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CHAPTER 5

An analytic approach to SPDEs
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127 Vincent Hall
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Minneapolis, MN, 55455
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1. Introduction

Evolutional stochastic partial differential equations (SPDEs) arise in many applications
of probability theory and have been treated since long ago (see [30]). An example of a linear
second-order SPDE is given by the following equation in R?:

du = (¥ ugizs + bugs + cu+ f) dt + (6% uys + vFu+ gF) dw?, t >0, (1.1)

where summation with respect to the repeated indices 4, j, k is assumed as usual, i and j go
from 1 to d, and k may run through 1,2, ....

The main purpose of this publication is to present a theory of solvability of the Cauchy
problem for linear and some quasi-linear equations like (1.1) in spaces of summable functions
with exponent of summability p > 2. If p = 2, so that we are concerned with solutions
belonging to the Sobolev spaces Wi (R?), such a theory does exist and is rather complete
and satisfactory (see, for instance, [30]). Recall that W2'(R?) is the set of all generalized
functions on R? whose derivatives up to and including the nth order belong to La(R?).
Some results concerning the solvability of the first boundary-value problem in spaces like
W3(D), where D is a smooth domain, can be found in [2], [6], [20], and [32]. Roughly
speaking, the main tool in WJ-theory is integration by parts. There are also approaches
based on semigroup methods [5], [6], which work well for the equations with nonrandom
leading coefficients a® and again in the Hilbert-space framework.

The necessity of the L,-theory arises, for instance, when one wants to find the solu-
tions numerically. The convergence rate and the way the finite difference should be chosen
depend on smoothness properties of solutions. Here by the smoothness properties we mean
continuity, Hélder continuity, differentiability, continuity of derivatives, and so on.

One of inconveniences of WJ-theory is that WJ*(R?) " %/2(R?) only if 2n > d, and
one can prove that the solutions belong to Wi*(R?) only if the coefficients are n — 2 times
continuously differentiable. Therefore, if we want to get the solutions m times continuously
differentiable with respect to 2 € R?, we have to suppose that the coefficients of the equation
are more than m+d/2 —2 times continuously differentiable even if the free terms are of class
C§°(R?). At the same time, W'(R¢) C C"~4/P(R?) if pn > d, and, by taking p sufficiently
large, we see that the solutions have almost as many usual derivatives as generalized ones.
Actually, exactly for this purpose the spaces W:(]Rd) with p > 2 have already been used
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186 5. ANALYTIC APPROACH TO SPDE’S

in SPDE theory (see, for instance, [30]), but the corresponding results, obtained again by
integration by parts, were not sharp. It is worth mentioning that sharp results concerning
C%*+(R?)-theory are recently obtained in [27] for equations like (1.1) but with o = 0.

Another advantage of the W' setting with p > 2 can be seen in the case of very popular
equations with so-called cylindrical white noise (see, for instance, [8], [26], [28], [35], and
references therein). Although these equations are covered by the general W -theory for any
p > 2 (see Section 8.3), for p = 2 we get only the solutions summable to any degree, and the
solutions become continuous only for p > 2. By the way, as in [30], we consider n positive
and negative, but in contrast with [30] we allow n to have non-integer values. For general
n we are working in the spaces of Bessel potentials HZ’}(R"[), and, in the case of equations
with cylindrical white noise, we take n slightly less than (—3/2).

Our main tool is the theory of spaces HJ'(R?), borrowed from [33], together with a
result from [17] or [18] which is an analog of the so-called maximal regularity property of
stochastic convolutions in Hilbert spaces obtained by Da Prato (cf. [4]). We also use some
results from the theory of parabolic equations and follow a general scheme of proving the
solvability of PDEs adopted in this theory. We discuss this general scheme in Sec. 2.

The main source of these notes is author’s article [20]. However, it underwent a major
revision and restructuring here, so that, in author’s opinion, the whole subject looks more
natural now. Also, the proofs are given with much more details, and several mistakes have
been corrected. In this regard the contribution of S. Lototsky, H. Yoo, and A. Zatezalo
is greatly appreciated. The author has delivered four lectures on the subject at Work-
shop/School on SPDEs, Theory and Applications, Los Angeles, January, 3—-7, 1996. This
was a very good opportunity to think all over again. It is a pleasure to thank the organizers
of the Workshop for the invitation and hospitality.

2. Generalities

We want to explain here some basic ideas guiding the investigation we are going to
present further.
Rewrite equation (1.1) in the following form

du = (Lu + f)dt + (A*u + g*) dwl, t >0, (2.1)

where
Lu = a¥ugiyi + blug +cu, AFu=oc®u, + vFu.

Recall that we are using the summation convention. Of course, wF are independent Wiener

processes and du is Itd’s stochastic differential with respect to t. The equation is considered
for all z € R? and t > 0. The coefficients o, v, and the “free” term g may vanish, and
then (2.1) becomes a usual parabolic partial differential equation. Therefore, it is natural to
recall some ideas and results from the L,-theory of parabolic partial differential equations.

Let R? be a d-dimensional Euclidean space of points = (z!,...,z%). By a distribution
or a generalized function on R? we mean an element of the space D of real-valued Schwarz
distributions defined on C§°, where C§° = C§°(R?) is the set of all infinitely differentiable
functions with compact support.

For given p € (1,00) and n € (—o00,00), define the space H = H1(R?) (called the
space of Bessel potentials or the Sobolev space with fractional derivatives) as the space of
all generalized functions u such that (1 — A)*/2u € L, = L,(R%). To explain the meaning
of this, let us first introduce (1 — A)™? in the following way (see [14]). If a € (0,1), then,
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for a constant ¢(a) and all z <0,
®eter — 1 dt
(1—2)" = c(a)/ erem mldt
0 to t
If we formally substitute here A instead of z, then we get the following definition of (1—A)®
® e Ty —u dt
(1-a)ru=ca) [
0 ta t
where T; is the semigroup associated with A, that is, a solution of T} = AT; similarly to
e*! which is a solution of f' = zf. The following is an explicit formula for T}:

(2.2)

1 1 2
—_ - —azlz—yl
Tiu(z) := (mt) 2 /Rdu(y)e dy. (2.3)
In the same way for any o > 0 we define
(1-A)"%u = d(a)/ t%e T %, (2.4)
0

where d(a) is an appropriate constant. It turns out (see [14]) that formulas (2.2) and (2.4)
are sufficient to consistently define (1—A)"/2 for any n € (—o0, c0). The result of application
of (1—A) "2 to an f € L, is defined as a limit of truncated integrals in (2.2) or (2.4). For
a distribution u, we say that u € H}' if there is f € L, such that u = (1 — A)~™2f in the
sense of distributions, that is, if u and (1 — A)~™/2f coincide as elements in the space D.
In this case we also write (1 — A)™/?y = f.

For u € H}} one introduces the norm

[[ulln,p = [I(L = 2)"2ul,,

where |||, is the norm in L,. It is known (see, for instance, [33], [34]) that H}} is a Banach
space with norm || - ||, and the set C§° is dense in H'.
Next, for fixed T' one introduces the space H}*(T) = H}*((0,T) x R?) as

T T
ou
(w=u(t.a): [ullapi= [ IGFENFde+ [ Ihuct g, de < oc).

The norm || - ||1,2,, makes H}?(T) a Banach space.
The investigation of the deterministic counterpart of equation (2.1)
Ou
— =1L 2.5
2 Lt ] (25)

with zero initial condition goes in the following way (see [31]). First, for the simplest
equation
Ou =Au+f (2.6)
ot ’ '
its solvability in H-*(T) is proved by means of explicit formulas and some estimates of heat
potentials, provided that f € L,((0,7) x R?). In Subsec. 4.1 we use the following theorem
which is proved in [31] (also see Remark 2.3.2 in [34]).

THEOREM 2.1. For any f € Ly((0,T) x R?) and ug € H2 %" there eists a unique
solution u € H)*(T) of the heat equation (2.6) with initial data u(0) = uo. In addition,
Ou
llweelle, o0,y xre) + Il 5, |z, 01 xwa) < N(dp)(IfllL, 0,1 xm) + [uolla-2/p,p),  (2.7)
l[ullt,2p < N(d,p, T)(If]|z, 0,1y xr3) + [[toll2—2/p,p);
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where uz, is the matriz of second—order derivatives of u with respect to x.

This theorem yields a bounded operator R; which maps any f € L,((0,T) x R%) into
the solution u € H)*(T) of the heat equation (2.6) with zero initial data.

Then, the so—called a priori estimate is obtained for (2.5). One assumes that there is
a solution u € H,*(T) of (2.5) with zero initial condition and inequality (2.7) is proved,
where N is a constant probably depending on T and some characteristics of L (below, N,
usually without indices or arguments, denotes various constants, and writing N (d, p) is just
to indicate that N depends only on d and p). At this point, one of the most fruitful general
ideas in the theory of partial differential equations, linear or not, is used. The idea says that
obtaining a priori estimates for solutions in a class of functions implies that the equation is
solvable in the same class. We will see how this works below.

Of course, this idea only works “as usual”. For instance, there is no trouble to estimate
the sup norm of the second order derivative for possible solutions of the equation (u')? = f
on [0, 1] satisfying u(0) = 0 and u(1) = 1, where f is a given bounded function. So, one
has an a priori estimate, but nevertheless the set of solutions is empty if f < 0. Also, the
statement “if (2.5) has a solution u € H,(T), then (2.7) holds” looks bad from the point
of view of formal logic (in which any statement with a false assumption is true). In fact,
instead of (2.7), one proves

ou
el 20 < NIITw = S2112, 01700 (28)

for any u € H}*(T) such that in a certain sense u(0,-) = 0. A usual way to prove (2.8)
consists of observing that (2.8) is true for L = A, then applying perturbation methods to
get (2.8) for L that are close enough to A, and finally, replacing A with other operators
with constant coefficients and using partitions of unity in order to get small regions in which
L is close to an operator with constant coefficients (we will see this in details in the proof
of Theorem 5.1).

The last step is to use the method of continuity. Instead of (2.5) one considers the
following family of equations

% =Lwu+f (29)
with A € [0,1], where
Lyu=XA+(1-)\)L.

Assume that the a priori estimate (2.8) holds with the same constant N for all Ly in place
of L. Also assume that, for a A = Ao € [0, 1], equation (2.9) with zero initial data has a
unique solution u € HY*(T) for any f € L,((0,T) x R?). Then we have an operator R,
such that Ry, f = u. By the way, this assumption is satisfied for A\g = 1 by Theorem 2.1.
From (2.8) we get that

[[Rxo fll1,2.0 < NI fllL,((0,7) xR %)- (2.10)
For other A € [0, 1] we rewrite (2.9) as
ou
i Lyu+{(A=X)A—-Lu+f}, u=Ryx{(A=X)A—-L)u+ f}

and we solve the last equation by iterations. Define ug = 0 and
Unt1 = Rag{(A = X)(A — LY)u, + f}.
Then by (2.10)
[[un+1 — unll1,2,p < N|A = Ao| [|(A = L) (un — un—1)||L,((0,1) xR %
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< Ni|A = ol [|un — up—1]

1,2,p,

and we have a strongly convergent sequence u,, in Hy»*(T) if N1|A—Xo| < 1/2. Consequently,
one can solve (2.9) for such A. Starting from A = 1, one reaches A = 0 in finitely many
steps, and this finishes the proof of solvability of (2.5).

There are two central objects in the above argument. These are the Banach space
H)*(T') and the operator L—8/8t : H)*(T) — Ly((0,T) x R*). Since we want to implement
the same kind of argument for equations like (2.1), the first thing to do is to find an
appropriate counterpart of H11,’2(T). This was a problem for some time, since one cannot
expect any differentiability property with respect to ¢ for solutions w of (2.1). Then an
observation appeared that H)*(T) can also be defined without using du/dt. Indeed, almost
obviously,

t
H*(T) = {u : u(t,z) = u(0,z) +/0 f(s,2)ds,u,uz, uze, f € Lp((0,T) x RY)}.
Somewhat unusual about this definition is that in the formula

u(t,z) = u(0,z) + /0 f(s,z)ds

the function f only belongs to L,((0,T) x R?) but u, uz, uz; also belong to L,((0,T) x R?)
(by definition).

Now the guess is natural that a stochastic counterpart #2(T') of the spaces H*(T)
could be the space of functions u = u(w, t, ) such that

u(t.a) =u0.0) + [ fls.0)ds+ [ o) aut, (2.11)

T
0 R4

and something of the same type is satisfied for g = {g*}. It may look a little bit surprising
that one needs p > 2 and

T
E/ / {lg] + 19z|}F dzdt < o0,
0o Jrd

which involves both g and g,, where

lgI* := 16", lgal” =D lgkI>.
k=1 k=1

We will explain later why one needs p > 2 (see Remark 4.3). The need for some conditions
on g, may be explained by the fact that in parabolic equations one derivative in ¢ is worth
two derivatives in z. The stochastic integral in (2.11) has, so to speak, one half derivative
in time, so one can expect that it also has one derivative in . The second derivative should
be provided by differentiability of g itself. This is a kind of phenomenological explanation.
The real explanation, however, is that with such definition of stochastic ’Hf,(T) spaces one
can construct a theory completely analogous to the theory discussed above.

For p = 2 we can also see the necessity of imposing conditions on g, from the model
one—dimensional equation

du = Uy, dt + g dwy,
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where z € R and w; is a one-dimensional Wiener process. Forgetting for a while about
rigor, by Itd’s formula we get

d(u?) = (2uugy + %) dt + 2ug dwy, / u?(t,x) do = / u?(0, ) dx
R

R
t t t
+2/ /uum(s,m)dxds+/ /92(8,3})d$‘d8+/ /ug(s,a:)da:dws.
0o JrR o Jr o Jr

Integrating by parts we see that

t t
Bllu(t, )| + 2E / a5, |2 ds = Elju(0, )2 + E / llg(s, |12 ds.

This shows that without assumptions on g, we only get an estimate of the first derivative
of u.

With the spaces H2(T') at hand, we write (2.1) in an operator form by introducing the
operator (L, A) which can be applied to any element u € HZ(T). Namely for a v € H2(T)
we write (L, A)u = —(f, g) if and only if

u(t) = u(0) + /0 [Lu + f](s)ds +/0 [A*u + g*](s) dwt.

The expression (L,A)u does make sense for any u € H2(T) since, if we have (2.11), then
(L,A)u = (Lu — f,Au — g). Now, instead of equation (2.1) we have the equation (L, A)u =
—(f, g) in the Banach space ”Hf,(T), which makes the situation completely analogous to the
one in the theory of parabolic equations.

This finishes our explanation of the basics of the theory, and now we are ready to present
the details.

3. The Stochastic Banach Spaces

Let (Q,F,P) be a complete probability space, (F;,t > 0) be an increasing filtration
of o-fields F; C F containing all P-null subsets of 2, and P be the predictable o-field
generated by (F;,t > 0). Let {wf;k =1,2,...} be a family of independent one-dimensional
Fi—adapted Wiener processes defined on (2, F, P).

We fix a p > 2 and an integer d > 1 and use the notation C§°, D, Ly, H}, || - ||, and
[| - ||n,p introduced in Sec. 2. We are dealing with distributions, and, for a distribution u
and ¢ € C§°, by (u,¢) or (¢,u) we mean the result of application of u to ¢. Observe that,
for u € H and ¢ € C§°, by definition

(u, @) = (1= 8)"2u, (1= A)2¢) = | [(1-A)"u)(2)(1~ A) " 2¢(z)de, (3.1)

[
Rd
where the last integral is a usual Lebesgue integral. Since (1 — A)*/?u € L,, one can
define (u,¢) by (3.1) for any ¢ whose derivatives vanish sufficiently fast at infinity, say
exponentially fast.

Sometimes it is useful to notice that || - ||n,p < || - |Im,p for m > n. Recall that the set
C§° is dense in H}} and the latter is a subset of D (see, for instance, Theorem 2.3 (ii) of
[33]). Also recall (see, for instance [33]) that, for integers n > 0, the space H,' coincides
with the Sobolev space W' = W' (R?).

We apply the same definitions to ls-valued functions g, where [, is the set of all real-
valued sequences g = {g*;k = 1,2,...} with the norm defined by |g|7 := >, |¢*|>. Specifi-
cally,

lglly = Ilgliallps  gllnp = 1111 = A)* gl [-
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Finally, for stopping times 7, we denote (0,7] = {(w,?): 0<t < 7(w)}
H;(T) = Lp({O,T]],P,Hg), Hq} = ]HE}(OOL
H;(T7 l2) = LP((OJT]]J,PJH;}(Rth))a L...= IHlO e

The norms in these spaces are defined in an obvious way. By convention, elements of
spaces like H} are treated as functions rather than distributions or classes of equivalent func-
tions, and if we know that a function of this class has a modification with better properties,
then we always consider this modification. For instance, if we take v € H) and n—d/p > 0,
then u has a bounded continuous modification, but we talk about sup, u(z) instead of sup
of this modification. Also, elements of spaces Hy (7,l2) need not be defined or belong to Hp
for all (w,t) € (0,7]. As usual, these properties are needed only for almost all (w,t).

For n € R and

(f,9) € F(7) := Hy (1) x ;™ (7, 12),
set
(£ Dlzp iy = 1 llmy (v + gl (7,00
DEFINITION 3.1. For a D-valued function u € (s H} (T A T), we write u € Hj (1) if

Ugy € H72(7), w(0,-) € LP(Q,}'O,H{,L_W”), and there exists (f,g) € F;~?(r) such that,
for any ¢ € C§°, the equality

(u(t7 )7¢) = (U(O, )7¢) + /0 (f(sa ')7 ¢) ds + Z/O (gk(sa )7¢) dw? (32)
k=1

holds for all ¢ < 7 with probability 1. We also define HJ o(7) = Hp (1) N {u : u(0,-) = 0},

lelln () = uaellsp—2 ) + 1 D) g2y + (B0, _y ) )7 (3.3)
As always, we drop 7 in Hp(7) and F(7) if 7 = oc.

REMARK 3.2. Tt is worth noting that the elements of H}(7) are assumed to be defined
for all (w,t) and take values in D. Obviously, H;(7) is a linear space. As usual, we identify
two elements u1 and u of H(7) if |lu1 — u2|3z(r) = 0. Actually, as we will see later, in this
way we only identify indistinguishable functions. Also, observe that the series of stochastic
integrals in (3.2) converges uniformly in ¢ in probability on [0,7 A T] for any finite T, since
the quadratic variations of these stochastic integrals satisfy (cf. (3.1))

0o AT 00 TAT
[ as= 3 [ (1= Mgk, (1= A)I ), ds
k=170 k=170

AT

<l =2)=2g)), /T D (1= A) D26k s, )P, |(1 = A2 g, ds
0 =

AT 0
< N/O 111 = A)P=D/2gk (5, )22 12ds < 00 (as),
k=1

where N = [|(1 — A)=™/2¢|; ||(1 — A)E=™/2¢||,, ¢ = p/(p — 2) and we have used that
p>2

As a consequence of the uniform convergence, (u(t,-), ¢) is continuous in ¢ on [0,7 A T]
for any finite T (a.s.).
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REMARK 3.3. There can exist only one couple (f,g) for which (3.2) holds. Indeed, if
there are two, then one can represent zero as a sum of a continuous process of bounded
variation and a continuous local martingale. One knows that this is only possible if both
processes vanish. Therefore, the couple (f,g) is uniquely determined by u, and notation
[[u]|32(r) in (3.3) makes sense.

