AN UNDERGRADUATE LECTURE ON THE CENTRAL LIMIT THEOREM

N.V. KRYLOV

In the first section we explain why the central limit theorem for the binomial $1 / 2$ distributions is natural. The second section contains the proof and the third section gives a refinement of our basic estimate.

1. Setting and motivation

Let S_{n} be the number of successes in n independent Bernoulli trials with success probability $p=1 / 2$.

First, one realizes that

$$
\begin{equation*}
P\left(S_{n}=k\right)=2^{-n}\binom{n}{k}=2^{-n} \frac{n!}{k!(n-k)!} . \tag{1}
\end{equation*}
$$

Then comes the observation that $E S_{n}=n / 2, \operatorname{Var} S_{n}=n / 4$. This shows that the random variables

$$
\left(S_{n}-n / 2\right) / \sqrt{n}
$$

are centered and have constant variance. One may hope that their distributions converge to something as $n \rightarrow \infty$. In other words, one may hope that for any $a<b$

$$
\begin{equation*}
P\left(a<\left(S_{n}-n / 2\right) / \sqrt{n} \leq b\right) \tag{2}
\end{equation*}
$$

has a limit as $n \rightarrow \infty$.
Let us try to guess what the limit could be. Set

$$
y_{k n}=n^{-1 / 2}(k-n / 2), \quad k=0,1, \ldots, n .
$$

Observe that

$$
\begin{gathered}
y_{k+1, n}=y_{k n}+n^{-1 / 2}, \quad k=y_{k n} \sqrt{n}+n / 2 . \\
P\left(S_{n}=k\right)=P\left(n^{-1 / 2}\left(S_{n}-n / 2\right)=y_{k n}\right)
\end{gathered}
$$

and, for each n, introduce a function

$$
f_{n}\left(y_{k n}\right)=P\left(n^{-1 / 2}\left(S_{n}-n / 2\right)=y_{k n}\right),
$$

so that

$$
f_{n}\left(y_{k n}\right)=\underset{1}{P}\left(S_{n}=k\right)
$$

For $k \leq n-1$ simple manipulations using (1) show that

$$
P\left(S_{n}=k\right)=2^{-n} \frac{n!}{(k+1)!(n-k-1)!} \frac{k+1}{n-k},
$$

implying that

$$
\begin{align*}
& f_{n}\left(y_{k n}\right)=f_{n}\left(y_{k n}+n^{-1 / 2}\right) \frac{y_{k n} \sqrt{n}+n / 2+1}{n / 2-y_{k n} \sqrt{n}}, \\
& f_{n}\left(y_{k n}+n^{-1 / 2}\right)=f_{n}\left(y_{k n}\right) \frac{n / 2-y_{k n} \sqrt{n}}{y_{k n} \sqrt{n}+n / 2+1}, \tag{3}\\
& f_{n}\left(y_{k n}+n^{-1 / 2}\right)-f_{n}\left(y_{k n}\right)=f_{n}\left(y_{k n}\right)\left(\frac{n / 2-y_{k n} \sqrt{n}}{y_{k n} \sqrt{n}+n / 2+1}-1\right) \\
&=-f_{n}\left(y_{k n}\right) \frac{2 y_{k n} \sqrt{n}+1}{y_{k n} \sqrt{n}+n / 2+1} . \tag{4}
\end{align*}
$$

Next, the probability in (2) is

$$
\sum_{k: a<y_{k n} \leq b} f_{n}\left(y_{k n}\right)
$$

and this sum contains roughly speaking $(b-a) \sqrt{n}$ terms. Therefore, each term should be of order $1 / \sqrt{n}$. One way or another, let us believe that, for a function ϕ,

$$
\phi_{n}\left(y_{k n}\right):=\sqrt{n} f_{n}\left(y_{k n}\right) \rightarrow \phi(y)
$$

as $n \rightarrow \infty$ and $y_{k n} \rightarrow y$.
For ϕ_{n} equation (4) becomes

$$
\begin{equation*}
\phi_{n}\left(y_{k n}+n^{-1 / 2}\right)-\phi_{n}\left(y_{k n}\right)=-\phi_{n}\left(y_{k n}\right) \frac{2 y_{k n} \sqrt{n}+1}{y_{k n} \sqrt{n}+n / 2+1} . \tag{5}
\end{equation*}
$$

