
Basics of harmonic polynomials and spherical functions

I present a beautiful, elegant, and rather simple theory of spherical
harmonics, which I heard on one of Dynkin’s seminars I was attending
in my third year at the university.

By Rd we denote the Euclidean space of points x = (x1, ..., xd). When
it makes sense, for real-valued u(x) on Rd we denote

uxi =
∂u

∂xi
, uxixj =

∂

∂xj
uxi , ∆u = ux1x1 + ...+ uxdxd .

1. Spherical harmonics and the Laplace-Beltrami
operator

Denote by Pn the set of polynomials of degree (at most) n defined
in Rd, d ≥ 2. Denote

BR = {x ∈ Rd : |x| < R}, SR = {x ∈ Rd : |x| = R}.

Lemma 1.1 (maximum principle). If u ∈ C2
loc(BR)∩C(B̄R) and ∆u ≥

0 in B, then in B

u ≤ max
SR

u.

In particular, if ∆u = 0 in B and u = 0 on SR, then u = 0 in B.

Proof. Let u at some points in BR be strictly bigger than maxSR u.
Then, by continuity, for ε > 0 small enough u − ε(R2 − |x|2) will also
be at some points in BR strictly bigger than its maximum over SR. It
follows that the maximum point, say xε of u−ε(R2−|x|2) over B̄R lies
in BR. At xε the second order derivatives and, hence, the Laplacian is
nonpositive:

0 ≥ ∆(u− ε(R2 − |x|2))|x=xε = ∆u(xε) + 2εd.

But this is impossible, since ∆u(xε) ≥ 0, which proves the lemma. �

Lemma 1.2. Let f and g be polynomials. Then there exists a unique
polynomial h, such that ∆h = f in B1 and h = g on S1.

Proof. By considering h− g we reduce the problem to the one with
g ≡ 0. Let f ∈ Pn.

Observe that the operator T : v → Tu = ∆
[(

1 − |x|2
)
v
]

maps
Pn into Pn. Furthermore, by the maximum principle, if v ∈ Pn and
Tv = 0, then

(
1−|x|2

)
v ≡ 0, meaning that T is a one-to-one mapping.

Since Pn is a finite-dimensional linear space, the equation Tv = f has
a unique solution in Pn, which proves the lemma in light of the fact
that 1− |x|2 is a polynomial. �
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It is interesting to discuss the following without referring to the above
lemma.

Remark 1.3. If n ≥ 2, u ∈ Pn and u = 0 on S1, then u = (1 − |x|2)v,
where v ∈ Pn−2.

Indeed, then f := ∆u ∈ Pn−2, there is a unique polynomial v such
that Tv = f , and this v ∈ Pn−2.

Remark 1.4. If f ≡ 0 and g is a polynomial of degree n, then h is also
a polynomial of degree (at most) n.

Indeed, if n = 0, 1, then h = g, and, if n ≥ 2, then ∆(g − h) = p,
where p is a polynomial of degree n− 2 and it follows from the above
proof that g−h =

(
1−|x|2

)
v, where v is a polynomial of degree n− 2,

so that h is a polynomial of degree (at most) n. In addition, if n ≥ 2,

g = h+
(
1− |x|2

)
v = h+

(
1− |x|2

)
h1 +

(
1− |x|2

)2
v1 = ...

Example 1.5. If g = |x|2, h ≡ 1.

Remark 1.6. Every harmonic polynomial h ∈ Pn can be uniquely rep-
resented as the sum hn + ...+ h0, where hk are homogeneous of degree
k harmonic polynomials.

Definition 1.7. The set of harmonic polynomials is denoted by H.
By Hn we denote the set of homogeneous polynomials of order n which
are harmonic. Any element of Hn restricted to S1 is called a spherical
harmonic of degree n. The set of those is denoted by Hn(S)

Corollary 1.8. The set

∞⋃
n=0

{h0 + ...+ hn : hi ∈ Hi(S), i = 0, ..., n}

is dense in L2(S1) since the set of polynomials is dense there.

Definition 1.9. The Laplace-Beltrami operator ∆S on S1 is introduced
on smooth functions φ given on S1 by the formula

∆Sφ(x) = ∆
(
φ
( x
|x|

))∣∣∣
|x|=1

.