REMARK 3.4. It is known that the operator (1 — A)™/? maps isometrically Hp onto
HJ}~™ for any n,m. Also, the inequalities from Remark 3.2 can be used to show that given
u € Hy(7), one can in (3.2) take any infinitely differentiable function ¢ whose derivatives
vanish sufficiently fast at infinity, say exponentially fast. This allows us to substitute (1 —
A)™/2¢ in (3.2) instead of ¢ and shows that the operator (1 — A)™/? maps isometrically
H, () onto Hy~™(7) for any n,m. The same is true for HJ (7).

DEFINITION 3.5. For u € H(7), if (3.2) holds, then we write f = Du, g = Su (for
“deterministic” and “stochastic” parts of u) and we also write

t t
u(t) = u(0) + / Du(s) ds + / Shu(s)dw®, du= fdt+ gFdwt t<r.
0 0

REMARK 3.6. It follows from Definitions 3.1 and 3.5 that the operators D and S are
continuous operators from H?(7) to Hr~?(r) and H'~* (7,l5) respectively. From Theorem
4.2 and Remark 3.4 it follows that S maps #(7) onto H~!(7,1). However, at this point
we do not know how rich H(7) is. Nevertheless obviously H}*(T) C H5(T).

THEOREM 3.7. The spaces Hy (1) and Hp o(T) are Banach spaces with norm (3.3). In
addition if T < T, where T is a finite constant, then for u € Hy(7)

||u||H1",(T) < N(daT)”u”'H;(T); EiEEHU(t’ )llfL—Q,p < N(da T)“u“pg(q—) (34)
Proof. We first deal with (3.4). Obviously
lulls () = 111 = A)ullgn-2 ) < [ullg-2 () + [ullaz ),
so that to prove (3.4) we only need to prove that
Bsup [lu(t, )5, < NllulB (3.5)
t<t P

Owing to Remark 3.4 we may and will assume that n = 2. Take a nonnegative function
¢ € C§° with unit integral, for ¢ > 0 define (. (z) = e~%((x/e), and for generalized functions
u let u'®)(2) = u* ((x). Observe that u(*)(z) is a continuous (infinitely differentiable)
function of z for any distribution u. Plugging in (.(- — x) instead of ¢ in (3.2), we get that
for any z the equality

t 00t
u® (¢, z) = u'®) (0, z) +/ ) (s,x)ds + 2/ gk (s, z) dw* (3.6)
0 1 /0
holds almost surely for all ¢ < 7. If necessary, we redefine the stochastic integrals in (3.6)

in such a way that (3.6) would hold for all w,¢, and z such that ¢t < 7. Here
Bl (0,12 < Elju(0, )12 < Bllu(0,)_y ., < llulf

n—2/p,p n(r)’

where we use that, by Minkowski’s inequality, ||h(®)||, < ||¢||1 ||hll, = ||R||p- Similarly,

t T
[ 1O dsr <77t [ 11,0 s
0 0
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Esup| f<s>< Yasllp < [ ds < TPl

t<r
Finally, by Burkholder -Davis—Gundy inequalities

oo t T 00
Esup| Y / g*(s,2) dwt|P < NE| / S 19k (s, ) 2 dsfP/?
—1 /0 0 k=1

(-

:NE|/ 192 (s, 2) ds[P/2,
0

and as above (the first term below makes sense by virtue of (3.6))
Esup||2/ @)k (s dwk||p </ Esup|2/ @k (s, z) dw |P d
<NE [ 1 [ 19, (5.0 asp’ e < NEC[ 115 s,y )"

r¢ Jo 0

T T
= NB([ g9l N s’ <NE [ 11199 (s, )l ds
< Nl o1y < Nl oy
This, along with (3.6), leads to
Bsup [, I < Nlullfy (3.1

Furthermore, by using the fact that ||h‘®) — A()||, — 0 whenever h € L, and €,y — 0
and by considering u(1/™) — 4(1/k) instead of u(®), we easily see that that u(1/™ (¢t A T, )
is a Cauchy sequence in L,(2, B([0,T], Lp)). Define @ as its limit in this space. Then, for
a subsequence m’', we have u(!/™)(t,.) = u(t,-) in L, if ¢ < 7 with probability 1. On
the other, hand u*/™)(t,-) — u(t,-) in the sense of distributions for all w and t such that
t < 7(w). Therefore with probability one we have u(t,-) € L, for t < 7. Now, (3.7) and
Fatou’s lemma yield (3.5) for n = 2. As explained above, this proves (3.4).

Next, we derive the first assertion of our theorem from (3.4). As usual, we have only
to check the completeness of H7 (7). If {u;} is a Cauchy sequence in H}(7), then it is
a Cauchy sequence in HJ} (7 A T) for any T, and there is u € [ H} (7 A T) such that
[lu — u]||HP (T,\T) — 0 as j — oo. Furthermore, uj,, form a Cauchy sequence and therefore
converge in H'=2 (7). Tt follows easily that ||uz, — ujm||m_z(ﬂ — 0.

Also, for u;(0 ), fj,gj corresponding to u;, there is u(0) € L, (2, Fo, H,?_Q/p) and (f,g) €
Fp=2(r) such that

Elu(0) — w7 _s/pp = 0, I = fillg=2() > 0, llg = gilleg—1 (1) = O-

By using the argument from Remark 3.2, one can show that for any ¢ € C§° equality (3.2)
holds in (0, 7] almost everywhere.

On the other hand, (3.4) also implies that for u (at least for a modification of «) it holds
that

E sup [lu(t,) —u;(t,)lln_zp =
t<7AT

for any constant T < co. Adding to this that the processes (u;(t,-),¢) are continuous
(a.s.) (see Remark 3.2), we conclude that (u(t,-), ¢) is also continuous (a.s.). Thus, for any
¢ € C§°, equality (3.2) not only holds in (0, 7] almost everywhere but also for all ¢ < 7
almost surely. Hence, u € H(7) and u; — u in H7 (7). The theorem is proved.
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REMARK 3.8. We could replace the first term on the right in (3.3) with ||u||g (-) and,
for bounded 7, we would get an equivalent norm by virtue of (3.4). The form of (3.3) that
we have chosen is convenient in the future when we need certain constants to be independent
of T, see, for instance, Theorem 4.10.

REMARK 3.9. In Theorems 7.1 and 7.2 below, we prove much sharper estimates than (3.5).
We also need the following properties of the spaces H; (1) and H} (7)

THEOREM 3.10. Take g € H} (I2). Then there exists a sequence g; € H} (l2), j = 1,2...,
such that ||g — gjllum 1) — 0 as j — oo and

gh= ] Zim I n0gF@) i k<,
’ 0 if k>j,
where Tij are bounded stopping times, Tf_l < Tg , and g}k € C§°.
Proof. The argument in Remark 3.4 and the fact that C§° is dense in any H} show
that we only need to consider n = 0. Further, one can easily understand that the set of
g € L,(l) for which the statement holds forms a linear closed subspace L of L, (l2). We

have to prove that L = L,(ly). If this is not true, then, by Riesz’s theorem, there is a
nonzero h € L, (l2) with ¢ = p/(p — 1) such that

oo
E/ (h, 9)1, dzdt =0
0 Jrd
for any g € L. In particular,

E/ I(O,T](/ hkgdx)dt =0
0 R4

for any bounded stopping time 7, £ > 1, and g € C§°. Since [p. h¥gdz is equal to a
predictable function (a.e.), it follows that [;,h*gdz =0 on (0,00] (a.e.). By taking g from
a countable subset G in C§° that is dense in L,, we get that, on a subset of (0, o0] of full
measure,
hfgdr =0 VYge G, k>1.
Rd
But then h* = 0 on (0, 00] x R? (a.e.). This contradicts that h # 0 and proves the theorem.

THEOREM 3.11. Let T € (0,00). If uj € HY(T), j = 1,2,..., and |[u;llsn(r) < K,
where K is a finite constant, then there exists a subsequence j' and a function u € H;(T)
such that

(i) ujr, uj(0,-), Duj , and Su]-/ converge weakly to u, u(0,-), Du, and Su in Hy(T)
Lp(Q,H,?_Q/p), H=2(T), and Hy~' (T, l3) respectively;

(ii) lul|pz () < K;

(iii) for any ¢ € C§° and any t € [0,T] we have (¢,uj(t,-)) = (¢, u(t,-)) weakly in
L,(9Q).

Proof. From properties of L, spaces, it follows that there exists a subsequence j' such
that ujl, u;r(0,-), ID)uJ , Suj» converge weakly to some u, ug, f,g in H (T Lp(Q,Hg%/p),
H-]I"; ), and ]HI[,‘ (T, 1) respectively. Then, for any ¢ € C§°, the expressmns (ujr (t,-), @),
(ujr (0 ),¢), (D (s, ), ¢), and (S*u;i(s,-), ¢) in the formula

t o t
(1 (69, 9) = (470, 0) + [ Buy (5,,0)ds + 3 [ (B4uy (5,2, ) dut
k=1
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converge weakly in corresponding spaces. Since integration and stochastic integration can be
considered as continuous linear operators and any continuous linear operator is also weakly
continuous, we have that, for any ¢ € Cg°,

t o0 t
@@mmzmwwlwmm@w+24@%»mwﬁ (38)
k=1

for almost all (w,t) € Q x [0,T].

By Banach—Saks theorem, there is a sequence (v] r, Doy ,Sv] 1) of convex combinations
of (ujr, Dujr,Suj) which converges strongly to (u, f,g) in Hy (T') x H}~ 2(T) x HI’}_I(T, l2).
From (3.4), it follows that

Esup ||vj —villh_s, =0
t<T

as i,j — oo. Therefore, there is a HI’}*Lvalued function v on Q x [0, 7] such that

e 2p—>0.

Esup|v; —vl[y
t<T
In particular, (v;(t,-),#) = (v(t,-), ) uniformly on [0,T] in probability for any ¢ € Cg°.
On the other hand, the strong convergence of v; to u in H} (T') implies that (v;(t,-), #) —
(u(t,-),¢) on Q x [0,T] in measure. This shows that (v(t,-),¢) = (u(t,-), ) on Q x [0,T]
(a.e.). Because of arbitrariness of ¢ and the fact that C§° is dense in the separable spaces
conjugate to H), u = v (as generalized functions) on Q x [0,77] (a.e.).

Thus, v € H (T). Also, (v;(t),$) are given by equations similar to (3.8), which implies
that (vj(t),#) are continuous in ¢ (a.s.). The uniform convergence of (v;(t),$) to (v(t), )
in probability yields the continuity of (v(¢),¢) (a.s.). By the above, (3.8) holds for almost
all (w,t) € Q x [0,T] if we replace (u(t,-),#) by (v(t,-), ). Since the latter is continuous
and the right—hand side of (3.8) is continuous, (v(t,-), #) equals the right—hand side of (3.8)
for all ¢ € [0,T] (a.s.). Hence, v € H}(T) and we have proved assertion (i) for v instead wu,
which is irrelevant.

Assertion (ii) follows from the equality u = v on 2 x [0, 7] (a.e.) and from the fact that
the norm of a weak limit is less than the liminf of norms.

To prove (4i7), take ¢ € C§° and £ € Ly(Q?) with ¢ = p/(p — 1) and write

Be(u;(t, ), ¢) = BE(u; (0 +m/ w+m/ buy(s, ), 6) dut.
By what has been said about the properties of the operators of integration and by (%),
lim E(uj(t,-),¢) = hm [E{(uj +E§/ @) ds
] —>00

+m/ by (s, ), 8) duwk] = BE(w(0, ), @)
+m/ w+m/8k ), ) dut = Be(u(t, ), 6),
which proves (iii) and the theorem.

4. Model Equations

As explained in Sec. 2, to implement our general scheme we have to show that (at least)
simple equations are solvable in HJ (7).
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Except for Subsec. 4.2, we will always understand equations like (2.1) in the sense of
Definition 3.5, which means that we will be looking for a function u € HJ} o(7) such that

Du=Lu+f, Su=Au+g.

In this section, we consider equation (2.1) when b* = ¢ = v*¥ = 0 and the coefficients a
and ¢ do not depend on z. Throughout the section, we fix real-valued functions a¥ (t) and
lo-valued functions o(t) = {o™*(t),k > 1} defined for 4,5 = 1,...,d on Q x (0, 00). Define

1

al(t) = §(Ui(t)a o7 ()i,

and assume that a and o are P-measurable functions, and in the matrix sense
(@) = (a¥)*, K(67) > (a¥) > (a¥ — a¥) > §(5%),

where K and ¢ are some fixed strictly positive constants. By the way, the assumption that
a > « is necessary even to have Lo—theory for SPDEs with constant coefficients (see [30] or
Remark 4.8).

Equation (2.1) takes the following form:

du(t,z) = (@ () ugizi (t,x) + f(t,2)) dt + (™ (t)ugi (t,z) + g*(t,2)) dwf, t >0. (4.1)

Our plan is as follows. In Subsec. 4.1 we consider the case of the heat equation with
random right-hand side and get basic a priori estimates. The results of Subsec. 4.2 show
how to reduce general case of equation (4.1) to the case of the heat equation and get some
representation formulas for solutions. At that point it turns out that the assumption that
u € H}; is not very convenient, and we consider larger spaces. In the final Subsec. 4.3, we
present the basic a priori estimates and the existence and uniqueness theorem for equation
(4.1).

4.1. Particular Case a¥ = §%, ¢ = 0. We start with the equation

du(t,x) = (Au(t,z) + f(t,z)) dt + g*(t,z) dw?, t > 0. (4.2)

We need a lemma from [17] or [20]. Remember that the operators T; are defined by
(2.3) and, as always, p > 2.

LEMMA 4.1. Let —c0 < a <b< oo, g € Ly((a,b) x R?,15). Then

b t b
/R/ [/ VT3 g(s, ) (@)L, dsP/? dt dw < N(d, p) /R/ lg(t, 2)|7, dt de.

THEOREM 4.2. Take f € Hy', g € L, (l2). Then
(i) equation (4.2) with zero initial condition has a unique solution u € H;
(ii) for this solution, we have

[uaallgzr < N(d,p)(|fllezr +[19llL,a2))5 (4.3)

(iii) for this solution, we have u € Cioc([0, 00), L) almost surely, and, for any A\, T > 0,

T
Bsup(e ™lu(t, )+ B [ e Pl D7, Pro(e, ) e <
t<T 0

N, NIl s oy + lle gl ) (4.4)
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Proof. It is well known that there exists a continuous linear operator
P:H' = (L)
such that if h € Hy' and Ph = (ho,h',...,h?), then h = ho + div h and
1Allp + 1olly < N(d,p)l|hll-15, [IBll-1,5 < N(d,p){IIAll, + [[holl5}- (4.5)

Actually, one can take h = —grad (1 — A)~'h and hg = h —divh = (1 — A)~'h. Indeed,
[[hollp = ||Pl]-2,p < [|hl|-1,p. Also, the fact that 8/8z is a bounded operator from H}
to H7t! for any n (see, for instance, [33]) means that (9/8z%)(1 — A)~'/? is a bounded
operator from H} to H} and (8/dx")(1 — A)~" is a bounded operator from H} to H}~'.
This is why |||, < N(d,p)||h||-1,- This gives the first estimate in (4.5). On the other
hand, (1 — A)"'/2h = (1 — A)~'/2hy + div (1 — A)~'/2h, and both operators (1 — A)~1/2
and div (1 — A)~'/2 are bounded on L,.

Define (fo, f) = Pf. Then equation (4.2) takes the form
du = (Au + fo + div f) dt + g* dw?, (4.6)

and we supply it with zero initial condition. We will prove that, for arbitrary fo, fi € L,,
our assertions hold for (4.6) in place of (4.2). Of course, in (4.3) and (4.4), by f we mean

fo+div f.
A particular case. First we consider the case in which

fO(t7 .73) = ZI(Ti_l,Ti](t)fOi(x)v f(t,(lf) = ZI(Ti—l,Ti](t)f{i(m)7
i=1 i=1
m m 4.7)
9(t, ) = > g*(t. @)k, ¢F(t,2) = Iiri, ry(t)g™(2),
k=1 i=1

where (hy,) is the standard orthonormal basis in I, m < oo, 7; are bounded stopping times,
Ti—1 S Ti, and fO’iafi7gzk € Cf(())o
Set

t m
v(t, ) = / g*(s,z) dw? = Z 9* (@) (Wi, —wi_ ),
0 ik=1

t
wlt, ) = v(t, ) + / T, J[Av+ fl(s,)(z) ds, Vt > 0. (4.8)
0

As easy to see, the function u — v is infinitely differentiable in (¢,z) and satisfies the
equation

0z
E_Az+Av+f.

It follows that, for any z, the function u(t,z) satisfies almost surely the following form of
(4.6):
t m
u(t, ) :/ (Au(s,z) + f(s,z))ds + Z/ g* (s, z) dw?. (4.9)
0 /o

Next, we want to obtain some bounds on norms of u. Let

up(t,x) = /t T: sf(s,z)ds.
0
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According to Theorem 2.1 (for any w),

lvizellr, @, 151y < NI, @y w51 (4.10)
Furthermore, use again that the operators (9/8z%)(1 — A)~'/? are bounded in L, for any
p > 1. Then
l|uze — Utza|F_1 < Nllug —uig|lf = N/ / Elugy — u14|P(t, x) dz dt. (4.11)
H; P 0 Rd

To make some further transformations of this formula, we note that if 2¥ = z*(z) are
bounded Borel functions, then, by It&’s formula applied to the increment over [0, ¢] of

t
( / Ty o2t ds)(why,, — why,,)
T

(with no summation in k) as a function of r, we obtain (a.s.)

t ¢ :
0= —/ (wf/\rz - wf/\n)Tt—rzk dr +/ I(T1,7'2] (r)(/ Tt—szk dS) dw,’f
0 0

T

By using this for our particular g, or by using the stochastic version of the Fubini theorem
and coming back to (4.8), for any ¢t > 0 and 2 € R?, we get

t m s
uw(tam) - ulw(t7 .'E) = Ug (t7 .Z') + / ths Z/ Ag];(r, Z‘) dwf ds
0 k=170

m + t d m i
=wv,(t,x) — Z/o / £Tt,sg’;(r, x)ds dwf = Z/o Ty g% (r,z) dw® (as.).
k=1 r k=1

Hence, by the Burkholder-Davis—Gundy inequality,

t m
Elug —u1o|"(t,2) < NE[| Y |Ti_pgh(r, o) dr]P/”
0 k=1

t
— NE| / \Tomrgo (1, 2)[2, dr P/
0

By plugging this into (4.11) and by applying Lemma 4.1, we obtain

[e3) t
s = el <NE [ [ ([ 9Ticaglo,n)l, dsl?/? dode < Mgl -
o JriJo i
This along with (4.10) gives us (4.3). However, we do not know yet that u € 7{..

