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In the first section we explain why the central limit theorem for the
binomial 1/2 distributions is natural. The second section contains the
proof and the third section gives a refinement of our basic estimate.

1. Setting and motivation

Let Sn be the number of successes in n independent Bernoulli trials
with success probability p = 1/2.

First, one realizes that

P (Sn = k) = 2−n
(
n

k

)
= 2−n

n!

k!(n− k)!
. (1)

Then comes the observation that ESn = n/2, VarSn = n/4. This
shows that the random variables

(Sn − n/2)/
√
n

are centered and have constant variance. One may hope that their
distributions converge to something as n → ∞. In other words, one
may hope that for any a < b

P (a < (Sn − n/2)/
√
n ≤ b) (2)

has a limit as n→∞.
Let us try to guess what the limit could be. Set

ykn = n−1/2(k − n/2), k = 0, 1, ..., n.

Observe that

yk+1,n = ykn + n−1/2, k = ykn
√
n+ n/2.

P (Sn = k) = P (n−1/2(Sn − n/2) = ykn)

and, for each n, introduce a function

fn(ykn) = P (n−1/2(Sn − n/2) = ykn),

so that

fn(ykn) = P (Sn = k).
1
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For k ≤ n− 1 simple manipulations using (1) show that

P (Sn = k) = 2−n
n!

(k + 1)!(n− k − 1)!

k + 1

n− k
,

implying that

fn(ykn) = fn(ykn + n−1/2)
ykn
√
n+ n/2 + 1

n/2− ykn
√
n

,

fn(ykn + n−1/2) = fn(ykn)
n/2− ykn

√
n

ykn
√
n+ n/2 + 1

, (3)

fn(ykn + n−1/2)− fn(ykn) = fn(ykn)
( n/2− ykn

√
n

ykn
√
n+ n/2 + 1

− 1
)

= −fn(ykn)
2ykn
√
n+ 1

ykn
√
n+ n/2 + 1

. (4)

Next, the probability in (2) is∑
k:a<ykn≤b

fn(ykn)

and this sum contains roughly speaking (b − a)
√
n terms. Therefore,

each term should be of order 1/
√
n. One way or another, let us believe

that, for a function φ,

φn(ykn) :=
√
nfn(ykn)→ φ(y)

as n→∞ and ykn → y.
For φn equation (4) becomes

φn(ykn + n−1/2)− φn(ykn) = −φn(ykn)
2ykn
√
n+ 1

ykn
√
n+ n/2 + 1

. (5)

Let us pretend that (5) holds for φ rather than φn and for all y in
place of ykn rather than for ykn of a special form, that is

φ(y + n−1/2)− φ(y) = −φ(y)
2y
√
n+ 1

y
√
n+ n/2 + 1

.

Devide both parts by n−1/2 and let n → ∞ to see that, naturally,
φn(y) should be close to a φ that is a solution of

φ′(y) = −4yφ(y).

All solutions of the latter equation are known to be ce−2y2 , and this is
a way to explain why the normal distribution arises in this particular
instance of the central limit theorem.
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2. First rigorous resulat

As above we assume that p = 1/2 and add the assumption that n is
an even number.

Theorem 1. Let β ∈ [1/2, 3/4] and n be even. Then for |k−n/2| ≤ nβ

(that is |ykn| ≤ nβ−1/2)

c−1
n e2y2knfn(ykn) = 1 +O(n4β−3), (6)

where

cn = P (Sn = n/2), ykn = (k − n/2)n−1/2.

Furthermore,

lim
n→∞

cn
√
n =

√
2/π, (7)

and if β ∈ [1/2, 3/4), then

lim
n→∞

max
|k−n/2|≤nβ

|(nπ/2)1/2e2y2knP (Sn = k)− 1| = 0. (8)

Finally, for any a, b ∈ (−∞,∞) such that a < b,

lim
n→∞

P (a
√
n ≤ Sn − n/2 ≤ b

√
n) =

√
2/π

∫ b

a

e−2y2 dy. (9)

Proof. To prove (6) it suffices to concentrate on nβ +n/2 ≥ k ≥ n/2
when ykn ≥ 0. Set

gn(ykn) = ln fn(ykn),

xkn = 2yknn
−1/2 = 2(k − n/2)n−1 = 2k/n− 1

and use (3) to get

gn(yk+1,n)− gn(ykn) = ln(1− xkn)− ln(1 + xk+1,n)

