Basics of harmonic polynomials and spherical functions

I present a beautiful, elegant, and rather simple theory of spherical harmonics, which I heard on one of Dynkin's seminars I was attending in my third year at the university.

By \mathbb{R}^{d} we denote the Euclidean space of points $x=\left(x^{1}, \ldots, x^{d}\right)$. When it makes sense, for real-valued $u(x)$ on \mathbb{R}^{d} we denote

$$
u_{x^{i}}=\frac{\partial u}{\partial x^{i}}, \quad u_{x^{i} x^{j}}=\frac{\partial}{\partial x^{j}} u_{x^{i}}, \quad \Delta u=u_{x^{1} x^{1}}+\ldots+u_{x^{d} x^{d}} .
$$

1. Spherical harmonics and the Laplace-Beltrami OPERATOR

Denote by \mathcal{P}_{n} the set of polynomials of degree (at most) n defined in $\mathbb{R}^{d}, d \geq 2$. Denote

$$
B_{R}=\left\{x \in \mathbb{R}^{d}:|x|<R\right\}, \quad S_{R}=\left\{x \in \mathbb{R}^{d}:|x|=R\right\} .
$$

Lemma 1.1 (maximum principle). If $u \in C_{\mathrm{loc}}^{2}\left(B_{R}\right) \cap C\left(\bar{B}_{R}\right)$ and $\Delta u \geq$ 0 in B, then in B

$$
u \leq \max _{S_{R}} u
$$

In particular, if $\Delta u=0$ in B and $u=0$ on S_{R}, then $u=0$ in B.
Proof. Let u at some points in B_{R} be strictly bigger than $\max _{S_{R}} u$. Then, by continuity, for $\varepsilon>0$ small enough $u-\varepsilon\left(R^{2}-|x|^{2}\right)$ will also be at some points in B_{R} strictly bigger than its maximum over S_{R}. It follows that the maximum point, say x_{ε} of $u-\varepsilon\left(R^{2}-|x|^{2}\right)$ over \bar{B}_{R} lies in B_{R}. At x_{ε} the second order derivatives and, hence, the Laplacian is nonpositive:

$$
0 \geq\left.\Delta\left(u-\varepsilon\left(R^{2}-|x|^{2}\right)\right)\right|_{x=x_{\varepsilon}}=\Delta u\left(x_{\varepsilon}\right)+2 \varepsilon d
$$

But this is impossible, since $\Delta u\left(x_{\varepsilon}\right) \geq 0$, which proves the lemma.
Lemma 1.2. Let f and g be polynomials. Then there exists a unique polynomial h, such that $\Delta h=f$ in B_{1} and $h=g$ on S_{1}.

Proof. By considering $h-g$ we reduce the problem to the one with $g \equiv 0$. Let $f \in \mathcal{P}_{n}$.

Observe that the operator $T: v \rightarrow T u=\Delta\left[\left(1-|x|^{2}\right) v\right]$ maps \mathcal{P}_{n} into \mathcal{P}_{n}. Furthermore, by the maximum principle, if $v \in \mathcal{P}_{n}$ and $T v=0$, then $\left(1-|x|^{2}\right) v \equiv 0$, meaning that T is a one-to-one mapping. Since \mathcal{P}_{n} is a finite-dimensional linear space, the equation $T v=f$ has a unique solution in \mathcal{P}_{n}, which proves the lemma in light of the fact that $1-|x|^{2}$ is a polynomial.

It is interesting to discuss the following without referring to the above lemma.

Remark 1.3. If $n \geq 2, u \in \mathcal{P}_{n}$ and $u=0$ on S_{1}, then $u=\left(1-|x|^{2}\right) v$, where $v \in \mathcal{P}_{n-2}$.

Indeed, then $f:=\Delta u \in \mathcal{P}_{n-2}$, there is a unique polynomial v such that $T v=f$, and this $v \in \mathcal{P}_{n-2}$.

Remark 1.4. If $f \equiv 0$ and g is a polynomial of degree n, then h is also a polynomial of degree (at most) n.

Indeed, if $n=0,1$, then $h=g$, and, if $n \geq 2$, then $\Delta(g-h)=p$, where p is a polynomial of degree $n-2$ and it follows from the above proof that $g-h=\left(1-|x|^{2}\right) v$, where v is a polynomial of degree $n-2$, so that h is a polynomial of degree (at most) n. In addition, if $n \geq 2$,

$$
g=h+\left(1-|x|^{2}\right) v=h+\left(1-|x|^{2}\right) h_{1}+\left(1-|x|^{2}\right)^{2} v_{1}=\ldots
$$

Example 1.5. If $g=|x|^{2}, h \equiv 1$.
Remark 1.6. Every harmonic polynomial $h \in \mathcal{P}_{n}$ can be uniquely represented as the sum $h_{n}+\ldots+h_{0}$, where h_{k} are homogeneous of degree k harmonic polynomials.