Our next step is to prove (4.4) for sufficiently large \. We repeat briefly the correspond-
ing arguments from [25] or [30]. From (4.9) and Itd’s formula,

Ju(t, z)[Pe™

t
s _ _ 1 _
= [ el Pubut plul? uf + oo = Dl ?lgl;, = Aul?) (s, ) ds
0

¢
+pZ/ e MuP2ug (s, z) dw”.
0

k<m
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We integrate here with respect to  and use the stochastic Fubini theorem and the fact that
u(t, ), g(t, z), and their derivatives decrease very fast when |z| — oo. Then we integrate
by parts in [ |u[P~?uAudz and also notice that, for ¢ = p/(p — 1),

/ |u|p_2uf(s,m) dr = —(p — 1)/ |u|”*2uac - f(s,z)dz + / |u|p*2uf0(s,a:) dz,
Rd Rd Rd

[ s Fsa)dol < [ (Qul® D 22 de
Rd Rd

- 1 -
+[1F(s, )5 < NIF ()2 + Nallu(s, I + 5 11l =P lug /7 (s, )15,

[ s )P uts,) oo, ) do < ol g + s )
< N||f(87 ')||Iil,p + ||U(S, )||£
In this way, for A > p(p — 1)N1 +p+ p(p — 1)/2, we get

_x  plp=1) 7 _ _
[lut, pe™ + ==5— / || P27y [2/7(s, )| [be ™" ds
t
<N / 01£ (s, P 1 + llg(s, ]2l ds

t
s Y [ ugho,0) do ok,
0 R

k<m

where N = N(p). After this, basically, one takes expectations and applies certain standard
transformations based on the Burkholder—-Davis—Gundy inequalities. For more detail we
refer the reader to [25] or [30].

Finally, the assertion about the arbitrariness of A in (4.4) can be easily justified by
rescaling arguments when instead of f, g, and w one takes (c?f, cg)(c*t,cz) and ¢~ w2, and
gets u(c?t, cx) instead of u(t,z).

From our explicit formulas and from the particular choice of f and g, it also follows
that u € Coc([0,00), Hy) for any n (and for any w). This proves (iii).

From estimates (4.3) and (4.4), we conclude that u € (o H5(T). Furthermore, from
the pointwise equation (4.9) by the stochastic Fubini theorem it follows easily that u solves
(4.2) in the sense of Definition 3.1. Hence u € H,,, which proves a part of assertion (i). The
uniqueness in (4) follows from the fact that for f = 0,9 = 0 we have the heat equation and
the uniqueness of its solution in our class of functions is a standard fact (we say more about
this in the proof of Lemma 4.9). This completes the proof in the case of step functions f, g.

General case. In the case of general f, g, we observe that the uniqueness in (i) is proved
as above. As far as other assertions are concerned we are going to use Theorem 3.10 and
Remark 3.6.

If we consider all functions fo, f*, g* as one sequence, then, by Theorem 3.10, we can
approximate them by functions fo;, f]’f, gf of type (4.7). Let u; be the corresponding so-
lutions of (4.6). By the result for the particular case, {u;} is a Cauchy sequence in H,
and, by Theorem 3.7, there is a u € H}, to which u; converges in H}. Remark 3.6 and the
convergence ||uzg, — ujm||H;1 — 0 prove that Du = Au + f and Su = g. In particular, this
proves assertion ().
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Assertion (i7) follows from the construction of u. From assertion (iii) available in the
particular case, we get that u; is a Cauchy sequence in L,(Q,C([0,T],L,)) for any T.
Therefore, it converges in this space to a function @. It follows easily that, for any ¢ € C§°,

(at,), ¢) = / ((@(s,), Ad) + (f(s,),8)} ds + / (6 (5., @) dus®

for all t (a.s.). Therefore, u — @ is a generalized solution of the heat equation with zero
initial condition and with bounded L,—norm (a.s.). This implies that ||[(v — @)(¢,-)||, = 0
for all t (a.s.), so that u € C([0,T],L,) for all T (a.s.). Finally, we get (4.4) by Fatou’s
lemma taking into account that

T T
/ / IV (u = uy)|P dadt = / / V(1L = A)2(1 = A)2(u — u))|P dadt
0 R4 0 Rd

T
< N/ / |(1 = A)Y2(u — w;)|P dwdt — 0
0 JRd
in probability for any T'. The theorem is proved.

REMARK 4.3. Although (2.7) holds for all p € (1, 00), it follows from [17] that Lemma
4.1 is false if p < 2.

4.2. Relation of the Solutions of (4.1) to the Solutions of the Heat Equation.
It turns out that the investigation of general equation (4.1) with coefficients independent
of z can be quite formally reduced to the particular case of the heat equation. First, we
explain how to do this without caring about rigorousness, and then proceed with formal
proofs.

The first observation consists of the following. Assume that we have

du(t,z) = f(t,z)dt + g*(t, z) dwk, (4.12)

and we define a process z; and a function v by
t
zl = / o®(s)dwk, i=1,...d, v(t,z)=ult,x—x). (4.13)
0

Then, by applying formally the It6—Wentzell formula, we get
dv(t,z) =[f(t,2 = 20) + &Y ()vgips (t,0) — (goi (t, 2 — 20), 0" (£))1,] dt

+ " (t, 7 — ) — vy (t, 7)o ™ (¢)] dwk. (4.14)

This shows how to introduce the terms v,i0® in equation (4.12) and also shows again a

kind of necessity for g to have the first derivatives in z.

This device alone is not sufficient, since, if we had Au + f instead of f in (4.12),
then, in (4.14), we would get the second order differential operator (6% + )82 /0xi0z?
with coefficients strongly related to the coefficients of v,:0®*(t). We could get around this
difficulty if we manage to start with equations with more general operators L instead A.
Here the second observation comes that if, instead of (4.12), we consider

du(t,z) = (Au + f) dt + ¢g*(t, z) dwf,

and take expectations in the counterpart of (4.14) corresponding to this equation, then,
assuming that o is nonrandom, we get indeed an equation for Ev(t,z) with operator L
different from A. By the way, this method of studying parabolic equations with coefficients
independent of z was applied in [18] in order to show that “whatever” estimate is true for
the heat equation, it is also true for any parabolic equation with coefficients independent of
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z. Of course, taking expectations “kills” all randomness in the equation, and therefore we
use a conditional expectation.

DEFINITION 4.4. Denote by ® the set of all D-valued functions u (written as u(t, z) in
a common abuse of notation) on 2 x [0, 00) such that, for any ¢ € C§°,

(7) the function (u, ¢) is P—-measurable,

(4¢) for any w € Q and T € (0, 00), we have

T
A sup |(u(t, ), d(- — 2))[* dt < oo. (4.15)

z€eR4
In the same way, we define ®(l) by considering l5-valued linear functionals on C§° and
replacing | - | in (4.15) by | - |,

REMARK 4.5. Notice that (u(t,-),#(- — z)) is continuous in z and Borel in ¢ so that
(4.15) makes sense. Also, for p > 2, ¢ =p/(p—1), and any n,

/0 supI(U(t,-),¢(-—w))|2dt5/0 1Cut, I3 p 18112 5,4 dt

z€ERE

T 2/p
< ||gl[2,,, TP (/0 II(U(t,-)ll’ﬁ,pdt> - (4.16)

This shows that if u € H};, then condition (4.15) is satisfied at least for almost all w. Also, if
u € Hy, then (3.2) holds, which shows that (u(t,-), #) is indistinguishable from a predictable
process. This is true for any ¢ € C§°. From separability of H, ", it follows that we can
modify u on a set of probability zero and after this we get a function belonging to ®. This
is the sense in which we write

H, CD. (4.17)
DEFINITION 4.6. Let f,u € ©, g € D(l2). We say that the equality
du(t,z) = f(t,z)dt + g(t,x) dwe, t >0, (4.18)

holds in the sense of distributions if for any ¢ € C§°, with probability 1 for all t > 0 we
have

t t
W@%m=w&%@+AU@%@%+A@%J@MM- (4.19)

Observe that, since |(g, ¢)(¢)|;, is locally summable in ¢, the last series in (4.19) converges
uniformly in ¢ on every finite interval of time in probability.

In this subsection, we always understand equation (4.1) in the sense of distributions.
Notice that if u € H}} and u satisfies (4.19), then, by (4.17), u € D and (4.18) holds in the
sense of distributions. An advantage of Definition 4.6 is that one need not check summability
of any derivative.

LEMMA 4.7. Let f,u € D, g € D(l3). Assume the definitions in (4.13). Then (4.12)
holds (in the sense of distributions) if and only if (4.14) holds (in the sense of distributions).

Proof. First remember that, for a distribution a(z) and y € R?, by a(z — y) we mean
the distribution defined by («, ¢(- + y)). Also from relations like (cf. (4.16))

T T
/ sup |(va (t,-), $(- —y))|* dt = / sup |(v(t,-), $au (- — y))* dt
0 0

yER4 y€ER?
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T T
= /0 sup |(u(t, "), boa (- + 2 —y))|* dt = /0 sup |(u(t, "), dua(- — y))I” dt < oo,

yeRe yERd

T
‘A sup |((gai (b, — 22), 0 (B))1a, S — )2 dt

yeR?

T
=A sup |((ga: (£, — 20), $(- — 1)), 0 ()| dt

yeRd
T T
< [ 1otk de [ sup (gt — w6~ ) db < o0
0 0 yeR4
it follows that v(t,z), f(t,z — z¢) and (g,:(t,z — z¢),0(t))1, belong to D and g(t,z — x;)
and v, (t,z)o*(t) belong to D(I2). Furthermore, for any ¢ € C§°, the function F(t,x) :=
(u(t,- — z),¢) has a stochastic differential in ¢ for any z and is infinitely differentiable
with respect to . Now our assertion immediately follows from the It6—Wentzell formula

for F(t,z;). By the way, one can easily memorize (and perhaps prove) this formula by
considering the following computations:

d | ult,z—z)(z)dr = d/Rd u(t, 2)d(x + x) de = /Rd oz + x¢)du(t, z) dz

R4

+ /R ult, 7)o+ ) o+ /R (du(t,2))d(z +2.) do
= { Rd¢(w+xt)f(t7x) d$+/Rdu(t,$)aij(t)¢wiwj (z + ) dz
+ /Rd g"(t, ) pyi (z + x4) 0™ () dx} dt
+{ quﬁ(w—i—xt)gk(t,x) dw+/

Rd

u(t, o) pgi (x + z)oF (1) dw} dwk
= / {ft, 2 — o) + @ (W) Ugigs (t, @ — 1) — ghi(t, 2 — 3¢) 0™ () } S(z) dz dt
Rd

+/ {gk (t,x — ) — ugi(t, 2 — 2;)0'F (t)} ¢(z) dz dwk.
Rd
The lemma is proved.
REMARK 4.8. If, instead of (4.12), u satisfies the equation

du(t, ) = (@ (t)ugigi (t,2) + h(t,z)) dt + o™* (t)uy: (t, z) dw?,
then (4.14) takes the form

av(t,x) = ((a"(t) — @ (t))vgigi (t,x) + h(t,x — 34) t >0, (4.20)
and can be considered on each w separately. Observe that if a(t) < a(t), then the initial-
value problem v(0) = vy for equation (4.20) is ill posed.

This shows that operators appearing in the stochastic term should be subordinated in a
certain sense to the operator in the deterministic part of equation. This is needed in order
to construct an L,-theory. On the other hand, take d = 1 and a one-dimensional Wiener
process w;. Consider the following equation

du(t,z) = iul(t, ) dw,.

Surprisingly enough and somewhat in spite of what is said above, this equation has a very
nice solution for each initial data ug € Ls. One gets the solution after passing to Fourier
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transforms. It turns out that @(t,&) = uo(€) exp{&w; — (1/2)|£|*t}. The function @(t,£)
decays vary fast when || — oo, which shows that u(¢,z) is infinitely differentiable in z.
Also notice that, taking expectations, we see that Fu(t, ) = ug(x) if ug is nonrandom, and
in this case we get a representation of any L, function as an integral over {2 of functions
u(w,1,z) which are infinitely differentiable in . However, the major drawback of such
equations is that E|u(t,0)|? = oo for any p > 1 if, for example, 1g(§) > exp{—A|¢|}, where
A is a constant.

LEMMA 4.9. Let f € D, g € D(l2), uo be a D-valued function on Q. Then the following
assertions hold:

(i) In © there can exist only one (up to evanescence) solution of equation (4.1) with the
ingtial condition u(0,-) = ug.

(i) Let Fy = Wy V By for t > 0, and assume that o—fields Wy and By form independent
increasing filtrations. Let W and B be sets such that W U B = {1,2...}. Assume that
(wF, W) and (w},B;) are Wiener processes for k € W, r € B. Let u € D satisfy equation
(4.1) (in the sense of distributions), and let a, f,0,g be Wi—adapted. Finally, assume that
there exists an n € (—oo0,00) such that f € Hy(T), g € Hy (T, 12) for any T € (0,00) and
u(0,-) is Wo—measurable and

Elu(0,)|[7 2 < 0.

Then in ® there exists a unique solution @ of the equation

dit = (a9 tigizi + f)dt+ Y (0%t + g*) dwf, t > 0. (4.21)
kEW
In addition, for any ¢ € C§° and t > 0,

(a(t,-), 9) = E{(u(t,-), )WV:}  (a.s.). (4.22)

Proof. (i) As always, we can take f = 0,9 = 0, and ug = 0, and, by Lemma 4.7, it
suffices to consider only the case 0 = 0. In this case, for any given ¢ € C§° we have

(ult, ), §) = / (u(s, ), L(s)d)ds, t>0,

almost surely. Putting here ¢(-—z) instead of ¢ and observing that both sides are continuous
and bounded in (t,z) on [0,7] x R? for any T < oo (cf. (4.15)), we get that the function
F(t,x) := (u(t,-),é(- — z)) is bounded in (t,z) on [0,7] x R? for any T < oo, infinitely
differentiable in z, and satisfies the equation

F(t,xz) = /OtL(s)F(s,:z:) ds Vt,

(a.s.). From the theory of parabolic equations, it follows that F(¢,z) = 0 for all ¢,z (a.s.).
This means that (u(t,-),¢) = 0 for all ¢ (a.s.). Now take ¢ with unit integral. Then for
any z and n with probability 1, (u(t,-),n%¢(n(- — 2))) = 0 for all t. Since this function is
continuous in z, we have (u(t, -), n%¢(n(-—x))) = 0 for all t and = with probability 1. Finally,
(u(t,-),nip(n(-—2))) = u(t,z) asn — oo for all (w,t,z) in the sense of distributions, which
implies that, with probability 1, we have u(t,-) = 0 for all ¢ as stated.

(#4) First, notice that, according to [30], equation (4.1) has a unique solution v in the
space Hyt' (T) for any T. The definition of solutions in H™' (T) from [30] is slightly
different, but v is continuous (a.s.) as an HZ-valued process and

E sup||v(t, )||fl2 < 00 VT < oo, (4.23)
t<T
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so that v is a ®-solution of (4.1). It follows from (i) that our function u coincides with
v and therefore belongs to Hi ™ (T') for any T, and (4.23) holds for u. Furthermore, with
probability 1 for all ¢ at once,

t .. t .
u(t) = u(0) + / (0% (8)ugigs (5) + (5)] ds + / [0 (8)uge (5) + g(s)] duck,

where all integrals are taken in the sense of the Hilbert space Hy ' (see [30]). By Theorem
1.4.7 of [30], or rather by its Hilbert-space counterpart, there exists an Hy"'-valued , W;-
predictable function #(t) such that, for almost any ¢, we have

a(t) = E{u(®)Wi},  Ua(t) = E{ua ()i}, Gae(t) = E{uea(t) Wi} (as.)

(conditional expectations of Hilbert—space valued random elements) and

¢ ¢
u(t) = u(0) + / [a¥ (803 (5) + f(s)]ds + Y / [0 ()i (s) + 9" (5)] dwy  (4.24)
0 kew 0
for almost all ¢ and w. The right-hand side here is a continuous Hj ~'-valued process which
we denote by @ and we show that @ is the function we need.
By definition and by the equality @ = 4 (a.e.), 4 satisfies (4.24) for all ¢ with probability
1 and also is a continuous process in HQ"_I. This implies that 4 € ® and @ is a solution of
(4.21). To prove (4.22) for any ¢, it remains only to observe that, again by Theorem 1.4.7
of [30], the conditional expectation E{u(t)|W;} for any ¢ is equal to the right-hand side of
(4.24) almost surely. The lemma is proved.

4.3. General Equation (4.1) with Coefficients Independent of z.

THEOREM 4.10. Take n € R and let f € H' ™', g € HI(I2). Then
(i) equation (4.1) with zero initial condition has a unique solution u € Hyt;
(ii) for this solution, we have

ozl -1 < NI fllgp-1 + N9l @)y Nullyger < NI 91, (4.25)

where N = N(d, p,d,K);
(iii) we have u € Cioc([0,00), Hy) almost surely and for any A\, T >0,

Efgg(e_wﬂu(t, Mhp) < N(le™ Fllgams ) + 1670115y (7.15)): (4.26)
where N = N(d,p,d, K, \).

Proof. Since one can apply the operator (I — A)™/? to both sides of (4.1), it suffices to
prove the theorem only for n = 0. Furthermore, as we have already noticed in (4.17), any
function u € HII, also belongs to ®. This and Lemma 4.9 prove the uniqueness in (z). Also,
the fact that our norms are translation invariant, combined with Lemma 4.7, shows that, to
prove the existence in (i) and all other assertions of the theorem, we only need to consider
the case 0 = 0. As in the proof of Theorem 4.2, we can assume that f and g are as in (4.7).
In this case, as we know from [25] or [30], equation (4.1) has a unique ®-solution u that
belongs to Cy([0,T] x R?) and C([0,T], L2) almost surely for any T < oo. It follows that
u € C([0,T],L,) almost surely for any T' < co. Estimate (4.26) also follows from [25] or
[30] as in the proof of Theorem 4.2. It remains only to prove that u € 7, and that (4.25)
holds. Since u is a D-solution, to prove that u € H,, it suffices to prove that u € HI, (T') for
any T' < oo.

Since the matrix a is uniformly non-degenerate, by making a nonrandom time change,
we can reduce the general case to the case a > I. In this case, define the matrix-valued
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function &(t) = *(t) > 0 as a solution of the equation &%(t) + 2I = 2a(t). Furthermore,
without loss of generality, we assume that on our probability space we are also given a
d-dimensional Wiener process B; independent of F;.

Now, consider the equation

do(t,z) = [Av(t, 2) + f(t,z — /0 5(s) dB,)] dt + g*(t, z — /0 5(s)dB,)duw  (4.27)

with zero initial condition. Replace the predictable o—field P with predictable o—field
generated by F; V o(B,;s < t). Then the spaces Hj become larger. By Theorem 4.2
there is a solution v of (4.27) possessing properties (¢) through (7é¢) listed in Theorem 4.2
(with new 7{11,) Use again that, after changing, if necessary, v on a set of probability
zero, the function v becomes a ®-solution of (4.27). Then, by Lemma 4.7, the function
2(t,x) == vtz + fot 7(s) dB,) is a ®-solution of

dz(t,z) = (¥ (t) 2445 (t,x) + f(t,2)) dt + g"(t, z) dwl + 2,:(t, )57 (t) dBY,
and by Lemma 4.9 there is a solution @ € ® of
dii(t, ) = (a" (t)tgigs (t,x) + f(t,2)) dt + g*(t, ) dw?,
which is (4.1) in our case. In addition, for any ¢ € C§° and t > 0,

(a(t, ), ¢) = E{(2(t,-), §)|Fe} = E{(v(t='+/0 (s)dB;), ¢)| 7} (as.).