Example 1.10. Let us compute ∆Sh for h ∈ Hn. Observe that by
Euler nh(x) = xihxi(x) and on functions φ(x) = φ(r), r = |x|, we have

∆φ = φ′′ +
d− 1

r
φ′.
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Also

∆(ψη) = ψ∆η + η∆ψ + 2ψxiηxi ,
( 1

|x|n
)
xi

= − nxi

|x|n+2
.

Then for |x| = 1 we have

∆
(
h
( x
|x|

))
= ∆

( 1

|x|n
h(x)

)
=
[
n(n+ 1)− (d− 1)n

]
h− 2nxihxi ,

∆Sh = −n(n+ d− 2)h,

so that h is an eigenfunction of ∆S with eigenvalue

λn = −n(n+ d− 2).

Theorem 1.11. The operator ∆S is formally self-adjoint. Moreover,
for any smooth φ, ψ given on Rd

I :=

∫
S1

φ∆Sψ dS = −
∫
S1

(Dtφ,Dtψ) dS, (1.1)

where Dtφ(x), x ∈ S1, is the projection of the gradient φx of φ at point
x on the tangent plane to S1 at x, that is

(Dtφ(x))i =
[
φ
( x
|x|

)]
xi

= φxj(x)(δij − xixj).

Proof. By using polar coordinates we write that for r > 1/2∫
Br\B1/2

φ
( x
|x|

)
∆
[
ψ
( x
|x|

)]
dx =

∫ r

1/2

∫
Sρ

φ
( x
|x|

)
∆
[
ψ
( x
|x|

)]
dSρ dρ.

It follows that for r = 1

I =
d

dr

∫
Br\B1/2

φ
( x
|x|

)
∆
[
ψ
( x
|x|

)]
dx.

We use Green’s formula and observe that the boundary terms disappear
because x/|x| does not change along the normals to the boundary of
Br \B1/2. Hence, I equals

− d

dr

∫
Br\B1/2

((
φ
( x
|x|

))
x
,
(
φ
( x
|x|

))
x

)
dx

= −
∫
S1

((
φ
( x
|x|

))
x
,
(
φ
( x
|x|

))
x

)
dS,

which yields (1.1). The theorem is proved. �

Corollary 1.12. If h ∈ Hn, g ∈ Hm and n 6= m, then h ⊥ g, that is∫
S1

hg dS = 0.
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Indeed,

λn

∫
S1

hg dS =

∫
S1

∆Shg dS = λm

∫
S1

hg dS,

which implies the result since λn 6= λm.

Theorem 1.13. Any function g ∈ L2(S1) has a unique representation

g =
∞∑
n=0

hn, (1.2)

where hn ∈ Hn and the series converges in L2(S1)-sense.

To prove this theorem it suffices to refer to Corollaries 1.12 and
1.8. �

Corollary 1.14. If φ is a smooth function on S1 such that ∆Sφ = λφ,
where λ is a constant, then either φ = const and λφ = 0, or φ 6= const
and there exists an m = 1, 2, ... such that φ ∈ Hm(S1) and λ = λm.

Indeed, for m ≥ 1 and the projection φm of φ on Hm(S1) we have

‖φm‖2
L2(S1) = (φ, φm)L2(S1) = λ−1

m (φ,∆Sφm)L2(S1) = λ−1
m (∆Sφ, φm)L2(S1)

= λλ−1
m ‖φm‖2

L2(S1).

Hence, φm = 0 if λ 6= λm. Therefore, if λ 6∈ {λm : m ≥ 1}, then
φ ∈ H0(S1), φ = const, ∆Sφ = 0 = λφ. However, if λ = λm0 for some
m0 ≥ 1, then φ ⊥ Hm(S1) for m 6= m0, since, for h ∈ Hm,

λm0

∫
S1

hφ dS =

∫
S1

∆Shφ dS = λm

∫
S1

hφ dS.

Hence, φ ∈ Hm0(S1). �
For ρ > 0 denote by

–

∫
Sρ

u(x) dSρ

the average value of u on Sρ, that is its integral over Sρ divided by the
surface of Sρ. Similarly introduce

–

∫
Bρ

u(x) dx =
1

Vol (Bρ)

∫
Bρ

u(x) dx.