Definition 1.7. The set of harmonic polynomials is denoted by \mathcal{H}. By \mathcal{H}_{n} we denote the set of homogeneous polynomials of order n which are harmonic. Any element of \mathcal{H}_{n} restricted to S_{1} is called a spherical harmonic of degree n. The set of those is denoted by $\mathcal{H}_{n}(S)$

Corollary 1.8. The set

$$
\bigcup_{n=0}^{\infty}\left\{h_{0}+\ldots+h_{n}: h_{i} \in \mathcal{H}_{i}(S), i=0, \ldots, n\right\}
$$

is dense in $L_{2}\left(S_{1}\right)$ since the set of polynomials is dense there.
Definition 1.9. The Laplace-Beltrami operator Δ_{S} on S_{1} is introduced on smooth functions ϕ given on S_{1} by the formula

$$
\Delta_{S} \phi(x)=\left.\Delta\left(\phi\left(\frac{x}{|x|}\right)\right)\right|_{|x|=1} .
$$

Example 1.10. Let us compute $\Delta_{S} h$ for $h \in \mathcal{H}_{n}$. Observe that by Euler $n h(x)=x^{i} h_{x^{i}}(x)$ and on functions $\phi(x)=\phi(r), r=|x|$, we have

$$
\Delta \phi=\phi^{\prime \prime}+\frac{d-1}{r} \phi^{\prime} .
$$

Also

$$
\Delta(\psi \eta)=\psi \Delta \eta+\eta \Delta \psi+2 \psi_{x^{i}} \eta_{x^{i}}, \quad\left(\frac{1}{|x|^{n}}\right)_{x^{i}}=-\frac{n x^{i}}{|x|^{n+2}}
$$

Then for $|x|=1$ we have

$$
\begin{gathered}
\Delta\left(h\left(\frac{x}{|x|}\right)\right)=\Delta\left(\frac{1}{|x|^{n}} h(x)\right)=[n(n+1)-(d-1) n] h-2 n x^{i} h_{x^{i}} \\
\Delta_{S} h=-n(n+d-2) h
\end{gathered}
$$

so that h is an eigenfunction of Δ_{S} with eigenvalue

$$
\lambda_{n}=-n(n+d-2)
$$

Theorem 1.11. The operator Δ_{S} is formally self-adjoint. Moreover, for any smooth ϕ, ψ given on \mathbb{R}^{d}

$$
\begin{equation*}
I:=\int_{S_{1}} \phi \Delta_{S} \psi d S=-\int_{S_{1}}\left(D^{t} \phi, D^{t} \psi\right) d S \tag{1.1}
\end{equation*}
$$

where $D^{t} \phi(x), x \in S_{1}$, is the projection of the gradient ϕ_{x} of ϕ at point x on the tangent plane to S_{1} at x, that is

$$
\left(D^{t} \phi(x)\right)^{i}=\left[\phi\left(\frac{x}{|x|}\right)\right]_{x^{i}}=\phi_{x^{j}}(x)\left(\delta^{i j}-x^{i} x^{j}\right)
$$

Proof. By using polar coordinates we write that for $r>1 / 2$

$$
\int_{B_{r} \backslash B_{1 / 2}} \phi\left(\frac{x}{|x|}\right) \Delta\left[\psi\left(\frac{x}{|x|}\right)\right] d x=\int_{1 / 2}^{r} \int_{S_{\rho}} \phi\left(\frac{x}{|x|}\right) \Delta\left[\psi\left(\frac{x}{|x|}\right)\right] d S_{\rho} d \rho
$$

It follows that for $r=1$

$$
I=\frac{d}{d r} \int_{B_{r} \backslash B_{1 / 2}} \phi\left(\frac{x}{|x|}\right) \Delta\left[\psi\left(\frac{x}{|x|}\right)\right] d x
$$

We use Green's formula and observe that the boundary terms disappear because $x /|x|$ does not change along the normals to the boundary of $B_{r} \backslash B_{1 / 2}$. Hence, I equals

$$
\begin{aligned}
- & \frac{d}{d r} \int_{B_{r} \backslash B_{1 / 2}}\left(\left(\phi\left(\frac{x}{|x|}\right)\right)_{x},\left(\phi\left(\frac{x}{|x|}\right)\right)_{x}\right) d x \\
& =-\int_{S_{1}}\left(\left(\phi\left(\frac{x}{|x|}\right)\right)_{x},\left(\phi\left(\frac{x}{|x|}\right)\right)_{x}\right) d S
\end{aligned}
$$

which yields (1.1). The theorem is proved.
Corollary 1.12. If $h \in \mathcal{H}_{n}, g \in \mathcal{H}_{m}$ and $n \neq m$, then $h \perp g$, that is

$$
\int_{S_{1}} h g d S=0
$$

Indeed,

$$
\lambda_{n} \int_{S_{1}} h g d S=\int_{S_{1}} \Delta_{S} h g d S=\lambda_{m} \int_{S_{1}} h g d S
$$

which implies the result since $\lambda_{n} \neq \lambda_{m}$.
Theorem 1.13. Any function $g \in L_{2}\left(S_{1}\right)$ has a unique representation

$$
\begin{equation*}
g=\sum_{n=0}^{\infty} h_{n} \tag{1.2}
\end{equation*}
$$

where $h_{n} \in \mathcal{H}_{n}$ and the series converges in $L_{2}\left(S_{1}\right)$-sense.
To prove this theorem it suffices to refer to Corollaries 1.12 and 1.8.

Corollary 1.14. If ϕ is a smooth function on S_{1} such that $\Delta_{S} \phi=\lambda \phi$, where λ is a constant, then either $\phi=$ const and $\lambda \phi=0$, or $\phi \neq$ const and there exists an $m=1,2, \ldots$ such that $\phi \in \mathcal{H}_{m}\left(S_{1}\right)$ and $\lambda=\lambda_{m}$.

