next up previous
Next: About this document

MATH 3251, Midterm 2, Fall 1996, Solutions of problems

October 31, 1996.

1(a) The curve is tex2html_wrap_inline92 . Its tangent vector tex2html_wrap_inline94 , which is tex2html_wrap_inline96 at point P. The symmetric equations are

displaymath100

(b) The line y=px has to satisfy the above equations. So, the equation

displaymath104

has to hold for all x. Thus

displaymath108

The last equation means tex2html_wrap_inline110 , tex2html_wrap_inline112 , a=1. Therefore, tex2html_wrap_inline116 .

2. We have

displaymath118

displaymath120

displaymath122

displaymath124

3. The distance from the origin to the plane tex2html_wrap_inline126 is tex2html_wrap_inline128 . The intersection
of this plane with the sphere tex2html_wrap_inline130 of radius tex2html_wrap_inline132 is a circle of radius
tex2html_wrap_inline134 . Hence the length tex2html_wrap_inline136 . The curvature of a circle is 1/r=1/3

4. We have

displaymath140

At the point tex2html_wrap_inline142 , we get

displaymath144

and the curvature

displaymath146

Obviously, the minimal value tex2html_wrap_inline148 for tex2html_wrap_inline150 .

At the point of maximum, we obtain

displaymath152

hence tex2html_wrap_inline154 , and

displaymath156





Nicolai V. Krylov
Mon Dec 9 10:58:10 CST 1996