Theorem 1.15 (mean value theorem). If h ∈ H, a ∈ Rd, and ρ > 0,
then

–

∫
Sρ

h(x+ a) dSρ = –

∫
Bρ

h(x+ a) dx = h(a). (1.3)
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Indeed, it suffices to consider the case where a = 0 and h(0) = 0. In
that case, the equality

–

∫
Sρ

h(x) dSρ = 0 (1.4)

for all ρ > 0 implies∫
Sρ

h(x) dSρ = 0,

∫
Bρ

h(x) dx = 0, –

∫
Bρ

h(x) dx = 0.

Therefore, we only need to prove (1.4). Scalings imply that it suffices
to concentrate on ρ = 1. For h ∈ H there exists n ≥ 0 such that
h = hn + ... + h0, where hi ∈ Hi. Since h(0) = 0 and, obviously,
hi(0) = 0, i ≥ 1, it holds that h0 = 0 and it suffices to prove that (1.4)
holds for ρ = 1, n ≥ 1, and h ∈ Hn. In that case (1.4) follows from
Corollary 1.12 since 1 ∈ H0. �

2. Dirichlet problem

Any d-tuple β = (β1, ..., βd) consisting of βi ∈ {0, 1, ...} is called a
multi-index. For any multi-index β we set

|β| =
d∑
i=1

βi, Dβ = Dβ1

1 · ... ·D
βd
d , Di =

∂

∂xi
β! = β1! · ... · βd!.

Lemma 2.1. Let R ∈ (0,∞), g, u be polynomials such that ∆u = 0
and u = g on ∂BR. Then there exists a constant N = N(d) such that
in BR for any multi-index β

∣∣Dβu(x)
∣∣ ≤ ( N |β|

R− |x|

)|β|
sup
∂BR

|g|. (2.1)

Proof. We employ Bernstein’s method which uses only the maximum
principle. First we note that scalings show that it suffices to concentrate
on R = 1. In that case take any ζ ∈ C∞0 (Rd) with support in B1,
assume that ζ(0) = 1, and consider the function

w := ζ2|ux|2 + λ|u|2,
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where λ > 0 is a constant to be chosen later. We have ∆u = 0,
∆uxi = 0, and

∆w = |ux|2∆(ζ2) + ζ2
[
2uxi∆uxi + 2

∑
i,k

|uxixk |2
]

+ 8ζζxiuxk uxixk + 2λ|ux|2 + 2λu∆u

=
[
2λ|ux|2 + |ux|2∆(ζ2)

]
+ 2ζ2

∑
i,k

|uxixk |2

+ 8[ζxiuxk ] [ζuxixk ]

≥ |ux|2
[
2λ+ ∆(ζ2)− 8|ζx|2

]
(we have used 2a2 + 8ab ≥ −8b2). We see how to take λ = λ(d) so that
∆w ≥ 0. Fix such a λ. Then by the maximum principle∣∣ux(0)

∣∣2 ≤ max
B̄1

w ≤ max
∂B1

w = λmax
∂B1

|g|2.

This yields (2.1) for |β| = 1, R = 1, and x = 0. Then (2.1) holds for
|β| = 1 and any R ∈ (0,∞) if x = 0. Moving the origin and observing
that ∆u = 0 in BR−|x0|(x0) for any x0 ∈ BR we get that (2.1) holds for
|β| = 1 and any x ∈ BR.

For higher values of |β|, one obtains (2.1) by splittingBR\B|x| into |β|
rings of width

(
R−|x|

)
/|β| and estimating the derivatives Dj1 · ... ·Djku

inside the k-th ring by using the above result obtained for |β| = 1 and
the fact that ∆Dj1 · ... ·Djk−1

u = 0 in BR. The lemma is proved. �

Corollary 2.2. For any g ∈ C(B̄R) there exists a unique u ∈ C2
loc(BR)∩

C(B̄R), that satisfies ∆u = 0 in BR and is equal to g on ∂BR. Further-
more, any such function is in C∞loc(BR) and the assertions of Lemma
2.1 hold true. Also, for any a ∈ BR and ρ > 0 such that Bρ(a) ⊂ BR

we have (mean value theorem)

–

∫
Sρ

u(x+ a) dSρ = –

∫
Bρ

u(x+ a) dx = u(a)