Let us pretend that (5) holds for ϕ rather than ϕ_{n} and for all y in place of $y_{k n}$ rather than for $y_{k n}$ of a special form, that is

$$
\phi\left(y+n^{-1 / 2}\right)-\phi(y)=-\phi(y) \frac{2 y \sqrt{n}+1}{y \sqrt{n}+n / 2+1} .
$$

Devide both parts by $n^{-1 / 2}$ and let $n \rightarrow \infty$ to see that, naturally, $\phi_{n}(y)$ should be close to a ϕ that is a solution of

$$
\phi^{\prime}(y)=-4 y \phi(y) .
$$

All solutions of the latter equation are known to be $c e^{-2 y^{2}}$, and this is a way to explain why the normal distribution arises in this particular instance of the central limit theorem.

2. First Rigorous Resulat

As above we assume that $p=1 / 2$ and add the assumption that n is an even number.

Theorem 1. Let $\beta \in[1 / 2,3 / 4]$ and n be even. Then for $|k-n / 2| \leq n^{\beta}$ (that is $\left|y_{k n}\right| \leq n^{\beta-1 / 2}$)

$$
\begin{equation*}
c_{n}^{-1} e^{2 y_{k n}^{2}} f_{n}\left(y_{k n}\right)=1+O\left(n^{4 \beta-3}\right) \tag{6}
\end{equation*}
$$

where

$$
c_{n}=P\left(S_{n}=n / 2\right), \quad y_{k n}=(k-n / 2) n^{-1 / 2}
$$

Furthermore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{n} \sqrt{n}=\sqrt{2 / \pi} \tag{7}
\end{equation*}
$$

and if $\beta \in[1 / 2,3 / 4)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{|k-n / 2| \leq n^{\beta}}\left|(n \pi / 2)^{1 / 2} e^{2 y_{k n}^{2}} P\left(S_{n}=k\right)-1\right|=0 . \tag{8}
\end{equation*}
$$

Finally, for any $a, b \in(-\infty, \infty)$ such that $a<b$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(a \sqrt{n} \leq S_{n}-n / 2 \leq b \sqrt{n}\right)=\sqrt{2 / \pi} \int_{a}^{b} e^{-2 y^{2}} d y \tag{9}
\end{equation*}
$$

Proof. To prove (6) it suffices to concentrate on $n^{\beta}+n / 2 \geq k \geq n / 2$ when $y_{k n} \geq 0$. Set

$$
\begin{gathered}
g_{n}\left(y_{k n}\right)=\ln f_{n}\left(y_{k n}\right) \\
x_{k n}=2 y_{k n} n^{-1 / 2}=2(k-n / 2) n^{-1}=2 k / n-1
\end{gathered}
$$

and use (3) to get

$$
\begin{gather*}
g_{n}\left(y_{k+1, n}\right)-g_{n}\left(y_{k n}\right)=\ln \left(1-x_{k n}\right)-\ln \left(1+x_{k+1, n}\right) \\
=-x_{k n}-x_{k+1, n}+\frac{1}{2}\left[x_{k+1, n}^{2}-x_{k n}^{2}\right] \\
-\frac{1}{3}\left[\frac{1}{\left(1-\bar{x}_{k n}\right)^{3}} x_{k n}^{3}+\frac{1}{\left(1-\bar{x}_{k+1, n}\right)^{3}} x_{k+1, n}^{3}\right], \tag{10}
\end{gather*}
$$

where $0 \leq \bar{x}_{k n} \leq x_{k n}, 0 \leq \bar{x}_{k+1, n} \leq x_{k+1, n}$. Since $x_{k n} \leq 2 n^{\beta-1}$ and $2 n^{\beta-1} \leq 1 / 2$ if n is large, the last bracket in (16) is less than or equal to $2 \cdot 8 \cdot 2^{3} n^{3 \beta-3}$. The sum of these brackets over $k=n / 2, \ldots, n / 2+n^{\beta}$ is therefore less than or equal to $128 n^{4 \beta-3}$. Also for $n / 2 \leq k \leq n / 2+n^{\beta}$ we have

$$
\sum_{i=n / 2}^{k}\left[x_{i+1, n}^{2}-x_{i n}^{2}\right]=x_{k+1, n}^{2} \leq 4 n^{2 \beta-2} \leq 4 n^{4 \beta-3}
$$