Indeed, for $m \geq 1$ and the projection ϕ_{m} of ϕ on $\mathcal{H}_{m}\left(S_{1}\right)$ we have

$$
\begin{aligned}
\left\|\phi_{m}\right\|_{L_{2}\left(S_{1}\right)}^{2}=\left(\phi, \phi_{m}\right)_{L_{2}\left(S_{1}\right)} & =\lambda_{m}^{-1}\left(\phi, \Delta_{S} \phi_{m}\right)_{L_{2}\left(S_{1}\right)}=\lambda_{m}^{-1}\left(\Delta_{S} \phi, \phi_{m}\right)_{L_{2}\left(S_{1}\right)} \\
& =\lambda \lambda_{m}^{-1}\left\|\phi_{m}\right\|_{L_{2}\left(S_{1}\right)}^{2} .
\end{aligned}
$$

Hence, $\phi_{m}=0$ if $\lambda \neq \lambda_{m}$. Therefore, if $\lambda \notin\left\{\lambda_{m}: m \geq 1\right\}$, then $\phi \in \mathcal{H}_{0}\left(S_{1}\right), \phi=$ const, $\Delta_{S} \phi=0=\lambda \phi$. However, if $\lambda=\lambda_{m_{0}}$ for some $m_{0} \geq 1$, then $\phi \perp \mathcal{H}_{m}\left(S_{1}\right)$ for $m \neq m_{0}$, since, for $h \in \mathcal{H}_{m}$,

$$
\lambda_{m_{0}} \int_{S_{1}} h \phi d S=\int_{S_{1}} \Delta_{S} h \phi d S=\lambda_{m} \int_{S_{1}} h \phi d S
$$

Hence, $\phi \in \mathcal{H}_{m_{0}}\left(S_{1}\right)$.
For $\rho>0$ denote by

$$
f_{S_{\rho}} u(x) d S_{\rho}
$$

the average value of u on S_{ρ}, that is its integral over S_{ρ} divided by the surface of S_{ρ}. Similarly introduce

$$
f_{B_{\rho}} u(x) d x=\frac{1}{\operatorname{Vol}\left(B_{\rho}\right)} \int_{B_{\rho}} u(x) d x .
$$

Theorem 1.15 (mean value theorem). If $h \in \mathcal{H}$, $a \in \mathbb{R}^{d}$, and $\rho>0$, then

$$
\begin{equation*}
f_{S_{\rho}} h(x+a) d S_{\rho}=f_{B_{\rho}} h(x+a) d x=h(a) . \tag{1.3}
\end{equation*}
$$

Indeed, it suffices to consider the case where $a=0$ and $h(0)=0$. In that case, the equality

$$
\begin{equation*}
f_{S_{\rho}} h(x) d S_{\rho}=0 \tag{1.4}
\end{equation*}
$$

for all $\rho>0$ implies

$$
\int_{S_{\rho}} h(x) d S_{\rho}=0, \quad \int_{B_{\rho}} h(x) d x=0, \quad \int_{B_{\rho}} h(x) d x=0 .
$$

Therefore, we only need to prove (1.4). Scalings imply that it suffices to concentrate on $\rho=1$. For $h \in \mathcal{H}$ there exists $n \geq 0$ such that $h=h_{n}+\ldots+h_{0}$, where $h_{i} \in \mathcal{H}_{i}$. Since $h(0)=0$ and, obviously, $h_{i}(0)=0, i \geq 1$, it holds that $h_{0}=0$ and it suffices to prove that (1.4) holds for $\rho=1, n \geq 1$, and $h \in \mathcal{H}_{n}$. In that case (1.4) follows from Corollary 1.12 since $1 \in \mathcal{H}_{0}$.

2. Dirichlet problem

Any d-tuple $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)$ consisting of $\beta_{i} \in\{0,1, \ldots\}$ is called a multi-index. For any multi-index β we set

$$
|\beta|=\sum_{i=1}^{d} \beta_{i}, \quad D^{\beta}=D_{1}^{\beta_{1}} \cdot \ldots \cdot D_{d}^{\beta_{d}}, \quad D_{i}=\frac{\partial}{\partial x^{i}} \quad \beta!=\beta_{1}!\cdot \ldots \cdot \beta_{d}!
$$

Lemma 2.1. Let $R \in(0, \infty), g$, u be polynomials such that $\Delta u=0$ and $u=g$ on ∂B_{R}. Then there exists a constant $N=N(d)$ such that in B_{R} for any multi-index β

$$
\begin{equation*}
\left|D^{\beta} u(x)\right| \leq\left(\frac{N|\beta|}{R-|x|}\right)^{|\beta|} \sup _{\partial B_{R}}|g| . \tag{2.1}
\end{equation*}
$$

Proof. We employ Bernstein's method which uses only the maximum principle. First we note that scalings show that it suffices to concentrate on $R=1$. In that case take any $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with support in B_{1}, assume that $\zeta(0)=1$, and consider the function

$$
w:=\zeta^{2}\left|u_{x}\right|^{2}+\lambda|u|^{2},
$$

where $\lambda>0$ is a constant to be chosen later. We have $\Delta u=0$, $\Delta u_{x^{i}}=0$, and

$$
\begin{aligned}
\Delta w= & \left|u_{x}\right|^{2} \Delta\left(\zeta^{2}\right)+\zeta^{2}\left[2 u_{x^{i}} \Delta u_{x^{i}}+2 \sum_{i, k}\left|u_{x^{i} x^{k}}\right|^{2}\right] \\
& +8 \zeta \zeta_{x^{i}} u_{x^{k}} u_{x^{i} x^{k}}+2 \lambda\left|u_{x}\right|^{2}+2 \lambda u \Delta u \\
= & {\left[2 \lambda\left|u_{x}\right|^{2}+\left|u_{x}\right|^{2} \Delta\left(\zeta^{2}\right)\right]+2 \zeta^{2} \sum_{i, k}\left|u_{x^{i} x^{k}}\right|^{2} } \\
& +8\left[\zeta_{x^{i}} u_{x^{k}}\right]\left[\zeta u_{x^{i} x^{k}}\right] \\
\geq & \left|u_{x}\right|^{2}\left[2 \lambda+\Delta\left(\zeta^{2}\right)-8\left|\zeta_{x}\right|^{2}\right]
\end{aligned}
$$