Uniqueness is a consequence of the maximum principle, which also
assures that, if the polynomials gn converge uniformly to g on ∂BR and
un are the corresponding polynomials from Lemma 2.1, then

sup
B̄R

|un − um| ≤ sup
∂BR

|gn − gm| → 0
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as n,m→∞. Hence, un converge in B̄R uniformly to, say u, which is
continuous and equal g on ∂BR. Applying estimates (2.1) to un − um,
we see that also all derivatives of un converge uniformly on any compact
subset of BR. Of course, this implies that u ∈ C∞loc(BR) and u is the
desired solution. After that estimates (2.1) for u and the last assertions
are immediate. �

Corollary 2.3. If u ∈ C2
loc(Rd), ∆u = 0 in Rd, α ∈ [0, 1), n ∈

{0, 1, 2, ...} and

lim
|x|→∞

|u(x)|
|x|n+α

<∞,

then u ∈ Hn.

Indeed, as R → ∞, (2.1) implies that all derivatives of order n + 1
vanish.

Corollary 2.4. If u ∈ C2
loc(BR) is harmonic in BR, then it is real

analytic.

This follows from (2.1) (applied in a smaller ball) and the fact that,
for any constant N and |x| ≤ (eN)−1,

Nk|x|kkk

k!
→ 0

as k →∞.

Corollary 2.5. Let un(x), n = 1, 2, ..., be a sequence of harmonic
functions in B1 such that they are uniformly bounded in BR for any
R < 1 and at any point of B1 they converge as n → ∞ to a function
u(x). Then u(x) is infinitely differentiable, harmonic in B1, and any
derivative of un converges to the corresponding derivative of u locally
uniformly in B1.

Theorem 2.6 (Harnack’s inequality). Let u ∈ C2
loc(BR) be a nonneg-

ative harmonic in BR. Then u(x) ≤ 5du(y) if |x|, |y| ≤ R/5.

Proof. We have BR/2(y) ⊃ BR/10(x) and

u(y) = –

∫
BR/2(y)

u(z) dz ≥M –

∫
BR/10(x)

u(z) dz = Mu(x),

where

M =
VolBR/10

VolBR/2

= 5−d.

This proves the theorem. �
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Corollary 2.7 (one-sided Liouville’s theorem). If u ∈ C2
loc(Rd) is har-

monic in Rd which is bounded from below, then u = const.

Indeed, in that case v := u − infRd u is also a harmonic in Rd and
there is a sequence yn such that v(yn) → 0 as n → ∞. By Theorem
2.6 we have v(x) ≤ Nv(yn), which implies that (0 ≤)v ≤ 0, v ≡ 0, and
u ≡ infRd u.

A different argument. One can assume that u ≥ 0. Then Harnack’s
inequality implies that u is bounded, and, by Corollary 2.3, u ∈ H0,
that is u = const. �

Next, we are interested in solving the Dirichlet problem with more
general boundary data.

Theorem 2.8. For any function g ∈ L2(S1) there exists a unique
harmonic function u in B1 such that u(tx)→ g(x) in L2(S1)-sense as
t ↑ 1.

Proof. Existence. We take the right-hand side of (1.2) and consider
it in B1. Obviously, hn ⊥ hm in L2(B1) if n 6= m. Furthermore,∫

B1

|hn|2 dx = c

∫ 1

0

rd−1
(∫

S1

|hn(rx)|2 dS
)
dr

= c

∫ 1

0

rd+2n−1 dr

∫
S1

|hn(x)|2 dS = c(d+ 2n)−1‖hn‖2
L2(S1).

It follows that the series in (1.2) converges in L2(B1).
Finite sums Σn of this series are well defined harmonic functions

satisfying

Σn(x) = –

∫
Br(x)

Σn(y) dy.

By Corollary 2.5, Σn converge uniformly in any Br, r < 1, to a har-
monic function. Call it u. Then, for x ∈ S1 and t ∈ [0, 1) we have

u(tx) =
∞∑
n=0

tnhn(x).