In particular, it follows from this equality that @ is a ®—solution with respect to the initial
predictable o—field P, and from uniqueness we get @ = u. Therefore,

t
wmm@:mwu+laﬂw¢wﬂ}wm. (4.28)
It follows that

[(u(t,-), 9P < E{[Jo(t, )| p 1 Fe}0117 1, (4.29)

(a.s.) for any ¢ € C§° and t > 0, where ¢ = p/(p — 1).

Next, take a countable family ® C C§° dense in C§°. Observe that, given a distribution
¢, we have ¢ € H} if and only if for any ¢ € ® we have |(¢, ¢)| < N||¢||—1,, with a constant
N independent of ¢. Indeed, in this case there exists a bounded linear functional £ on H 1
such that £(¢) = (¢, $) for any ¢ € ®. Since £(¢) = ((1 — A)~/2h,¢) with an h € L, and
® is dense in C§°, we have 1) = (1 — A)~1/?h ¢ H} indeed. In particular, this fact implies
that the set {(w,t) : w(w,t,-) € Hy} is measurable (even predictable) for any w € D, say
for w = u.

We also know that v € #H,,, which implies that E|v(t,-)|[{ , < oo for almost all ¢. Fix
such a t. Then there exists a set Q' of probability 1 such that E{|v(t,-)||} ,|F:} < oo on
Q' and (4.29) holds for all w € ' and ¢ € ®. Hence, u(t,-) € H} for the chosen ¢ and all
w € . In particular, u(t,-) € H, for almost all (w,t), and from (4.29) it follows that

u(t, T, < E{[lo@)IE 17} (as),  lulleery < vl ) < oe.

Thus u € H},(T) for any T < oo indeed and u € H,,.
Similarly, from the equality

ummmw=mmau+la@w¢wﬂ}wm,
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one gets
[waa(t, NIZ1 p < E{llvea(t, )21 172} (as.).
This and the properties of v immediately yield (4.25). The theorem is proved.

REMARK 4.11. By using the self-similarity of equation (4.1), it is possible to obtain
further estimates from estimates like (4.26) . For instance, remembering that H} = W,
one sees that, for n = 1 and A = 1/p, estimate (4.26) implies that

Bsup{fus (8,1 + (k. N} < N6, KO L, gy + 19511, 1) + 618, 1)

Let us take a constant ¢ > 0 and consider (c2f, cg)(c?t, cx),c ‘w2, and u(c?t, cx) instead
of f,g,w, and u. Then, from the last estimate, we get

Bsup{e” *us(et, )|} + ¢ “lfue’t, |15}

< NeT(CZIJ*(d+2)||f||£P(CQT) + 02')7(‘”2”|gw||£,,(c2T,12) + cpi(d+2)||g||£p(c2T,l2))’

the constant IV being the same as above. It follows that, for ¢, 7 > 0,
E sup{|[uz(t,)|[; + ¢ P[u(t, )|}
t<T

2 _
< NeT/EP2(f12 gy + 190l gy + < IIE z)-

Upon setting ¢ = T and considering (1 — A)(®~1/2y, instead of u, we conclude that, under
the conditions of Theorem 4.2, for any 7' > 0,

E{sup ||uz(t,-)|[%_y , + T%*sup [[u(s,)|[h_; ,} <
t<T t<T

N(d7p7 6) K)T(p_2)/2(||f||;];£:—1 (T) + ||gl‘||§1[;_1(T,lz) + T_p/2||g||§]::—1

We will later prove a much deeper estimate than (4.26).

(T7l2)).

5. Equations with Variable Coefficients

Here we are going to state main results concerning L,~theory of SPDEs in the whole
space, the most important of which, Theorem 5.1, will be proved in Sec. 6. Take a stopping
time 7 < T with T being a finite constant. Fix n € (—o0,00) and fix a number v € [0, 1)
such that v = 0 if n = 0,1, +£2,...; otherwise v > 0 and is such that |n| + « is not an
integer. Define

B(R?) if n=0,
BInl+r = Cln\fl,l(Rd) if n=4142,..,
CIM+7(RY)  otherwise;
B(Rd7l2) if n= 0,
B|"|+’Y(l2) — Cln\—l’l(Rd,lz) if n==414+2, ..,

CI"+7(R?,1,)  otherwise,
where B(R?) is the Banach space of bounded functions on R¢, C!"I~1:1(R?) is the Banach
space of |n| — 1 times continuously differentiable functions whose derivatives of (|n| — 1)st
order satisfy the Lipschitz condition on R%, C!?I+7(R?) is the usual Holder space, and Iy
means that instead of real-valued functions we consider ly—valued ones.
Consider the following nonlinear equation on [0, 7]:

du(t, ) =[a% (t, T)ugizi (t, ) + f(u,t,z)]dt

+ 0™ (t, 2)ugi (t,2) + g"(u, t, )] dwf, o
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where a¥ and f are real-valued, and o? and g are l>-valued functions defined for w € §,
t>0,z€R, ue H? i,j=1,..,d. We consider this equation in the sense of Definition
3.5 (where we take n + 2 instead of n).

We make the following assumptions, where, as in Section 4, we define

Qi (t,2) = 3 (0" (t,2), 07 (t,2))- (52)

ASSUMPTION 5.1 (coercivity). For any w € , t > 0, z, A € R?, we have
K\? > [a¥(t,z) — a¥ (t, z)]NIN > §|\)?,
where K, § are fixed strictly positive constants.

ASSUMPTION 5.2 (uniform continuity of a and o). For any £ > 0,4,j, there exists a
ke > 0 such that
la®(t,2) — a” (t,y)| + |o"(t,2) — o' (t, )]}, < € (5.3)

whenever |z —y| < ke, t > 0,w € Q.

This assumption is actually used only if n = 0, and even then we need a stronger
condition on ¢. For other values of n we impose stronger conditions on a and o.

AsSuMPTION 5.3. For any i, j, k, the functions a'/(t,2) and o*(¢,z) are real-valued
P x B(R?)-measurable functions, and for any w € Q and ¢t > 0, we have

aij(t: ) € B|nH"Y’ o'i(ta ) € B‘n+1|+’y(l2)'

AsSUMPTION 5.4. For any u € Hg“, the functions f(u,t,z) and g(u,t,z) are pre-
dictable as functions taking values in H? and H*'(R?,1,), respectively.

ASSUMPTION 5.5. For any t > 0,w,1,j,

||a’l](t7 ')”B'"H"‘/ + ||a.l(t7 ')||B|"+1H"‘/(l2) < K: (f(Oa 5 )79(07 K )) € fg(T)

AssUMPTION 5.6. The functions f,g are continuous in u. Moreover, for any € > 0,

there exists a constant K. such that, for any u,v € H;‘“, t,w, we have
||f(ua t7 ) - f(’U,t, ')“TL,P + ||g(u7 t7 ) - g(va t7 ')||n+1,p
<ellu = vllns2p + Kellu = 0llnp.  (5.4)
THEOREM 5.1. Let Assumptions 5.1-5.6 be satisfied and let
uo € Ly(Q, Fo, Hy?72/7).

Then the Cauchy problem for equation (5.1) on [0,7] with the initial condition u(0,-) = ug
has a unique solution u € 7—(;‘” (7). For this solution, we have

ullygz 20y < NIFO, - Mlis o) + 190, Nl 1y + Bl 15 )7,
where the constant N depends only on d,n,~,p,0, K,T, and the functions k. and K.

To discuss the theorem, we need the following lemma.

LEMMA 5.2. Let ( € C§° be a nonnegative function such that [ {(z)dz =1 and define
CGe(x) = k¥ (kx), k =1,2,3,.... We assert that, for any u € H}, we have the following:

(i) |lau||n,p < Na||u||n,p, where @ = ||a||gini++ and the constant N depends only on
d,p,n, and v;

(i) ||w* Celln,p < [|ullnps [[u—w* Cpllnp — 0.

The same assertions hold true for Banach—space valued a with natural definition of a.
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Proof. If n # 0,41,42,... (and v > 0), then one gets (i) by Corollary 2.8.2 (ii) of
[33]. If n is a nonnegative integer, then (z) follows from the Leibnitz rule (and the fact that
H} = W}). For negative integers (and generally for negative n) () follows easily by duality,

that is, by using the fact that if u = (1 — A)~"/2f, then
(au,¢) = (f,(1=A)*@ag)) < ||fllplladll-ng  a=p/(0—1).

As for (i7), the first inequality follows from Minkowski’s inequality and the second one
is derived as usual owing to denseness of Cg° in H}. The lemma is proved.

REMARK 5.3. As we have said above, by solution to the Cauchy problem for equation
(5.1) on [0, 7] with the given initial condition ug, we understand a function u € H*?(7)
such that for any test function ¢ € Cg°, one has almost surely

(u(t7 ')7 ¢) = (u07 ¢) + ‘/0 (aij (87 )uz’zi (57 ) + f(ua 8, ')7 ¢) ds

+ /t(a““ (s, Yugi(s,-) + gF(u, s,-), ¢) dw®, Vt€[0,7].
0

It is important that, under our assumptions, the equation makes sense for u € 7-[1’,‘“ (1),
since by Lemma 5.2 we have a“u,:,; € H, o'u,: € Hyt'(R?, 1) whenever u € HJ2.

REMARK 5.4. Two main ideas in the proof of this theorem are quite standard. The
first one, reduction to equations with constant coefficients, will be seen very clearly. The
second one, which is somewhat hidden, consists of introducing the new unknown function
v = (1 — A)™?u, which reduces the case of general n to the case n = 0. The function v
satisfies

do = {(1 = A)"/2(@(1 = A)""2v,000) + (1= A)2f } dt

+{(1= )2 (0™ (1= ) Pup) + (1 - A2} duk

This is a pseudo—differential equation, and we note that more general pseudo—differential
equations can be considered too. Also, this equations shows a need to have smoothness
assumptions on a, o in z if we are interested in n # 0 both positive or negative.

REMARK 5.5. By Theorem 14.2 of [14], for any u € H}*? and m € [n,n + 2], we have
lullm.p < Nllullp gz pllulliy’ < NOe|lullnizp + N1 =)™ 0= jul|n p,

where § = (m—n)/2 and N depends only on d,n,m, and p. This shows that the right-hand
side in (5.4) can be replaced by ||u — v||ntet1,p Once |g| < 1. As an example, one can take
f = fo(x)sup, |ug| if (n+1)p > d and fo € H}}. Indeed, by Sobolev’s embedding theorems,
Hptlte ¢ CUif (n 4 €)p > d. Therefore,

[f(u,t,+) = F(o, )| [np < | follnp S‘;p [(u = v)z| < Nl —0|[nt14e,p-
REMARK 5.6. A typical application of Theorem 5.1 occurs when f(u, t,z) = b*(t, z)uzi+
c(t,z)u + f(t,z) and g(u,t,z) = v(t,z)u + g(t, ), so that (5.1) becomes
du = (a9 ugigi + bug: + cu+ f) dt + (0™Fuy: + vFu + g%) dw. (5.5)
To describe the appropriate assumptions, we take € € (0,1) and denote
ny=mn-+- if n>0, ny=0 if ne(-1,0],

n,=n+1+vy if n>-1, n,=0 if ne(-2-1],
Ne=n-+7 if n>0, n.=0 if ne(-2,0],
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np=-n—1+e if n<-1,
n,=-n—-2+¢ if n<-2
ne=-n—2+¢ if n<-2.
Assume that b, ¢, and v are appropriately measurable and
bi(ta ) eBan C(ta ) eBnca V(ta ) EB"V(RdJl2)7
f(ta ) € Hg: g(ta ) € H;JH_I(Rdal?)'

16, ) Bme + |le(t, ) Bre + [[v(E )| Brw vegy) < K, (f(50),9(,0)) € FR (7).

It turns out then that the assumptions of Theorem 5.1 about f(u,t,z) and g(u,t,z) are
satisfied. To show this, it suffices to apply Remark 5.5 and to notice that, for instance,
if n > —1, then ||vu||pt1,p < N||v||nt1,p by Lemma 5.2; if n € (-2, —1], then obviously
l[vullnsrp < [1vully < Nlully = Nlullns14(—n—1)» and —n — 1 € [0,1); if n < 2, then
Lemma 5.2 yields ||vul|nt1,p < ||[Vu]|nt2-c1,p < N||t||nt2-e1,p, where g1 € (0,€). The terms
[|b*ugi ||n,ps ||ct||n,p are considered similarly.

Actually, the above conditions on b, ¢, and v can be considerably relaxed if one makes
use of deeper theorems about multipliers from [33].

Conditions (5.6) and (5.7) of the following theorem are discussed in Remarks 5.9 and 5.8.

THEOREM 5.7. Assume that for m = 1,2,3, ..., we are given a¥l 0t | fm,gm, and uom
having the same sense as in Theorem 5.1 and verifying the same assumptions as a¥,0%, f, g,
and ug with the same constants 6, K, k., and K.. Let ((z) be a real function of class C§°
such that ((z) =1 if |z] <1 and {(z) = 0 if |z| > 2. Define (.(z) = {(z/r) and assume
that, for anyr =1,2,3,...,4,j=1,....d, t >0, and w € Q,

16 {a® (t, ) — @i (t, ) HInp + 1Gr {0 (E, ) — o0 (t, ) HIng1,p = O (5.6)

as m — oco. Finally, let E||ugm — 0 and

- u0||1rjb+272/p,p
||f(u77) _fm(u;';')”H;(T) -0, ||g(u77) _gm(uv'v')||]}ﬂ;‘+1(7—,l2) =0 (57)

whenever u € Hg+2(T). Take the function u from Theorem 5.1 and for any m define
um € Hyt2(7) as the (unique) solution of the Cauchy problem for the equation

dum (t, ) =[a (t, %) Umgizi (t, T) + o (Um, t, )] dt (5.8)
+ [0 (t, ) tmgi (t, ) + gE (U, t, )] dwf
on [0, 7] with initial condition um(0,-) = vom- Then [[u — um|lyn+2(,) = 0 asm — oco.
Proof. For v,, = u — u,, we have
dv, (t) = [a%vmwiaﬂ + Fn(vm)] dt + [Uffsvmwi + Gﬁm (vm)] dwf,

where - -

Fn(v) = (a” = ag )ugizi + f(u) = fm(u =),

G (v) = (0™ — op)ugs + g"(u) — g, (u — v).
Hence, from our assumptions and by Theorem 5.1, we obtain

|lw— Um||H;+2(T) < NI,

where N is independent of m and

Im = ”(aij - a%)uwiwj ||H;,'(T) + ||f(u) - fm(u)“H;‘ (r)

10" = o)l 41 ) + 1902) = G ()l lgrst ) + (Blltto = tom| Py )77-
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Next, by our assumptions about convergence of fy,, gm, Uom,

limsup I, < limsup{]|(a¥ — a)uyiys [l () + |07 — 03 )u
m—0Q0 m—r0o0

]HI;+1 (T,lg)}- (5.9)
Here, by Lemma 5.2, for any v € C§° and r so large that v(, = v, we have
1(a¥ = a8 )ugigsllnp < NI = 0)aigsllnp + 1@ = a)vgigillng,  (5.10)

ll(@” = a)vgiaillnp = |G- (a” = a3l vgizsllnp < NG (a¥ —al)]

where the constants N do not depend on m and r. Thus,

.l [V]| Bini+247 5

lim sup ||(aij - a%)uwiwj ||n,P < N||(u - v)zizjl n,p>
m—r00

and, from the arbitrariness of v, we conclude that the left-hand side is zero for those w and
t for which u € HI’}“. If we again apply Lemma 5.2, then we see that the pth power of
the left-hand side of (5.10) is bounded by an integrable function. This and the dominated
convergence theorem imply that

"}E}noo ||(aij - a%)uz"zj ||]HI;} (r)y = 0.

Similar arguments take care of the remaining term in (5.9). The theorem is proved.

REMARK 5.8. Condition (5.7) is satisfied for any u € H)>() if and only if it is satisfied
for u(t,z) = ¢(z) with any ¢ € C§°.

Indeed, the “only if” part is obvious. In the proof of “if” part notice that, under the
“if” assumption, (5.7) is automatically satisfied for u of type

J
v = Z I(Ti—lﬂ'i] (t)vi(z),
i=1

where 7; are bounded stopping times and v; € C§°. By Theorem 3.10, one can approximate
any u € Hpt?(r) C HZP?(7) with functions like v. It remains only to notice that, by the
assumptions of the theorem, for instance,

||f(u7 K ) - fm(U, K )”Hg(r) < ||f(u= K ) - f(’l), K )||H},‘(T) + ||f(’l), K ) - fm(v’ K )||]H[;(7—)
+||fm(’U, K ) - fm(U, K )||H;,‘(T) < N“u - UHH;‘*'Z(T) + ||f(’U, g ) - fm(’l), K )”H},‘ (m)-

REMARK 5.9. While checking conditions (5.6) and (5.7), it is useful to bear in mind

that, if one defines 0% = o®* and gk = g* for k <m and 0¥ = gk =0 for k > m, then

||CT{ai(t’ ) - U:’n(ta ')}||7L+1,p — 05 ||g(ua "y ) - gm(ua "y )||]I-11';+1 (m,l2) — 0.
Indeed, for instance,
4 n 1/2
||g(u7 ) ) - gm(’U., ) )||]I1_)E;+1 (r,l2) = E/O' ||( Z |(1 - A)( +1)/29k(u7t7 )|2) / ||g dt7
k>m

which goes to zero by the dominated convergence theorem.
This fact allows one to approximate solutions of (5.1) by solutions of

At (t,2) =[a% (b, 2)Uppgizs (£, ) + f(Um,t,2)]dt

+ 57 0% (¢, @)t (8 2) + 9 (m, £, 2)] duf. (5.11)
k<m
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Before stating the following corollary, take the functions (; from Lemma 5.2 and, for a
function h = h(u,t,z) defined for t > 0, z € R?, and u in a function space, let

hom (u,t, ) = [l +9), 62 = y)n(y) dy. (5.12)
To get a better idea about this definition, notice that if, for instance, h(u,t,x) = ¢(t, z)u(t, x),
where c(t,z) is a given function, then h(u(- + y),t,z — y) = c(t,x — y)u(t,z), so that
hon(u,t,x) = ¢ (¢, ©)u(t, z) with ¢, (t, ) = c(t, z) * (n ().

COROLLARY 5.10. Under the assumptions of Theorem 5.1, define
(@m, om)(t, 2) = (a,0)(t, ) * (m (),
(fmagm) = (fmagm) or (fmagm)(u t 'Z') (f; )(u,t,a:) *Cm(x)

Then the assumptions of Theorem 5.7 are satisfied, and if we define up,, € H2*?(r) as
a solution of the Cauchy problem (5.8) with initial condition u,,(0,) = wug * (s, then
[lu — UMHH;“(T) — 0.
To prove this, notice that
(O3> O3 AN = [(0°X) * Gu7, < G % [(0F, 07)1, X' N],

which guarantees that the approximating equations satisfy the same coercivity condition.
Also, for any u € HJ*? and ¢ € C§°, the function (f(u(- + 2),t,- —y),¢) = (f(u(- +
2),t,),é(- +y)) is continuous in z owing to Assumption 5.6 and infinitely differentiable in

y as it has to be for any distribution. Therefore, the definition of f,, according to (5.12)
makes sense as an integral of distribution with respect to the parameter y, namely

(s, / Cn )l + )t — 1), ) dy.