= −xkn − xk+1,n +
1

2
[x2
k+1,n − x2

kn]

−1

3
[

1

(1− x̄kn)3
x3
kn +

1

(1− x̄k+1,n)3
x3
k+1,n], (10)

where 0 ≤ x̄kn ≤ xkn, 0 ≤ x̄k+1,n ≤ xk+1,n. Since xkn ≤ 2nβ−1 and
2nβ−1 ≤ 1/2 if n is large, the last bracket in (16) is less than or equal
to 2 ·8 ·23n3β−3. The sum of these brackets over k = n/2, ..., n/2+nβ is
therefore less than or equal to 128n4β−3. Also for n/2 ≤ k ≤ n/2 + nβ

we have
k∑

i=n/2

[x2
i+1,n − x2

in] = x2
k+1,n ≤ 4n2β−2 ≤ 4n4β−3,
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where we used that β ≥ 1/2. We finally observe that

k∑
i=n/2

(xin + xi+1,n) = 4n−1

k∑
i=n/2

(i− n/2) + 2n−1

k∑
i=n/2

1

= 2n−1(k − n/2)(k + 1− n/2) + 2n−1(k + 1− n/2)

= 2n−1(k + 1− n/2)2 = 2y2
k+1,n.

Then we find that for n/2 ≤ k ≤ n/2 + nβ

gn(yk+1,n)− gn(0) = −2y2
k+1,n + zknn

2β−2,

where |zkn| ≤ 132. This yields

c−1
n e2y2knfn(ykn) = ezknn

4β−3

= 1 + z̄knn
4β−3, (11)

where |z̄kn| are bounded by a constant (e132) independent of k, n. This
proves (6). After this we focus on determining the behavior of cn as
n→∞.

Rewrite (11) as

n−1/2c−1
n P (Sn = k) = n−1/2e−2y2kn + n−1/2e−2y2kn z̄knn

4β−3 (12)

and using that |z̄kn| are bounded and n4β−3 → 0 conclude that

lim
n→∞

n−1/2c−1
n P (|Sn − n/2| ≤ n3/5) = lim

n→∞
Jn, (13)

where
Jn := n−1/2

∑
k:|ykn|≤n1/10

e−2y2kn

Here by Chebyshev’s inequality

1 ≥ P (|Sn − n/2| ≤ n3/5) = 1− P (|Sn − n/2| ≥ n3/5) ≥ 1− n−1/5,

implying that

lim
n→∞

P (|Sn − n/2| ≤ n3/5) = 1,

which along with (13) yields

lim
n→∞

n−1/2c−1
n = lim

n→∞
Jn. (14)

To find limn→∞ Jn observe that for k ≥ n/2 we have

e−2y2kn ≤ e−2y2 for 0 ≤ y ≤ ykn, e−2y2kn ≥ e−2y2 for yk,n ≤ y.

Therefore, for k > n/2∫ ykn

yk−1,n

e−2y2 dy ≥ n−1/2e−2y2kn ≥
∫ yk+1,n

ykn

e−2y2 dy.
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Since

Jn = n−1/2 + 2
∑

k>n/2:ykn≤n1/10

e−2y2kn ,

we infer that∫ ȳn

0

e−2y2 dy ≥ (Jn − n−1/2)/2 ≥
∫ ȳn

0

e−2y2 dy −
∫ n−1/2

0

e−2y2 dy,

where ȳn is the largest ykn such that ykn ≤ n1/10. Obviously, ȳn → ∞
as n→∞. This yields

lim
n→∞

Jn = 2

∫ ∞
0

e−2y2 dy =
√
π/2.

Upon combining this with (14) we come to (7).

Now we can replace n−1/2c−1
n in (13) with

√
π/2 and by the definition

of integral obtain that for any a, b ∈ (−∞,∞) such that a < b√
π/2 lim

n→∞
P (a
√
n ≤ Sn − n/2 ≤ b

√
n)

= lim
n→∞

n−1/2
∑

k:a≤ykn≤b

e−2y2kn =

∫ b

a

e−2y2 dy.