Hence

‖u(t·)− g‖2
L2(S1) =

∞∑
n=0

(1− tn)‖hn‖2
L2(S1),

which goes to zero as t ↑ 1 indeed.
Uniqueness. Observe that by Green’s formula for t < 1

d

dt

∫
S1

|u(tx)|2 dS = 2

∫
S1

u(tx)(x, ux(tx)) dS = 2t

∫
B1

|ux(tx)|2 dx ≥ 0

and this yields the result. The theorem is proved. �
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3. Case d = 2

Let s denote the point on S1 which is at the distance s along the
circle in the counterclockwise direction from the point (1, 0). As easily
follows from (1.1), the Laplace-Beltrami operator on S1 is just the
second-order derivative with respect to s. Therefore, h ∈ Hn(S1) are
(the only, see Corollary 1.14) solutions of

h′′ = λnh = −n2h, h(s) = c1 sinns+ c2 cosns,

and (1.2) is a usual representation of a function f ∈ L2(0, 2π) by its
Fourier series. Amazing, at the first sight, the theory of Fourier series
has nothing to do with the Laplacian in d = 2.

Also observe that since, generally, Hn are obviously invariant under
orthogonal transformation in this case for d = 2 and n = 1 for any t
we have

sin(t+ s) = b(t) cos s+ c(t) sin s

and one can find b(t) and c(t) by using substitutions. Say, for s = 0
we get sin t = b(t). Knowing that and interchanging s and t we get
c(t) = cos t.

One more remarkable thing is that sinns, which is in Hn(S) by
Corollary 1.14, as a solution of the appropriate equation, and is there-
fore the trace on S1 of a homogeneous nth-order harmonic polynomial .
For n = 2 this means that sin 2s and cos 2s are linear combinations of
the traces of x2 − y2 and xy, that is of cos2 s− sin2 s and cos s sin s.

4. Basis in Hn and its dimension

Let Phom
n be the set of homogeneous polynomials of degree n.

Lemma 4.1. For n ≥ 2 every p ∈ Phom
n has a unique representation

p = h+ |x|2r,

where h ∈ Hn and r ∈ Phom
n−2 .

Proof. Existence. By Lemma 1.2 there is a harmonic polynomial u
of degree n such that p = u on S1. By Remark 1.3 we have p − u =
(1 − |x|2)q, where q ∈ Pn−2. Let h be the homogeneous part of u of
order n and r be the homogeneous part of q of order n− 2. Then

p = h− |x|2r + [(u− h) + r + (1− |x|2)(q − r)]

= h− |x|2r + pn−1,

where pn−1 ∈ Pn−1. By homogeneity pn−1 = 0 and we get the desired
representation.
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Uniqueness. We need to prove that if h ∈ Hn, r ∈ Phom
n−2 and h +

|x|2r ≡ 0, then h = r ≡ 0.
More generally, let k ≥ 1 be an integer such that h admits the

representation h = −|x|2kr, where r is a polynomial. We want to show
that h = 0. Obviously n− 2k ≥ 0 and

0 = ∆(|x|2kr) = |x|2k∆r + 2k(2n− 2k + d− 2)|x|2k−2r,

Here 2k(2n− 2k+ d− 2) > 0, so that r1 := c∆r (c−1 = −2k(2n− 2k+
d−2)) is a polynomial, and h = −|x|2(k+1)r1. By induction we see that
for any k ≥ 1 there exists polynomials rk such that h = |x|2krk, which
is only possible if h ≡ 0 and this proves the lemma. �

As a simple corollary of Lemma 4.1 obtained by iteration we come
to the following.

Theorem 4.2. Let p ∈ Pn. Then there exist unique hn−2i ∈ Hn−2i,
i = 0, 1, ..., k, where k = bn/2c such that

p = hn + |x|2hn−2 + ...+ |x|2khn−2k.

Example 4.3. Take p = x1x2x3. It has a representation p = h +
|x|2h1, where h ∈ H3 and h1 is an affine homogeneous function of
x = (x1, x2, x3). By symmetry it follows that h1 = c(x1 + x2 + x3) and
x1x2x3 − c|x|2(x1 + x2 + x3) is harmonic.

Theorem 4.4. If n ≥ 2, then

dimHn =

(
d+ n− 1

d− 1

)
−
(
d+ n− 3

d− 1

)
.

