
The Suspension Notation as a

Calculus of Explicit Substitutions

Gopalan Nadathur

Digital Technology Center and

Department of Computer Science

University of Minnesota

[Joint work with D.S. Wilson and A. Gacek]

1

The Context of Interest

A representation for lambda terms is desired when these are used
as data structures.

Abstractions can be used to capture binding structure as is
present in formulas, proofs, programs, types, etc.

Comparing lambda terms modulo lambda conversion rules is
important in this context.

This issue has to be dealt with in metalanguage, logical framework
and proof assistant implementations.

2

Requirements of Lambda Term Representation

Two specific constraints are usually important:

• Identity modulo renaming should be easy to determine.

(Typically means that names should be eliminated)

• Should be possible to look underneath abstractions.

This combination makes the situation challenging: explicit
substitution treatments are not very difficult

1. when names are used, or

2. without the need to look inside abstractions.

3

Why Explicit Substitutions At All?

• Laziness may allow substitutions to be avoided altogether:

We can determine incompatibility of the terms
((λxλyλz((x z) t)) (λw w))

and
((λxλyλz((x y) s)) (λw w))

without calculating substitutions on t or s.

• These are the basis for combining substitution walks:

In reducing the term
((λxλy t1) t2 t3)

t2 and t3 should be substituted simultaneously into t1.

• In the de Bruijn situation, we also would also like to combine
renumbering with other substitutions.

4

How Do We Make Substitutions Explicit?

The typical scenario:

λ
λ
...

λ

@

t1

t2λ

@

λ

λ
...

s

λ
...

λ

Redexes to be
contracted

We want to encode the effect on s of contracting shown redexes.

5

Encoding Substitutions

Contraction starts at a redex and descends through some
abstractions.

Let

ol be the number of abstractions encountered,

nl be the number of abstractions that persist, and

the nl value at an intervening abstraction be its index.

Then

• ol and nl give renumbering for external abstractions,

• nl and index for persisting abstraction give renumbering for the
variable it binds, and

• redex argument and index for contracted abstraction determine
the substitution for variable bound by it.

6

The Simple Suspension Notation

The notation has three categories of expressions called terms,
environments and environment terms:

t ::= c | x | #i | (t t) | (λ t) | [[t, n, n, e]]
e ::= nil | et :: e

et ::= (t, n)

Here x represents variables, c constants, i positive numbers and n

natural numbers.

The expression #i corresponds to de Bruijn indices.

Conceptually, the main change to the syntax is the addition of the
expression [[t, n, n, e]] called a suspension.

7

The Rewriting Calculus

Beta Contraction

((λt1) t2) → [[t1, 1, 0, (t2, 0) :: nil]]

The Reading Rules

(r1) [[c, ol, nl, e]] → c (c is a constant)

(r2) [[x, ol, nl, e]] → x (x is a variable)

(r3) [[#1, ol, nl, (t, l) :: e]] → [[t, 0, nl − l, nil]]

(r4) [[#i, 0, nl, e]] → #(i + nl)

(r5) [[#i, ol, nl, et :: e]] → [[#(i− 1), (ol − 1), nl, e]], if i > 1

(r6) [[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]])

(r7) [[λ t, ol, nl, e]] → λ[[t, ol + 1, nl + 1, (#1, nl + 1) :: e]]

8

Properties of the Simple Calculus

The calculus has several pleasing properties. In particular, let

• ¤r denote the compatible extension of the reading rules, and

• ¤βs denote the compatible extension of all the rules.

Then, we have:

Prop 1. ¤r is terminating and confluent.

Prop 2. ¤∗βs
is capable of simulating beta contraction in the de

Bruijn notation.

Prop 3 ¤βs is confluent.

Proof Sketch: ¤βs
rule applications map onto the usual reductions

on de Bruijn terms and can also mimic them.

9

Relationship to Other Calculi

Comparison is meaningful only with calculi without substitution
composition.

λυ-calculus (Lescanne and colleagues)

• Mapping into suspension terms exists that preserves reductions.

• Single steps are not preserved; λυ is inefficient in renumbering.

• Suspension terms are more general than λυ terms.

λs-calculus (Kamareddine and Rios)

• Mapping into suspension terms exists that preserves reduction.

• λs-calculus separates every substitution and hence has a more
efficient “lookup.”

• Conversely λs syntax cannot support multiple substitutions.

10

Meta Variables in Term Syntax

Metavariables are currently required to obey scope rules.

An alternative interpretation that does not require this is obtained
by dropping the rule

(r2) [[x, ol, nl, e]] → x (x is a variable)

Unfortunately, the simple suspension calculus is not confluent
without this rule. For example the term

(λ((λx) t1)) t2

has two “normal” forms.

One way to regain confluence is via (directed) substitution
permutation rules.

This approach is used in the λse and in the λws calculus of
Guillaume and David.

11

Composing Substitutions

We desire a rule of the form

[[[[t1, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl, e′]]

Two reasons for wanting such a rule:

• Regaining confluence after permitting graftable meta variables

• Providing a basis for combining reduction substitutions

In reducing the term
((λλ t1) t2 t3)

we currently have to perform two walks over t1

The second reason is a dominating one: combining substitution
walks has been shown to be really important in practice!

12

Constructing a Composition Rule

Suppose that ol2 is larger than or equal to nl1. The picture is then
the following:

t

nl1

ol2

t

ol1

nl2

t

In this case,

• ol′ = ol1 + (ol2 − nl1) and nl′ = nl2.