(we have used $2 a^{2}+8 a b \geq-8 b^{2}$). We see how to take $\lambda=\lambda(d)$ so that $\Delta w \geq 0$. Fix such a λ. Then by the maximum principle

$$
\left|u_{x}(0)\right|^{2} \leq \max _{\bar{B}_{1}} w \leq \max _{\partial B_{1}} w=\lambda \max _{\partial B_{1}}|g|^{2}
$$

This yields (2.1) for $|\beta|=1, R=1$, and $x=0$. Then (2.1) holds for $|\beta|=1$ and any $R \in(0, \infty)$ if $x=0$. Moving the origin and observing that $\Delta u=0$ in $B_{R-\left|x_{0}\right|}\left(x_{0}\right)$ for any $x_{0} \in B_{R}$ we get that (2.1) holds for $|\beta|=1$ and any $x \in B_{R}$.

For higher values of $|\beta|$, one obtains (2.1) by splitting $B_{R} \backslash B_{|x|}$ into $|\beta|$ rings of width $(R-|x|) /|\beta|$ and estimating the derivatives $D_{j_{1}} \cdot \ldots \cdot D_{j_{k}} u$ inside the k-th ring by using the above result obtained for $|\beta|=1$ and the fact that $\Delta D_{j_{1}} \cdot \ldots \cdot D_{j_{k-1}} u=0$ in B_{R}. The lemma is proved.
Corollary 2.2. For any $g \in C\left(\bar{B}_{R}\right)$ there exists a unique $u \in C_{\mathrm{loc}}^{2}\left(B_{R}\right) \cap$ $C\left(\bar{B}_{R}\right)$, that satisfies $\Delta u=0$ in B_{R} and is equal to g on ∂B_{R}. Furthermore, any such function is in $C_{\mathrm{loc}}^{\infty}\left(B_{R}\right)$ and the assertions of Lemma 2.1 hold true. Also, for any $a \in B_{R}$ and $\rho>0$ such that $B_{\rho}(a) \subset B_{R}$ we have (mean value theorem)

$$
f_{S_{\rho}} u(x+a) d S_{\rho}=f_{B_{\rho}} u(x+a) d x=u(a)
$$

Uniqueness is a consequence of the maximum principle, which also assures that, if the polynomials g_{n} converge uniformly to g on ∂B_{R} and u_{n} are the corresponding polynomials from Lemma 2.1, then

$$
\sup _{\bar{B}_{R}}\left|u_{n}-u_{m}\right| \leq \sup _{\partial B_{R}}\left|g_{n}-g_{m}\right| \rightarrow 0
$$

as $n, m \rightarrow \infty$. Hence, u_{n} converge in \bar{B}_{R} uniformly to, say u, which is continuous and equal g on ∂B_{R}. Applying estimates (2.1) to $u_{n}-u_{m}$, we see that also all derivatives of u_{n} converge uniformly on any compact subset of B_{R}. Of course, this implies that $u \in C_{\mathrm{loc}}^{\infty}\left(B_{R}\right)$ and u is the desired solution. After that estimates (2.1) for u and the last assertions are immediate.

Corollary 2.3. If $u \in C_{\text {loc }}^{2}\left(\mathbb{R}^{d}\right), \Delta u=0$ in $\mathbb{R}^{d}, \alpha \in[0,1), n \in$ $\{0,1,2, \ldots\}$ and

$$
\varlimsup_{|x| \rightarrow \infty} \frac{|u(x)|}{|x|^{n+\alpha}}<\infty
$$

then $u \in \mathcal{H}_{n}$.
Indeed, as $R \rightarrow \infty$, (2.1) implies that all derivatives of order $n+1$ vanish.

Corollary 2.4. If $u \in C_{\mathrm{loc}}^{2}\left(B_{R}\right)$ is harmonic in B_{R}, then it is real analytic.

This follows from (2.1) (applied in a smaller ball) and the fact that, for any constant N and $|x| \leq(e N)^{-1}$,

$$
\frac{N^{k}|x|^{k} k^{k}}{k!} \rightarrow 0
$$

as $k \rightarrow \infty$.
Corollary 2.5. Let $u_{n}(x), n=1,2, \ldots$, be a sequence of harmonic functions in B_{1} such that they are uniformly bounded in B_{R} for any $R<1$ and at any point of B_{1} they converge as $n \rightarrow \infty$ to a function $u(x)$. Then $u(x)$ is infinitely differentiable, harmonic in B_{1}, and any derivative of u_{n} converges to the corresponding derivative of u locally uniformly in B_{1}.
Theorem 2.6 (Harnack's inequality). Let $u \in C_{\mathrm{loc}}^{2}\left(B_{R}\right)$ be a nonnegative harmonic in B_{R}. Then $u(x) \leq 5^{d} u(y)$ if $|x|,|y| \leq R / 5$.