Furthermore, fp, = fom + fim, Where fo = f(0,t,z) and f; = f(u,t,z) — f(0,¢,z). By
Lemma 5.2, we have fon(t,-) € H,'. By Assumption 5.6,

|(frm(u,t,-),6)| < N/Rd Gl -n.glluC +Y)llnt2p dy = N|||-n,qgllullnt2,p,

where ¢ = p/(p — 1). Hence, fom is a Hp—valued function. Also, f(u,t,) * (m(z) is well
defined because of Assumption 5.4. Similarly, g,, is well defined. Minkowski’s inequality
implies that all Assumptions 5.1-5.6 are satisfied for any m with the same K, 9§, k., K.
Other assumptions of Theorem 5.7 are satisfied due to continuity in the mean of summable
functions and Assumptions 5.1-5.6. For instance, for any ¢ € C§°,

||f(¢7 K ) - fm(¢7 K )||H;‘(T) < Ly + I2m7

where
i 5= (@) = (Mg o1, Fn(it2) = [ 00t = )G
Lom = (@) = Fra(y sl o
< / £ (@, =) = FOC + ), — )l (r) o (0)
= [ 1601 = 16+ 90, Mg o Gn @)y SN [ 116 = 60+ )l 0) .

Clearly (cf. Lemma, 5.2) I, + I5,, — 0 as m — oo, and the application of Remark 5.8 ends
the argument.
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COROLLARY 5.11. Let the assumptions of Theorem 5.1 be satisfied and also let them
be satisfied for a p = ¢q, where ¢ > 2. Then the solution u from Theorem 5.1 belongs also to

HIT2 (7).

To prove this, without loss of generality, assume p < ¢ and let v be the solution of the
same initial value problem but belonging to #?*?(r) (such a unique v exists by Theorem
5.1). We have only to show that v = w. In light of Corollary 5.10, we can approximate
both v and u by solutions of equations with smooth coefficients and with (f,,, gm)(u, t,z) =
(f,9)(u,t,x) * (n(z). We only need to show that the approximating solutions coincide.
Observe that, for any r > n, for instance,

[[frm(us=5) = fm (U, )lrp S N[ f(ws57) = f(0, ) lnp < Nellu = v|[nt2,p
+NEK.||u = v||np < Nellu = v||ry2,p + NEKc|lu = vl[r,p,
where N’s depend only on m,r,n,p. This shows that, for any fixed m, Assumptions 5.1-5.6
are satisfied with any large n both for p and gq.
Therefore, we can suppose from the very beginning that Assumptions 5.1-5.6 are sat-
isfied for any large n for p and ¢. In this case, by Theorem 5.1, u € H;(7) for any r, and
hence, also invoking Theorem 3.7,

°
E/ taa(t, Y2, dt < 00, Esup]lut,)][B < oo
0 t<t

for any r =1,2,3,.... Since |[ugs(t,-)||L; < Nlluga(t,)|[2,]|ult, )||’C_T’_’+2 for i > p, it follows
that

| aa el < o0 (as)
0

for any i > p. Take here r =0 and 7 = ¢ and define

t
Tk:T/\inf{t:/ |z (s, )2 ds > k}.
0

Then obviously u € H} (7). Since v lies in the same class, by uniqueness u(t,-) = v(t,-) for
t < 71, (a.s.). It remains only to observe that 73, + 7 when k — oo.
Next general result concerns the maximum principle.

THEOREM 5.12 (maximum principle). Let the assumptions of Theorem 5.1 be satisfied
and let u be the function existence of which is asserted in this theorem. Assume that
f(v,t,@) = b (t, 2)v,: (@) +o(t, 2)e(t, @) + f(t,2), g (v,t,2) = v(t, 2)v* (¢, 2),

where bi(t,x),c(t,x), vk (t,x) are certain bounded functions on (0,7] x R? and f(t,x) =
f(0,t,2) > 0. Also assume that for any w we have ug > 0. Then u(t,-) > 0 for all t € [0, 7]
almost surely.

Proof. By virtue of Remark 5.9, we can only concentrate on equations with finite
number of Wiener processes like (5.11), which in our case is the following

du(t, z) = [a¥ (t, 2)ugsas (t,2) + ' (t 2)ups (£, 2) + ult, 2)e(t, 2) + f(t, 7)) dt
+ ) [0 (t @)ug: (t, ) + ult, o)k (t, o) dwf.  (5.13)
k<m
Corollary 5.10 and the explanation after (5.12) allow us to assume that ug(z) and the
coefficients and f in (5.13) are infinitely differentiable in x. After this, by multiplying ug

and f by a cut—off function of x and by using Remark 5.6 and Theorem 5.7, we convince
ourselves that we can assume that ug and f(¢,z) have supports with respect to z in a fixed
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ball. In this case the assumptions of Theorem 5.1 are satisfied for p = 2 again by Remark 5.6
(and Holder’s inequality), which, by Corollary 5.11, yields u € H%(7) for any n. Now our
assertion follows from the maximum principle proved in [25] (see Theorem 4.2 there). The
only point to mention is that in [25] we considered (5.13) on [0,T], but we always can
continue our data in an appropriate way after 7, which is assumed to be less than 7. The
theorem is proved.

By the way the proof of the maximum principle in [25] is based on representation
formulas like (4.28). A heuristic derivation of many other formulas of that kind can be
found in [15].

6. Proof of Theorem 5.1

The proof we present here is quite typical for proofs of solvability of equations with
variable coeflicients on the basis of solvability of equations with constant ones. The same
type of arguments is commonly used in the theory of partial differential equations for proving
the solvability in Sobolev or Hélder spaces. First we need some auxiliary constructions. Fix
aT e (0,00).

DEFINITION 6.1. Assume that, for w € Q and ¢ > 0, we are given operators

L(t,-) : HP"? —» HP, A(t,-): H'Y? — HIVH(RY, 1).
Assume that

(7) for any w and t, the operators L(¢,u) and A(¢,u) are continuous (with respect to u);

(ii) for any uw € HJ"2, the processes L(t,u) and A(t,u) are predictable;

(iii) for any w € Q, ¢ > 0, and u € HJ+?, we have

L@t w)np + A W[nt1,p < Noa(l+ |[ullni2,p),

where N A is a constant.
Then for a function u € Hp+(T), we write

(LaA)u = _(f7 g)

if (f,9) € F5(T), and, in the sense of Definition 3.5, for ¢ € [0,T], we have that Du(t) =
L(t,u(t)) + f(t) and Su(t) = A(t,u(t)) + g(t), or put otherwise

t t
u(t) = u(0) + / (L(s,u(s)) + f(s)) ds + / (A*(s,u(s)) + g*(s)) dut ().

REMARK 6.2. By virtue of our conditions on L and A, for any u € H}?(T), we have
(L(u),A(u)) € FJH(T). Also, (L,A)u = (L(u) — Du, A(u) — Su). In particular, the operator
(L, A) is well defined on Hy+?(T), and, as follows easily from Definition 6.1 (iii),

(L, A)ul 2z < (1 + 2N ) [ullggz+e () + 2NL A TP
In terms of Definition 6.1, Theorem 4.10 has the following version.
THEOREM 6.3. Let a and o satisfy the assumptions from the beginning of Sec. 4. Define
Lu = a%ugiz;, Au= otuy.
Then the operator (L, A) is a one-to-one operator from 7—["+2 (T') onto F}(T') and the norm

of its inverse is less than a constant depending only on d D,6, and K (thus independent of
T).

Next, we prove a perturbation result. It needs a proof because we do not allow € to
depend on T'.
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THEOREM 6.4. Take the operators L and A from Theorem 6.3, and let some operators
L1 and Ay satisfy the requirements from Definition 6.1. We assert that there exists a con-
stant € € (0,1) depending only on d,p,d, and K such that if, for a constant K; and any
u,v € HYP? ¢ >0, w € Q, we have

1L (8, u) = La (£, 0)[[np + [[A2(E, w) — Ar(,0)|Ins1,p
S <f5||u:zv.7v _'Uavw“n,p"'Kl“u_U||n+l,p7 (61)

then, for any (f,g) € F/(T), there erists a unique solution u € H"+2( ) of the equation

(L+ Li,A+ A)u=—(f,9)- (6.2)
Furthermore, for this solution u, we have
wllygm+2(ry < NII(La(0) + £, A1, 0) + 9|z ) (6.3)

where N depends only on d,p, 8, K, Ky, and T and N is independent of T if K; = 0.

Proof. First notice that, by interpolation theorems, ||u|n+1,p < €||Uzz||np+N (g, d,p)||t||n,p-
Therefore, without loss of generality we assume that instead of (6.1) we have
||L1(t7 u) - Ll(t7 U)”Tb,p + ||A1(t7u) - Al(t7 U)||Tb+1,1)
< elltga = Voa|ln,p + Kil[u = v[np-
Now fix (f,g) € F(T). Take u € Hp$*(T), observe that (Ly(u),As(u)) € Fr(T),

and, by using Theorem 6.3, define v € H"+2( ) as the unique solution of the equation
(L,ANv = —(f + Li(u),g + A1(u)). By denoting v = Ru, we define an operator R :
HIEH(T) — HIE*(T). Equation (6.2) is equivalent to the equation u = Ru. Therefore,
to prove the existence and uniqueness of solutions to (6.2), it suffices to show that, for an
integer m > 0, the operator R™ is a contraction in 7-["+2(T).

By Theorem 6.3, for t < T,

[|Ru — Rv||Hn+z(t) < N||(L1(u) = L1(v), A1 (u) — A1(U))||%;(t)

< NoeP||lu —vl||?

evaiy + NKE [ Bluts) o) s,

with a constant Ny depending only on d, p, §, and K. This gives the desired result if K3 = 0.
Also, in this case estimate (6.3) follows obviously with N independent of T'.
In the general case, by Theorem 3.7,

Bllu(s) = v(s)ll, < Nillu =l 1,

where s < T and N; depends only on d, p, and T. It follows that, for t < T and 8 := NyeP,
we have .

||RU - RU”%;+2(t) S 0”“ - U||§{;+2(t) + N2 /0 ||u - U||§){;+2(s) dS,
where N, depends only on d,p,d, K, K1, and T. Hence, by induction,

m m,, (|P m
||R u—R U||7~LZ+2(t)_0 ||u || "+2(t)

m t k—1
Z bk [ (E=8) p P
" ( >0m Nz /0 G oy 1= Vllgeg dss IR = BP0 o

k=1

m
m 1 ) ) )
/;) (k) gm— TN2) [lu — v||Hn+2(T) < gmgm max - (TN2/6)"||u — “”H;;“(T)'
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This allows us to find € depending only on d,p,d, and K and m depending on the same

things plus K; and T, so that R™ is a contraction in H$?(T) with coefficient 1/2. Of

course, this yields all our assertions. The theorem is proved.
We finish our preparations by showing how Lemma 5.2 will be used.

REMARK 6.5. To some extent, in what follows, the most important consequence of
assertion () in Lemma 5.2 is that if @ = ||a||gini++ < 00, then there exists a new norm
1l - [n,p in H}} such that

llaul[n,p< 2N|lal|B]lullnp  (llalls = Suﬂgdla(w)l),
zTE

where N is the same constant as in Lemma 5.2. To show this, it suffices to observe that,
for a,,(x) = a(z/m), uy(z) = u(z/m), and m > 1, we have

1(m* = 8)" (aw)[|, = m" V(|1 = A)** (@mtm)|| <

Ndmmn_d/p”(l - A)n/zum”p = Ndmll(m2 - A)"/2u||p <

_ 2 /2
Nlalls + —qaryar@(m® = 8)* Zull,.
Alternatively, it would be sufficient for our needs to know that

llaulln,p < N(llal[Blulln.p + llallgimi+[ulln-1,)-
The author could not find the last inequality in the literature, though some very interesting
information related to the subject can be found in [13].

Now we perform the main step in proving Theorem 5.1.

LEMMA 6.6. Let Assumptions 5.1, 5.8, 5.4, and 5.5 be satisfied. Then there exists an
e=¢(d,p,n,v,0,K) >0 such that if =T and

(i) inequality (5.3) holds with this € for all x,y,t, and w and

(i) f and g are independent of u,
then there ezists a unique solution u € 7-[;‘:52(T) of equation (5.1). Furthermore, for this
solution u, we have

lullym+zory < NI Fz 1)
where N depends only on d,p, 6, K, and T.

Proof. Define a(t) = a(t,0) and o(t) = o(t,0), take operators L and A from Theorem
6.3 corresponding to these a(t) and o(t), and let

Ly(t,u)(2) = [0 (t,2) — a" ()]ugizs (), Ar(t,u)(2) = [07(t ) = o (8)]ugi ().

In view of Theorem 6.4, to prove existence and uniqueness, we have only to check that
if € in (5.3) is sufficiently small, then the operators L1 and A; satisfy condition (6.1) with
as small £ as we like and with K under control. Observe that by Lemma 5.2,

IL1(t, u)l|n,p < Nlla(t, -) = alt, 0)]| pini+ ez |ln.p,

[[A1(tw)[|nt1,p < Nllo(t,-) — ot 0)||Bimt1144 1) [t || nt1,p-
Since ||uz||n+1,p < N(||uzz||np + ||6]|lnt1,p), our lemma holds true if

||a(t’ ) - a(t’ O)||B|"|+‘Y + ||U(t5 ) - U(t50)||B\"+1|+‘7(l2) <eg = 50(dapana756: K) vt
Next, observe that, for an,(t,z) = a(t/m?,z/m) and m > 1, we have

lam(t,-) = am(t,0)||pinies < &+m~IIFINIE
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(K comes from Assumption 5.5), and for |n| + v = 0 we can even drop the second term on
the right. An analogous inequality holds for o. It follows that, for e sufficiently small and
m sufficiently large, the statements of the lemma are true if we replace a, o, wy, f, g, and
T in equation (5.1) by am,om, Mwy/m2, m=2f(t/m?,x/m), m~'g(t/m? x/m), and m*T,
respectively. After this, it remains only to fix an appropriate m and make an obvious
change of the unknown function in the above-mentioned modification of equation (5.1) (and
use 1 — A ~ m? — A so that the norms || - ||, of u(t/m?,z/m) and u(t,z) are comparable).
The lemma is proved.

Finally, we need the following result from [17], which, in a sense, is essentially covered
by Theorem 2.4.7 from [34].

LEMMA 6.7. Letd > 0 andlet € C°, k =1,2,3,.... Assume that for any multi-index
aandz € R?,

zeR4

sup z | D%k (z)| < M(a),
k

where M (a) are some constants. Then there exists a constant N = N(d,n, M) such that,
for any f € Hp,

DGk Sl < NIl -
k

If in addition
>l @)P >4,
k

then for any f € Hp,
||f||zr)l,,p < N(danaMa 6) Z ||Ckf||fb,p
k

REMARK 6.8. We will also use a natural extension of this lemma to the case of Banach—
space valued f.

Proof of Theorem 5.1. By Theorem 2.1, for any nonrandom z € Hj +2-2/P there exists
a unique solution u € Hp+?(7) of the equation du = Awdt with initial condition z. This
theorem also provides estimate (2.7) of the norm of u. From this theorem and the estimate,
it follows that there exists a unique solution @ € H;+?(7) of the equation du = Au dt with
initial condition ug and

=P p
||“”n;:+2<r) < NE[uollna-/p.,p-
After replacing the unknown function u with v + 4, it becomes obvious that, to solve

(5.1) in Hp*+2(7) with the initial condition uo, it suffices to solve the equation
du(ta .’L‘) :[aij (t7 x)uwiavj (ta 'Z.) + fT(ua i x)] dt

+ o™ (t, 2)ug (t ) + 5" (u, t, )] dwf

n+2
P,0

flust,z) = {f(u+ 8, t,2) + a9 (t,2) g0 (t,2) — AG}A(2),

7" (u,t,2) = {0 (t,2)Tys (¢, 2) + 9" (u + @, 1, 2) }a(t),
and A is the set of w,# for which u(t,-) € H.
From Lemma 5.2, it follows that f and g satisfy the same conditions as f and g. This
allows us to assume that ug = 0. Furthermore, one can always extend f, g after time 7 by

equaling them to zero. That is why without loss of generality we assume that ug = 0 and
T="T.

in the space H (“(7), where (remember di = Aa dt)
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Now, define
Lu = a (t, %) Uy, (t, ), Au= o' (t, x)uy:(t, ),

and let {¢x : £k = 1,2,3,...} be a standard partition of unity such that, for any k, the
support of (i lies in a ball By of radius (1/4)k. /2, where k. is taken from Assumption 5.2
and ¢ from Lemma 6.6. Also for any k, we take a function 7, € C§° such that g = 1 on
By, nrx = 0 outside doubled By, and 0 < 1 < 1. Denote by zj the center of By, define
Ly (t,z) = np(x)L(t,z) + (1 — nx(x))L(t, z1 ), and similarly define Ay.

Observe that, for any k, the operators Ly, Ay satisfy condition (i) of Lemma 6.6. There-
fore, if we denote (fx, gr) := (Lg, Ag)(ulk), then by this lemma

[ulkllynt2(ry < NI(Frs gl p 2y = NI (L, M) (i) |2 (1)
Furthermore, by using that 7, = 1 everywhere where (ru # 0 we easily check that
(L, Ar)(ue) = (L, A)(ulr) = Ce(L, A)u + (uLCr + 2Cka - aua, uAlk),
so that
[uCkllpn+2(y < NGk (Ls Mull 2z (1) + N|[(WLCr + 2Cka - atia, wA)|| 72 (T)-

We sum up the pth powers of the extreme terms and apply Lemma 6.7 and Lemma 5.2 in
the estimates like the following one:

3 11ua Chatgillngp < Nlua®lnp < Nfullnp-
k

Then we conclude that, for any u € HZ$2(T),

lullpg+2(y < NIE, Aullzg () + Nllullg+1 (1) (6.4)

Next, we show that the last term on the right can be dropped. Indeed, ||u||nt1,p <
&||tze||np + N(€,d,p)||u||np- Therefore, (6.4) can be modified by replacing the last term
with N||ul[gs (7). This can be done with any ¢ < T in place of T. After this, by Theorem
3.7, the inequality

t
Elfu(t, )15, < NI/(L, AYul ey gy + N / Ellu(s, |12, ds

holds for any t < T. By Gronwall’s inequality, this yields that

By ry < NI Ayl
which, along with the modified (6.4), proves that
l[ullym+2ry < NII(L, A)ullzp ) (6.5)

for any u € HZ’# (T).
This is an a priori estimate. Now we use the standard method of continuity. For
A € [0,1] we consider the equation

du = (Lyu + f) dt + (ASu + g*) dw} (6.6)
with zero initial condition, where
Lyu=X+(1-XNL, Au=(1-NA

and (f,g) is an arbitrary element in F}(T').
Observe that the a priori estimate (6.5) holds with the same constant N for all Ly, Ay
in place of L, A. Next, take a A\g € [0,1] and assume that for A = Ay equation (6.6) with
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zero initial data has a unique solution u € H;ﬁg?(T) for any (f,g) € F5(T). By the way,

this assumption is satisfied for Ag = 1 by Theorem 6.3. Then we have an operator
R, : Fp(T) = HpE(T)
such that Ry, (f,g) = u. From (6.5) we get that

IRxo (Fs Dlagnv2(ry < NI 97z (1) (6.7)
For other A € [0, 1] we rewrite (6.6) as
du = (Lx,u+ {(A = X)(A = L)yu+ f})dt + (A5 u+ {(Ao — M)A u + ¢*}) dwf
and we solve the last equation by iterations. Define ug = 0 and
Uj+1 = Rag (A — A0)(A — L)uj + f, (Ao — A)Au;j + g).
Then by (6.7)
lwjrr = wjllymz iy < NIA = ol [[((A = L) (u; — uj1), Auy — uj—1))|[7p (1)
< Ni|d = Aol lluy — wj—allym+z )
where N is independent of j, A, and Ag. If Ni|A — Ag| < 1/2, then u; is a Cauchy sequence
in HH2(T'), which converges by Theorem 3.7. Its limit satisfies
u=Rx (A= 2)(A = L)u+ f, (Ao — A)Au + g),

which is equivalent to (6.6).

