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The Context for this Work

A declarative treatment of models of computational systems

In particular:

Logic based encodings for structural operational semantics
descriptions

Executability of such encodings

Logic based support for reasoning about encodings

Such capabilities are discussed, for instance, by the POPLmark
challenge.
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An Approach to Meeting these Requirements

Based on exploiting logic programming and proof search:

SOS rules translate naturally into program clauses
extended with

higher-order features for encoding λ-tree abstract syntax

new primitives for manipulating such encodings

Proof search over program clauses leads to animation

Reasoning about specifications realized via
definitions/fixed points
[Schroeder-Heister, LICS’93, Girard 92].

Approach has been developed by [McDowell & Miller, 2000]
and [Miller & Tiu, 2004]

Here, we combine these ideas in a limited way into an extended
logic programming system.
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Outline of the Rest of the Talk

Abstract syntax based on λ-trees

Definitions and rules for reasoning about definitions

The logic FOλ∆∇ [Miller and Tiu, 2003]

The Level 0/1 prover

Concluding remarks
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λ-Tree Abstract Syntax

A variant of higher-order abstract syntax, based on using
the simply typed λ-calculus

λ-abstraction is used to encode binding impact of object
language operators such as

quantifiers in logical formulas

function arguments in programs

restriction and bound input/output actions in the π-calculus

Meta-level treatment of λ-terms supports notions such as

α-equivalence,

capture-avoiding substitution, and

binding respecting destructuring
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Encoding π-Calculus Terms (Example)

Consider the π-calculus process (x)a(y).ȳx .0

This reads as
Input a name y through the channel a and output a
fresh name x through the channel y

Its encoding as a λ-term might be

ν (λx .in a λy .(out y x 0))

where ν, in and out are constructors representing π-calculus
operators.

Abstraction is used to capture the binding effects of restriction
and bounded input.
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Specifying π-Calculus Transition Rules (Example)

Consider the restriction transition rule for the π-calculus:

P
α

−−→ P′

(x)P
α

−−→ (x)P′
x 6∈ n(α)

This can be rendered into the (extended) logic programming
clause

∀x(Px
A

−−→ P ′x)

ν(λx .Px)
A

−−→ ν(λx .P ′x)

Proof search with such translations supports animation.
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Reasoning about Computations

If p and q are defined predicates, then we want to read

∀x .p x ⊃ q x

as follows:
For every term t for which there is a proof of p t, there
is also a proof of q t.

Thus, this goal should succeed given the clauses

{(p a), (p b), (q a), (q b), (q c)}.

Such an interpretation is important for describing properties of
computations like bisimulation.
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Definitions and Reasoning About Definitions

A logical treatment of this interpretation can be obtained as
follows:

Recast program clauses as definition clauses of the form

H
4
= B, where H is an atomic formula.

Add the following definition introduction rules:

{Bθ, Γθ − Cθ | Aθ = Hθ, H
4
= B}

A, Γ − C defL

Γ − Bθ
Γ − A defR, A = Hθ, H

4
= B

In defL, all definition clauses and all substitutions have to be
considered in the premiss.
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Using Definitions (Example)

Let the set of definition clauses be

p a
4
= >, p b

4
= >, q a

4
= >, q b

4
= >, q c

4
= >

Then the following is a successful derivation:

; − >
; − q b defR ; − >

; − q c defR
Y ; p Y − q Y defL

− ∀x .p x ⊃ q x
∀R;⊃ R

Notice that eigenvariables are instantiated by the defL rule.
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The Treatment of Names

New names are treated in proof search through universal
quantifiers

Unfortunately, universal quantifiers do not enforce
distinctness of names that is important in some contexts.

For example,

∀x∀y(p x y) ⊃ ∀z(p z z)

is valid in intuitionistic logic.

An elegant solution to this problem is obtained introducing
a new quantifier ∇. [Miller and Tiu, 2003]
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The logic FOλ∆∇

The full logic has the following characteristics:

It is an extension of Gentzen’s intuitionistic logic

It incorporates definitions and definitional reflection

It includes the ∇ quantifier and sequents as a result have
the structure

Σ; σ1.B1, . . . , σn.Bn − σ0.B0

where Σ is global signature and the σis are local signatures
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Formulas for a Two-Level Prover

The formulas themselves reflect a kind of stratification:

Level 0: G ::= > | ⊥ | A | G ∧G | G ∨G | ∃x .G | ∇x .G

Level 1: D ::= > | ⊥ | A | D ∧ D | D ∨ D | ∃x .D | ∇x .D |
∀x .D | G ⊃ D

where atomic formulas have definition clauses such that

Level 0 “atoms” are defined by level 0 formulas, and

Level 1 “atoms” are defined by level 1 formulas

The prover attempts to prove D formulas.
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A Two Phase Proof Strategy

An observation concerning sequents seen by the prover:

Only G formulas appear on the left and all the rules
applicable to them are invertible

Thus, proof search for G ⊃ D can use the following strategy:

Step 1 Run a logic programming interpreter with G,
treating eigenvariables as logic variables and
using λ-abstractions to process ∇

Step 2 Collect all answer substitutions in Step 1 and
attempt to prove D under each.

If there are no answers in Step 1, the prover succeeds
immediately.
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Implementation

The prover has been implemented in SML of New Jersey.

Two main ingredients in the implementation:

a new, suspension calculus based implementation of
higher-order pattern unification
[Nadathur and Linnell, ICLP’05]

a logic programming interpreter that produces all answers
in a lazy stream based manner

Has been used in some interesting applications:

bisimulation checking in the π-calculus

model checking in a modal logic for the π-calculus

Available on the web: http:
//www.lix.polytechnique/~tiu/lincproject
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An Incompleteness for the Prover

Eigenvariables and logic variables present together in a formula
in the left can cause problems.
For example, consider the goal

∀x .∃y .(px ∧ py ∧ x = y ⊃ ⊥),

where p is defined as

{pa
4
= >, pb

4
= >, pc

4
= >}

Solving this goal requires solving disunification problems: For
each x , find an y such that x 6= y .
The current prover forbids occurrences of logic variables in
lefthand side formulas.
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Conclusions and Future work

Described a prover that extends logic programming notions
but

uses Prolog technology and

relies on finite success and finite failure

Extensions of the prover capability may be possible.
(E.g. using tabling ideas like in XSB (extended by Pientka)
may lead to finiteness in more cases)

Experimentation with more applications is needed:
(E.g. encoding of spi calculus and perhaps the modal-µ
calculus.)
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