where we used that $\beta \geq 1 / 2$. We finally observe that

$$
\begin{gathered}
\sum_{i=n / 2}^{k}\left(x_{i n}+x_{i+1, n}\right)=4 n^{-1} \sum_{i=n / 2}^{k}(i-n / 2)+2 n^{-1} \sum_{i=n / 2}^{k} 1 \\
=2 n^{-1}(k-n / 2)(k+1-n / 2)+2 n^{-1}(k+1-n / 2) \\
=2 n^{-1}(k+1-n / 2)^{2}=2 y_{k+1, n}^{2} .
\end{gathered}
$$

Then we find that for $n / 2 \leq k \leq n / 2+n^{\beta}$

$$
g_{n}\left(y_{k+1, n}\right)-g_{n}(0)=-2 y_{k+1, n}^{2}+z_{k n} n^{2 \beta-2},
$$

where $\left|z_{k n}\right| \leq 132$. This yields

$$
\begin{equation*}
c_{n}^{-1} e^{2 y_{k n}^{2}} f_{n}\left(y_{k n}\right)=e^{z_{k n} n^{4 \beta-3}}=1+\bar{z}_{k n} n^{4 \beta-3}, \tag{11}
\end{equation*}
$$

where $\left|\bar{z}_{k n}\right|$ are bounded by a constant $\left(e^{132}\right)$ independent of k, n. This proves (6). After this we focus on determining the behavior of c_{n} as $n \rightarrow \infty$.

Rewrite (11) as

$$
\begin{equation*}
n^{-1 / 2} c_{n}^{-1} P\left(S_{n}=k\right)=n^{-1 / 2} e^{-2 y_{k n}^{2}}+n^{-1 / 2} e^{-2 y_{k n}^{2}} \bar{z}_{k n} n^{4 \beta-3} \tag{12}
\end{equation*}
$$

and using that $\left|\bar{z}_{k n}\right|$ are bounded and $n^{4 \beta-3} \rightarrow 0$ conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1 / 2} c_{n}^{-1} P\left(\left|S_{n}-n / 2\right| \leq n^{3 / 5}\right)=\lim _{n \rightarrow \infty} J_{n} \tag{13}
\end{equation*}
$$

where

$$
J_{n}:=n^{-1 / 2} \sum_{k:\left|y_{k n}\right| \leq n^{1 / 10}} e^{-2 y_{k n}^{2}}
$$

Here by Chebyshev's inequality

$$
1 \geq P\left(\left|S_{n}-n / 2\right| \leq n^{3 / 5}\right)=1-P\left(\left|S_{n}-n / 2\right| \geq n^{3 / 5}\right) \geq 1-n^{-1 / 5}
$$

implying that

$$
\lim _{n \rightarrow \infty} P\left(\left|S_{n}-n / 2\right| \leq n^{3 / 5}\right)=1
$$

which along with (13) yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1 / 2} c_{n}^{-1}=\lim _{n \rightarrow \infty} J_{n} . \tag{14}
\end{equation*}
$$

To find $\lim _{n \rightarrow \infty} J_{n}$ observe that for $k \geq n / 2$ we have

$$
e^{-2 y_{k n}^{2}} \leq e^{-2 y^{2}} \quad \text { for } \quad 0 \leq y \leq y_{k n}, \quad e^{-2 y_{k n}^{2}} \geq e^{-2 y^{2}} \quad \text { for } \quad y_{k, n} \leq y .
$$

Therefore, for $k>n / 2$

$$
\int_{y_{k-1, n}}^{y_{k n}} e^{-2 y^{2}} d y \geq n^{-1 / 2} e^{-2 y_{k n}^{2}} \geq \int_{y_{k n}}^{y_{k+1, n}} e^{-2 y^{2}} d y
$$