In this way we show that if (6.6) is solvable for a Ag, then it is solvable for ) satisfying
Ni|A — Xo| <€ 1/2. In finite number of steps starting with A = 1, we get to A = 0. This
proves the theorem if f, g are independent of wu.

To consider general f and g, it remains only to repeat the proof of Theorem 6.4 taking
flu,t,z) and g(u,t,x) instead of f + L1(u) and g + Ay (u) there. The theorem is proved.

7. Embedding Theorems for 7 (7)

The above theory of solvability looks satisfactory only until one tries to apply it to
concrete problems when one is interested in getting not only solvability but also some quali-
tative properties of solutions, like continuity, decay at infinity, compactness of support, and
so on. To answer such questions, one has to understand what qualitative properties the
solutions have. Since solutions are just arbitrary functions from H}(7), we are actually
interested in properties of functions from this space. Let us fix a T' € [0, 00) and a stopping
time 7 < T.

The first two assertions of the following theorem are straightforward corollaries of two
Sobolev’s theorems. One says that H C C* if a := n —d/p > 0, where C* = C*(R?) is
the Zygmund space (which differs from the usual Holder space C* = C*(R?) only if « is an
integer, see [33]). The second one says that H;' C H" if m <n and n —d/p=m —d/q.

THEOREM 7.1. (i) Ifa:=n—d/p >0 and u € H} (1), then u € L,((0,7],C*), where
C% is the Zygmund space. In addition,

B [t )l dt < Nidomp)lulf g
(i) If m <n, n—d/p=m —d/q, and u € H}(7), then

B [t B dt < Nl
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(i4i) For any function u € H3 (), we have u € C([0,7], HY™") (a.s.) and
Esup[Ju(t, N1, < N(dn, T)lull3 -

Proof. As we have said before the theorem, we only need to prove the third assertion.
By Remark 3.4, we may assume that n = 1. Denote ug = u(0), v = Tiug. Observe that by
Theorem 2.1 we have v € Hj (7). By Minkowski’s inequality, [|¢ * u||, < |ul|||¢]]1, so that

1Tetoll> < lfuoll2,  Esup|lv(, N < Elfuolf3-

In addition, almost obviously, T;ug is a continuous (analytic) Lo—valued function in ¢ for
t > 0. Also, we have (Tiug); = TiAug, which implies that ||Tiug — uoll2 < t||Auglls — 0
if up € H2. Adding that the set H2 is dense in Ls, we conclude that 7} is a continuous
semigroup in L. This means that v € C([0,7], Hy ') and shows that we need only to
consider u —v. In other words, in the rest of the proof we may and will assume that ug = 0.

In this case, denote f = (Du — Au)li<,, and g = (Su)li<,. Solve equation (4.2) on
[0,00) with zero initial data. By uniqueness, the solution coincides with « on [0,7]. By
Theorem 4.2, assertion (4i7) holds. The theorem is proved.

Further results about some basic properties of the spaces # () are collected in the
following theorem. As we have seen in Theorem 4.2, assertion (#i4) of Theorem 7.1 is true
not only for p = 2 but also for any p > 2. However, for p > 2 a much stronger statement (%)
of Theorem 7.2 holds.

THEOREM 7.2. (i) If p>2,1/2> 3> a > 1/p, then for any function u € Hy(7), we
have u € C*~1/7([0, 7], H?28) (a.s.) and for any stopping time n < T,

Ellu(t An,-) —u(s An, )5 _sp, < N(d, B,p, DIt — s lullfyy () Vs <T5  (7.1)

E“u( )“C"" 1/p([0T H"™ 2ﬁ) (d ﬂ7a b, )”u“%g(’_) (72)
(%) If g >p>2 and 6 € (0,1), then for
d d+2(1-46
m<n+a—¥, u € Hy (1),

we haveuELp/g((O T ) (a.s.) and
/ ||u p/z dt)o S N(d7p7q7n7m707T)||u||p"(7—)
In particular (take 8 =p/q),

B( /0 e, )1 4 407/ < N(d,p. ., T fuly

1 1
g>p>2, m<n—(d+2)(1—)—a).

To prove the theorem, we need two lemmas. Remember the notation T; introduced in
(2.3).

LEMMA 7.3. For any h € L,, 6 € [0,1], and t > 0, we have
_ 1
lle™* Tihllp < Nz llPll-205,  [I(Ti = DAl < Nt°||h|20,p, (7.3)
where N = N(d,p,0).
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Proof. These inequalities follow from Theorem 14.11 of [14]. For the sake of complete-
ness, we prove them. The derivative (T;h)} can be represented as t~! times a convolution of
h with a function having finite L;—norm, the norm being independent of ¢t. By Minkowski’s
inequality, ||C * hll, < [|All,l[Cll so that

1 _ 1
I(Th)llp < N(d,p)5 [[hllp,  [l(e™ Th)llp < N(d,p) 5 [I]lp- (7.4)
Hence for 6 € (0,1), (see (2.2))

—(e+0) —e'Tih d
e stu e "1y S
0= & Tl =) [ il

tq ot i ds * ds
<N _9||6 Tsrru —e "Tihll, —+ N 1+6||h||p
0o S y K
Here by (7.4)
—(s - 5
lle”CHIT, pyu — e " Th |, < NE [1Allp,

t t
1 ds 1 1
—(s+t —t - N
/0 39”6 (s )13+tu—e Tihllp P < ||h||p/0 750 ds = ||h||pt9-

This proves that
lle™*Te(1 — A)’hl|, < N||h[l5t ", (7.5)

which gives the first inequality in (7.3) after replacing (1 — A)?h with h. If § = 0, then one
can take N = 1 in the first inequality in (7.3), which follows from Minkowski’s inequality.
If = 1, then we use (7.4) and the fact that (e~!T;h)} = e 'T;(A — 1)h.

To prove the second inequality in (7.3) for ¢ € [0,1] and 6 > 0, it suffices to notice that
(T;h), = ATih and A = [A(1 — A)71](1 — A)1=?(1 — A)? and use (7.5) in the following
estimates

(T, — 1]l < / AL = A) (1= AY'OT,[(1 — A)YR]][, ds

t t
<N [ 10— AT = A Rl ds <N [ 5 dsl bl = Nl
0 0

For t > 1 or 6 = 0, the second inequality in (7.3) is trivial since ||h||, < ||h||26 and t° = 1.
The lemma, is proved.

LEMMA 7.4. Let ap > 1 and p > 1. Then, for any continuous L,-valued function h(t),
and s < t, we have

h r r
|[h(t) — h(s)|[> < N(e, p)(t — 5)*P~ 1/ / r2>r1|| 2) — h(r1)||R

|rg — |1 oP

t—s t—y
=N(oz,p)(t—s)"""1/0 7ldJZ,é,,/ |[h(r + ) — h(r)|[2 dr (g = 0).

This is one of embedding theorems for Slobodetskii’s spaces (see, for instance, [33]).
It is to be said that embedding theorems were applied for studying continuity properties
of random processes for quite long time; see, for instance, [1], [9], [11], [19], [35]. The
following consequence of (7.6),

I8 = A _ 4 p// 1., Bl —heollp

I
o<s<i<T (t—s)oP~! [ra — ri[FoP

L dridry

(7.6)

E
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can be used wherever one uses Kolmogorov’s continuity criterion (see, [1]). By the way,
embedding theorems are (for the most part) known for multi-dimensional case as well, and
one can use them for studying random fields (cf. [35]).

In [19], equation (7.7) with T' = 7 was used to prove that Fourier’s series

1t N [2 i 1 . .
— — n— Sinnt,
ﬁﬂo 7rn:177 n

where 7, are N(0,1) i.i.d. random variables, converges uniformly on [0, 7]. This is the way
the Wiener process is introduced in [19]. Estimate (7.7) also gives a very good modulus
of continuity for the Wiener process. Of course, an advantage of normal centered vari-
ables is that (F|£[P)1/? = N(p)(E|¢|?)'/?. Instead of this, in our applications here we use
Burkholder-Davis—-Gundy inequalities. By the way, a very short proof of (7.6) may be found
in [19]. Finally, notice that the space L, in (7.6) and (7.7) can be replaced with any Banach
space.

Proof of Theorem 7.2. Take u € H(7), and define f = (Du—Au)l;<, and g = (Su)l<;.
Notice that the function w on [0, 7] satisfies the equation

dv = (Av + f) dt + g* dw}. (7.8)

By Theorem 5.1, equation (7.8) on [0,7] with initial condition v(0) = «(0) has a unique
solution v € H(T). The difference u— v satisfies the heat equation on [0, 7] with zero initial
condition. It follows that u(t,-) = v(¢,-) on [0, 7], and by Theorem 5.1,

l10ll2g ) < NI fllig-2 ) + 19llig=1 (r.10) + B[] _o,)'7”) < Nl (r)-

The inequality |[v||#z (1) < N|[ullsen(-) and the equality u(t,-) = v(¢,-) on [0, 7] show that
we only need to prove the theorem for v, T in place of u, 7. In particular, we may and will
assume that 7 = T'. Also, observe that

1 L2y + 19llig crmy + (EINaOIE_y )P < Nllullag .

This allows us to concentrate only on solutions of equations (7.8) on [0,T] and to prove

our assertions with ||(f, g)||]_-;—2(T) + (E||u(0)||272/p’p)1/1’ in place of ||u||g(r)- Therefore,

below we take 7 = T and take the function u € H7(T) as a solution of (7.8). As in the
proof of Theorem 4.2, we may and will assume that f and g are as in (4.7) and u(0) € C§°.

After these preparations, we are going to prove assertion (7). By Remark 3.4, without
loss of generality we assume that n = 23. Denote

w1 (t) = Tyuo + /Ot Ti—sf(s)ds.
It is easy to see that
ur(r +7) —ui(r) = (T, — Dug(r) + /07 Ty—pf(r + p) dp.
Therefore, E||uy(r + ) —ui(r)|[5 < N(As(r,v) + Bi(r,7)), where
As(r2) = EIT, = D0, Balris) = Bl [ T+ 0) ol

and, by Lemma 7.4,
Ellur(t) = ui(s)lfp < N(t = 5)*P7 (Iu(t, 8) + (¢, 9)),
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with

t—s d t—y t—s d t—y
ata) = [ s [ e aee = [ 25 [ B
0 s 0 s

By using Holder’s inequality and Lemma 7.3 and observing that (8 — 1)¢ > —1 for
g =p/(p—1), we get (remember n = 20)

Y
B = [ [ 00 Ty = pdpp o
0
Y Y
S(/O p(ﬁ’”qdp)’”/"E/o p“"’)’”/ T, f(r +~ = p)|P dedp

Y
SNW’”*IE/ WF(r+~ = p)ln_s,dp = NyP~ IE/ f(r+ )l s, d
0

This and the inequality o < £ implies that

t—s d’Y t—y
J(ts <N/ m/ dPE/ ||fr+p)||n 2p

t—s
SN/O m/o dPE/ F (o2, d

= N(t - 5)" “”’E/ 10l d

To estimate I, we use Lemma 7.3 and Theorem 2.1 to obtain

A7) € NPPE Oy < NPPEIO sy + B [ s do)

na< [T [

< N(t =) BuO)|_,, ,+F / £, dr}.

For us := u — uq we have
T4y

uz(r + ) —uz(r) = (T'y — Dua(r) + Tr+’y—pgk(p) dwﬁ,
E||U.2(7‘ + ’7) - u2(7‘)||£ S N(A2(T7’Y) + BZ(“’Y))?
where
A3(r,7) = BI|(T, = Dus()|[2, Ba(r,) = Bl / Trir 5" (0) duf 2.
By Lemma 7.4,
E||ua(t) — ua(s)||h < N(t — 5)*P ' (Ly(t, 5) + Ja(t, 5)),
with
t=s 4 t—y t—=s 4 t—y
L(t,s) = / ngap As(r,y)dr, Ja(t,s) = / ’yl_:lap Ba(r,7) dr.
0 s 0

Here we use Lemma 7.3, the Burkholder-Davis—Gundy inequalities, and the inequality
(28 —1)qg > —1, where ¢ = p/(p — 2). Then, similarly to the above calculations, we obtain

Y
By(r,v) < NE/d[/0 PP p 2| Tug(r + v — p)|[2, dpl?/? da
R
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.,
< N’yﬁp’lE/O p 2P| T g(r + 4 — p)| B dp

Y
N+ 1B / (1= AP g(r 44— p)|[Edp,
0

t—s d’)’ t—y ¥
J2(t73)SNE/0 m/ d’“/ llg(r +~ —p)llh_1pdp

t—s
<NE/ 2+(a ﬂ)p/ dp/ ||g ||n l,p
Nt -5 a’PE/ lg(r) 1, d

Finally, again by Lemma 7.3 and Theorem 4.2, we conclude
t—s t—
dy "
nt.s) <NE [ il [ (),

t
< N(t—5)BrEg / lus (|2, dr < N(t — 5)BPE / lg(r)I”
0

n— l,p

Collecting all these estimates, we get (7.1) at least for n = T (= 7). In the general case,
observe that if u(t An) —u(s An) is not zero, then sAn=sand s < sAnp<tAn<t. After
this it suffices to notice that, instead of points ¢ and s on the left in (7.6), we can obviously
take any two points between them.

The proof of (7.2) goes exactly the same way, the only difference being that this time
we use (7.7).

To prove assertion (iz) notice that from an interpolation theorem (Theorem 2.4.2 in
[33]) we have

el m(8)—d/ptd/a.q < N(d, p,q,m(0),m(1), )||U||m(0)p||u||21(1),p
whenever 1 < p < ¢ < 00, 8 € (0,1), m(8) := (1 — 8)m(0) + 6m(1) # m(0), m(i) < n, and
u € H'. Theorem 14.2 from [14] shows that the case p = g actually need not be excluded.
Note also that, under the conditions in (4¢), there is a 8 such that 1/2 > 8 > 1/p and
m<n-—28(1-0)—d/p+d/q=m(0) —d/p+ d/q, where m(0) := (1 — 0)(n — 203) + 6n.
Therefore,

T T
B( / ut, )|[/% dt)° < B( / [t ML amsasq @)°
T
—0 /]
< NE( / e, N2, )2, )

T
-0
SNEsupHu(t,-)Hg_w)i,(/ [lu(t, )5, dt)’.
t<T 0

To prove (i%), it remains only to apply Hoélder’s inequality, (3.4), and (7.2) with an « such
that 8 > a > 1/p. The theorem is proved.

8. Applications



224 5. ANALYTIC APPROACH TO SPDE’S

8.1. Filtering Equation. Take p > 2 and an integer di > d. Let (Q,F,P) be a
complete probability space and let w; be a dj—dimensional Wiener process on this space.
Consider a d; —dimensional two—component process z; = (¢, y) with z; being d-dimensional
and y; d; — d—dimensional. We assume that z; is defined as a solution of the system

diL‘t Zb(t, Zt) dt + H(t, Zt) dwt,

dyy =B(t,2) dt + O(t, yt) dwt
with some initial data. The coefficients of (8.1) are assumed to be vectors or matrices of
appropriate dimensions satisfying the following assumptions.

8.1)

AssuMPTION 8.1. The functions b, §, B, © are Borel measurable and bounded functions
of their arguments. Each of them satisfies the Lipschitz condition with respect to z with
constant K. Moreover, (¢, z,y) is continuously differentiable with respect to x (not 2)
and its first derivatives with respect to z’s are continuous in y and satisfy the Lipschitz
condition, with constant K, with respect to z (not z).

ASSUMPTION 8.2. The symmetric matrix ©©* is invertible and ¥ := (00*) /2 is a
bounded function (of (,y)).

AssuMPTION 8.3. For any ¢ € R? and z = (2,y) € R and t > 0,
Q(t,9)0" (t, 2)€” > d[¢P,
where (@ is the orthogonal projector on ker ©. In other words
(6(1 - ©*T?0)8%¢, €) > 4l¢|*.

One can easily check that this assumption is satisfied if the diffusion matrix of system
(8.1) is block upper—triangular:
0\ (61 0
®© /) L0 6

and the d x d matrix 6; is non-degenerate so that |0¢|? > §|¢[%.
We also make the following assumption regarding the initial data for (8.1).

AssumPTION 8.4. The random vectors zg,yo are independent of the process w;. The
conditional distribution of zo given yo has a density, which we denote by mo(z) = 7o (w, ).

We have mo € L, (0, H2 /7).
Let
a(t,z) = (1/2)06"(t,z,y:), o(t,z) = 00"V (t,z,y,),
ﬂ(t,ﬂ}) = \I’B(tamvyt)a ﬂt Zﬂ(taxt)a
and let 8% be the kth coordinate of the vector 3 where k = 1, ...,d; —d. Also, for a function

u define - . '
Lu= Z (@ u)gigi — Z(b’u)wi, AFu = gFu — Z(U’ku)zi

i,j<d i<d i<d
Finally, let 7} = o{ys : s < t}.

THEOREM 8.1. Under the above assumptions there exists m € ﬂT>0HI2)(T) such that for
any t > 0, the conditional distribution of x; given F} has a density coinciding with m(t,-)
almost surely. In addition, 7 satisfies the equation

dr=Lrdt+ Y [Afr— Bin] {¥%0 dw, + [Bf — Bf]dt}, (8.2)
k<di—d
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with initial data 7(0,-) = mo, where the missing arqguments are t,x,y;, vector U* is the kth
row Of IIJ; and ﬁt = (ﬂ—(ta )76(t7 ';Z/t))-

To prove the theorem, we need a lemma, but first we make some comments. Notice
that a little bit strange way of writing equation (8.2), with d¢ in two terms, is related to the
fact that

t _
Ty = / (90 dw, + [ — ] ds}
0

is a d; —d-dimensional F/—adapted Wiener process (the so—called innovation process). Here
we do not need this fact.