• Environment will be e1 modified by e2 plus an initial segment
of e2

13

Constructing a Composition Rule (Contd)

On the other hand, suppose that ol2 is smaller than nl1. In this
case we have

t

ol1

nl2

tt

nl1 ol2

Now,

• ol′ = ol1 and nl′ = nl2 + (nl1 − ol2).

• Environment will be e1, with a final segment of it affected by
e2.

14

Suspension Notation with Composition

The syntax is enhanced to support the incremental computation of
a composed environment:

t ::= c | x | #i | (t t) | (λ t) | [[t, n, n, e]]
e ::= nil | et :: e| {{e, n, n, e}}
et ::= (t, n)

The new environment form {{e1, nl1, ol2, e2}} represents the result of
composing e2 with e1.

This composition must eventually evaluate to

• elements of (an initial segment of) e1 modified by e2, and

• a final segment of either e1 or e2.

15

Substitution Combination Rules

(m1) [[[[t, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, {{e1, nl1, ol2, e2}}]],
where ol′ = ol1 + (ol2 . nl1) and nl′ = nl2 + (nl1

. ol2)

(m2) {{e1, nl1, 0, nil}} → e1

(m3) {{nil, 0, ol2, e2}} → e2

(m4) {{nil, nl1 + 1, ol2 + 1, et :: e2}} → {{nil, nl1, ol2, e2}}
(m5) {{(t, n) :: e1, nl1, ol2, et :: e2}} →

{{(t, n) :: e1, nl1 − 1, ol2 − 1, e2}}
provided nl1 > n

(m6) {{(t, n) :: e1, n, ol2, (s, l) :: e2}} →
([[t, ol2, l, (s, l) :: e2]],m) :: {{e1, n, ol2, (s, l) :: e2}}

where m = l + (n . ol2)

16

Properties of the Enhanced Calculus

Let

• ¤rm denote the compatible extension of reading and
composition rules, and

• ¤βs denote the compatible extension of the entire ensemble.

Then, we have:

Prop 1. ¤rm is terminating.

(Nontrivial because of (m1), but still true.)

Prop 2. ¤rm is locally confluent with or without rule (r2).

(Main complexity is overlap of (m1) with itself. Tedious, but true.)

Prop 3 ¤∗βs
is capable of simulating beta contraction on de Bruijn

terms and is also confluent.

17

Relationship to Other Calculi

Only other calculi with substitution combination possibilities are
the λσ-calculus and the ΛCCL calculus of (Field’90).

These calculi are virtually identical so we compare only to λσ.

Proposition. There is a natural mapping from the terms of the
suspension calculus to λσ terms that preserves reducibility.

Comments

• Recent simplification to the suspension notation facilitates the
construction of this mapping.

• Translation is only of terms; environments are not exactly like
the “free-floating” substitutions of the λσ-calculus.

18

Preservation of Strong Normalizability?

There are simply typeable lambda terms with nonterminating
reduction sequences in the λσ-calculus.

What about the suspension calculus?

The answer is not presently known.

However,

• The known counter-examples for the λσ-calculus is not one for
the suspension notation.

• The interactions between environments seems to be a bit more
restricted so as to give some hope in the suspension calculus.

This is, thus, still an open question that is interesting to settle at
this point.

19

Derived Combination Rules

Some of the power of the combination calculus can be abstracted
into the following derived rules:

(λ [[t1, ol + 1, nl + 1, (#1, nl + 1) :: e]]) t2 →
[[t1, ol + 1, nl, (t2, nl) :: e]]

[[[[t, ol, nl, e]], 0, nl′, nil]] → [[t, ol, nl + nl′, e]]

The first rule combines reduction substitutions, the second folds
renumbering into other substitution walks.

Conjecture: A leftmost outermost reduction procedure that uses
these rules will not create nested suspensions.

Note that, with only the derived rules,

• the syntax of the simple calculus is preserved, but

• capabilities for combining substitution walks are obtained.

20

Annotations on Terms

Terms can be marked to indicate whether or not they are closed.

With such annotations, substitutions can sometimes become trivial.

For example, if c is an annotation for closedness, we have

[[tc, ol, nl, e]] → tc

Of course, rules must be modified to preserve annotation
information as much as is possible.

Detailed presentation of the calculus appears in [Nadathur, 1999].

It is the derived calculus with annotations that is used both in the
FLINT system and in the Teyjus λProlog implementation.

21

Conclusion

• The suspension notation is an interesting and important
explicit substitution calculus.

• In complementary empirical studies with Liang and Qi, we
have tried to quantify the practical utility of its varied features.

For example, we know that

– combining ability (via derived rules) and annotations have
real practical benefits, and

– Varied reduction procedures are possible and some
unexpected combinations work best in the applications.

• There is at least one important question still to be settled.

• Unification modulo the suspension calculus?

22

Translation to the λσ-calculus

• The translation is a direct one for terms and consists of the
following:

T (#i) = 1[↑(i−1)]
T ((t1 t2)) = (T (t1) T (t2)) T (λ t) = λT (t)
T ({{t, nl, ol, e}}) = T (t)[E(e, nl)]

• For environments, we map relative to an index:

E(nil, j) =↑j E(et :: e, j) = ET (et, j) . E(e, j)
E({{e1, nl, ol, e2}}, j) = E(e1, nl) ◦ E(e2, j − (nl . ol))

• The index component carries over to environment terms:

ET ((t, i), j) =↑(j−i)

Of course, the index must be “sensible” for the mapping to work.

However, wellformedness conditions on suspension expressions
guarantee this.

23