Proof. We have $B_{R / 2}(y) \supset B_{R / 10}(x)$ and

$$
u(y)=f_{B_{R / 2}(y)} u(z) d z \geq M f_{B_{R / 10}(x)} u(z) d z=M u(x)
$$

where

$$
M=\frac{\operatorname{Vol} B_{R / 10}}{\operatorname{Vol} B_{R / 2}}=5^{-d}
$$

This proves the theorem.

Corollary 2.7 (one-sided Liouville's theorem). If $u \in C_{\mathrm{loc}}^{2}\left(\mathbb{R}^{d}\right)$ is harmonic in \mathbb{R}^{d} which is bounded from below, then $u=$ const.

Indeed, in that case $v:=u-\inf _{\mathbb{R}^{d}} u$ is also a harmonic in \mathbb{R}^{d} and there is a sequence y_{n} such that $v\left(y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. By Theorem 2.6 we have $v(x) \leq N v\left(y_{n}\right)$, which implies that $(0 \leq) v \leq 0, v \equiv 0$, and $u \equiv \inf _{\mathbb{R}^{d}} u$.

A different argument. One can assume that $u \geq 0$. Then Harnack's inequality implies that u is bounded, and, by Corollary $2.3, u \in \mathcal{H}_{0}$, that is $u=$ const.

Next, we are interested in solving the Dirichlet problem with more general boundary data.

Theorem 2.8. For any function $g \in L_{2}\left(S_{1}\right)$ there exists a unique harmonic function u in B_{1} such that $u(t x) \rightarrow g(x)$ in $L_{2}\left(S_{1}\right)$-sense as $t \uparrow 1$.

Proof. Existence. We take the right-hand side of (1.2) and consider it in B_{1}. Obviously, $h_{n} \perp h_{m}$ in $L_{2}\left(B_{1}\right)$ if $n \neq m$. Furthermore,

$$
\begin{gathered}
\int_{B_{1}}\left|h_{n}\right|^{2} d x=c \int_{0}^{1} r^{d-1}\left(\int_{S_{1}}\left|h_{n}(r x)\right|^{2} d S\right) d r \\
=c \int_{0}^{1} r^{d+2 n-1} d r \int_{S_{1}}\left|h_{n}(x)\right|^{2} d S=c(d+2 n)^{-1}\left\|h_{n}\right\|_{L_{2}\left(S_{1}\right)}^{2} .
\end{gathered}
$$

It follows that the series in (1.2) converges in $L_{2}\left(B_{1}\right)$.
Finite sums Σ_{n} of this series are well defined harmonic functions satisfying

$$
\Sigma_{n}(x)=f_{B_{r}(x)} \Sigma_{n}(y) d y
$$

By Corollary 2.5, Σ_{n} converge uniformly in any $B_{r}, r<1$, to a harmonic function. Call it u. Then, for $x \in S_{1}$ and $t \in[0,1)$ we have

$$
u(t x)=\sum_{n=0}^{\infty} t^{n} h_{n}(x) .
$$

Hence

$$
\|u(t \cdot)-g\|_{L_{2}\left(S_{1}\right)}^{2}=\sum_{n=0}^{\infty}\left(1-t^{n}\right)\left\|h_{n}\right\|_{L_{2}\left(S_{1}\right)}^{2},
$$

which goes to zero as $t \uparrow 1$ indeed.
Uniqueness. Observe that by Green's formula for $t<1$

$$
\frac{d}{d t} \int_{S_{1}}|u(t x)|^{2} d S=2 \int_{S_{1}} u(t x)\left(x, u_{x}(t x)\right) d S=2 t \int_{B_{1}}\left|u_{x}(t x)\right|^{2} d x \geq 0
$$

and this yields the result. The theorem is proved.

3. CASE $d=2$

Let s denote the point on S_{1} which is at the distance s along the circle in the counterclockwise direction from the point $(1,0)$. As easily follows from (1.1), the Laplace-Beltrami operator on S_{1} is just the second-order derivative with respect to s. Therefore, $h \in \mathcal{H}_{n}\left(S_{1}\right)$ are (the only, see Corollary 1.14) solutions of

$$
h^{\prime \prime}=\lambda_{n} h=-n^{2} h, \quad h(s)=c_{1} \sin n s+c_{2} \cos n s
$$

and (1.2) is a usual representation of a function $f \in L_{2}(0,2 \pi)$ by its Fourier series. Amazing, at the first sight, the theory of Fourier series has nothing to do with the Laplacian in $d=2$.

Also observe that since, generally, \mathcal{H}_{n} are obviously invariant under orthogonal transformation in this case for $d=2$ and $n=1$ for any t we have

$$
\sin (t+s)=b(t) \cos s+c(t) \sin s
$$

and one can find $b(t)$ and $c(t)$ by using substitutions. Say, for $s=0$ we get $\sin t=b(t)$. Knowing that and interchanging s and t we get $c(t)=\cos t$.

One more remarkable thing is that $\sin n s$, which is in $\mathcal{H}_{n}(S)$ by Corollary 1.14, as a solution of the appropriate equation, and is therefore the trace on S_{1} of a homogeneous n th-order harmonic polynomial. For $n=2$ this means that $\sin 2 s$ and $\cos 2 s$ are linear combinations of the traces of $x^{2}-y^{2}$ and $x y$, that is of $\cos ^{2} s-\sin ^{2} s$ and $\cos s \sin s$.