We will only use that in (8.2) we have ¥*© dw; = dif, where 0 is a d; — d-dimensional
Fi—adapted Wiener process. This is easily proved by using Levy’s theorem, since it follows
from the definition of ¥ that (¥O dw,) = Idt, where I is the d; — d unit matrix. In turn,
this shows that in notation (5.2) applied to (8.2) we have

ot = % Z CTZkO'Jk,
k<di—d

which, by Assumption 8.3, guarantees that Assumption 5.1 is satisfied for equation (8.3)
below with a K and 6/2 instead of 4. Assumption 8.1 provides certain smoothness of the
coefficients of (8.3), which leads us to the conclusion that the function 7 considered in
the following lemma exists by Theorem 5.1 and Remark 5.6. By the way, the requirement
in Assumption 8.1 that first derivatives of §(¢,z,y) with respect to z‘s be continuous in
y, which is not needed at this point, will be needed later in some passages to the limit.
It is worth noting that this requirement follows automatically from other requirements in
Assumption 8.1. Indeed, one knows that if a function f(x,y) is Lipschitz continuous in (z,y)
and has bounded generalized second—order derivatives in z, then f, is Hélder continuous in
y with exponent 1/2.

LEMMA 8.2. Let 7 be a unique solution in NH,(T) of the equation
di = Lrdt+ Yy A7 {U*Odw, + Bf dt} (8.3)
k<di—d
with nitial data 7(0,-) = mo, where we use the same notation as in (8.2). Then 7(t,-) is

F? —measurable.

Proof. Observe that now we write dt in two terms on the right for the reason that
UkQ dw, + BF dt = U dy,, which makes the assertion quite natural since everything in (8.3)
depends only on y;. Further (cf. [24] or [30]), there is an F}/-adapted measurable process
By = (B, ..., B8 such that the process

t ~
Wy = /0 (U0 dw, + [B, — A ds} (8.4)

is a dy —d-dimensional F}-adapted Wiener process (actually §; is a modification of E{S3|F}}).
By It6’s formula the function 7 defined by

. . L B
i (t,z) = 7(t,z), pr:= eXP{/ Bs dis + 5/ |Bs|? ds}
0 0
satisfies

div = Lirdt+ Y [A*% — Bf#) dif (8.5)
k<di—d
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with initial data 7(0,-) = m. One can consider this equation on the probability space
(Q,F, P) with filtration F} and Wiener process w;. Let us denote by #j(7) the H}(r)
spaces constructed on the basis of F} and w;. Define

1
Tp=1inf{t >0:p, < -} An.
n

Observe that 7, are F/—stopping times. By the theory from previous sections, equation
(8.5) with initial data 4o has a unique solution in 71;,(7”) (even in ﬁg(Tn)) On the other
hand, we can replace w; in (8.5) with its value from (8.4) and get an equation in terms
of the original (7). This equation has a unique solution in the original H,(r,). Since
HL(ra) C HL(ra), this implies that any HJ(r,)-solution belongs to H1(r,), and since &
is obviously a Hzl,(rn)—solution, we get that 7(t A 7,,-) is Ff—adapted, which, for n — oo,
implies that 7(t,-) is F/—adapted. Finally, g, is F/—adapted, and therefore 7(t,-) is F/—
adapted. The lemma is proved.

Proof of Theorem 8.1. We imitate some proofs from [24] or [30] omitting some simple
arguments which the reader can find there. First, we know (cf. Theorems 2.1 and 2.2 of
[24]) that there is an F}-adapted measure—valued process m; such that, for any ¢ € C§° and
t > 0, we have E{¢(x;)|F}} = (m,¢) (a.s.). We also know that m, satisfies the following
equation for any ¢ € Cg°

d(n(t,"), ¢) = (n(t,-), L*¢) dt + (n(t,), A" ¢ — Bf¢) {T*O dwy + [Bf — fy]dt},  (8.6)

where §3; = (n(t,-), B(t,-,y:)) and L*, A* are the operators formally adjoint to L, A.

Now, let us assume for a moment that, in addition to our hypotheses, each derivative
of b, B, with respect to x exists and is bounded. Notice that, by Sobolev’s embedding
theorem, any measure on R? belongs to H," with n > (p — 1)d/p. This implies that 7 is
a NrsoHM, " (T)-solution of (8.6). If we look at 3 as a given process, then by Theorem 5.1
and Remark 5.6 there is a unigue solution of (8.6) in the class Nr>oH, " (T') with the initial
condition 7(0,-) = mg. On the other hand, since the coefficients are infinitely differentiable
(but mo belongs only to L, (€2, H; —2/p )), by the same Theorem 5.1 and Remark 5.6 equation
(8.6) has a solution in NrseH2(T). Owing to the uniqueness, this solution is 7. Thus
7 € Nr>oH(T), which allows us to rewrite (8.6) as (8.2) after integrating by parts, and
finishes the proof in the particular case of very smooth coefficients.

Passing to the general case notice that we only need to prove that 7 € ﬂT>0H12,(T), since
equation (8.2) is derived from (8.6) as above. Further, take a nonnegative function ¢ € C§°
with unit integral and for ¢ > 0 define (. (z) = e~%(z/¢), h©(t,z,y) = h(t,z,y) * (. (z),
where the convolution is taken with respect to z. Consider the process z; = (7, y;) defined

as a solution of
dzs =b) (¢, 25) dt + 0 (¢, 25 duy, 57)
dy; =B (t, 25) dt + O(t, ) dwy '

with initial condition z§ = zo. If we denote Fy = o{y¢ : s < t} and 7°(¢, z) the conditional
distribution of z; given Fj, then, by the above, 7° € ﬂT>0H12)(T) and 7° satisfies the
following version of (8.2)

dn® = Len*dt+ Y [Acpr® — Bhn®] {TFO, dwy + [8E — BY] dt}, (8.8)
k<di—d

with initial data 7°(0,-) = mo, where L., A;, V., 0., B are defined in the same way as
L,A,¥,0, 8, with ¥ in place of y;, and B := (7°(¢, ), Be (¢, -, ¥5))-
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By Theorem 5.1, we have ||7r5||H§(T) < N for any T, where N is independent of ¢.
By Theorem 3.11 there is a 7° € NysoH5(T) and a sequence &, — 0 such that, for any
E€eL,() withgq=p/(p—1) and ¢ € C§° and ¢t > 0,
lim E(T"sn (ta ')a ¢)§ = E(ﬂ-o (ta ')a ¢)§ (89)
n—oo

This equality and the fact that (75~ (¢, -), ¢) = E{¢(z;")|F;"} (a.s.) can be used instead
of equality (3.14) of [24]. As there, first for £ of type g(y¢,, .-, Yt,,) and then for arbitrary
F{-measurable & € L,(Q2), we get that

BE(n°(t,-), ¢) = BEE{¢(xe)| F{'}-
If we knew that 7°(¢,-) is F/—measurable, then this equality would imply that

(7°(,-),¢) = E{d(z:)| 7!} (as) (8.10)
which is nothing but assertion that the conditional distribution of z; given F} has a density
coinciding with 7°(t, -). Since 7° € NrsoH2(T), equality (8.10) would imply that 7° satisfies
(8.2) in the same way as at the beginning of the proof. Therefore, in the remaining part of

the proof we only need to prove the F/-measurability of 7°(¢,-).
By It6’s formula and (8.8), the function

7o (t, x) =7 (t,x)p5, (8.11)

¢ ¢ ¢
* 2 2 1 2
pi = expl | (O:Wfdwr) + [ (BB — 5 [ 16 as)
0 0 0

satisfies the linear equation

di* = Lz dt+ Y AFa® {9FO. dw, + g dt},

k<di—d

with initial data 7°(0,-) = 75. By using that sup,<r |y — y:| — 0 in probability and by
applying Theorem 5.7 with n = —1 (here we also use Remark 5.8 and the continuity of 6,
with respect to y ), one easily proves that 7° — 7 in H(T) for any T, where 7 satisfies
(8.3). By Lemma 8.2 we have that 7(t,-) is F/—adapted.

Next, by using the fact that #°(¢, ) is a probability density, one gets from (8.11) that
(cf. [24])

i — / (t,x) dr =: py
Rd

in probability and the last term is again F/-adapted. The process p; satisfies the equation
obtained by integrating (8.3), which means that

dpy = pefe dys, (8.12)
where

b= [ Bt )7, z) dal / #(t,z)dz)"" (0-07" = 0).

It follows from (8.12) and the boundedness of 8 and B, that p; # 0 with probability one.
Thus, for any ¢ € C§°,

(71'5('[’, )pia ¢) - (ﬁ(ta ')a ¢);

(@), ¢) — (7(t, .),(p)(/Rdir(t, z)dr)~!

(°(t,-),4) = s

in probability. This implies that

<ﬁmm@=w@mw/ﬁ@mwrl )

R4
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where the last expression is 7}/ -adapted. The theorem is proved.

REMARK 8.3. This theorem, along with embedding theorems from Sec. 7, extends and
generalizes the corresponding results from [24] and [30] in the way we were talking about
in the Introduction.

8.2. On the Notion of Stochastic Integral. To consider applications to equations
with infinitely dimensional Wiener processes, we want to discuss the notion of stochastic
integral and show that “basically” there is nothing more general than series of usual one—
dimensional stochastic integrals. This will show that equations like (2.1), containing series
of integrals with respect to Wiener processes, are of a quite general nature.

The first notion was introduced by Paley, Wiener, and Zygmund in [29], where the
stochastic integral of a nonrandom smooth function f(t) against a one-dimensional Wiener
process wy is defined as

/ C fs) dws = F(Lywr — / " waf!(s) ds. (8.13)
0 0

Then it is verified that the Ly (Q)-norm of the stochastic integral is equal to the Ls(0,1)-
norm of f, which allows one to extend the stochastic integral from smooth functions to all
f € Ly(0,1). One obtains the same integral if, instead of (8.13), one starts with

1 n
[ e o =Y aitwe —wiy) (8.14)
i=1
for functions f such that f(¢t) = a; on (s;_1,s;] and 0 =89 <51 < ... < 8, = 1.

The definition based on (8.14) has an advantage that it can be easily generalized to
define an integral of a nonrandom function against a random orthogonal measure on a
o—finite measure space (X, X, m). More precisely, assume that we are given a m—system
IT of subsets of X such that o(II) = X, and a random (complex—valued) variable p(7)
defined for each v € II (and perhaps not for all v € X). Assume that u(y) € L2(R2) and
Eu(y1)i(y2) = m(y1 N v2) for each «,v1,72 € II. Then for functions

f(@) = ail, (),
i=1
where a;s are constant and ; € II, one defines the stochastic integral of f against p as
n
[ 1@ utd) = 3 asntr, (8.15)
X i=1

and, again by isometry, one extends the stochastic integral to all f € La(X,m). Such
integrals are used in the theory of stationary processes. Surprisingly enough, as we will see,
one can also say that this is the most general stochastic integral in It6’s stochastic calculus.

Another advantage of (8.14) is that one can allow f to depend on w, and if a; are
independent of the process wiys, , —ws,_,, t > 0, then (8.14) is again an isometry between
a part of Lo (€ x (0,1]) and a part of Ly(§2). Closing this isometry, K. Itd defines his famous
integral.

It turns out that Itd’s integral is a particular case of the integral based on (8.15). To
be more precise, let w; be (as usual) a Wiener process with respect to a filtration F;, P be
the predictable o—field on € x (0, 1], and II be the set of all stochastic intervals (0, 7], where
T are stopping times < 1. Then one gets It0’s integral by taking X = Q x (0,1] , X = P,
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(0, 7] = w; (see more about this in [19]). In the same way one defines stochastic integrals
with respect to any locally square integrable martingale.

K. Itd [12] was also the first to consider integration against measure—valued processes,
which is a particular case of integration against martingale measures. Let p(¢,T), ¢t > 0,
be a square integrable process as a function of ¢ with independent increments in time and
a random orthogonal measures as a function of T' for any ¢. Define p((s,t],T) = p(¢t,T) —
p(s,T). Ttd’s way of introducing the integral with respect to p is to replace the expression
ai(ws; — ws;_,) in (8.14) with

/X £i(@) p((s1-1, 8], d) = /X fi() p(si, d) — /X [i@) p(sior,dz),  (8.16)

where f; are assumed to be independent of the processes p((s;—1,t],T), t > s;_1.

More generally, for any « € II let a process p(t,y) be given, which is a square integrable
martingale with respect to a given filtration {F:}. Let (p(-,71),p(:,72))t = q(t, 71 N Y2),
where ¢(¢,-) is a o—finite measure on (X, X)) for any w,t, and ¢(t,T") increases in ¢ for any
I € X and w. Then there is a measure ¢(dt,dz) such that

q(t,7) =/01Lq(ds,dx).

By following It0’s method based on (8.16), for any P x X-—measurable f = f(w,t, ) such
that

/Ol/xf2(s,w) q(ds, dz) < oo,

one defines the stochastic integral

/0 1 /X F(s,2) p(ds, dz). (8.17)

This integral is also a particular case of the integral of a nonrandom function against
a random orthogonal measure. Indeed, define X = Q x (0,1] x X, X = P x X, and let
m(dwdtdz) := P(dw)q(dt,dz). Also let

IT = {(0,7] x v : Eq((0,7] x ) < o0}, u((0,7] x7) = p(7,7).

Then on functions

f=Y ail<n L (), (8.18)

i<n

where (0,7;] x v; € II and a; are some constants, integral (8.17) equals

Eaip(ﬂ',%') = Zam({O,Ti]] X i)

which agrees with (8.15). Finally, by functions of type (8.18) one can approximate any
P x X-measurable function for which (8.17) can be defined.

It is worth mentioning that there are also other notions of martingale measures with re-
spect to which one can define stochastic integration (see [35], where the martingale measures
discussed above are called orthogonal martingale measures).

Even though the notion of integral of nonrandom functions with respect to random
orthogonal measures is very convenient for the purpose of introducing Itd’s stochastic inte-
grals (cf. [19]), one works almost always with stochastic integrals with variable limits, and
a different notation is more appropriate.
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In connection with this notice that it is shown in [10] how to reduce the stochastic
integral with respect to a martingale measure to a series of usual stochastic integrals. This
was further used in [10] to treat stochastic equations containing integrals against martingale
measures using the same notation as in the case of equations containing just usual stochastic
integrals.

To be more precise, it is assumed in [10] that X is countably generated and

qmm=ﬂ%wmm

where V; is a predictable increasing process and ¢s(I') is a measure in T' for any s and
predictable in s for any I' € X'. Then it is shown that

t B oo t ) .
/O/Xf(s,x)p(ds,dx)_;/o Fuls) dpt, (8.19)
where .
MZAAm@@WMM,n@ZAm@@W@%W%

and for any w, s the system of functions {n(s,-)} forms an orthonormal basis in L (X, gs).

A particular case of the stochastic integral with respect to a martingale measure is
the stochastic integral with respect to the two—dimensional Brownian sheet W (¢, z) defined
for ¢t > 0,z € R. In this case, one takes F; so that the random variables W (¢, z) are
Fi—measurable, and defines p((0,7] x (a,b]) = W(r,b) — W(r,a). This integral got very
popular thanks to the article [35]. One can construct W (s, z) by taking independent one—
dimensional Wiener processes wf, k > 1, and an orthonormal basis {nk(x),k > 1} in Ly(R),
and letting

S z
Wt z) = wa/ m(y)dy t>0,z€R
k=1 0
Incidentally, observe that thus defined W is a Gaussian field and

EW(s,y)W(t,z) = s A tz /0z N (2) dz /Oy Nk (2) dz,

where
IR I(Oaz)(z)I(O,y) (Z) dz=zxA Yy if z,y Z 05

oo z y
3 / i (2) dz / (2 de =4 [oTwo) () ipo) (2)de = 2| Alyl i 2,y <0,
k=170 0

0 otherwise.

In this particular case (8.19) becomes

/Ot/Rf(S,w)W(ds,d:I;) :li/ot{/knk(w)f(s,x)dx} dwk. (8.20)

By the way, general one-dimensional equations driven by the cylindrical space-time
white noise B; were considered in [7], where the right-hand side of (8.20) is taken by
definition as fot (f(s,"),dB;). There the series was introduced from the very beginning.

The last integral we want to discuss is the integral against a Hilbert—space valued Wiener
processes (see, for instance, [30]). Let H be a Hilbert space and w; be a H—valued Wiener
process with covariance operator (). This operator is known to be nuclear. If hj are its unit
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ei ith i lues, then wf := (h* Rk, hk)=1/2
genvectors with nonzero eigenvalues, then wy := (h*,w;)(Qh*, h*)

standard Wiener processes and, for any H—valued process f; for which the integral fot fi-dwy
is defined, the integral can be written as

> [ ek
k 0

where f* = (fg, h*)(Qh*, h*)'/2 (see, for instance, [30]).

are independent

8.3. Equations Driven by Space—Time White Noise. In this subsection, we con-
sider one-dimensional equations with space-time white noise. Thus d = 1. Very often (see,
for instance [7]) one writes these equations in the form

du(t,z) = [a(t,z)u" (t,x) + b(t,z)u'(t, ) + f(t, z,u(t,z))]dt + h(t,z,u(t,x)) dB;, (8.21)

where B, is a cylindrical Wiener process on Lo. There are also very many articles (see, for
instance [8]) where instead of dB; one writes (0°W/8t0z) dt. As we explained in Subsec. 8.2
we may as well take >, ni(z) dwf, where {ny(z),k > 1} is an orthonormal basis in L, and
w¥ are independent F;—adapted one-dimensional Wiener processes. Thus, instead of (8.21),

we will be considering the equation
du(t, =) =[a(t, z)u" (t,z) + b(t, 2)u'(t, 2) + f(t, z, u(t, )] dt

8.22
+ 9"tz u(t, z)) dwf (622

on a time interval [0, 7], where g¥ := hm; and 7 is a bounded stopping time.

AssuMPTION 8.5. The functions a(t,z) = a(w,t,z) and b(t,z) = b(w,t,z) are real-
valued functions defined on (0,7] x R.

(i) For any w and t < 7(w), a(w,t,-) € CY! (= B?) and b(w,t,-) € C%! (= B!) and
[lal|cra + ||b]|cor < K. Also K > a > 4.

(#4) For any z € R, the processes a and b are predictable.

To state the next assumption, take and fix s < oo and finite &, p, r such that

1 1
€ (0,1/2], >2r > 2, <oo, —+-=1, < .
re©1/2, pz2rz 500 r+s "ST1o2k

(8.23)

ASSUMPTION 8.6. The functions f(t,z,u) and h(t,z,u) are real-valued functions on
(0, 7] x R? such that

(¢) for any x and u, the processes f(t,z,u) and h(t,z,u) are predictable;

(4¢) for any w,t,x,u, and v,

|f(t,:c,u)—f(t,m,v)| SK"U,—’UL |h(t,m,u)—h(t,x,v)| Sé‘(t,.’lf)lu—vl, (824)
where ¢ is certain function of w, ¢,z satisfying ||£{(,-)||2s < K.

Observe that one of possibilities is r = 1, and then s = 0o and (8.24) just means that
both f and h satisfy the Lipschitz condition in u with constant K.

To fit equation (8.22) in our general scheme, we need to find an appropriate n such that
the assumptions of Theorem 5.1 are satisfied. Define

n=—k—3/2.

In the following lemma, we also set

R(z) = x|o|~(1-20)/2 /°° £ (5-20) /4 g ta®-1/(41) gy
0
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so that, according to (2.3) and (2.4) for right choice of the constant x, the function R(z) is
the kernel of the operator (1—A)(®+1/2 Tt is easy to prove that R is infinitely differentiable
everywhere except the origin, decreases exponentially fast as |z| — oo, and behaves near
the origin like |z|~(1=2%)/2 if k < (1/2) and like —log|z| if & = 1/2. Finally, notice that
generally speaking, the notation h, &, g is used in the lemma for functions different from the
ones introduced above.

