AN UNDERGRADUATE LECTURE ON THE
CENTRAL LIMIT THEOREM

N.V. KRYLOV

In the first section we explain why the central limit theorem for the
binomial 1/2 distributions is natural. The second section contains the
proof and the third section gives a refinement of our basic estimate.

1. SETTING AND MOTIVATION

Let S,, be the number of successes in n independent Bernoulli trials
with success probability p = 1/2.
First, one realizes that

P(S, = k) =2 <Z) - 2—“k!(+ik)'. (1)

Then comes the observation that ES,, = n/2, VarS, = n/4. This
shows that the random variables

(S —n/2)/Vn

are centered and have constant variance. One may hope that their
distributions converge to something as n — oo. In other words, one
may hope that for any a < b

Pla < (Sa —n/2)/v/n <) (2)

has a limit as n — oo.
Let us try to guess what the limit could be. Set

Yen =12k =n/2), k=01,..n.
Observe that
Yktin = Yen + 172 k= yev/n+n/2.
P(S, = k) = P(n™"(S, = 1/2) = yyn)
and, for each n, introduce a function
Falyrn) = P(n™2(S, = n/2) = ygn),

so that

Soyin) = f(Sn = k).
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For k < n — 1 simple manipulations using (1) show that

n! k+1

P =0 = 2 e i — k= i — &

implying that
n/2 — Yen/n
n/2 — Yen/n
n n TN /2y — n n) = Jn n -1
Sy ) = fu(Ykn) f(yk)(ykn\/ﬁJrn/QJrl )

Yn /N +n/2+1

fn(ykn) = fn(ykn + n_1/2)

fn(ykn + n_l/Q) = fn(ykm)

- _fn<ykn)

Next, the probability in (2) is

k:a<ypn<b

and this sum contains roughly speaking (b — a)y/n terms. Therefore,
each term should be of order 1/y/n. One way or another, let us believe
that, for a function ¢,

as n — oo and Yr, — .
For ¢,, equation (4) becomes

Let us pretend that (5) holds for ¢ rather than ¢, and for all y in
place of y, rather than for y;, of a special form, that is

2yy/n+1
yvn+n/2+1

Devide both parts by n=%/? and let n — oo to see that, naturally,
¢n(y) should be close to a ¢ that is a solution of

¢'(y) = —4yo(y).

All solutions of the latter equation are known to be ce=2¥", and this is
a way to explain why the normal distribution arises in this particular
instance of the central limit theorem.

¢n(ykn + n_1/2) - ¢n(yk‘n) = _¢n(ykn)

oy +n'?) — oy = —o(y)
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2. FIRST RIGOROUS RESULAT

As above we assume that p = 1/2 and add the assumption that n is
an even number.

Theorem 1. Let 3 € [1/2,3/4] and n be even. Then for |k—n/2| < nP
(that is |yr,| < nP~1/2)
¢ Min fu(yn) = 1+ O(n"77?), (6)
where
en=P(S, =n/2), ypn = (k—n/2)n Y2
Furthermore,
lim ¢,v/n =+/2/7, (7)
and if 5 € [1/2,3/4), then
lim max |(nw/2)Y2einP(S, = k) — 1] = 0. (8)

n—0oo |k—n/2|<nf
Finally, for any a,b € (—o00,00) such that a < b,

lim P(ay/n < S, —n/2 <by/n) = \/2/_7r/ e dy. (9)

n—oo

Proof. To prove (6) it suffices to concentrate on n® +n/2 > k > n/2
when g, > 0. Set

gn(ykn) =In fn(ylm)7
Tpn = 2ypnn V2 = 2(k —n/2n" !t =2k/n—1
and use (3) to get
gn(yk—i-lm) - gn(ykn) = ln(l - :L'kn) - hl(l + xk-ﬁ-l,n)

1
= —Tkn — Tk+1,n + §[xi+1,n - xin]
1 1 3 1 3
__ 10
L (e i

where 0 < Tpy < 4y 0 < Ty < Tppin. Since ap, < 207! and
2nP~1 < 1/2 if n is large, the last bracket in (16) is less than or equal
to 2-8-23n3973. The sum of these brackets over k = n/2,...,n/2+n” is
therefore less than or equal to 128n%=3. Also for n/2 < k < n/2 +n”
we have
k
Z [xl%rl,n - .1712”} = ‘ri+1,n S 4n2672 S 4n46737
i=n/2
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where we used that 5 > 1/2. We finally observe that

k k k
> @i+ i) =401 Y (i-n/2)+20t Y 1
i=n/2 i=n/2 i=n/2

=2k —n/2)(k+1—-n/2)+2n  (k+1—n/2)
=207 (k+1—n/2)" = 23, -
Then we find that for n/2 <k <n/2+nP

9nWrs10) — 9n(0) = =247 1, + 25an™ 2,

where |zj,| < 132. This yields

C;1€2y’%nfn(ykn) — ezknn4,373 -1 + ann4ﬁ_3, (11)

where |Z;,| are bounded by a constant (e!3?) independent of k,n. This

proves (6). After this we focus on determining the behavior of ¢, as
n — oo.
Rewrite (11) as

V2 P(S, = k) = nV2eWin 4 n 20 Whn g, 003 (12)
and using that |Z,| are bounded and n**=3 — 0 conclude that
Jlrgon_lmc;lpﬂsn —n/2| < n¥P) = nh—% Iy (13)
where

_ 9,2
J, i=n"1/? E e Hin
k:[ypen | <nt/10

Here by Chebyshev’s inequality
1> P(|S, —n/2| <n®%) =1—P(|S, —n/2| >n*°) >1—-n"1/>
implying that
lim P(|S, —n/2| < n?%) =1,
which along with (13) yields

lim n~Y%¢;t = lim J,. (14)

n—oo n—oo
To find lim,, ., J,, observe that for & > n/2 we have
e Win < e for 0<y<yp, e Win>e T for oy, <y
Therefore, for k > n/2
Ykn Y n
/ ] e’ dy > n~Y2e Wi > / - e 2’ dy.