4. Basis in \mathcal{H}_{n} and its dimension

Let $\mathcal{P}_{n}^{\text {hom }}$ be the set of homogeneous polynomials of degree n.
Lemma 4.1. For $n \geq 2$ every $p \in \mathcal{P}_{n}^{\text {hom }}$ has a unique representation

$$
p=h+|x|^{2} r
$$

where $h \in \mathcal{H}_{n}$ and $r \in \mathcal{P}_{n-2}^{\text {hom }}$.
Proof. Existence. By Lemma 1.2 there is a harmonic polynomial u of degree n such that $p=u$ on S_{1}. By Remark 1.3 we have $p-u=$ $\left(1-|x|^{2}\right) q$, where $q \in \mathcal{P}_{n-2}$. Let h be the homogeneous part of u of order n and r be the homogeneous part of q of order $n-2$. Then

$$
\begin{aligned}
p=h-|x|^{2} r & +\left[(u-h)+r+\left(1-|x|^{2}\right)(q-r)\right] \\
& =h-|x|^{2} r+p_{n-1},
\end{aligned}
$$

where $p_{n-1} \in \mathcal{P}_{n-1}$. By homogeneity $p_{n-1}=0$ and we get the desired representation.

Uniqueness. We need to prove that if $h \in \mathcal{H}_{n}, r \in \mathcal{P}_{n-2}^{\text {hom }}$ and $h+$ $|x|^{2} r \equiv 0$, then $h=r \equiv 0$.

More generally, let $k \geq 1$ be an integer such that h admits the representation $h=-|x|^{2 k} r$, where r is a polynomial. We want to show that $h=0$. Obviously $n-2 k \geq 0$ and

$$
0=\Delta\left(|x|^{2 k} r\right)=|x|^{2 k} \Delta r+2 k(2 n-2 k+d-2)|x|^{2 k-2} r
$$

Here $2 k(2 n-2 k+d-2)>0$, so that $r_{1}:=c \Delta r\left(c^{-1}=-2 k(2 n-2 k+\right.$ $d-2)$) is a polynomial, and $h=-|x|^{2(k+1)} r_{1}$. By induction we see that for any $k \geq 1$ there exists polynomials r_{k} such that $h=|x|^{2 k} r_{k}$, which is only possible if $h \equiv 0$ and this proves the lemma.

As a simple corollary of Lemma 4.1 obtained by iteration we come to the following.

Theorem 4.2. Let $p \in \mathcal{P}_{n}$. Then there exist unique $h_{n-2 i} \in \mathcal{H}_{n-2 i}$, $i=0,1, \ldots, k$, where $k=\lfloor n / 2\rfloor$ such that

$$
p=h_{n}+|x|^{2} h_{n-2}+\ldots+|x|^{2 k} h_{n-2 k} .
$$

Example 4.3. Take $p=x^{1} x^{2} x^{3}$. It has a representation $p=h+$ $|x|^{2} h_{1}$, where $h \in \mathcal{H}_{3}$ and h_{1} is an affine homogeneous function of $x=\left(x^{1}, x^{2}, x^{3}\right)$. By symmetry it follows that $h_{1}=c\left(x^{1}+x^{2}+x^{3}\right)$ and $x^{1} x^{2} x^{3}-c|x|^{2}\left(x^{1}+x^{2}+x^{3}\right)$ is harmonic.
Theorem 4.4. If $n \geq 2$, then

$$
\operatorname{dim} \mathcal{H}_{n}=\binom{d+n-1}{d-1}-\binom{d+n-3}{d-1}
$$

Proof. First we find $\operatorname{dim} \mathcal{P}_{n}^{\text {hom }}$, which is the number of different monomials

$$
x^{\alpha}=\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{d}\right)^{\alpha_{d}}
$$

such that $\alpha_{1}+\ldots+\alpha_{d}=n$. We consider a row of $d+n-1$ seats, numbered from 1 to $d+n-1$, choose arbitrarily $d-1$ of them $i_{1}<i_{2}<\ldots<i_{d-1}$ and then define α_{k} as the number of seats strictly between i_{k} and i_{k+1} : $\alpha_{1}=i_{1}-1, \alpha_{2}=i_{2}-i_{1}-1, \ldots, \alpha_{d}=d+n-1-i_{d-1}$. The number of such arrangement will be exactly the number of different monomials x^{α} such that $\alpha_{1}+\ldots+\alpha_{d}=n$. This number is

$$
\binom{d+n-1}{d-1}
$$

By Lemma 4.1 to obtain $\operatorname{dim} \mathcal{H}_{n}$ it suffices to subtract from this number $\operatorname{dim} \mathcal{P}_{n-2}^{\text {hom }}$. This yields the result.

Remark 4.5. If $d=2$ and $n \geq 1, \operatorname{dim} \mathcal{H}_{n}=2$.
Now we want to find a basis in \mathcal{H}_{n}.

Lemma 4.6. For $d>2$ and any multi-index α the function

$$
h:=|x|^{2 n+d-2} D^{\alpha} \frac{1}{|x|^{d-2}}
$$

belongs to \mathcal{H}_{n}, where $n=|\alpha|$.
Proof. That $h \in \mathcal{P}_{n}^{\text {hom }}$ is checked by induction. Then, since $D^{\alpha} \frac{1}{|x|^{d-2}}$ is harmonic in $\mathbb{R}^{d} \backslash\{0\}$ and homogeneous of degree $-(n+d-2)$, we have

$$
\begin{gathered}
|x|^{-n-d+4} \Delta h=[(2 n+d-2)(2 n+d-3)+(d-1)(2 n+d-2)] D^{\alpha} \frac{1}{|x|^{d-2}} \\
\quad+2(2 n+d-2) x^{j} D_{j} D^{\alpha} \frac{1}{|x|^{d-2}} \\
=[(2 n+d-2)(2 n+d-3)+(d-1)(2 n+d-2) \\
\quad-2(2 n+d-2)(n+d-2)] D^{\alpha} \frac{1}{|x|^{d-2}}=0
\end{gathered}
$$

Lemma 4.7. Let $d \geq 3$ and let $u \in C^{2}\left(\mathbb{R}^{d}\right)$ have compact support. Then for any $x \in \mathbb{R}^{d}$

$$
\begin{equation*}
u(x)=-c_{d} \int_{\mathbb{R}^{d}} \frac{1}{|y-x|^{d-2}} \Delta u(y) d y \tag{4.1}
\end{equation*}
$$

(Newton's potential of $-\Delta u$) where c_{d} is a constant depending only on d.