Proof. First we find dim Phom
n , which is the number of different

monomials
xα = (x1)α1 · ... · (xd)αd

such that α1+...+αd = n. We consider a row of d+n−1 seats, numbered
from 1 to d+n−1, choose arbitrarily d−1 of them i1 < i2 < ... < id−1

and then define αk as the number of seats strictly between ik and ik+1:
α1 = i1 − 1, α2 = i2 − i1 − 1, ..., αd = d + n − 1 − id−1. The number
of such arrangement will be exactly the number of different monomials
xα such that α1 + ...+ αd = n. This number is(

d+ n− 1

d− 1

)
.

By Lemma 4.1 to obtain dimHn it suffices to subtract from this number
dimPhom

n−2 . This yields the result. �

Remark 4.5. If d = 2 and n ≥ 1, dimHn = 2.

Now we want to find a basis in Hn.
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Lemma 4.6. For d > 2 and any multi-index α the function

h := |x|2n+d−2Dα 1

|x|d−2

belongs to Hn, where n = |α|.

Proof. That h ∈ Phom
n is checked by induction. Then, since Dα 1

|x|d−2

is harmonic in Rd \ {0} and homogeneous of degree −(n + d − 2), we
have

|x|−n−d+4∆h = [(2n+d− 2)(2n+d− 3) + (d− 1)(2n+d− 2)]Dα 1

|x|d−2

+2(2n+ d− 2)xjDjD
α 1

|x|d−2

= [(2n+ d− 2)(2n+ d− 3) + (d− 1)(2n+ d− 2)

−2(2n+ d− 2)(n+ d− 2)]Dα 1

|x|d−2
= 0.

�

Lemma 4.7. Let d ≥ 3 and let u ∈ C2(Rd) have compact support.
Then for any x ∈ Rd

u(x) = −cd
∫

Rd

1

|y − x|d−2
∆u(y) dy, (4.1)

(Newton’s potential of −∆u) where cd is a constant depending only on
d.

Proof. First note that it suffices to prove (4.1) for x = 0. In that
case take ζ ∈ C∞0 (R2) such that ζ = 1 in B1 and for ε > 0 set ζε(y) =
ζ(y/ε). Observe that if in (4.1) we take (1 − ζε)u in place of u, then
we can integrate by parts (x = 0) and, using the fact that ∆|y|2−d = 0,
conclude that the integral in (4.1) is zero. Hence, the integral in (4.1)
in its original form equals

I := lim
ε↓0

∫
Rd

1

|y|d−2
∆(ζεu)(y) dy.

We use that

ε−1

∫
Rd

1

|y|d−2
ζxi(y/ε)uxi(y) dy = ε

∫
Rd

1

|y|d−2
ζxi(y)uxi(εy) dy → 0,∫

Rd

1

|y|d−2
ζ(y/ε)∆u(y) dy → 0,

and conclude that

I := lim
ε↓0

ε−2

∫
Rd

1

|y|d−2
u(y)(∆ζ)(y/ε) dy.
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Observe that for N being the Lipschitz constant of u

lim
ε↓0

ε−2

∫
Rd

1

|y|d−2
|u(y)− u(0)| |∆ζ|(y/ε) dy

≤ N lim
ε↓0

ε

∫
Rd

1

|y|d−2
|y| |∆ζ|(y) dy = 0.

Hence,

I = u(0) lim
ε↓0

ε−2

∫
Rd

1

|y|d−2
(∆ζ)(y/ε) dy = u(0)

∫
Rd

1

|y|d−2
∆ζ(y) dy.

This proves the lemma. �
Recall that we denote by Hn(S1) the set of restrictions of the func-

tions in Hn to S1.

Lemma 4.8. If d > 2, the linear span of

{Dα|x|2−d : |α| = n}
is Hn(S1).

Proof. If n = 0, the assertion is obvious. For n ≥ 1 assume the
contrary. Then there exists h ∈ Hn(S1) such that∫

S1

hDα|x|2−d dS = 0 (4.2)

for all α such that |α| = n. By Lemma 4.6 and Corollary 1.12 equation
(4.2) also holds for |α| 6= n.

