A REPRESENTATION OF NONNEGATIVE
SUBMARTINGALES AND ITS APPLICATIONS

N.V. KRYLOV

ABSTRACT. We suggest a representation of nonnegative submartin-
gales by means of increasing processes and give a simpler proof of
the Doob-Meyer theorem.

1. Let (Q,F, P) be a complete probability space, {F(t),t € [0,00]}
an increasing filtration of F-complete o-fields F(t) C F, £(t) a positive
(that is nonnegative) submartingale with respect to {F(¢)} defined for
t € [0, 00]. Under certain rather general hypotheses Smirnov [3] proved
the existence of a nonnegative increasing process 7)(t) such that

§(t) = E{n(®)|F (1)} (as.) Vte[0,00]. (1)

If £(¢) is a martingale, obviously one can take 7(t) = £(c0). On the
other hand, if n(¢) is any increasing process such that F|n(t)| < oo, Vi,
then the right-hand side of (1) is a submartingale. Therefore represen-
tation (1) is a quite natural generalization of the usual representation
of martingales.

In this note we first prove that representation (1) is valid if we impose
only the hypotheses stated above in the first phrase. Then we use the
representation to prove the Doob-Meyer theorem. In our opinion this
proof is simpler and shorter than the known ones being only based on
the most elementary facts of the theory of martingales. However, we
admit that we only prove the Doob-Meyer theorem in the form given by
Meyer [2], that is without Doléans’s assertion that natural increasing
processes are predictable (see [1]).

Observe that the existence of representation (1) can be easily ex-
plained by using the multiplicative representation: &(t) = A(t)M (t),
where A(t) is Fi-adapted and increasing and M (t) = E{M (o0)|F;}.
In that situation one can take n(t) = A(t) M (oc0).

Translation of “Une représentation des sousmartingales positives et ses applica-
tions”, Lecture Notes in Math., Vol. 1426, 1990, 473-476. In the published paper
some text from the submitted manuscript was deleted by the editors. It is included
back in this translation.
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We also point out that these notes appeared as a result of several
conversations with S.N. Smirnov to whom the author is sincerely grate-
ful.

2. Let @ = {q1,92,..-} be a dense subset of [0,00] containing all
discontinuity points of the increasing function E¢(t). We let ¢ =
0,92 = oco. For each integer n > 2 we denote by @), the subset of @)
consisting of its n first elements, which we arrange in the increasing
order: g,(i),7 =1, ...,n. For i < n—1 choose functions f, (i) such that
they are F(g,(i))-measurable and (a.s.)

§(gn (1)) = fa () E{E(gn (i + 1)) (gn(2))}- (2)
Since by definition for s < ¢ (a.s.)
£(s) < E{&(1)|F(s)}, (3)

we may assume that 0 < f,, (i) < 1. Finally, for i =1,....n — 1 let

Gu(t) = fa(@) - oo s fa(n—1) for € [gn(i), n(i +1)).

For i = n we have ¢,(i) = oo and we let (,(c0) := 1. Iterating (2)
yields

§(t) = E{€(c0)Gu(t)|F ()} (as.) Vi€ Qn. (4)
Furthermore, obviously (,(¢) is an increasing function of ¢ and 0 <
Ca(t) < 1. It follows that there exists a subsequence {n'} C {n} such
that n’ — oo and for each g € @) the sequence (,s(q) converges weakly
in Ly(€,v), where v(dw) = £(w, 00) P(dw), to a limit denoted by ((q).
For each ¢ € [0, oo] introduce

at) = inf ¢(g), )

where and everywhere below by ¢ we denote a generic element of Q).
Since (,(t) increases in ¢, on @ we have a(q) = ((¢) (a.s.). Fort & Q
we have

o(t) = lim ((g) = lim a(g), (6)

where the former limit exists almost surely and the latter one for any
w € . We multiply through (4) by 14, where A € F(t), take expec-
tations and after replacing n with n' let n’ — oo. Then for ¢ € Q we
find

£(q) = E{€(0)¢(9)|F(9)} = E{¢(0)a(q)| F(9)} (as.).  (7)
In addition, due to (3) and (7) for t < ¢ (a.s.)

§(t) < E{E(9)|F (1)} = E{&(c0)a(q)|F (1)},
which along with (6) yield (a.s.)
£(t) < E{&(c0)a(t)| F (1)} (8)
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To prove that actually here we have an equality instead of the inequality
it suffices to prove that the expectations of both sides coincide. They
coincide indeed for t € @ (see (7)) and for ¢ ¢ @ the choice of () and
(7) and (6) imply

BE(t) = lim BE(q) = lim EE(00)alq) = BE(00)a?)

Thus, (1) holds with 7(t) = &(oc0)a(t).
Remark 1 (cf. [3]). ' If E£(t) is right (left) continuous, then 7(t) can
be taken to be right (respectively, left) continuous.