Proof. First note that it suffices to prove (4.1) for $x=0$. In that case take $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $\zeta=1$ in B_{1} and for $\varepsilon>0$ set $\zeta_{\varepsilon}(y)=$ $\zeta(y / \varepsilon)$. Observe that if in (4.1) we take $\left(1-\zeta_{\varepsilon}\right) u$ in place of u, then we can integrate by parts $(x=0)$ and, using the fact that $\Delta|y|^{2-d}=0$, conclude that the integral in (4.1) is zero. Hence, the integral in (4.1) in its original form equals

$$
I:=\lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} \Delta\left(\zeta_{\varepsilon} u\right)(y) d y .
$$

We use that

$$
\begin{gathered}
\varepsilon^{-1} \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} \zeta_{x^{i}}(y / \varepsilon) u_{x^{i}}(y) d y=\varepsilon \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} \zeta_{x^{i}}(y) u_{x^{i}}(\varepsilon y) d y \rightarrow 0 \\
\int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} \zeta(y / \varepsilon) \Delta u(y) d y \rightarrow 0
\end{gathered}
$$

and conclude that

$$
I:=\lim _{\varepsilon \downarrow 0} \varepsilon^{-2} \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} u(y)(\Delta \zeta)(y / \varepsilon) d y .
$$

Observe that for N being the Lipschitz constant of u

$$
\begin{gathered}
\lim _{\varepsilon \downarrow 0} \varepsilon^{-2} \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}}|u(y)-u(0)||\Delta \zeta|(y / \varepsilon) d y \\
\leq N \lim _{\varepsilon \downarrow 0} \varepsilon \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}}|y||\Delta \zeta|(y) d y=0 .
\end{gathered}
$$

Hence,

$$
I=u(0) \lim _{\varepsilon \downarrow 0} \varepsilon^{-2} \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}}(\Delta \zeta)(y / \varepsilon) d y=u(0) \int_{\mathbb{R}^{d}} \frac{1}{|y|^{d-2}} \Delta \zeta(y) d y
$$

This proves the lemma.
Recall that we denote by $\mathcal{H}_{n}\left(S_{1}\right)$ the set of restrictions of the functions in \mathcal{H}_{n} to S_{1}.

Lemma 4.8. If $d>2$, the linear span of

$$
\left\{D^{\alpha}|x|^{2-d}:|\alpha|=n\right\}
$$

is $\mathcal{H}_{n}\left(S_{1}\right)$.
Proof. If $n=0$, the assertion is obvious. For $n \geq 1$ assume the contrary. Then there exists $h \in \mathcal{H}_{n}\left(S_{1}\right)$ such that

$$
\begin{equation*}
\int_{S_{1}} h D^{\alpha}|x|^{2-d} d S=0 \tag{4.2}
\end{equation*}
$$

for all α such that $|\alpha|=n$. By Lemma 4.6 and Corollary 1.12 equation (4.2) also holds for $|\alpha| \neq n$.

Next, the function

$$
F(x):=\int_{S_{1}} h(y)|y-x|^{2-d} d S
$$

is harmonic outside S_{1} and as such is real analytic there. Equation (4.2) says that all derivatives of F vanish at 0 . It follows that $F=0$ in B_{1}. Furthermore, F is a bounded continuous function on \mathbb{R}^{d} since bounded continuous

$$
\int_{S_{1}} h(y)|y-x|^{2-d} I_{|y-x| \geq \varepsilon} d S
$$

converge uniformly on \mathbb{R}^{d} to F as $\varepsilon \downarrow 0$. In addition, $F \rightarrow 0$ as $|x| \rightarrow \infty$, hence, by the maximum principle $F=0$ in B_{1}^{c}, since it is harmonic in \bar{B}_{1}^{c}. Thus, $F \equiv 0$.

Now take $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and integrate the equality

$$
0=\int_{S_{1}} h(y)|y-x|^{2-d} d S \Delta u(x)
$$

over \mathbb{R}^{d}. By using Lemma 4.7 we get

$$
\int_{S_{1}} h(y) u(y) d S=0
$$

and the arbitrariness of u implies that $h \equiv 0$.
Theorem 4.9. For $d \geq 3$ the set

$$
\begin{equation*}
\left\{D^{\alpha}|x|^{2-d}:|\alpha|=n, \alpha_{1} \leq 1\right\} \tag{4.3}
\end{equation*}
$$

is a basis in $\mathcal{H}_{n}\left(S_{1}\right)$.
Proof. The number of elements in (4.3) is not greater than the number of multi-indices α such that $|\alpha|=n$ and $\alpha_{1} \leq 1$. The latter number is easily shown to be equal to $\operatorname{dim} \mathcal{H}_{n}\left(S_{1}\right)$ (use the same interpretation as in the proof of Theorem 4.4). Therefore, due to Lemma 4.8 we only need to show that $D^{\alpha}|x|^{2-d}$ belongs to the span of (4.3) for any α_{1} if $|\alpha|=n$. This is trivial because $|x|^{2-d}$ is harmonic and for any even α_{1} we have

$$
D_{1}^{\alpha_{1}}|x|^{2-d}=\left(-D_{2}^{2}-\ldots-D_{d}^{2}\right)^{\alpha_{1} / 2}|x|^{2-d}
$$

whereas if $\alpha_{1}=2 k+1(\leq n)$,

$$
D_{1}^{\alpha_{1}}|x|^{2-d}=D_{1}\left(-D_{2}^{2}-\ldots-D_{d}^{2}\right)^{k}|x|^{2-d} .
$$

