated by a usage analysis.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Determining Redundancy for Predicate Types

Suppose every clause for a predicate p has the form

p [ty1,...,tyj,X,...] ... :- ...

i.e., the annotation in the (j + 1)th position is always a variable.

Suppose further that
X does not appear again in the types list for p,
X does not appear in the types list for any non-predicate
constant in the clause, and
X appears at most in a redundant type position for a goal in
the clause body.

Then the type binding for X does not affect computation.

The last condition requires a (least) fixed-point computation of
neededness in the context of recursive definitions.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Eliminating Types with Predicates

Type annotations that are determined to be not “needed” can
safely be dropped.

Using this idea, the definition of append becomes

append nil L L.
append (X :: L1) L2 (X :: L3) :-

append L1 L2 L3.

More generally, all type annotations can be removed when
all constructors are type preserving, and
all clause definitions are type general.

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types



Conclusion

Practical treatment of typed unification in the presence of
polymorphism

Subsumes earlier approaches that restrict the language

Degrades gracefully when conditions are not met

Based on pattern unification in the higher-order context
[Nadathur and Linnell, ICLP’05]

Underlies a new compiler based implementation of λProlog
[Part of X. Qi’s doctoral research]

Gopalan Nadathur and Xiaochu Qi Optimizing Runtime Processing of Types