Since

$$
J_{n}=n^{-1 / 2}+2 \sum_{k>n / 2: y_{k n} \leq n^{1 / 10}} e^{-2 y_{k n}^{2}}
$$

we infer that

$$
\int_{0}^{\bar{y}_{n}} e^{-2 y^{2}} d y \geq\left(J_{n}-n^{-1 / 2}\right) / 2 \geq \int_{0}^{\bar{y}_{n}} e^{-2 y^{2}} d y-\int_{0}^{n^{-1 / 2}} e^{-2 y^{2}} d y
$$

where \bar{y}_{n} is the largest $y_{k n}$ such that $y_{k n} \leq n^{1 / 10}$. Obviously, $\bar{y}_{n} \rightarrow \infty$ as $n \rightarrow \infty$. This yields

$$
\lim _{n \rightarrow \infty} J_{n}=2 \int_{0}^{\infty} e^{-2 y^{2}} d y=\sqrt{\pi / 2}
$$

Upon combining this with (14) we come to (7).
Now we can replace $n^{-1 / 2} c_{n}^{-1}$ in (13) with $\sqrt{\pi / 2}$ and by the definition of integral obtain that for any $a, b \in(-\infty, \infty)$ such that $a<b$

$$
\begin{aligned}
& \sqrt{\pi / 2} \lim _{n \rightarrow \infty} P\left(a \sqrt{n} \leq S_{n}-n / 2 \leq b \sqrt{n}\right) \\
= & \lim _{n \rightarrow \infty} n^{-1 / 2} \sum_{k: a \leq y_{k n} \leq b} e^{-2 y_{k n}^{2}}=\int_{a}^{b} e^{-2 y^{2}} d y .
\end{aligned}
$$

This proves (9).
Finally, we can rewrite (11) as

$$
(n \pi / 2)^{1 / 2} e^{2 y_{k n}^{2}} f_{n}\left(y_{k n}\right)=d_{n}+d_{n} \bar{z}_{k n} n^{4 \beta-3},
$$

where $d_{n}=c_{n}(n \pi / 2)^{1 / 2} \rightarrow 1$. Then (8) follows. The theorem is proved.

3. A refinement of Theorem 1

One can improve (6) and (8). For $\beta=3 / 4$ and $y_{k n} \sim n^{1 / 4}$ equation (6) only says that

$$
c_{n}^{-1} e^{2 y_{k n}^{2}} f_{n}\left(y_{k n}\right)
$$

is bounded without asserting that it converges to 1 as $n \rightarrow \infty$. The following theorem implies, in particular, that

$$
c_{n}^{-1} e^{2 y_{k n}^{2}} f_{n}\left(y_{k n}\right) \rightarrow e^{-4 c^{4} / 3}
$$

if $n \rightarrow \infty, k=k_{n} \rightarrow \infty$, and $y_{k n} n^{-1 / 4} \rightarrow c$. The refinement comes from taking two more terms in Taylor's expansions in (16).

Theorem 2. For $\beta \in[1 / 2,1)$ and $|k-n / 2| \leq n^{\beta}$ we have

$$
\begin{equation*}
e^{-\alpha n^{6 \beta-5}} \leq c_{n}^{-1} e^{2 y_{k n}^{2}\left(1+2 y_{k n}^{2} /(3 n)\right)} P\left(S_{n}=k\right) \leq e^{\alpha n^{2 \beta-2}}, \tag{15}
\end{equation*}
$$

where $\alpha>0$ is a constant.

In particular, if $\beta \in[1 / 2,5 / 6)$, then

$$
\lim _{n \rightarrow \infty} \max _{|k-n / 2| \leq n^{\beta}}\left|c_{n}^{-1} e^{2 y_{k n}^{2}\left(1+2 y_{k n}^{2} /(3 n)\right)} P\left(S_{n}=k\right)-1\right|=0 .
$$

Furthermore, if $\beta \in[3 / 4,5 / 7)$, then

$$
\lim _{n \rightarrow \infty} \sum_{|k-n / 2| \leq n^{\beta}}\left|c_{n}^{-1} e^{2 y_{k n}^{2}\left(1+2 y_{k n}^{2} /(3 n)\right)} P\left(S_{n}=k\right)-1\right|=0 .
$$