This proves (9).
Finally, we can rewrite (11) as

(nπ/2)1/2e2y2knfn(ykn) = dn + dnz̄knn
4β−3,

where dn = cn(nπ/2)1/2 → 1. Then (8) follows. The theorem is proved.

3. A refinement of Theorem 1

One can improve (6) and (8). For β = 3/4 and ykn ∼ n1/4 equation
(6) only says that

c−1
n e2y2knfn(ykn)

is bounded without asserting that it converges to 1 as n → ∞. The
following theorem implies, in particular, that

c−1
n e2y2knfn(ykn)→ e−4c4/3

if n → ∞, k = kn → ∞, and yknn
−1/4 → c. The refinement comes

from taking two more terms in Taylor’s expansions in (16).

Theorem 2. For β ∈ [1/2, 1) and |k − n/2| ≤ nβ we have

e−αn
6β−5 ≤ c−1

n e2y2kn(1+2y2kn/(3n))P (Sn = k) ≤ eαn
2β−2

, (15)

where α > 0 is a constant.



6 N.V. KRYLOV

In particular, if β ∈ [1/2, 5/6), then

lim
n→∞

max
|k−n/2|≤nβ

|c−1
n e2y2kn(1+2y2kn/(3n))P (Sn = k)− 1| = 0.

Furthermore, if β ∈ [3/4, 5/7), then

lim
n→∞

∑
|k−n/2|≤nβ

|c−1
n e2y2kn(1+2y2kn/(3n))P (Sn = k)− 1| = 0.

Proof. It follows from (3) that

gn(yk+1,n)− gn(ykn) = ln(1− xkn)− ln(1 + xk+1,n)

= −xkn − xk+1,n + (1/2)[x2
k+1,n − x2

kn]− (1/3)[x3
kn + x3

k+1,n]

+(1/4)[x4
k+1,n−x4

k,n]−(1/5)[(1−x̄kn)−5x5
kn+(1−x̄k+1,n)−5x5

k+1,n], (16)

where 0 ≤ x̄kn ≤ xkn, 0 ≤ x̄k+1,n ≤ xk+1,n. For n/2 ≤ k ≤ n/2 + nβ we
have

0 ≤ ykn ≤ nβ−1/2, 0 ≤ xkn ≤ 2nβ−1,

0 ≤ yk+1,n ≤ nβ−1/2 + n−1/2 ≤ 2nβ−1/2, 0 ≤ xk+1,n ≤ 4nβ−1,

and if n is large enough

0 ≤ (1− x̄kn)−5x5
kn + (1− x̄k+1,n)−5x5

k+1,n ≤ 2 · 25 · 45n5β−5 =: Nn5β−5

and the sum of those terms as k runs between n/2 and n/2 + nβ is
dominated by Nn6β−5. Next,

k∑
i=n/2

[x2
i+1,n − x2

in] = x2
k+1,n ≤ 16n2β−2.

We also observe that
k∑

i=n/2

[x4
i+1,n − x4

in] = x4
k+1,n ≤ 28n4β−4 ≤ 28n2β−2,

k∑
i=n/2

[x3
kn + x3

k+1,n] = 8n−3

k−n/2∑
i=0

i3 + 8n−3

k+1−n/2∑
i=1

i3

= 2n−3(k − n/2)2(k + 1− n/2)2 + 2n−3(k + 1− n/2)2(k + 2− n/2)2

= 4n−1y2
k+1,n[y2

k+1,n + n−1] = 4n−1y4
k+1,n + 4n−2y2

k+1,n.

As a consequence

4n−1y4
k+1,n ≤

k∑
i=n/2

[x3
kn + x3

k+1,n] ≤ 4n−1y4
k+1,n + 16n2β−3.
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Now upon summing up (16) with respect to k, we find that for n/2 ≤
k ≤ n/2 + nβ

gn(yk+1,n)− gn(0) ≤ −2y2
k+1,n − (4/3)n−1y4

k+1,n + 72n2(β−1),

gn(yk+1,n)− gn(0) ≥ −2y2
k+1,n − (4/3)n−1y4

k+1,n

−n2β−316/3−Nn6β−5/5

≥ −2y2
k+1,n − (4/3)n−1y4

k+1,n − αn6β−5,

where we used that β ≥ 1/2 and α = N/5 + 16/3. The above inequal-
ities yield (15), that easily implies all other assertions of the theorem.
The theorem is proved.