LEMMA 8.4. Take some functions h € Ly, £ € La,, and set g* = thmp. Then g =
{9*}i>1 € Hpt'(I2) and

llgllnt1.0 = [1hllp < (N1[€]l2s]1Bl]5) A (lIERII2]1RII5), (8.25)
where N = ||R||2» < 00 and

1/2
- { [ B -newnw) dy} . (8.26)
In addition, if p(1 —2k) > 2 and £ =1, then
gllnt1, < N()||B][57/ =2 |n||L 200/ (=), (8.27)

Proof. We know that
(1— A2 () / R(z — 4)E@)h(y)mi(v) dy.

It follows that by Parseval’s theorem

(1= A2 ( | R = pe@hmmty )dy)z

- / R (z — y)E(y)h(y) dy = h3(z).

We thus get the equality in (8.25). To prove the inequality, notice that h? is a convolution
and by Minkowski’s inequality the L,—norm of a convolution is less than the L;—norm of
one function times L,—norm of another. This immediately gives |||, < ||€h||2]|R]|p- Also,

by Holder’s inequality,
1/r
@) < I3 ([ R wdy)

which leads to the second inequality in (8.25): ||h||, < N||€||2s||R||,, again by Minkowski’s
inequality and by the assumption p > 2r. The finiteness of NV follows from the assumption
that r < (1 —2k)7L.

To prove (8.27), we use that R?(y) < N|y|?*~! and we minimize with respect to € > 0
after the following computations:

([ Bam - a2 anf < ([ ([ 1, <R @ =gy’ asp’

([ 4 Ty R0 @ = ) dy}/? oo < |1y B I + 1Ty R 1

< Ne™||hlf + Ne=(=2=2/)| | 3.

The lemma, is proved.
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THEOREM 8.5. Let k € (0,1/2) and ug € Lp(Q,fo,HI(,l/z)_n_Q/p). Assume that

PE)=E / (£ 0P g, + I, O]} dt < oo, (8.28)
where

h(t,3,0) == {/RR%« — y)R2(t,y, 0) dy}1/2 _

Then, in the space Hél/ 2)_H(T), equation (8.22) with the initial condition ug has a unique
solution u. Moreover,

g7y < NI + (Blfuol o)}
where the constant N depends only on k,p,0, K, and 7.

Proof. We will apply Theorem 5.1. Its assumptions concerning a and o (= 0) are
obviously satisfied. Next, if u € HJ*?, then bu' € H*' C HJY, u € Ly, f(u) — f(0) € L, C
Hp. Also, by (8.28) we have f(t,-,0) € H;' (a.e. on (0,7]). Furthermore, by Lemma 5.2,

[low'[[n,p < [1b0]|1,p < Nl|u'l|-1,p < Nllullp = Nltllns2—(1/2)-r) 5

1f(w) = F@)llnp < |If(u) = FO)lp < Kllu = vl|p.
We emphasize that || ||, = || - |[n42—((1/2)—k),p a0d n +2 — ((1/2) — k) <n+2 for k < 1/2.
Consequently (see Remark 5.5), the assumptions of Theorem 5.1 concerning bu' + f(u) are
satisfied. To check the remaining assumptions about g(u), it suffices to notice that, by
Lemma 8.4, we have

1g0)(t, Mln+1,p = [[B(E, - 0)lp, [lg(w)(t,-) = g(0)(t,)lnt1,p
< N||h(t7 '7u(t= )) - h(ta K ’l)(t, ))Hp < N||u(t, ) - ’l)(t, )||P
The theorem is proved.

REMARK 8.6. We have obtained Theorem 8.5 by checking that all Assumptions 5.1
5.6 are satisfied for n = —3/2 — k. After this, of course, all other results from Sec. 5 are
available. For example, by the approximation theorem (Theorem 5.7) and Remark 5.9, we
have ||u — U] |H;+2(T) — 0, where u,, is a unique solution of the following version of (5.11)

du(t, ) = [a(t, z)u" (¢, z) + b(t, z)u'(t, ) + f(t,z,u(t,z))] dt + E h(t,z,u(t, z))ny, dw!
k=1
with initial condition ug.

REMARK 8.7. Additional information about Hélder continuity properties of the solution
is readily obtained from the properties of elements of H}(7) listed in Theorem 7.2.
For example,

ue CoTMP([0, 7], HPFP)  (as) (8.29)
provided p > 2 and 1/2 > 8> a > 1/p. Here H}"2728 C O7 if
y=n+2-20-1/p=1/2—-k—-28-1/p> 0.
Hence, if the inequality El[uo|[{/,_, 5/, , < oo and (8.28) are satisfied for any & € (0,1/2)
and p > 2 (say f(t,2,0) = h(t,z,0) =0, £ = K, and ug is a deterministic smooth function
with compact support), then, after taking p large enough and k, «, and § small, we see that

u satisfies the Holder condition in z of order 1/2 — € uniformly with respect to t € [0, 7]
(a.s.) for any € > 0.
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On the other hand, by taking p large enough, both a and 3 close to 1/4, and & small,
we get that u satisfies the Holder condition in ¢ of order 1/4 — ¢ uniformly with respect to
z € R (a.s.) for any € > 0. In terms of parabolic Holder spaces, this means that

we VT  xB) (as).

This result agrees well with [35], where the same continuity is obtained for equations
with constant coefficients. Also, notice that, using standard PDE methods, one can prove
interior (with respect to t) estimates which would give similar continuity of u away from
t = 0 under weaker assumptions on ug. One of results which can be obtained is discussed
in the following remark.

REMARK 8.8. There are smoothing properties of equations in the sense that solu-
tions may be much smoother than the initial data. For example, assume that f(¢,z,0) =
h(t,2,0) = 0, 7 = T, where T is a constant, r = 1, and s = co. Let ug € L2(Q, Fo, Hy "+¢)
with € € (0,1/2), so that up may be a finite measure or just a delta—function. We claim
then that, for any e € (0,1/4),

we CYEPE (e TIXR)  (as.).

t,
Indeed, by Theorem 8.5 with p = 2 and k = 1/2—¢, there is a unique solution u € H5(T)
of (8.22) and
lulliss(ry < NEuollZy /oy -
By (3.4) we have

T
| Bl 2o de = iy < NEluoll 1y =21

By Chebyshev’s inequality, for any v € (0,7/2), Lebesgue measure of the set on (v, 27y),
where E|[u(t,-)||2 5 > 21/, is less than /2. This implies that for any vy € (0,7/2) there is
a point ¢, € (7,2v) such that

ulty,”) € La(Q, Fe,, H3),  Ellu(ty, )2, < 21/7.

By considering (8.22) after time ¢, instead of 0 and defining the spaces ’H;/ 2_N(t,,, T)

in an obvious way, we get by Theorem 8.5 that u € H;/z_n(t,y,T) for any k € (0,1/2). In
addition,
T
t Ellu(t, )Ifjon2dt <NI/v, EBllu(sy,)l{j2n2 < NI/Y?, (8.30)
.
where s, is a certain point in (¢, 4+ v,t, + 2v) and v < T/4.

Now we can go to larger powers. Take any p > 4 and define A(p,y,R) = {w :
|lu(sy,-)||[p < R}. By Sobolev’s embedding theorem, H21/2_H C H' if m < 1/2 -k and
—k=m —1/p. For m = 0 we have k = 1/p. Since in (8.30) we can take k = 1/p, we get

P{A(p,7,R)} = P{||u(s4,)llp < R} > P{|[u(s,")|l1/2-n,2 < NR} > 1 - NIy">R™2

Next, obviously, on the set A(p,7v,R) and the time interval (s,,T’), the assumptions of
Theorem 8.5 are satisfied with k = 1/2 —2/p € (0,1/2). Therefore
T
| ELigamllutt. ), dt < NELupo,mllutss )l < NE,
Sy

Bl mllu(r: )l < NP/,
for an r} € (35 +7, 8, +27) and y <T/6.
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For p > 8, we can represent 2/p as 1/2 — k — 2/p with k = 1/2 —4/p € (0,1/2). For
those p, by Theorem 8.5,

T
/1 EIA(I,,%R)”U(t, ')Hi/p,p dt < NEIA(IJ,’}',R)“U(T}W ')“12)/1),13 < NRP/A/’
Ty

Elu(py,mlu(r?, ‘)||Z/p7p < NRP/+,
for some r2 € (r} 4,7} +27) € (0,T). One can keep going this way and, for p > 4n, where

n=1,2,.., find r that are close to zero if y is small, such that T, ,gyu € H?,n/p(rZ;,T).
Here p can be taken arbitrary large, 7 small, and 2n/p can be made as close to 1/2 as we
wish. Also, the probability of the set A(p,7,R) can be chosen close to 1. Therefore, we
obtain our claim as in Remark 8.7.

REMARK 8.9. If ¢ > 0 and k + 2¢ < 1/2, then in (8.21) we could take a noise like
(1 — A)® By, which is even “whiter” than B;. This would only lead to replacing 7, in (8.22)
with (1 — A)®ng, and, under natural additional smoothness assumptions on h, would give
the assertions of Theorem 8.5 with « + 2¢ in place of k.

8.4. Non—Explosion for a Nonlinear Equation. Take a,b, h satisfying Assump-
tions 8.5 and 8.6 from Subsec. 8.3 for 7 = 00, r = 1, s = 00, and £ = 1 and take a bounded
real-valued P x B(R)-measurable function c(t,z) = ¢(w, t,z). Assume that h(t,z,u) = 0 for
u < 0. Fix a number X € [0,1/2) and let

gk(t,x,u) = h(t,x,u)uink(x),
where, as usual, {n;} form an orthonormal basis in L,. Here it is convenient to assume
additionally that each 7y is bounded.

The results from Subsec. 8.3 can be easily applied to prove that if the initial condition
up is nonnegative and, say, is nonrandom and belongs to C§°, then the equation

du(t, z) =[au" (t,z) + b(t, z)u'(t,z) + c(t, z)u(t,z)] dt

8.31
+ g*(t, 2, u(t, z)) dw} (831

has a solution defined for all ¢ in the class of functions such that sup;<r, |u(t, )| is finite
(a.s.) for any T < oo. These facts for equation (8.31) considered on a finite space interval
witha=1,b=¢ =0, and h(u) = u4 and with zero boundary data were discovered in [26]
with the help of a quite different approach. By using the maximum principle, one can show
that our assertion implies the result of [26].

First, let us explain why (8.31) is solvable despite the high growth of g in w. It turns
out that (8.31) possesses a kind of integral or conservation law. Observe that u > 0,
which follows from the maximum principle if one notices that the solution w of (8.31)
also satisfies the equation with g*(t,z,u(t,z)) replaced by v*(¢,z)u(t,z), where v*(t,z) =
g (t,z,ut,z))u=t(t,z) and |v*| < N|u|*. Moreover, if, for instance, a = 1,b = ¢ = 0,
then, by integrating (8.31) formally with respect to z, one obtains that ||u(t,-)||1 is a local
martingale. It is nonnegative, therefore its trajectories are bounded (a.s.).

This takes care of “almost u'/2” in the diffusion term. Indeed, one can rewrite (8.31)
with £(t, z)ung (z) in place of g*(t, z,u), where £(t,2) = h(t, z,u(t, z))u "1 (¢, z) and |£(t, z)| <
|u*(t,z)|- By the above, the latter is summable to power 2s = 1/A, and s > 1 (which is
required in Theorem 8.5) for A < 1/2. Therefore, u satisfies a linear equation with coeffi-
cients under control, and we get that u(t, ) is a bounded continuous function on [0,T] x R
for any T < oo as in Remark 8.7 (by letting p — 00). The rigorous treatment below follows
this idea.
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By Theorem 8.5, for any m = 1, 2, 3..., the equation
du, = (aull, +bu!, + cuy,) dt + g* (um Am) dwf (8.32)

with the initial condition u,,(0,-) = u¢ has a unique solution wu,, € ’H;,/ >7R(T) for any
k € (0,1/2),p > 2, and T < oco. By Remark 8.7, the function u,, (¢, z) is continuous in (¢, z)
(a.s.). To proceed with the argument, we need the following lemma to be proved later.

LEMMA 8.10. For any T < oo,

lim sup P{ sup |un(t,z)| > R} =0. (8.33)
R—oo m t<T,x

Define
R —inf{t > 0 : sup |um(t,z)| > R}.
x

Observe that if m > R (and R is an integer), then the functions u,, and ug satisfy the same

equation on [0,7F) and therefore coincide by uniqueness. In particular, 7 > 78 = Tg

(a.s.). Therefore, there is no ambiguity in the definition
u(t,z) = um(t,z) on [0,77].

Of course, u satisfies (8.31) on (0,lim 777) and |u(t,z)| < m for t < 7. To finish the proof
of our assertions about (8.31), it only remains to notice that lim 77" = oo (a.s.), since, by
(8.33),

P{r]' <T} = P{sup |un(t,z)| >m} <supP{sup |u,(t,z)]>m}—>0
t<T,x n t<T,x

as m — o0o.
Proof of Lemma 8.10. Define

Em(t,x) = h(t, @, um(t, ©) Am)(um(t, ) Am)}u,(t, ) (0-07':=0)

and notice that &, is a bounded function. It follows from (8.32) that u,, is a solution of the
equation

dv = (av" 4 bv' + cv) dt + vEpny dw? . (8.34)

Obviously, Assumptions 8.5 and 8.6 from Subsec. 8.3 are satisfied for (8.34). By Remark 8.6
and by virtue of our assumption about boundedness of 7, Theorem 5.12 is valid for (8.34).
Thus, um, > 0 (a.s.).

Next, take (x(z) from Theorem 5.7, multiply (8.32) by (xe ¢, where K = sup(|a”| +
|b'] + |c|), integrate by parts (that is, use the definition of solutions), and take expectations.
Then, for any constant 7" and stopping time 7 < T', we obtain

e_KTE(Ck7um(T7 )) < E(Cka um(T7 '))e_KT = (Cka UO)

+E/ (al + (2a' = b)¢, + (" = + ¢ — K)Cp, um)e Kt dt

0
T N T

<N+ NE [ (1GH1+[Glum)de <N+ TR [ unt, )l d,
0 0

T
B(Gertim(r,) < N+ NEE [ (e, )]l < N + 2k 17,
0
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where the last constant N is independent of m, k, and 7 and M is independent of k. Since
this inequality is true for any stopping time 7 < T, with the same N and M for any number
v € (0,1) (see, for instance, Theorem II1.6.8 of [19]),

N+ ME—1/»
o

E sup( /R (@) (t, ) o) <1+

, Esup [lum(t, )] <
t<T t<T

L—vy
where the latter relation is obtained from the former one by the monotone convergence
theorem. It follows that

N
P{sup ||un,(t,-)|1 > S} < —, 8.35
{tsgll (t)h > S}t < 75 (8.35)
where N is independent of m and S > 0.

Now fix m, S > 0 and define

T (S) = inf{t > 0: [[um(t, )i 2 S}, hm(t 2, u) = En(t, 2)u.
Observe that &, < wu)),, which yields that for ¢ < 7,,(S) we have [|&,(t,)]|l2s < S/

m?

with s = 1/(2X). Also, u,, satisfies (8.34). By Theorem 8.5, we obtain that, for any
T < o, |lumlly1r2=x gz, (s 1 bounded by a constant independent of m, whenever p >

2r =2/(1 —2X) and 1/2 > & > A. The embedding theorems (cf. Remark 8.7) imply that
Esup;<qar,,(s),z [um(t,z)|P is bounded independently of m for all large p (and hence for
small p as well).

Thus

P{sup |up(t,z)| > R} < P{ sup |lum(t, )| > R} + P{rn(S) < T}
t<T,z t<TATm (S),z

N N N
< = 4+ P{sup|lum(t,’)|i > S} < =5+ —=
<+ Pl )l > S} < 5 +
with the constants N independent of m, S, R. This leads to (8.33), and the lemma is proved.
REMARK 8.11. In [24] one can find a proof that sup,, E||um||g([0’T]XR) < oo for any
T < 00, where 0 < v < 1 —2X and v can be chosen arbitrary close to 1 — 2.

9. Open Problems

e In the filtering problem, we only considered the case of equation (8.1) with noise
in observations depending only on ¢ and y;, and thus independent of the signal x;.
Almost nothing is known about filtering problems in which © depends on the signal
x;. Very interesting jump processes may appear.

e The above theory applies to equations in the whole space. It is known that even
for zero Dirichlet boundary data the Ly—theory is much more complicated because
one needs weighted Sobolev spaces (cf. [16]) or compatibility conditions (cf. [2],
[6]). The Lo—theory in [16] was developed by considering the stochastic term as a
perturbation, which gave a perfect result due to obtaining some sharp estimates which
turned out to be usable. Nothing of that kind can happen for general p > 2, that is
why very often, say in [6], it is assumed that the stochastic term is sufficiently small
and some compatibility conditions hold. A first encouraging step toward developing
L,—theory in weighted Sobolev spaces in bounded domains is made in [21] (see also
[23)).

By the way, the fact that the derivatives of solutions blow up near the boundary
shows that one needs to be careful constructing finite—difference approximations near
the boundary.



5. ANALYTIC APPROACH TO SPDE’S

e The above theory is an L,theory. One may ask whether a C?T®—theory can be

constructed. By a theory we mean not only results that, for f,g* belonging to a
space F, the solution belongs to some kind of stochastic C2T®-spaces, but also that
every element of this stochastic space can be obtained as a solution for certain f, g*
belonging to the same F'.

We only have Theorems 5.1 and 7.2 and Sobolev’s embedding H} C cn—d/r if
n—d/p > 0. Thus, if f, g* are relatively smooth, the solution belongs to C2*®. This
is a useful result; for instance, it essentially covers the main result of [3] obtained in
the whole space for coefficients independent of 2. The weakness of such results is that
they do not allow natural perturbations and cannot be extended reasonably far. For
example, if one knows such results only for equations with constant coefficients, one
will not be able to extend them to equations with variable highest order coefficients.

However, a “right” C?** theory in the above sense is developed in [27], for equa-

tions with nonrandom coefficients and with no derivatives of the unknown function
in the stochastic term.
Fully nonlinear equations and uniqueness. In Assumption 5.6 we assume that non-
linear terms in equation (5.1) are strictly subordinated to the main terms. Nothing
is known if, instead of linear main operators in (5.1), one has nonlinear ones. Even
for the case of linear equations we do not know how strong this subordination has to
be. For instance, take the following version of one-dimensional equation (8.22)

du(t,z) = u" (t,z) dt + h(z)u(t, z)n*(z) dwf,

where we only know that h € L». Is it true that if sup,<7, |u(t,z)| < oo (a.s.) and
u(0,-) = 0, then « = 0 on [0,7]? The point is that in Assumption 8.6 we have to
take s = 1, and then r = 0o, p = oo and even k = 1/2 is a little bit short of satisfying
the last inequality in (8.23) which is needed to provide the right subordination. The
author believes that the answer to this particular question is positive, but the general
question still remains.

Superdiffusions. One can derive SPDEs for superdiffusions in multi—-dimensional
case (see [22]). The question arises whether one can get from these equations at
least some part of huge and delicate information about superprocesses, available in
the literature.
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