Yk—1,n Ykn
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Since
_ 9,2
Jn:n 1/2+2 E / e 2ykn’
k>n/2:yp, <nl/10

we infer that

n—1/2

gn 2 gn 2 2
/ e dy > (J, —n" V%) /2> / e dy — / e dy,
0 0 0

where 7, is the largest yy, such that yz, < n/!°. Obviously, 7, — oo
as n — oo. This yields

lim J, = 2/ e dy =/7/2.

n—oo 0

Upon combining this with (14) we come to (7).
Now we can replace n~*/2c,; ! in (13) with y/7/2 and by the definition
of integral obtain that for any a,b € (—o00, 00) such that a < b

\/W/QTLILIEOP(CL\/E < S, —n/2<by/n)

b
. _ 9,2 9,2
= lim n~Y/2 E e W = [ e dy.
n—oo a

kiaSyanb
This proves (9).
Finally, we can rewrite (11) as
(nﬂ-/z)l/Zerznfn(ykn) = dn + dnzknn4ﬁ_3a
where d,, = c,(nm/2)"/? — 1. Then (8) follows. The theorem is proved.

3. A REFINEMENT OF THEOREM 1

One can improve (6) and (8). For 8 = 3/4 and y, ~ n'/* equation
(6) only says that
_ 2
C€en fro(Yin)
is bounded without asserting that it converges to 1 as n — oo. The
following theorem implies, in particular, that

1M o) — e

if n — o0, k =k, — oo, and yy,n/* — ¢. The refinement comes

from taking two more terms in Taylor’s expansions in (16).
Theorem 2. For 3 € [1/2,1) and |k —n/2| < n” we have
e~ < C;1€2yin(1+2yﬁn/(3n))p(Sn —k) < eom‘w*?’ (15)

where o > 0 18 a constant.
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In particular, if 8 € [1/2,5/6), then

lim  max |c leXin (420 /Gr) p(g = k) — 1| = 0.
n—oco |k—n/2/<nf "

Furthermore, if f € [3/4,5/7), then
lim Z e e2in 14208 /GBI p(S = k) — 1| = 0.

e |k—n/2|<nf
Proof. It follows from (3) that

gn(yk—i—l,n) - gn(ykn) - 11’1(1 - xkn) - hl(l + xk—l—l,n)

= —pn — Terin + (1/2) [0 — 2] — (1/3)[23, + 2341,

H/ D)1= 2] = (/D) (1= Tpn) 3+ (1= Trg1.0) 1], (16)
where 0 < Zpy < Tpn, 0 < Ty < Tpprne For n/2 <k <n/2+n” we
have

0 < ypn < nﬁ’l/Q, 0 <zp, < 2nﬂ’1,
0 < Ypsr1n < nf2 T2 <opf2 0 < Tpp1n < 4nf1,
and if n is large enough

0< (1= Zpn) "2hy + (1 = Tagrn) "2y, <2-2°- 4707770 = Np®P7P

and the sum of those terms as k runs between n/2 and n/2 + n” is
dominated by Nn% 5. Next,
k
Z [xzz—l—lm - xzzn] = aji-&-l,n < 16n2ﬁ_2‘
i=n/2

We also observe that
k

4 47_ .4 8, 43—4 8, 28—2
Z [xiﬂ,n — )| = Tpp1n S 2700 <2n ;

i=n/2

k k—n/2 k+1-n/2
Z[mkn—l—kan ] =8n7? Zz +8n? Z i
i=n/2 i=1

=2k —n/2)%(k+1—-n/2%*+2n3(k+1—-n/2)2*(k+2—n/2)?
= 4n71y£+1’n [yiﬂ,n + nil] = 4nily£+1,n + 4n’2y§+1,n-
As a consequence

k

1,4 3 3 1,4 25-3
AN Yy < Z (2}, + 20, <dnTlypg, + 1602070
i=n/2
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Now upon summing up (16) with respect to k, we find that for n/2 <
k<n/2+n?

gn(yk+1,n) —gn(0) < —2y£+1,n - (4/3)n_1y1§+1,n + 72n2(ﬂ_1)7
gn(yk-i-l,n) - gn(()) > —2y13+1,n - (4/3)n_1y13+1,n
—n?7316/3 — Nn%75 /5
> _le?:—‘rl,n - (4/3)n_1yl§+1,n —an
where we used that > 1/2 and a = N/5+ 16/3. The above inequal-

ities yield (15), that easily implies all other assertions of the theorem.
The theorem is proved.

68—5
)