Proof. It follows from (3) that

$$
\begin{gather*}
g_{n}\left(y_{k+1, n}\right)-g_{n}\left(y_{k n}\right)=\ln \left(1-x_{k n}\right)-\ln \left(1+x_{k+1, n}\right) \\
=-x_{k n}-x_{k+1, n}+(1 / 2)\left[x_{k+1, n}^{2}-x_{k n}^{2}\right]-(1 / 3)\left[x_{k n}^{3}+x_{k+1, n}^{3}\right] \\
+(1 / 4)\left[x_{k+1, n}^{4}-x_{k, n}^{4}\right]-(1 / 5)\left[\left(1-\bar{x}_{k n}\right)^{-5} x_{k n}^{5}+\left(1-\bar{x}_{k+1, n}\right)^{-5} x_{k+1, n}^{5}\right], \tag{16}
\end{gather*}
$$

where $0 \leq \bar{x}_{k n} \leq x_{k n}, 0 \leq \bar{x}_{k+1, n} \leq x_{k+1, n}$. For $n / 2 \leq k \leq n / 2+n^{\beta}$ we have

$$
\begin{gathered}
0 \leq y_{k n} \leq n^{\beta-1 / 2}, \quad 0 \leq x_{k n} \leq 2 n^{\beta-1} \\
0 \leq y_{k+1, n} \leq n^{\beta-1 / 2}+n^{-1 / 2} \leq 2 n^{\beta-1 / 2}, \quad 0 \leq x_{k+1, n} \leq 4 n^{\beta-1}
\end{gathered}
$$

and if n is large enough
$0 \leq\left(1-\bar{x}_{k n}\right)^{-5} x_{k n}^{5}+\left(1-\bar{x}_{k+1, n}\right)^{-5} x_{k+1, n}^{5} \leq 2 \cdot 2^{5} \cdot 4^{5} n^{5 \beta-5}=: N n^{5 \beta-5}$ and the sum of those terms as k runs between $n / 2$ and $n / 2+n^{\beta}$ is dominated by $N n^{6 \beta-5}$. Next,

$$
\sum_{i=n / 2}^{k}\left[x_{i+1, n}^{2}-x_{i n}^{2}\right]=x_{k+1, n}^{2} \leq 16 n^{2 \beta-2}
$$

We also observe that

$$
\begin{gathered}
\sum_{i=n / 2}^{k}\left[x_{i+1, n}^{4}-x_{i n}^{4}\right]=x_{k+1, n}^{4} \leq 2^{8} n^{4 \beta-4} \leq 2^{8} n^{2 \beta-2}, \\
\sum_{i=n / 2}^{k}\left[x_{k n}^{3}+x_{k+1, n}^{3}\right]=8 n^{-3} \sum_{i=0}^{k-n / 2} i^{3}+8 n^{-3} \sum_{i=1}^{k+1-n / 2} i^{3} \\
=2 n^{-3}(k-n / 2)^{2}(k+1-n / 2)^{2}+2 n^{-3}(k+1-n / 2)^{2}(k+2-n / 2)^{2} \\
=4 n^{-1} y_{k+1, n}^{2}\left[y_{k+1, n}^{2}+n^{-1}\right]=4 n^{-1} y_{k+1, n}^{4}+4 n^{-2} y_{k+1, n}^{2} .
\end{gathered}
$$

As a consequence

$$
4 n^{-1} y_{k+1, n}^{4} \leq \sum_{i=n / 2}^{k}\left[x_{k n}^{3}+x_{k+1, n}^{3}\right] \leq 4 n^{-1} y_{k+1, n}^{4}+16 n^{2 \beta-3}
$$

Now upon summing up (16) with respect to k, we find that for $n / 2 \leq$ $k \leq n / 2+n^{\beta}$

$$
\begin{gathered}
g_{n}\left(y_{k+1, n}\right)-g_{n}(0) \leq-2 y_{k+1, n}^{2}-(4 / 3) n^{-1} y_{k+1, n}^{4}+72 n^{2(\beta-1)}, \\
g_{n}\left(y_{k+1, n}\right)-g_{n}(0) \geq-2 y_{k+1, n}^{2}-(4 / 3) n^{-1} y_{k+1, n}^{4} \\
-n^{2 \beta-3} 16 / 3-N n^{6 \beta-5} / 5 \\
\geq-2 y_{k+1, n}^{2}-(4 / 3) n^{-1} y_{k+1, n}^{4}-\alpha n^{6 \beta-5},
\end{gathered}
$$

where we used that $\beta \geq 1 / 2$ and $\alpha=N / 5+16 / 3$. The above inequalities yield (15), that easily implies all other assertions of the theorem. The theorem is proved.