5. An unexpected formula for the scalar product of

 SPHERICAL HARMONICSRecall that for any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ and $x \in \mathbb{R}^{d}$ we set

$$
x^{\alpha}=\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{d}\right)^{\alpha_{d}}, \quad|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \quad \alpha!=\alpha_{1}!\cdot \ldots \cdot \alpha_{d}!.
$$

Suppose

$$
p=\sum_{|\alpha|=n} b_{\alpha} x^{\alpha}, \quad q=\sum_{|\alpha|=n} c_{\alpha} x^{\alpha}
$$

are in \mathcal{H}_{n}. We want to find their scalar product in $L_{2}\left(S_{1}\right)$. It looks like the best we can do is to write

$$
(p, q)_{L_{2}\left(S_{1}\right)}=\sum_{\alpha, \beta} b_{\alpha} c_{\beta} \int_{S_{1}} x^{\alpha+\beta} d S
$$

The integral over S_{1} of the monomial $x^{\alpha+\beta}$ was explicitly calculated by Hermann Weyl in Section 3 of [2] (1939). Using that result would complete the formula for $(p, q)_{L_{2}\left(S_{1}\right)}$. There is however a shorter way, which I take from [1].

Lemma 5.1. If $n>0$ and $p, q \in \mathcal{H}_{n}$, then

$$
\begin{equation*}
I:=\int_{S_{1}} p q d S=\frac{1}{n(d+2 n-2)} \sum_{j=1}^{d} \int_{S_{1}} D_{j} p D_{j} q d S . \tag{5.1}
\end{equation*}
$$

Proof. Let $D u$ denote the gradient of u. By Theorem 1.11 and Example 1.10

$$
\begin{aligned}
& -\lambda_{n} I=\int_{S_{1}}\left(D\left(\frac{1}{|x|^{n}} p(x)\right), D\left(\frac{1}{|x|^{n}} q(x)\right)\right) d S \\
= & \int_{S_{1}}(-n x p(x)+D p(x),-n x q(x)+D q(x)) d S .
\end{aligned}
$$

By using that $(x, D p(x))=n p(x)$ we see that

$$
-\lambda_{n} I=-n^{2} I+\int_{S_{1}}(D p, D q) d S
$$

which is equivalent to (5.1).
Theorem 5.2. Let $p=\sum_{\alpha} b_{\alpha} x^{\alpha}$ and $q=\sum_{\alpha} c_{\alpha} x^{\alpha}$ be harmonic polynomials. Then

$$
(p, q)_{L_{2}\left(S_{1}\right)}=\sum_{\alpha} b_{\alpha} c_{\alpha} w_{\alpha}
$$

where

$$
w_{\alpha}=\frac{\alpha!}{d(d+2) \cdot \ldots \cdot(d+2|\alpha|-2)} \quad \alpha \neq 0, \quad w_{0}=1
$$

Proof. Owing to Corollary 1.12 it suffices to prove the theorem under the assumption that $p, q \in \mathcal{H}_{n}$.

If $n=0$, then p, q are constant and the desired result obviously holds.

If $n>0$ observe that $D_{j} p$ and $D_{j} q$ are harmonic polynomials in \mathcal{H}_{n-1}, so that Lemma 5.1 is applicable. By induction we get for e_{j} being the j th basis vector in \mathbb{R}^{d} that

$$
\begin{gathered}
\sum_{j=1}^{d}\left(D_{j} p, D_{j} q\right)_{L_{2}\left(S_{1}\right)}=\sum_{j=1}^{d} \int_{S_{1}}\left(\sum_{\alpha} b_{\alpha} \alpha_{j} x^{\alpha-e_{j}}\right)\left(\sum_{\alpha} c_{\alpha} \alpha_{j} x^{\alpha-e_{j}}\right) \\
=\sum_{j=1}^{d} \sum_{\alpha} b_{\alpha} c_{\alpha} \alpha_{j}^{2} \frac{\left(\alpha-e_{j}\right)!}{d(d+2) \cdot \ldots \cdot(2+2 n-4)} \\
=\sum_{\alpha} b_{\alpha} c_{\alpha} \sum_{j=1}^{d} \alpha_{j} \frac{\alpha!}{d(d+2) \cdot \ldots \cdot(2+2 n-4)}
\end{gathered}
$$

$$
=\sum_{\alpha} b_{\alpha} c_{\alpha} \frac{\alpha!n}{d(d+2) \cdot \ldots \cdot(2+2 n-4)} .
$$

By combining this with Lemma 5.1, we get the result.

References

[1] Sheldon Axler, Paul Bourdon, and Wade Ramey, "Harmonic function theory", Springer, 2001.
[2] Hermann Weyl, On the volume of tubes, American Journal of Mathematics, 61 (1939), 461-472.