Next, the function

F (x) :=

∫
S1

h(y)|y − x|2−d dS

is harmonic outside S1 and as such is real analytic there. Equation
(4.2) says that all derivatives of F vanish at 0. It follows that F = 0
in B1. Furthermore, F is a bounded continuous function on Rd since
bounded continuous ∫

S1

h(y)|y − x|2−dI|y−x|≥ε dS

converge uniformly on Rd to F as ε ↓ 0. In addition, F → 0 as |x| → ∞,
hence, by the maximum principle F = 0 in Bc

1, since it is harmonic in
B̄c

1. Thus, F ≡ 0.
Now take u ∈ C∞0 (Rd) and integrate the equality

0 =

∫
S1

h(y)|y − x|2−d dS∆u(x)



13

over Rd. By using Lemma 4.7 we get∫
S1

h(y)u(y) dS = 0

and the arbitrariness of u implies that h ≡ 0. �

Theorem 4.9. For d ≥ 3 the set

{Dα|x|2−d : |α| = n, α1 ≤ 1} (4.3)

is a basis in Hn(S1).

Proof. The number of elements in (4.3) is not greater than the num-
ber of multi-indices α such that |α| = n and α1 ≤ 1. The latter number
is easily shown to be equal to dimHn(S1) (use the same interpretation
as in the proof of Theorem 4.4). Therefore, due to Lemma 4.8 we only
need to show that Dα|x|2−d belongs to the span of (4.3) for any α1 if
|α| = n. This is trivial because |x|2−d is harmonic and for any even α1

we have

Dα1
1 |x|2−d = (−D2

2 − ...−D2
d)
α1/2|x|2−d,

whereas if α1 = 2k + 1 (≤ n),

Dα1
1 |x|2−d = D1(−D2

2 − ...−D2
d)
k|x|2−d.

�

5. An unexpected formula for the scalar product of
spherical harmonics

Recall that for any multi-index α = (α1, ..., αd) and x ∈ Rd we set

xα = (x1)α1 · ... · (xd)αd , |α| = α1 + ...+ αd, α! = α1! · ... · αd! .

Suppose

p =
∑
|α|=n

bαx
α, q =

∑
|α|=n

cαx
α

are in Hn. We want to find their scalar product in L2(S1). It looks like
the best we can do is to write

(p, q)L2(S1) =
∑
α,β

bαcβ

∫
S1

xα+β dS.

The integral over S1 of the monomial xα+β was explicitly calculated
by Hermann Weyl in Section 3 of [2] (1939). Using that result would
complete the formula for (p, q)L2(S1). There is however a shorter way,
which I take from [1].
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Lemma 5.1. If n > 0 and p, q ∈ Hn, then

I :=

∫
S1

pq dS =
1

n(d+ 2n− 2)

d∑
j=1

∫
S1

DjpDjq dS. (5.1)

Proof. Let Du denote the gradient of u. By Theorem 1.11 and
Example 1.10

−λnI =

∫
S1

(
D
( 1

|x|n
p(x)

)
, D
( 1

|x|n
q(x)

))
dS

=

∫
S1

(
− nxp(x) +Dp(x),−nxq(x) +Dq(x)

)
dS.

By using that (x,Dp(x)) = np(x) we see that

−λnI = −n2I +

∫
S1

(Dp,Dq) dS,

which is equivalent to (5.1). �

Theorem 5.2. Let p =
∑

α bαx
α and q =

∑
α cαx

α be harmonic poly-
nomials. Then

(p, q)L2(S1) =
∑
α

bαcαwα,

where

wα =
α!

d(d+ 2) · ... · (d+ 2|α| − 2)
α 6= 0, w0 = 1.

Proof. Owing to Corollary 1.12 it suffices to prove the theorem under
the assumption that p, q ∈ Hn.

If n = 0, then p, q are constant and the desired result obviously
holds.

If n > 0 observe that Djp and Djq are harmonic polynomials in
Hn−1, so that Lemma 5.1 is applicable. By induction we get for ej
being the jth basis vector in Rd that

d∑
j=1

(Djp,Djq)L2(S1) =
d∑
j=1

∫
S1

(∑
α

bααjx
α−ej

)(∑
α

cααjx
α−ej

)

=
d∑
j=1

∑
α

bαcαα
2
j

(α− ej)!
d(d+ 2) · ... · (2 + 2n− 4)

=
∑
α

bαcα

d∑
j=1

αj
α!

d(d+ 2) · ... · (2 + 2n− 4)



15

=
∑
α

bαcα
α!n

d(d+ 2) · ... · (2 + 2n− 4)
.

By combining this with Lemma 5.1, we get the result. �
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