Indeed, in the first case introduce §(t) according to (5) with ¢ > ¢
replaced with ¢ > ¢ if ¢ < 0o and set 5(o0) = 1. Then S(t) is right
continuous and a(t) < B(¢) < 1. Furthermore, for ¢ < oo owing to (7)
and (1) we have

B{¢(00)8(t)} = lim E{€(c0)¢(0)} = lim Bt () = EE(t) = E{¢(o0)a(t)}

Hence £(00)B(t) = &£(o0)a(t) (a.s.) for t < oo. This is also true for
t = oo since f(o0) = a(o0) = 1.
If E£(t) is left continuous, introduce

B(t)=ilirt>é(Q), t>0, B(0)=a(0).

Now A(t) is left continuous, f(t) < «(t) for ¢t € [0,00], and again
£(00)B(t) = &(co)a(t) (a.s.) since for ¢ = 0 this is obvious and for
t > 0 due to (7) and (1) we have

E{§(00)B(t)} = lim E{{(00)¢ (q)} = BE(t) = E{g(c0)a(t)}-

Remark 2. * In contrast with Remark 1 the continuity of F£(t) does
not imply that 7(¢) can be chosen continuous. Indeed, if F(t) = F,
then 7n(t) = £(t) (a.s.). Moreover, in this situation any bounded in-
creasing process £(t) is a submartingale and it can have discontinuous
trajectories even if F¢(t) is continuous.

3. We pass to the Doob-Meyer theorem. Additionally to the hy-
potheses of §1 assume that E£(t) is right continuous and take n(t) in
(1) to be right continuous. For any bounded random variable A let
my(A) = E{A|F(t)}. From Doob’s upcrossing theorem we know that,
with probability one, for all ¢ € (0, co] at once there exists

my—(A) = limm,(A)
qft
IStrangely enough the original text of the remark was somewhat changed in print

although the essence remained the same. We prefer to translate the original text.
2This remark was deleted by the editors.
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and the process m;_(\) is left continuous. For simplicity of notation,
if \ = Iz with B € F, we write my(B) and m;_(B) instead of my(\)
and my_(\), respectively. Observe that for any sequence of events B,
such that B, | ) we have (a.s.)

supmy_(B,) < supmy(By,) 4 0.3
t>0 qeQ

Upon adding that m, (B) < 1 and n(oc0) = £(00) is integrable, we see

that the formula
t
—F / me_(B) dn(r) (9)
0

introduces a finite measure on F, which is absolutely continuous with
respect to P. #* Therefore, the following objects are well defined:

() =M A =ifr(a), t< o0, Aloe) = (),

Clearly A(t) is increasing and right continuous. Moreover, p; < ps
when ¢ < s and y(t) < v(s) (a.s.) if t < s. Hence, for t < oo

A(t) =limy(g) (as.).

Also observe that y(t) is majorized by an integrable variable y(co0) and
by the dominated convergence theorem

E{IgA(t)} = hmE{IB’y = hmE{/ my— n(r)}

qit

- B / me-(B) du(r)} = E{Iz(0).

It follows that A(t) = 7(t) (a . ) In particular, A(0) = 0 (a.s.).# A
classical approxnnatlon argument shows that, for any bounded random
variable A and 0 < s <t < 0o, we have

E{MA(1)} = E{ / me_(X) dn(r)},

E{AA(t) - A(s))} = E{/ my— () dn(r)}- (10)

3Added in translation: Observe that by the Kolmogorov-Doob maximal inequal-
ity this holds in probability. After that use that the sequence is decreasing.

4The text between two signs # was replaced by the editors with “Soit A(t) la
densité de p; par rapport a P. En procédant comme au §2, nous pouvons supposer
que A(t) est, pour tout w € Q une fonction croissante et continue & droite de ¢ et
que A(o0) = limsoo A(t). (The latter equality is generally wrong and is not used
in the paper.)
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If A is F(s)-measurable, then m,_()\) = A for r > s and it follows from
(10) and (1) that

E{AMA(t) — A(s))} = E{A(n(t) — n(s))} = E{A(E(H) — £(s))}. (11)
Furthermore obviously, m,_(m(A\)) = m,_(\) (a.s.) for any r < ¢
which implies that

E{)A)} = E{/O my_(my(A)) dn(r)} = E{m:(A\)A@t)} = E{Am,(A(¢))}.

This means that A(t) is F(¢)-measurable. Now equation (11) implies
that £(¢) — A(t) is a martingale, say M (¢). Thus we get the Doob-Meyer
decomposition: £(t) = A(t) + M(t), where M(t) is a martingale and
A(t) is an adapted increasing process.

Finally, starting from (10) and approximating the integral of a bounded
left-continuous function by Riemannian sums we obtain that®

B{ / e () dA(r)} = E{ / e () dn(r)} = E{AA(0)}.

This means that the increasing process A(t) is natural in the sense of
Meyer [2].
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5The following explanation was deleted by the editors from the original manu-
script: Introduce &y, (t) = ¢ (i) for t € (¢n(4),¢n(¢ + 1)], ¢ = 1,...,n — 1. Clearly,
kn(t) < t, kn(t) Tt and for bounded A

n—1 o .
;an(i)()\)(A(qn(i'F].))_A(qn(i))) :/0 My, (1) (A) dA(t)—)/0 my—(N) dA(t).

Then by (11) and the dominated convergence theorem we get



